The Complexity of the
Characteristic and the Minimal Polynomial *

Thanh Minh Hoang, Thomas Thierauf

Abt. Theoretische Informatik
Universitat Ulm
89069 Ulm, Germany

Abstract

We investigate the complexity of 1) computing the characteristic polynomial, the
minimal polynomial, and all the invariant factors of an integer matrix, and of 2)
verifying them, when the coefficients are given as input.

It is known that each coefficient of the characteristic polynomial of a matrix A is
computable in GapL, and the constant term, the determinant of A, is complete for
GapL. We show that the verification of the characteristic polynomial is complete
for complexity class C_L (ezact counting logspace).

We show that each coefficient of the minimal polynomial of a matrix A can be
computed in AC’(GapL), the AC’-closure of GapL, and there is a coefficient
which is hard for GapL. Furthermore, the verification of the minimal polynomial
is in AC%(C_L) and is hard for C_L. The hardness result extends to (computing
and verifying) the system of all invariant factors of a matrix.

Key words: computational complexity, logspace counting classes, linear algebra,
characteristic polynomial, minimal polynomial, invariant factors.

1 Introduction

The motivation for our work is twofold: 1) we want to understand the compu-
tational complexity of some classical problems in linear algebra, 2) by locating
such problems in small space complexity classes we want to clarify the inclu-
sion relationship of such classes.

* Supported by the Deutsche Forschungsgemeinschaft.
Email address: {hoang,thierauf}@informatik.uni-ulm.de (Thanh Minh

Hoang, Thomas Thierauf).

Preprint submitted to Elsevier Science 24 May 2002

The characteristic polynomial and the minimal polynomial of a matrix play
an important role in matrix theory. In our work we want to study the compu-
tational complexities of these problems.

Valiant [Val79b,Val79a] initiated the study of the computational complexity
of counting problems. He introduced the counting class #P that, intuitively,
counts the number of solutions of NP-problems. An example for a complete
problem for this class is the permanent of a matrix.

Since counting is restricted to nonnegative integers, Fenner, Fortnow, and
Kurtz [FFK94] extended #P to the class GapP, the closure of #P under
subtraction. It follows that computing the permanent of integer matrices is
GapP-complete.

In contrast, the determinant of a matrix is complete for GapL
[Dam91,Tod91,Vin91,Val92], the class corresponding to GapP in the logspace
setting. This huge difference in the complexity of the two problems® is some-
what surprising since the permanent and the determinant have almost the
same cofactor expansion; the only difference comes with the sign. GapL turns
out to capture the complexity of many other natural problems: computing

the powers of a matrix,

iterated matrix multiplication,

the inverse of a matrix,

the characteristic polynomial of a matrix.

There are also graph theoretic problems related to counting the number s-t-
paths in a graph.

Interesting decision problems can be derived from the above problems. For
example, instead of computing the inverse of a matrix, it often suffices to
decide whether the inverse ezists. That is, to decide whether the determinant
is zero or not. More generally, this motivates the complexity class C_L where
one has to verify the value of a GapL function. Problems that are complete
for GapL yield verification problems that are complete for C_L. For example,
the determinant is GapL complete and checking singularity is complete for
C_L. In case the result is a matrix or a tuple of numbers there is a subtlety
one has to be careful about: for example when we say that matrix powering
is in GapL, what we mean is that each entry of the resulting matrix can
be computed within GapL. I.e., for a n X n matrix A this yields n?> GapL-
functions, one for each entry of A™, and each of which is complete for GapL.
Now there are two variants of the verification version: in the first version we
have to verify one entry, say (A™);; for given ¢ and j. In the second version,
we have to verify all the entries, i.e., A™. Both versions are complete for C_L.

! Note however that there is no proof yet that GapL # GapP.

But the situation can be different. An example is provided by the inverse of a
matrix (if it exists). Again we have two variants of the verification problem.

e Verify one entry of the inverse:
given matrix A, a, ¢ and j, decide whether (A7), ; = a.

This problem is complete for C_L. The second variant is as follows.

e Verify the inverse of a matrix:
given matrices A and B, check whether A™! = B.

This problem can be solved by computing the product AB and comparing it
with the identity matrix. Hence this can be solved in NC', a subclass of C_L.
In other words, verifying one entry of the inverse is a harder problem than
verifying all elements.? In the latter problem, we put too much information
in the input.

We consider the following problem.

e Verify the characteristic polynomial of a matrix:
given a matrix A and the coefficients of a polynomial p, check whether

XA =D.

It follows from a theorem of Berkowitz [Ber84| that this problem is in C_L,
and Santha and Tan [ST98] asked whether it is complete for this class.

Recall that the determinant is the constant term in the characteristic polyno-
mial of a matrix and that verifying the determinant is complete for C_L. Now,
with the different complexities of the above two inverse problems in mind, the
question is: is it easier to verify all the coefficients of the characteristic poly-
nomial than to verify just one of them? We show that this is not the case:
verifying the characteristic polynomial is still complete for C_L.

The minimal polynomial of a matrix is one of the factors of the characteristic
polynomial of the matrix. Algorithms to compute the minimal polynomial
have been studied for a long time. The best known deterministic algorithm
to compute the minimal polynomial of an n x n matrix makes O(n?) field
operations [Sto98]. The Smith normal form of a polynomial matrix can be
computed by a randomized NC?-circuit, i.e., in RNC? [KS87]. Therefore the
rational canonical form of a matrix and the minimal polynomial of a matrix
can be computed in RNC? as well. In the case of integer matrices there are
even NC?-algorithms [Vil97).

We take a different approach to compute the minimal polynomial of an integer

2 Note however that we don’t know whether NC' # C_L.

matrix: we show that the problem can be reduced to matrix powering and
solving a system of linear equations. Therefore it is in the class AC°(GapL),
a subclass of NC?. With respect to the hardness of the problem we show
that matrix powering can be reduced to the minimal polynomial of a matrix.
Therefore the latter problem is hard for GapL. With respect to the verification
of the minimal polynomial, we have a similar situation as for the characteristic
polynomial: verifying whether the constant term ¢y of the minimal polynomial
of a matrix A is zero is complete for C_L, because ¢y = 0 iff A is singular.
We show that verifying all the coefficents is still hard for C_L.

The system of all invariant factors of a matrix A completely determines the
structure of A, i.e., these factors are invariant under similarity transforma-
tions. Note that the minimal polynomial of A is the first polynomial in its
system of all invariant factors. For integer matrices, the invariant factors can
be computed in NC? [Vil97]. We extend our results and techniques to the veri-
fication of all the invariant factors of a given integer matrix: it is in AC°(C_L)
(the AC-closure of C_L) and is hard for C_L.

One goal of our research is to determine the complexity of algebraic problems
as described above, i.e., in the ideal case, to show them complete for some
complexity class. Another goal we have in mind is to clarify the relationship
of these complexity classes. The may be most challenging open problem here
is whether C_L is closed under complement. Many related classes have this

property:

e The most popular one is nondeterministic logspace, NL, shown by Immer-
man [Imm88] and Szelepcsényi [Sze88].

e For symmetric logspace, SL, this was shown by Nisan and Ta-
Shma [NTS95].

Also, for probabilistic logspace, PL, it is trivial. For unambiguous logspace,
UL, it is open as well. For the latter class, however, Reinhardt and Allen-
der [RA97] showed that the nonuniform version of it, UL/poly, is closed under
complement. This motivates the conjecture that UL might be closed under
complement too.

One possible way of proving C_L to be closed under complement is to re-
duce the singularity problem to the nonsingularity problem. That is, given a
matrix A, construct a matrix B (in logspace) such that A is singular if and
only if B is nonsingular. It is well known that one does not need to consider
an arbitrary matrix A: one can assume that A is an upper triangular matrix
except for the entry in lower left corner (see [ABO99]). To prove our hard-
ness result for the characteristic polynomial, the minimal polynomial, and the
invariant factors we manipulate such matrices. We think that it is quite inter-
esting to see such transformations, because this can give some hints on how

to come up with a reduction as above to solve the complementation problem
for C_L. Therefore the methods we use are interesting in their own right. For

more background and interesting results we recommend the paper of Allender,
Beals, and Ogihara [ABO99].

The paper is organized as follows. After some definitions in the next section,
we present all the upper bounds, i.e., inclusions in complexity classes, of the
above mentioned problems in Section 3. Our main results are the lower bounds,
i.e., the hardness results, in Section 4. The reason for this organization is that
we obtain the hardness results via a reduction that is successively extended
from one problem to the next one. That way, this line of arguments is not
interrupted.

2 Preliminaries

Complexity Classes. For a nondeterministic logspace bounded Turing ma-
chine M, we denote the number of accepting paths on input x by accy (z),
and by rej, () the number of rejecting paths. The difference of these two
numbers is gap,;(z) = acepr(x) — rejy, ().

For the counting classes, we have #L, the class of functions accys(x) for some
nondeterministic logspace bounded Turing machine M, and GapL based anal-
ogously on functions gap,,(z). Based on counting, we consider the class C_L:
a set L is in C_L, if there exists a f € GapL such that for all x:

r€L< f(z) =0.

Since it is open whether C_L is closed under complement, it makes sense
to consider the Boolean closure of C_L. i.e., the class of sets that can be
expressed as a Boolean combination of sets in C_L. For our purposes, it
suffices to consider the following two classes:

e coC_L is the class of complement sets L, where L € C_L,
e C_L A coC_L [ABOY9] is defined as the class of intersections of sets in
C_L with sets in coC_L. Formally,

LeC_LAcoC_L<«= dL, € C_L, LyecoC_L: L=0L;NLs.

For sets A and B, A is AC’-reducible to B, if there is a logspace uniform
circuit family of polynomial size and constant depth that computes A with
unbounded fan-in and-, or-gates, not-gates, and oracle-gates for B. In par-
ticular, we consider the classes AC°(C_L) and AC’(GapL) of sets that are
AC’-reducible to a set in C_L, respectively a function in GapL. Cook [C0o085]

defined DET as the class of functions that are NC'-reducible to the deter-
minant, i.e., the class NC'(GapL) (see [Coo85] for a precise definition). The
known inclusion relations of these classes is as follows:

NL € C_.L € C_LAcoC_L C AC’(C_L) C PL C
AC’(GapL) C DET C TC' C NC%

A set A is AC” many-one reducible to a set B, in symbols: A g;‘fO B, if there
is a function f € AC? such that for all 2 we have » € A <= f(z) € B. All
reductions used in this paper are AC® many-one reductions.

Linear Algebra. Let A € F"*" be a matrix over the field F. The charac-
teristic polynomial of A is the polynomial y4(z) = det(z] — A). A nonzero
polynomial p(z) over F is called an annihilating polynomial of A if p(A) = 0.
The Cayley-Hamilton Theorem states that x4(x) is an annihilating polyno-
mial. The characteristic polynomial is a monic polynomial: its highest coeffi-
cient is one. The minimal polynomial of A, denoted p4(x), is the unique monic
annihilating polynomial of A with minimal degree.

Let polynomial di(z) be the greatest common divisor of all sub-determinants
of (xI — A) of order k. For example d,(z) = xa(x). It is known that dj
divides dj for each index 0 < k < n. Define dy(z) = 1. The invariant factors
of (xI — A) (or A, for short) are defined as the following (monic) polynomials:

_ dl (l‘)
do(x)

The characteristic polynomial of A is the product of all the invariant factors,
that is xa(z) = i1(x) - - -in(x). Note that the minimal polynomial of A is the
first invariant factor, i.e., pa(x) = i1(x). The nx n polynomial diagonal matrix
that has the invariant factors of A as its diagonal entries (starting with i, (z))
and zero elsewhere is the Smith normal form of xI — A.

ir(x) = is(x) = ceey in(x)

We decompose the invariant factors into irreducible divisors over the given
number field F:

i1 (x) = [eg (2)]0 [ea(2)]702 - - - [eg(2)]70e,
in(x) = e (2)]72 [ea(2)]722 - - - [eg(2)]72,
in(z) = [e1(2)]™ [eq ()] - - - [es(z)]Pme,

where ji; > jor > o+ > Jpx > 0 for £ = 1,...,s. The irreducible divisors
e1(z),ex(x),...,es(x) are distinct (with highest coefficient 1) and occur in

i1(z),ia(x), ... in(x). All powers [e;(x)]1, ..., [es(z)]?=, which are different
from 1, are called the elementary divisors of A in F

Note that the coefficients of the characteristic polynomial and the invariant
factors of an integer matrix are all integers. Furthermore, the set of eigenvalues
of A is the same as the set of all roots of x4(z) which, in turn, is the set of
all roots of p4(z).

Problems. Next, we define some natural problems in linear algebra we are
looking at. If nothing else is said, our domain for the algebraic problems are
the integers.

(1) POWERELEMENT
Input: an n x n matrix A and 4, j, and m, (1 <4,j,m <n).
Output: (A™); ;, the (i,7)-th element of A™.
(2) DETERMINANT
Input: an n X n matrix A.
Output: det(A), the determinant of A.
(3) CHARPOLYNOMIAL
Input: an n x n matrix A and ¢ < n.
Output: ¢;, the i-th coefficient of the characteristic polynomial y4(z) =
" + cp_1 "L+ - 4 ¢y of the matrix A.
(4) MINPOLYNOMIAL
Input: an n x n matrix A and ¢ < n.
Output: ¢;, the i-th coefficient of the minimal polynomial p4(z) = 2™ +
Cm_1Z™ 1 4+ o+ 12 + ¢o of the matrix A.
(5) INVSYSTEM
Input: an n x n matrix A and 7, £ < n.
Output: the k-th coefficient of the j-th invariant factor of the matrix A.

The functions POWERELEMENT, DETERMINANT and CHARPOLYNOMIAL
are complete for GapL [Ber84,Dam91,Tod91,Val92,Vin91]. MINPOLYNOMIAL
and INVSYSTEM are in RNC? [KS87], and in NC? for integer matrices [Vil97).

For each of them, we define the werification problem as the graph of
the corresponding function: for a fixed function f(x), define v-f as
the set all pairs (z,y) such that f(z) = y. This yields the verifica-
tion problems v-POWERELEMENT and v-DETERMINANT. With respect to
V-CHARPOLYNOMIAL, V-MINPOLYNOMIAL and V-INVSYSTEM, we take the
tuple of all coefficients of a polynomial as the underlying function. I.e., for
example in V-CHARPOLYNOMIAL, we have given A and ¢,_q, ..., ¢y, and have
to decide whether 1,¢, 1,..., ¢y are the coefficients of y4(z).

A GapL-complete function yields a C_L-complete verification problem.
Hence v-POWERELEMENT and V-DETERMINANT are complete for C_L. We
note that a special case of V-DETERMINANT is SINGULARITY, where one has
to decide whether the determinant of a matrix A is zero. SINGULARITY is
complete for C_L as well. In case of v-CHARPOLYNOMIAL we have a tuple
of n underlying GapL-functions. The constant term, ¢y, is complete for GapL
(because ¢g = (—1)"det(A)). But not all coefficients are complete for GapL:
for example ¢, 1 is the trace of A (the sum of all elements on the main di-
agonal). Therefore c,_; can be computed in NC'. Tt was an open problem
whether v-CHARPOLYNOMIAL is complete for C_L [ST98]. We show that
this is indeed the case.

A similar comment can be made for v-MINPOLYNOMIAL. The characteristic
and the minimal polynomial of a matrix A have the same set of roots, namely,
the eigenvalues of A, and their respective constant terms are the products
of these roots. Therefore A is singular iff the constant term of the minimal
polynomial of A is zero, and hence the zero-test of the constant term is com-
plete for C_L. We show that also v-MINPOLYNOMIAL, where we have to
verify all the coefficients, is hard for C_L. The same hardness result holds for
V-INVSYSTEM.

3 Upper Bounds

The Characteristic Polynomial. Berkowitz [Ber84] showed that for a
given matrix A one can construct in logspace a sequence of matrices such that
all the coefficients of y4(z) appear in the iterated product of these matrices.
Since each element of an iterated matrix product can be computed in GapL,
it follows that each coefficient of x4 (z) can be verified in C_L. Since C_L is
closed under logspace conjunctive reductions, also Vv-CHARPOLYNOMIAL can
be solved in C_L.

Theorem 1 [Ber84] v-CHARPOLYNOMIAL € C_L.

The Minimal Polynomial. We mentioned in the previous section that
the minimal polynomial p4(z) of an integer matrix A can be computed in
NC? [Vil97]. We take a different approach (see [HJ85], Section 3.3, problem
5) and show that MINPOLYNOMIAL is in AC’(GapL), a subclass of NC?.

Let p(z) = 2™ +¢p_12™ '+ - -+ ¢y be a monic polynomial and A be a matrix.
Then p(x) = () ., iff

(i) p(A) = A™ + ¢, 1 A™ ' + - 4+] = 0, i.e., p(z) is an annihilating

polynomial of A, and
(i) for every monic polynomial ¢(z) of degree smaller than p(x), we have

q(A) # 0.

Define vectors a; = vec(A?) for i = 0,1,2,...,n, where vec(A?) is the vector
of length n? obtained by putting the columns of A’ below each other. The
equation p(A) = 0 can be rewritten as

Ay + Cp_1Qpy_1 + -+ cogayg = 0. (1)

In other words, the vectors a,,, ..., aq are linearly dependent. Consequently,
for some monic polynomial ¢ with degree k£ < m, the inequation ¢(A) # 0
means that the vectors ay, ..., ag are linearly independent.

In summary, the coefficients ¢, 1,...,co of pa(x) are the (unique) solution of
the system (1), for the smallest m where this system has a solution. Hence we
have the following algorithm to compute ().

MINPOLYNOMIAL(A)

1 a; + vec(A?) fori=0,...,n

2 determine m such that a,,_1,...,a;, ag are linearly independent and
Qs ..., 041, a are linearly dependent

3 solve the linear system a,, + ¢, 1@ 1+ -+ cpag =0

4 return (1,¢, 1,...,¢q), the coefficients of pa(z).

In step 1 in the above algorithm, each element of @; can be computed in GapL.
In step 2, checking linear independence of given vectors is in coC_L and linear
dependence is in C_L (see [ABO99]). In step 3, we have to solve a linear
system of equations. Since the vectors a,,_1,- -+ ,aqy are linearly independent
and a,,, a,,_1, -+ ,aq are linearly dependent, the system of linear equations
in step 3 has a unique solution. Let C' be the n? x m matrix with columns
Qo 15,00, 1.6., C = (@, 1 -+ ag). In step 3 we have to solve the system
Cc = —a,, in the unknown ¢ = (¢,,_1,...,¢o)". Define the m x m matrix B
and vector b of length m as

B=C"C and b=-C"a,,.
Since C' has full column rank, matrix B is nonsingular. Therefore
Cec=—a,, < Bec=0b.

Hence we obtain the unique solution in step 3 as ¢ = B~'b. The inverse of a
given matrix can be computed in GapL. When m is known after step 2, each
entry of B and b is computable in GapL, and therefore each entry of B~ 'b
is in GapL as well [AAM99]. In summary, each coefficient ¢; of pa(x) can be
computed in AC’(GapL).

Theorem 2 MINPOLYNOMIAL € AC’(GapL).

In the corresponding verification version we have given A and the coefficients
of a monic polynomial, and have to decide whether these coefficients represent
in fact the minimal polynomial of A.

To verify the minimal polynomial we can simplify the above algorithm for
MiINPOLYNOMIAL as follows:

V-MINPOLYNOMIAL(A, ¢p_1, - -, o)

1 a; < vec(A?) fori=0,...,m

2 ifa,+cn 1,1+ -+ cpag=0 and
a,_1,...,01,aq are linearly independent

3 then accept else reject.

Since the components of vectors a; can be computed in GapL (line 1), the
first condition in line 2 can be decided in C_L. For the second condition, let B
be the symmetric m X m matrix defined above, i.e.,

T
B = (am_1 e A ao) (am_1 e A ao).
Now, a,, 1,..., a1, aq are linearly independent iff B is nonsingular.

Since each entry of B can be computed in GapL, the determinant of B can
be computed in GapL as well [AAM99]. Thus the latter test can be done in
coC_L. Therefore v-MINPOLYNOMIAL can be decided by a C_L predicate
in conjunction with a coC_L predicate.

Corollary 3 v-MINPOLYNOMIAL € C_L A coC_L.

The Invariant Factors. The system of all invariant factors of an integer
matrix can be computed in NC? [Vil97]. We show that the invariant factors
can be verified in AC°(C_L).

Theorem 4 v-INVSYsTEM € AC’(C_L).

Proof. Let S = {iy(x),...,i,(z)} be the system of n given monic polynomials
and let A be an n x n matrix. The algorithm exploits a result from linear
algebra (see [Gan77]): we construct the companion matrices that correspond
to the non-constant polynomials in S. Let D denote the diagonal block matrix
of all these companion matrices. Then S is the system of all invariant factors
of A iff A is similar to D. Testing similarity can be done in AC°(C_L) [ST98],
therefore v-INVSYSTEM is in AC"(C_L) too. O

10

4 Lower Bounds

The characteristic polynomial is known to be hard for GapL. In this section
we show that the same holds for the minimal polynomial and the invariant

factors. We show that all the corresponding verification problems are hard for
C_L.

A problem known to be complete for GapL is POWERELEMENT where one has
to compute the entry (i, j) of A™, for an nxn integer matrix A. W.l.o.g. we can
focus on entry (1,n) of A™, i.e. (A™);,. Consequently, v-POWERELEMENT
is complete for C_L. We take POWERELEMENT and V-POWERELEMENT as
the reference problems to show our hardness results. Since the construction of
the graph G below in this section can be done in AC?, all reductions here are
AC° many-one reductions.

4.1 Verifying the Characteristic Polynomial

The reduction from v-POWERELEMENT to V-CHARPOLYNOMIAL builds on
techniques from Toda [Tod91] and Valiant [Val92] to reduce iterated ma-

trix multiplication to the determinant. In parts of our presentation we fol-
low [ABO99].

Theorem 5 V-POWERELEMENT <A¢° v-CHARPOLYNOMIAL.

Proof. Let A be an nxn matrix and 1 < m < n. We will construct a matrix B
such that the value (A™);,, occurs as one of the coefficients of xp(z).

Interpret A as representing a directed bipartite graph on 2n nodes and e
edges. That is, the nodes are arranged in two columns of n nodes each. In
both columns, nodes are numbered from 1 to n. If entry a;; of A is not zero,
then there is an edge labeled a,; from node £ in the first column to node [in
the second column. The number of non-zero entries in A is exactly e.

Now, take m copies of this graph, put them in a sequence and identify each
second column of nodes with the first column of the next graph in the sequence.
Call the resulting graph G'. Graph G’ has m + 1 columns of nodes, and each
column has exactly n nodes. The weight of a path in a graph is the product
of all labels on the edges of the path. The crucial observation now is that the
entry at position (1,n) in A™ is the sum of the weights of all paths in G’ from
node 1 in the first column to node n in the last column. Call these two nodes s
and t, respectively. Add an edge labeled 1 from ¢ to s, and call the resulting
graph GG. An example for the above construction of G for A = (§ i g) is shown
in figure 1.

11

Fig. 1. The graph G constructed from matrix A for m = 3. The three columns are
indicated by the dashed lines. The edge labels are the corresponding entries of A.
The thicker edges indicate the two paths from s to t. The weights of these two paths
sum up to 3, which is the value of (A3); 3. For the characteristic polynomial of the
adjacency matrix B we get xp(z) = z'? — 328. As we will see in Section 4.2, for the
minimal polynomial we get ug(z) = 8 — 3z*.

Let B be the adjacency matrix of G. So B is an N x N matrix, where N =
(m + 1)n is the number of nodes of G. Let the characteristic polynomial of B
have the form

N-1
xp(z) =det(zly — B) =2V + > ¢a',
i=0

where Iy is the N x N identity matrix. We give two ways how to compute
the coefficients ¢; in xp(z):

(1) one way is to use elementary linear transformations and bring the polyno-
mial matrix Iy — B into triangular block form. Then the characteristic
polynomial of B can be computed from the resulting polynomial matrix.

(2) a very elegant proof is provided by combinatorial matrix the-
ory. From there we know that the coefficients of the characteris-
tic polynomial can be expressed as cycle covers in the graph G
(see [BR91,CDS80,Zei85,MV97,MV99)).

We start by giving the combinatorial argument which is much shorter than
the algebraic argument.

The Combinatorial Way
It is known that the coefficient ¢; in xg(z) equals the sum of the disjoint

weighted cycles that cover N —i nodes in G, with appropriate sign (see [BRI1]
or [CDS80] for more details). In the graph G, all edges go from a layer to the

12

next layer. The only exception is the edge (¢,s). So any cycle in G must use
precisely this edge (¢, s), and then trace out a path from s to t. Therefore
each cycle in G has exactly the length m + 1, and the weighted sum of all
these cycles is precisely (—1)™*1(A™),, (for the sign, recall that we consider
xIy — B). The sign of the cycle (as a permutation) is (—1)™. Hence

en—(m+1) = (=1)" T (=1)™(A™) 10 = —(A7)1

and all other coefficients must be zero. That is, for a = (A™); ,,

XB(SU) — QTN - afo(erl)

is the characteristic polynomial of B.

The Algebraic Way

We consider the adjacency matrix B of the graph G. Except for the edge
from ¢ to s, graph G is acyclic. Thus we can put the nodes of GG in such an
order, that adjacency matrix B is upper triangular for the first N — 1 rows
with zeros along the main diagonal. The last row of B has a one in the first
position (representing edge (¢, s)), and the rest is zero.

Now we can write B as a (m + 1) x (m + 1) block matrix as follows

Matrix A occurs m-times on the upper sub-diagonal of B. L is the n x n matrix
with a one at position (n,1) and zero elsewhere. The empty places in B are
all zero (matrices).

Therefore Iy — B has the form
zl, (—A)
zIy — B = R
N oI, (—A)
—L xl,

To compute xp(z) we transform 2y — B into an upper triangular block
matrix. Note that it already is upper triangular except for matrix L in the
lower left corner. We want to eliminate this block.

The first step is to multiply the last block row by x1,, and add to it the first
block row multiplied by L (from right). This transforms the last block row

13

into
0, — AL, 0, ..., 0, z%I,.

In the second step, we multiply the last block row again by zI,, and add to it
the second block row multiplied by AL (from right). This transforms the last
block row into

0,0, —A*L, 0, ..., 0, 2°I,.

Continuing that way for m iterations, we bring the last block row into
0, ..., 0, g™, — A™L.
Let D(z) be the resulting upper triangular matrix. The diagonal of D(z) is
zl,, ..., zI,, ™I, — A™L.

The determinant of D(x) is the product of the determinants of diagonal blocks,
that is

det(D(z)) = 2V " det(a™ I, — A™L).
It remains to compute the determinant of 2™*'I,, — A™L. Recall the form of
matrix L: the only non-zero entry is a 1 in the lower left corner. Therefore
A™L has the last column of A™ as its first column and 0 elsewhere. Hence
2™, — A™L is an n x n lower triangular matrix with the diagonal

= (A™)1 n, g™ ™
that has determinant
det(z™+1 1, — A™L) = n- DD (gmtl _ g
where a = (A™); ,,. Thus
det(D(z)) = gV g DM+ (zm+l _),

Note however that this is not the same as xg(z): we changed xp(z) with each
multiplication of the last block row by x1,,, and we did this m-times. Therefore

xg(z) = det(D(x))/ det(z™I,)

N-n x(nfl)(m+1) (m+1

—mn

=z x a)x

— SEN - afo(erl)_

In summary, both methods explicitly yield the coefficients of yp(z) and we

have

(A™) 1 =a < xp(z) = oV — qgN-(m+1)

This proves the theorem. 0

14

Corollary 6
V-CHARPOLYNOMIAL s complete for C_L.

4.2 The Minimal Polynomial

We show in this section that the minimal polynomial of a matrix is hard
for GapL. To do so, we extend the reduction from V-POWERELEMENT
to V-CHARPOLYNOMIAL to a reduction from POWERELEMENT to
MinPoryNOMIAL. Namely, we show that the minimal polynomial of the ma-
trix B above has the value (A™);, as one of its coefficients.

0
Theorem 7 POWERELEMENT g,{}lc MINPOLYNOMIAL.

Proof. We consider the N x N matrix B from the previous section. The
characteristic polynomial of B is yz(z) = 2V — azV =™+ We claim that the
minimal polynomial of B is ug(z) = z*™*% — az™*!.

Recall that polynomial dy ;(z) is the greatest common divisor of all sub-
determinants of (xIy— B) of order N—1. We observe that the sub-determinant
at position (1,1) is V1. Hence dy_;(x) = 2! for some [. Therefore the mini-
mal polynomial must have the form

jis(z) = xB(7) — Nl al,N—(m—i—l)—l’

del(x)
for some [> 0.

Define polynomials py(z) = Mm% — gz for 0 < k < N — (m+1). We claim
that up = pmy1. To prove our claim, we have to show that p,,(B) = 0 and
pr(B) # 0 for all £ < m + 1. To do so, we explicitly compute all the powers
of B, ie., B fori=2,...,m+1. We get

A2 4

B2 — 2 , B3 — A
A AL
ALA
LA?

15

The general form of B’ for i < m is as follows

1 1+1
Lol

Al ~—1

Al «m+1—1
AL —~m+2—1.
A2 A

Bi

.LAifl —~— m-+1

Finally, matrix B™*! is a diagonal block matrix. Its i-th diagonal block is
AL A for all 1 < @ < m 4 1. Matrix B2 = (B™+1)? is therefore
a diagonal block matrix too. Its i-th diagonal block is the square of the i-th
diagonal block of B™*! i.e.,

(Am+lfiLAi71)2 — Am+17iLAmLAifll

Now, observe that there occurs the factor LA™ L in each of the diagonal entries
of B?™*+2 1t is easy to verify that LA™L = aL. Therefore we can pull the
factor a in front of the matrix and what remains is again B™*!. I.e., we have
shown that B?™+2 = qB™*!, Therefore

Pmy1(B) = B2 —aB™ = 0.

It remains to prove py(B) = B™*+k — gB* £ 0 for all k¥ < m. Note that
it suffices to prove this for k& = m, because py(B) = 0 for some k implies

pk+1(B) =0.

Assume that p,,(B) = B*"*! — q¢B™ = 0. Then B*"*! = ¢B™. We consider
the blocks at position (1,m + 1) in B***! and B™:

o in B™ it is A™,
e compute B?™*! as the product B™*'B™. Then it is easy to see that the
block at position (1,m + 1) is A™LA™.

Now, if p,,(B) = 0, then we must have A™ LA™ = aA™. However, the latter
equation cannot hold: by Lemma 9 below we can assume that A is nonsingular.
Therefore rank(A™LA™) = 1, whereas rank(aA™) = n, for a # 0, and 0,
otherwise. We conclude that p,,(B) # 0.

In summary, we get pup(z) = 2°"*? — az™*! where a = (A™); ,. This proves

the theorem. O

Corollary 8 (1) MINPOLYNOMIAL is hard for GapL,

16

(2) v-MINPOLYNOMIAL is hard for C_L.

It remains to justify that we may assume A to be nonsingular (in the proof of
Theorem 7).

Lemma 9 Suppose A is an n x n matriz. Then there is a nonsingular upper
triangular p x p matriz C (that can be easily constructed) such that (C™),, =

(A™)1m-
Proof. Define C' as a (m + 1) x (m + 1) block matrix
I A
o |

I A
I

where [is the n x n identity matrix. Then C is nonsingular and C™ has the
following form

I mA mA? .- mA™~1 A™
I mA - - mA™ 2 mAT!

om _ S : |
.o omA mA?
I mA
I
and, for p = (m + 1)n, we have (C™);, = (A™)1, as claimed. O

4.3 The Invariant Factors

Since the minimal polynomial is the first polynomial in the system of all
invariant factors, it follows from Theorem 7 that this system is hard for GapL
as well.

Now we show that the verification of the system of all invariant factors is hard
for C_L.

Theorem 10 V-INVSYSTEM is hard for C_L.

Proof. We continue with the setting from the proof of Theorem 7, in particular
with matrix B. Our goal is to determine the system of all invariant factors

of B. We have already shown that i,(z) = up(z) = 2?2 — ax™*!, where

17

(A™)1, = a. It remains to compute the invariant factors is(z), ..., in(2)

of B.

N-(2m+2) = Qjpce

l
l

From the proof of Theorem 7 we know that dy_i(z) = =
dy_1(x) =is(x) --- iy(x), each of the invariant factors must have the form z
for some number [. Note that the non-constant invariant factors of the form x
are already elementary divisors of B. Therefore it suffices to determine all
elementary divisors of B.

Define g; to be the number of occurrences of the elementary divisor x*, and
let r; denote the rank of B?. The following formula relates the ranks to num-
bers g; (see [Gan77], Chapter VI):

i = Ti—1+Tig1 — 214, (2)

fori=1,...,t, where ro = N and ¢ is the smallest index such that r,_; > r;, =
71+1. We can actually compute all the ranks 7; from the matrices B* which we
have already computed in the proof of Theorem 7.

By Lemma 9 we may assume that rank(A) = n and therefore rank(A?) = n
for all 4. Consider the general form of B for 1 < i < m. The rank of B’ equals
the sum of the ranks of the matrices on the lower and upper sub-diagonals.

e Each of the m+1—i blocks on the upper sub-diagonal of B’ has the form A’
and rank(A?) = n.

e Each of the i blocks on the lower sub-diagonal of B’ has the form A"~*L A*~!
for 1 < k <, and rank(A* *LA* 1) = rank(L) = 1.

Therefore rank(B*) = (m + 1 —4)n + 4 for 1 < i < m. Analogously we can
compute the ranks of B™*! and B™*2:

rank(B™!) = rank(B"™*?) = m + 1.
Therefore we get the general form for r; = rank(B?):

(m+1—ijn+i, fori=1,...,m,
ri = .
m+ 1, fori=m+1,m+ 2.

Plugged into equation (2), we see that t = m + 1 because r, > "1 = o
Furthermore we get from equation (2)

N —-—n(m+1), fori=1,
g; = <%0, fori=2,...,m, (3)

n—1, fore =m+ 1.

From equation (3) we can deduce the invariant factors: we have n — 2 fac-
tors z™*! (note that one of the n — 1 elementary divisors ™! occurs in

18

i1(x)), furthermore N — n(m + 1) factors x, and constant 1 as the remaining
factors:

g™t fork=2,....,n—1,
ir(r) =< a, fork=n,...,N—nm—1, (4)
1, for k=N —mnm,...,N.
In summary, (A™);,, = a iff i;(z) = 2?2 — a2™!| and iy(z),. .., in(7)
as defined in (4) are the invariant factors of A. This completes the proof of
Theorem 10. U

Corollary 11 INVSYSTEM is hard for GapL.

Summary and Open Problems

The following table summarizes the lower and upper bounds for the problems
considered in this paper.

Problem hard for | contained in
DETERMINANT GapL GapL
CHARPOLYNOMIAL GapL GapL
v-CHARPoOLYNOMIAL| C_L C_L
MINPOLYNOMIAL GapL | AC’(GapL)
V-MINPOLYNOMIAL C_L |C_LAcoC_L
INVSYSTEM GapL NC?
V-INVSYSTEM C_L AC’(C_L)

An obvious task for further research is to close the gaps between the lower
and the upper bounds where they don’t match.

Another important question is whether C_L is closed under complement. In
the case of an affirmative answer, C_L would equal AC°(C_L). In particular
this would close the gap for v-INVSYSTEM and v-MINPOLYNOMIAL (and
would solve lots of other problems (see [ABO99)])).

Acknowledgments

We wish to thank Eric Allender. He gave many helpful comments on the pa-
per. Also he pointed us to the results in [AAM99] which lead to an improved
upper bound for v-MINPOLYNOMIAL (Corollary 3). We thank Meena Maha-
jan and V Vinay for pointing out to us the combinatorial proof of Theorem 5.

19

Furthermore, the comments of the anonymous referees helped to improve the
presentation of the paper.

References

[AAM99] E. Allender, V Arvind, and M. Mahajan. Arithmetic complexity,

[ABO9Y]

[Ber84]

[BRO1]

[CDSS0]

[Co085]

[Dam91]

[FFK94]

[GanT77]

[HJ85]

[Imm88]

[KS87]

IMV97]

Kleene closure, and formal power series, 1999. Available at
http://www.cs.rutgers.edu/~allender /publications.

E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank
and feasible systems of linear equations. Computational Complexity, 8:99
-126, 1999.

S. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18:147-150,
1984.

R. Brualdi and H. Ryser. Combinatorial Matriz Theory, volume 39 of
Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 1991.

D. Cvetkovié¢, M. Doob, and H. Sachs. Spectra of Graphs, Theory and
Application. Academic Press, 1980.

S. Cook. A taxonomy of problems with fast parallel algorithms.
Information and Control, 64:2-22, 1985.

C. Damm. DET = L®#%). Technical Report Informatik-Preprint 8,
Fachbereich Informatik der Humboldt-Universitiat zu Berlin, 1991.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences, 48:116-148, 1994.

F. Gantmacher. The Theory of Matrices, volume 1 and 2. AMS Chelsea
Publishing, 1977.

R. Horn and C. Johnson. Matriz Analysis. Cambridge University Press,
1985.

N. Immerman. Nondeterministic space is closed under complement. STAM
Journal on Computing, 17:935-938, 1988.

E. Kaltofen and B. Saunders. Fast parallel computation of Hermite
and Smith forms of polynomial matrices. SIAM Algebraic and Discrete
Methods, 8:683-690, 1987.

M. Mahajan and V Vinay. Determinant: Combinatorics, algorithms, and
complexity. Chicago Journal of Theoretical Computer Science, 1997(5),
1997.

20

[MV99]

[NTS95]

[RA97]

[ST98]

[Sto98]

[Sze88]

[Tod91]

[Val79a]

[Val79b)

[Val92]

[Vil97]

[Vin91]

[Zei85)

M. Mahajan and V Vinay. Determinant: Old algorithms, new insights.
SIAM Journal on Discrete Mathematics, 12(4):474-490, 1999.

N. Nisan and A. Ta-Shma. Symmetric logspace is closed under
complement. Chicago Journal of Theoretical Computer Science,
1995(Article 1), 1995.

K. Reinhardt and E. Allender. Making nondeterminism unambigous.
In 38th Symposium on Foundation of Computer Science, pages 244-253.
TEEE Computer Society Press, 1997.

M. Santha and S. Tan. Verifying the determinant in parallel.
Computational Complezity, 7:128-151, 1998.

A. Storjohann. An O(n?) algorithm for Frobenius normal form.
In International Symposium on Symbolic and Algebraic Computation

(ISSAC), 1998.

R. Szelepcsényi. The method of forced enumeration for nondeterministic
automata. Acta Informatica, 26(3):279-284, 1988.

S. Toda. Counting problems computationally equivalent to the
determinant. Technical Report CSIM 91-07, Dept. of Computer Science
and Information Mathematics, University of Electro-Communications,
Chofu-shi, Tokyo 182, Japan, 1991.

L. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189-201, 1979.

L. Valiant. The complexity of enumeration and reliability problems. STAM
Journal on Computing, 8:410-421, 1979.

L. Valiant. Why is boolean complexity theory difficult. In M.S.
Paterson, editor, Boolean Function Complezity, London Mathematical
Society Lecture Notes Series 169. Cambridge University Press, 1992.

G. Villard. Fast parallel algorithms for matrix reduction to normal
forms. Applicable Algebra in Engineering Communication and Computing
(AAECC), 8:511-537, 1997.

V Vinay. Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In 6th IEEE Conference on Structure in Complexity
Theory, pages 270-284, 1991.

D. Zeilberger. A combinatorial approach to matrix algebra. Discrete
Mathematics, 56:61-72, 1985.

21

