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The 
hara
teristi
 polynomial and the minimal polynomial of a matrix playan important role in matrix theory. In our work we want to study the 
ompu-tational 
omplexities of these problems.Valiant [Val79b,Val79a℄ initiated the study of the 
omputational 
omplexityof 
ounting problems. He introdu
ed the 
ounting 
lass #P that, intuitively,
ounts the number of solutions of NP-problems. An example for a 
ompleteproblem for this 
lass is the permanent of a matrix.Sin
e 
ounting is restri
ted to nonnegative integers, Fenner, Fortnow, andKurtz [FFK94℄ extended #P to the 
lass GapP, the 
losure of #P undersubtra
tion. It follows that 
omputing the permanent of integer matri
es isGapP-
omplete.In 
ontrast, the determinant of a matrix is 
omplete for GapL[Dam91,Tod91,Vin91,Val92℄, the 
lass 
orresponding toGapP in the logspa
esetting. This huge di�eren
e in the 
omplexity of the two problems 1 is some-what surprising sin
e the permanent and the determinant have almost thesame 
ofa
tor expansion; the only di�eren
e 
omes with the sign. GapL turnsout to 
apture the 
omplexity of many other natural problems: 
omputing� the powers of a matrix,� iterated matrix multipli
ation,� the inverse of a matrix,� the 
hara
teristi
 polynomial of a matrix.There are also graph theoreti
 problems related to 
ounting the number s-t-paths in a graph.Interesting de
ision problems 
an be derived from the above problems. Forexample, instead of 
omputing the inverse of a matrix, it often suÆ
es tode
ide whether the inverse exists. That is, to de
ide whether the determinantis zero or not. More generally, this motivates the 
omplexity 
lass C=L whereone has to verify the value of a GapL fun
tion. Problems that are 
ompleteforGapL yield veri�
ation problems that are 
omplete for C=L. For example,the determinant is GapL 
omplete and 
he
king singularity is 
omplete forC=L. In 
ase the result is a matrix or a tuple of numbers there is a subtletyone has to be 
areful about: for example when we say that matrix poweringis in GapL, what we mean is that ea
h entry of the resulting matrix 
anbe 
omputed within GapL. I.e., for a n � n matrix A this yields n2 GapL-fun
tions, one for ea
h entry of Am, and ea
h of whi
h is 
omplete for GapL.Now there are two variants of the veri�
ation version: in the �rst version wehave to verify one entry, say (Am)i;j for given i and j. In the se
ond version,we have to verify all the entries, i.e., Am. Both versions are 
omplete for C=L.1 Note however that there is no proof yet that GapL 6= GapP.2



But the situation 
an be di�erent. An example is provided by the inverse of amatrix (if it exists). Again we have two variants of the veri�
ation problem.� Verify one entry of the inverse:given matrix A, a, i and j, de
ide whether (A�1)i;j = a.This problem is 
omplete for C=L. The se
ond variant is as follows.� Verify the inverse of a matrix:given matri
es A and B, 
he
k whether A�1 = B.This problem 
an be solved by 
omputing the produ
t AB and 
omparing itwith the identity matrix. Hen
e this 
an be solved inNC1, a sub
lass of C=L.In other words, verifying one entry of the inverse is a harder problem thanverifying all elements. 2 In the latter problem, we put too mu
h informationin the input.We 
onsider the following problem.� Verify the 
hara
teristi
 polynomial of a matrix:given a matrix A and the 
oeÆ
ients of a polynomial p, 
he
k whether�A = p.It follows from a theorem of Berkowitz [Ber84℄ that this problem is in C=L,and Santha and Tan [ST98℄ asked whether it is 
omplete for this 
lass.Re
all that the determinant is the 
onstant term in the 
hara
teristi
 polyno-mial of a matrix and that verifying the determinant is 
omplete forC=L. Now,with the di�erent 
omplexities of the above two inverse problems in mind, thequestion is: is it easier to verify all the 
oeÆ
ients of the 
hara
teristi
 poly-nomial than to verify just one of them? We show that this is not the 
ase:verifying the 
hara
teristi
 polynomial is still 
omplete for C=L.The minimal polynomial of a matrix is one of the fa
tors of the 
hara
teristi
polynomial of the matrix. Algorithms to 
ompute the minimal polynomialhave been studied for a long time. The best known deterministi
 algorithmto 
ompute the minimal polynomial of an n � n matrix makes O(n3) �eldoperations [Sto98℄. The Smith normal form of a polynomial matrix 
an be
omputed by a randomized NC2-
ir
uit, i.e., in RNC2 [KS87℄. Therefore therational 
anoni
al form of a matrix and the minimal polynomial of a matrix
an be 
omputed in RNC2 as well. In the 
ase of integer matri
es there areeven NC2-algorithms [Vil97℄.We take a di�erent approa
h to 
ompute the minimal polynomial of an integer2 Note however that we don't know whether NC1 6= C=L.3



matrix: we show that the problem 
an be redu
ed to matrix powering andsolving a system of linear equations. Therefore it is in the 
lass AC0(GapL),a sub
lass of NC2. With respe
t to the hardness of the problem we showthat matrix powering 
an be redu
ed to the minimal polynomial of a matrix.Therefore the latter problem is hard forGapL. With respe
t to the veri�
ationof the minimal polynomial, we have a similar situation as for the 
hara
teristi
polynomial: verifying whether the 
onstant term 
0 of the minimal polynomialof a matrix A is zero is 
omplete for C=L, be
ause 
0 = 0 i� A is singular.We show that verifying all the 
oeÆ
ents is still hard for C=L.The system of all invariant fa
tors of a matrix A 
ompletely determines thestru
ture of A, i.e., these fa
tors are invariant under similarity transforma-tions. Note that the minimal polynomial of A is the �rst polynomial in itssystem of all invariant fa
tors. For integer matri
es, the invariant fa
tors 
anbe 
omputed inNC2 [Vil97℄. We extend our results and te
hniques to the veri-�
ation of all the invariant fa
tors of a given integer matrix: it is inAC0(C=L)(the AC0-
losure of C=L) and is hard for C=L.One goal of our resear
h is to determine the 
omplexity of algebrai
 problemsas des
ribed above, i.e., in the ideal 
ase, to show them 
omplete for some
omplexity 
lass. Another goal we have in mind is to 
larify the relationshipof these 
omplexity 
lasses. The may be most 
hallenging open problem hereis whether C=L is 
losed under 
omplement. Many related 
lasses have thisproperty:� The most popular one is nondeterministi
 logspa
e, NL, shown by Immer-man [Imm88℄ and Szelep
s�enyi [Sze88℄.� For symmetri
 logspa
e, SL, this was shown by Nisan and Ta-Shma [NTS95℄.Also, for probabilisti
 logspa
e, PL, it is trivial. For unambiguous logspa
e,UL, it is open as well. For the latter 
lass, however, Reinhardt and Allen-der [RA97℄ showed that the nonuniform version of it,UL=poly, is 
losed under
omplement. This motivates the 
onje
ture that UL might be 
losed under
omplement too.One possible way of proving C=L to be 
losed under 
omplement is to re-du
e the singularity problem to the nonsingularity problem. That is, given amatrix A, 
onstru
t a matrix B (in logspa
e) su
h that A is singular if andonly if B is nonsingular. It is well known that one does not need to 
onsideran arbitrary matrix A: one 
an assume that A is an upper triangular matrixex
ept for the entry in lower left 
orner (see [ABO99℄). To prove our hard-ness result for the 
hara
teristi
 polynomial, the minimal polynomial, and theinvariant fa
tors we manipulate su
h matri
es. We think that it is quite inter-esting to see su
h transformations, be
ause this 
an give some hints on how4



to 
ome up with a redu
tion as above to solve the 
omplementation problemfor C=L. Therefore the methods we use are interesting in their own right. Formore ba
kground and interesting results we re
ommend the paper of Allender,Beals, and Ogihara [ABO99℄.The paper is organized as follows. After some de�nitions in the next se
tion,we present all the upper bounds, i.e., in
lusions in 
omplexity 
lasses, of theabove mentioned problems in Se
tion 3. Our main results are the lower bounds,i.e., the hardness results, in Se
tion 4. The reason for this organization is thatwe obtain the hardness results via a redu
tion that is su

essively extendedfrom one problem to the next one. That way, this line of arguments is notinterrupted.2 PreliminariesComplexity Classes. For a nondeterministi
 logspa
e bounded Turing ma-
hine M , we denote the number of a

epting paths on input x by a

M(x),and by rejM(x) the number of reje
ting paths. The di�eren
e of these twonumbers is gapM(x) = a

M(x)� rejM(x).For the 
ounting 
lasses, we have #L, the 
lass of fun
tions a

M(x) for somenondeterministi
 logspa
e bounded Turing ma
hineM , andGapL based anal-ogously on fun
tions gapM(x). Based on 
ounting, we 
onsider the 
lass C=L:a set L is in C=L, if there exists a f 2 GapL su
h that for all x:x 2 L() f(x) = 0:Sin
e it is open whether C=L is 
losed under 
omplement, it makes senseto 
onsider the Boolean 
losure of C=L. i.e., the 
lass of sets that 
an beexpressed as a Boolean 
ombination of sets in C=L. For our purposes, itsuÆ
es to 
onsider the following two 
lasses:� 
oC=L is the 
lass of 
omplement sets L, where L 2 C=L,� C=L ^ 
oC=L [ABO99℄ is de�ned as the 
lass of interse
tions of sets inC=L with sets in 
oC=L. Formally,L 2 C=L ^ 
oC=L() 9L1 2 C=L; L2 2 
oC=L : L = L1 \ L2:For sets A and B, A is AC0-redu
ible to B, if there is a logspa
e uniform
ir
uit family of polynomial size and 
onstant depth that 
omputes A withunbounded fan-in and-, or-gates, not-gates, and ora
le-gates for B. In par-ti
ular, we 
onsider the 
lasses AC0(C=L) and AC0(GapL) of sets that areAC0-redu
ible to a set inC=L, respe
tively a fun
tion inGapL. Cook [Coo85℄5



de�ned DET as the 
lass of fun
tions that are NC1-redu
ible to the deter-minant, i.e., the 
lass NC1(GapL) (see [Coo85℄ for a pre
ise de�nition). Theknown in
lusion relations of these 
lasses is as follows:NL � C=L � C=L ^ 
oC=L � AC0(C=L) � PL �AC0(GapL) � DET � TC1 � NC2:A set A is AC0 many-one redu
ible to a set B, in symbols: A �AC0m B, if thereis a fun
tion f 2 AC0 su
h that for all x we have x 2 A() f(x) 2 B. Allredu
tions used in this paper are AC0 many-one redu
tions.Linear Algebra. Let A 2 Fn�n be a matrix over the �eld F . The 
hara
-teristi
 polynomial of A is the polynomial �A(x) = det(xI � A). A nonzeropolynomial p(x) over F is 
alled an annihilating polynomial of A if p(A) = 0.The Cayley-Hamilton Theorem states that �A(x) is an annihilating polyno-mial. The 
hara
teristi
 polynomial is a moni
 polynomial : its highest 
oeÆ-
ient is one. The minimal polynomial of A, denoted �A(x), is the unique moni
annihilating polynomial of A with minimal degree.Let polynomial dk(x) be the greatest 
ommon divisor of all sub-determinantsof (xI � A) of order k. For example dn(x) = �A(x). It is known that dkdivides dk+1 for ea
h index 0 � k < n. De�ne d0(x) � 1. The invariant fa
torsof (xI�A) (or A, for short) are de�ned as the following (moni
) polynomials:i1(x) = dn(x)dn�1(x) ; i2(x) = dn�1(x)dn�2(x) ; : : : ; in(x) = d1(x)d0(x) :The 
hara
teristi
 polynomial of A is the produ
t of all the invariant fa
tors,that is �A(x) = i1(x) � � � in(x). Note that the minimal polynomial of A is the�rst invariant fa
tor, i.e., �A(x) = i1(x). The n�n polynomial diagonal matrixthat has the invariant fa
tors of A as its diagonal entries (starting with in(x))and zero elsewhere is the Smith normal form of xI � A.We de
ompose the invariant fa
tors into irredu
ible divisors over the givennumber �eld F : i1(x) = [e1(x)℄j1;1 [e2(x)℄j1;2 � � � [es(x)℄j1;s ;i2(x) = [e1(x)℄j2;1 [e2(x)℄j2;2 � � � [es(x)℄j2;s ;...in(x) = [e1(x)℄jn;1 [e2(x)℄jn;2 � � � [es(x)℄jn;s;where j1;k � j2;k � � � � � jn;k � 0 for k = 1; : : : ; s. The irredu
ible divisorse1(x); e2(x); : : : ; es(x) are distin
t (with highest 
oeÆ
ient 1) and o

ur in6



i1(x); i2(x); : : : ; in(x). All powers [e1(x)℄j1;1 ; : : : ; [es(x)℄jn;s, whi
h are di�erentfrom 1, are 
alled the elementary divisors of A in FNote that the 
oeÆ
ients of the 
hara
teristi
 polynomial and the invariantfa
tors of an integer matrix are all integers. Furthermore, the set of eigenvaluesof A is the same as the set of all roots of �A(x) whi
h, in turn, is the set ofall roots of �A(x).
Problems. Next, we de�ne some natural problems in linear algebra we arelooking at. If nothing else is said, our domain for the algebrai
 problems arethe integers.(1) PowerElementInput: an n� n matrix A and i, j, and m, (1 � i; j;m � n).Output: (Am)i;j, the (i; j)-th element of Am.(2) DeterminantInput: an n� n matrix A.Output: det(A), the determinant of A.(3) CharPolynomialInput: an n� n matrix A and i � n.Output: 
i, the i-th 
oeÆ
ient of the 
hara
teristi
 polynomial �A(x) =xn + 
n�1xn�1 + � � �+ 
0 of the matrix A.(4) MinPolynomialInput: an n� n matrix A and i � n.Output: 
i, the i-th 
oeÆ
ient of the minimal polynomial �A(x) = xm +
m�1xm�1 + � � �+ 
1x+ 
0 of the matrix A.(5) InvSystemInput: an n� n matrix A and j, k � n.Output: the k-th 
oeÆ
ient of the j-th invariant fa
tor of the matrix A.The fun
tions PowerElement, Determinant and CharPolynomialare 
omplete forGapL [Ber84,Dam91,Tod91,Val92,Vin91℄.MinPolynomialand InvSystem are inRNC2 [KS87℄, and inNC2 for integer matri
es [Vil97℄.For ea
h of them, we de�ne the veri�
ation problem as the graph ofthe 
orresponding fun
tion: for a �xed fun
tion f(x), de�ne v-f asthe set all pairs (x; y) su
h that f(x) = y. This yields the veri�
a-tion problems v-PowerElement and v-Determinant. With respe
t tov-CharPolynomial, v-MinPolynomial and v-InvSystem, we take thetuple of all 
oeÆ
ients of a polynomial as the underlying fun
tion. I.e., forexample in v-CharPolynomial, we have given A and 
n�1; : : : ; 
0, and haveto de
ide whether 1; 
n�1; : : : ; 
0 are the 
oeÆ
ients of �A(x).7



A GapL-
omplete fun
tion yields a C=L-
omplete veri�
ation problem.Hen
e v-PowerElement and v-Determinant are 
omplete for C=L. Wenote that a spe
ial 
ase of v-Determinant is Singularity, where one hasto de
ide whether the determinant of a matrix A is zero. Singularity is
omplete for C=L as well. In 
ase of v-CharPolynomial we have a tupleof n underlyingGapL-fun
tions. The 
onstant term, 
0, is 
omplete forGapL(be
ause 
0 = (�1)n det(A)). But not all 
oeÆ
ients are 
omplete for GapL:for example 
n�1 is the tra
e of A (the sum of all elements on the main di-agonal). Therefore 
n�1 
an be 
omputed in NC1. It was an open problemwhether v-CharPolynomial is 
omplete for C=L [ST98℄. We show thatthis is indeed the 
ase.A similar 
omment 
an be made for v-MinPolynomial. The 
hara
teristi
and the minimal polynomial of a matrix A have the same set of roots, namely,the eigenvalues of A, and their respe
tive 
onstant terms are the produ
tsof these roots. Therefore A is singular i� the 
onstant term of the minimalpolynomial of A is zero, and hen
e the zero-test of the 
onstant term is 
om-plete for C=L. We show that also v-MinPolynomial, where we have toverify all the 
oeÆ
ients, is hard for C=L. The same hardness result holds forv-InvSystem.3 Upper BoundsThe Chara
teristi
 Polynomial. Berkowitz [Ber84℄ showed that for agiven matrix A one 
an 
onstru
t in logspa
e a sequen
e of matri
es su
h thatall the 
oeÆ
ients of �A(x) appear in the iterated produ
t of these matri
es.Sin
e ea
h element of an iterated matrix produ
t 
an be 
omputed in GapL,it follows that ea
h 
oeÆ
ient of �A(x) 
an be veri�ed in C=L. Sin
e C=L is
losed under logspa
e 
onjun
tive redu
tions, also v-CharPolynomial 
anbe solved in C=L.Theorem 1 [Ber84℄ v-CharPolynomial 2 C=L.The Minimal Polynomial. We mentioned in the previous se
tion thatthe minimal polynomial �A(x) of an integer matrix A 
an be 
omputed inNC2 [Vil97℄. We take a di�erent approa
h (see [HJ85℄, Se
tion 3.3, problem5) and show that MinPolynomial is in AC0(GapL), a sub
lass of NC2.Let p(x) = xm+
m�1xm�1+ � � �+
0 be a moni
 polynomial and A be a matrix.Then p(x) = �A(x) , i�(i) p(A) = Am + 
m�1Am�1 + � � � + 
0I = 0, i.e., p(x) is an annihilating8



polynomial of A, and(ii) for every moni
 polynomial q(x) of degree smaller than p(x), we haveq(A) 6= 0.De�ne ve
tors ai = ve
(Ai) for i = 0; 1; 2; : : : ; n, where ve
(Ai) is the ve
torof length n2 obtained by putting the 
olumns of Ai below ea
h other. Theequation p(A) = 0 
an be rewritten asam + 
m�1am�1 + � � �+ 
0a0 = 0: (1)In other words, the ve
tors am; : : : ;a0 are linearly dependent. Consequently,for some moni
 polynomial q with degree k < m, the inequation q(A) 6= 0means that the ve
tors ak; : : : ;a0 are linearly independent.In summary, the 
oeÆ
ients 
m�1; : : : ; 
0 of �A(x) are the (unique) solution ofthe system (1), for the smallest m where this system has a solution. Hen
e wehave the following algorithm to 
ompute �A(x).MinPolynomial(A)1 ai  ve
(Ai) for i = 0; : : : ; n2 determine m su
h that am�1; : : : ;a1;a0 are linearly independent andam; : : : ;a1;a0 are linearly dependent3 solve the linear system am + 
m�1am�1 + � � �+ 
0a0 = 04 return (1; 
m�1; : : : ; 
0), the 
oeÆ
ients of �A(x).In step 1 in the above algorithm, ea
h element of ai 
an be 
omputed inGapL.In step 2, 
he
king linear independen
e of given ve
tors is in 
oC=L and lineardependen
e is in C=L (see [ABO99℄). In step 3, we have to solve a linearsystem of equations. Sin
e the ve
tors am�1; � � � ;a0 are linearly independentand am;am�1; � � � ;a0 are linearly dependent, the system of linear equationsin step 3 has a unique solution. Let C be the n2 � m matrix with 
olumnsam�1; : : : ;a0, i.e., C = (am�1 � � � a0). In step 3 we have to solve the systemC
 = �am in the unknown 
 = (
m�1; : : : ; 
0)T . De�ne the m �m matrix Band ve
tor b of length m asB = CTC and b = �CTam:Sin
e C has full 
olumn rank, matrix B is nonsingular. ThereforeC
 = �am () B
 = b:Hen
e we obtain the unique solution in step 3 as 
 = B�1b. The inverse of agiven matrix 
an be 
omputed in GapL. When m is known after step 2, ea
hentry of B and b is 
omputable in GapL, and therefore ea
h entry of B�1bis in GapL as well [AAM99℄. In summary, ea
h 
oeÆ
ient 
i of �A(x) 
an be
omputed in AC0(GapL). 9



Theorem 2 MinPolynomial 2 AC0(GapL).In the 
orresponding veri�
ation version we have given A and the 
oeÆ
ientsof a moni
 polynomial, and have to de
ide whether these 
oeÆ
ients representin fa
t the minimal polynomial of A.To verify the minimal polynomial we 
an simplify the above algorithm forMinPolynomial as follows:v-MinPolynomial(A; 
m�1; : : : ; 
0)1 ai  ve
(Ai) for i = 0; : : : ; m2 if am + 
m�1am�1 + � � �+ 
0a0 = 0 andam�1; : : : ;a1;a0 are linearly independent3 then a

ept else reje
t.Sin
e the 
omponents of ve
tors ai 
an be 
omputed in GapL (line 1), the�rst 
ondition in line 2 
an be de
ided in C=L. For the se
ond 
ondition, let Bbe the symmetri
 m�m matrix de�ned above, i.e.,B = (am�1 � � � a1 a0)T (am�1 � � � a1 a0):Now, am�1; : : : ;a1;a0 are linearly independent i� B is nonsingular.Sin
e ea
h entry of B 
an be 
omputed in GapL, the determinant of B 
anbe 
omputed in GapL as well [AAM99℄. Thus the latter test 
an be done in
oC=L. Therefore v-MinPolynomial 
an be de
ided by a C=L predi
atein 
onjun
tion with a 
oC=L predi
ate.Corollary 3 v-MinPolynomial 2 C=L ^ 
oC=L.The Invariant Fa
tors. The system of all invariant fa
tors of an integermatrix 
an be 
omputed in NC2 [Vil97℄. We show that the invariant fa
tors
an be veri�ed in AC0(C=L).Theorem 4 v-InvSystem 2 AC0(C=L).Proof . Let S = fi1(x); : : : ; in(x)g be the system of n given moni
 polynomialsand let A be an n � n matrix. The algorithm exploits a result from linearalgebra (see [Gan77℄): we 
onstru
t the 
ompanion matri
es that 
orrespondto the non-
onstant polynomials in S. Let D denote the diagonal blo
k matrixof all these 
ompanion matri
es. Then S is the system of all invariant fa
torsof A i� A is similar to D. Testing similarity 
an be done in AC0(C=L) [ST98℄,therefore v-InvSystem is in AC0(C=L) too. �10



4 Lower BoundsThe 
hara
teristi
 polynomial is known to be hard for GapL. In this se
tionwe show that the same holds for the minimal polynomial and the invariantfa
tors. We show that all the 
orresponding veri�
ation problems are hard forC=L.A problem known to be 
omplete forGapL isPowerElement where one hasto 
ompute the entry (i; j) of Am, for an n�n integer matrix A. W.l.o.g. we 
anfo
us on entry (1; n) of Am, i.e. (Am)1;n. Consequently, v-PowerElementis 
omplete for C=L. We take PowerElement and v-PowerElement asthe referen
e problems to show our hardness results. Sin
e the 
onstru
tion ofthe graph G below in this se
tion 
an be done in AC0, all redu
tions here areAC0 many-one redu
tions.4.1 Verifying the Chara
teristi
 PolynomialThe redu
tion from v-PowerElement to v-CharPolynomial builds onte
hniques from Toda [Tod91℄ and Valiant [Val92℄ to redu
e iterated ma-trix multipli
ation to the determinant. In parts of our presentation we fol-low [ABO99℄.Theorem 5 v-PowerElement �AC0m v-CharPolynomial.Proof . Let A be an n�n matrix and 1 � m � n. We will 
onstru
t a matrix Bsu
h that the value (Am)1;n o

urs as one of the 
oeÆ
ients of �B(x).Interpret A as representing a dire
ted bipartite graph on 2n nodes and eedges. That is, the nodes are arranged in two 
olumns of n nodes ea
h. Inboth 
olumns, nodes are numbered from 1 to n. If entry ak;l of A is not zero,then there is an edge labeled ak;l from node k in the �rst 
olumn to node l inthe se
ond 
olumn. The number of non-zero entries in A is exa
tly e.Now, take m 
opies of this graph, put them in a sequen
e and identify ea
hse
ond 
olumn of nodes with the �rst 
olumn of the next graph in the sequen
e.Call the resulting graph G0. Graph G0 has m + 1 
olumns of nodes, and ea
h
olumn has exa
tly n nodes. The weight of a path in a graph is the produ
tof all labels on the edges of the path. The 
ru
ial observation now is that theentry at position (1; n) in Am is the sum of the weights of all paths in G0 fromnode 1 in the �rst 
olumn to node n in the last 
olumn. Call these two nodes sand t, respe
tively. Add an edge labeled 1 from t to s, and 
all the resultinggraph G. An example for the above 
onstru
tion of G for A = � 2 1 00 1 10 3 0 � is shownin �gure 1. 11
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Fig. 1. The graph G 
onstru
ted from matrix A for m = 3. The three 
olumns areindi
ated by the dashed lines. The edge labels are the 
orresponding entries of A.The thi
ker edges indi
ate the two paths from s to t. The weights of these two pathssum up to 3, whi
h is the value of (A3)1;3. For the 
hara
teristi
 polynomial of theadja
en
y matrix B we get �B(x) = x12� 3x8. As we will see in Se
tion 4.2, for theminimal polynomial we get �B(x) = x8 � 3x4.Let B be the adja
en
y matrix of G. So B is an N � N matrix, where N =(m+ 1)n is the number of nodes of G. Let the 
hara
teristi
 polynomial of Bhave the form �B(x) = det(xIN � B) = xN + N�1Xi=0 
ixi;where IN is the N � N identity matrix. We give two ways how to 
omputethe 
oeÆ
ients 
i in �B(x):(1) one way is to use elementary linear transformations and bring the polyno-mial matrix xIN �B into triangular blo
k form. Then the 
hara
teristi
polynomial of B 
an be 
omputed from the resulting polynomial matrix.(2) a very elegant proof is provided by 
ombinatorial matrix the-ory. From there we know that the 
oeÆ
ients of the 
hara
teris-ti
 polynomial 
an be expressed as 
y
le 
overs in the graph G(see [BR91,CDS80,Zei85,MV97,MV99℄).We start by giving the 
ombinatorial argument whi
h is mu
h shorter thanthe algebrai
 argument.The Combinatorial WayIt is known that the 
oeÆ
ient 
i in �B(x) equals the sum of the disjointweighted 
y
les that 
over N�i nodes in G, with appropriate sign (see [BR91℄or [CDS80℄ for more details). In the graph G, all edges go from a layer to the12



next layer. The only ex
eption is the edge (t; s). So any 
y
le in G must usepre
isely this edge (t; s), and then tra
e out a path from s to t. Thereforeea
h 
y
le in G has exa
tly the length m + 1, and the weighted sum of allthese 
y
les is pre
isely (�1)m+1(Am)1;n (for the sign, re
all that we 
onsiderxIN � B). The sign of the 
y
le (as a permutation) is (�1)m. Hen
e
N�(m+1) = (�1)m+1(�1)m(Am)1;n = �(Am)1;nand all other 
oeÆ
ients must be zero. That is, for a = (Am)1;n,�B(x) = xN � axN�(m+1)is the 
hara
teristi
 polynomial of B.The Algebrai
 WayWe 
onsider the adja
en
y matrix B of the graph G. Ex
ept for the edgefrom t to s, graph G is a
y
li
. Thus we 
an put the nodes of G in su
h anorder, that adja
en
y matrix B is upper triangular for the �rst N � 1 rowswith zeros along the main diagonal. The last row of B has a one in the �rstposition (representing edge (t; s)), and the rest is zero.Now we 
an write B as a (m+ 1)� (m+ 1) blo
k matrix as followsB = 0BBBB� A . . . AL 1CCCCA :Matrix A o

ursm-times on the upper sub-diagonal of B. L is the n�n matrixwith a one at position (n; 1) and zero elsewhere. The empty pla
es in B areall zero (matri
es).Therefore xIN �B has the formxIN �B = 0BBBB�xIn (�A). . . . . .xIn (�A)�L xIn 1CCCCA :To 
ompute �B(x) we transform xIN � B into an upper triangular blo
kmatrix. Note that it already is upper triangular ex
ept for matrix L in thelower left 
orner. We want to eliminate this blo
k.The �rst step is to multiply the last blo
k row by xIn, and add to it the �rstblo
k row multiplied by L (from right). This transforms the last blo
k row13



into 0; � AL; 0; : : : ; 0; x2In:In the se
ond step, we multiply the last blo
k row again by xIn, and add to itthe se
ond blo
k row multiplied by AL (from right). This transforms the lastblo
k row into 0; 0; � A2L; 0; : : : ; 0; x3In:Continuing that way for m iterations, we bring the last blo
k row into0; : : : ; 0; xm+1In � AmL:Let D(x) be the resulting upper triangular matrix. The diagonal of D(x) isxIn; : : : ; xIn; xm+1In � AmL:The determinant ofD(x) is the produ
t of the determinants of diagonal blo
ks,that is det(D(x)) = xN�n det(xm+1In � AmL):It remains to 
ompute the determinant of xm+1In � AmL. Re
all the form ofmatrix L: the only non-zero entry is a 1 in the lower left 
orner. ThereforeAmL has the last 
olumn of Am as its �rst 
olumn and 0 elsewhere. Hen
exm+1In � AmL is an n� n lower triangular matrix with the diagonalxm+1 � (Am)1;n; xm+1; : : : ; xm+1;that has determinantdet(xm+1In � AmL) = x(n�1)(m+1) (xm+1 � a);where a = (Am)1;n. Thusdet(D(x)) = xN�n x(n�1)(m+1) (xm+1 � a):Note however that this is not the same as �B(x): we 
hanged �B(x) with ea
hmultipli
ation of the last blo
k row by xIn, and we did thism-times. Therefore�B(x) = det(D(x))= det(xmIn)= xN�n x(n�1)(m+1) (xm+1 � a) x�mn= xN � axN�(m+1):In summary, both methods expli
itly yield the 
oeÆ
ients of �B(x) and wehave (Am)1;n = a() �B(x) = xN � axN�(m+1):This proves the theorem. �14



Corollary 6v-CharPolynomial is 
omplete for C=L.
4.2 The Minimal PolynomialWe show in this se
tion that the minimal polynomial of a matrix is hardfor GapL. To do so, we extend the redu
tion from v-PowerElementto v-CharPolynomial to a redu
tion from PowerElement toMinPolynomial. Namely, we show that the minimal polynomial of the ma-trix B above has the value (Am)1;n as one of its 
oeÆ
ients.Theorem 7 PowerElement �AC0m MinPolynomial.Proof . We 
onsider the N � N matrix B from the previous se
tion. The
hara
teristi
 polynomial of B is �B(x) = xN � axN�(m+1): We 
laim that theminimal polynomial of B is �B(x) = x2m+2 � axm+1:Re
all that polynomial dN�1(x) is the greatest 
ommon divisor of all sub-determinants of (xIN�B) of order N�1. We observe that the sub-determinantat position (1; 1) is xN�1. Hen
e dN�1(x) = xl for some l. Therefore the mini-mal polynomial must have the form�B(x) = �B(x)dN�1(x) = xN�l � axN�(m+1)�l;for some l � 0.De�ne polynomials pk(x) = x(m+1)+k�axk for 0 � k � N� (m+1). We 
laimthat �B = pm+1. To prove our 
laim, we have to show that pm+1(B) = 0 andpk(B) 6= 0 for all k < m + 1. To do so, we expli
itly 
ompute all the powersof B, i.e., Bi for i = 2; : : : ; m+ 1. We get

B2 = 0BBBBBBB� A2 . . .A2ALLA
1CCCCCCCA ; B3 = 0BBBBBBBBB�

A3 . . .A3A2LALALA2
1CCCCCCCCCA :

15



The general form of Bi for i � m is as followsi i+ 1# #
Bi = 0BBBBBBBBBBBB�

Ai . . . AiAi�1L Ai�2LA . . . LAi�1
1CCCCCCCCCCCCA
 1 m+ 1� i m+ 2� i m+ 1 :

Finally, matrix Bm+1 is a diagonal blo
k matrix. Its i-th diagonal blo
k isAm+1�iLAi�1 for all 1 � i � m + 1. Matrix B2m+2 = (Bm+1)2 is thereforea diagonal blo
k matrix too. Its i-th diagonal blo
k is the square of the i-thdiagonal blo
k of Bm+1, i.e.,(Am+1�iLAi�1)2 = Am+1�iLAmLAi�1:Now, observe that there o

urs the fa
tor LAmL in ea
h of the diagonal entriesof B2m+2. It is easy to verify that LAmL = aL. Therefore we 
an pull thefa
tor a in front of the matrix and what remains is again Bm+1. I.e., we haveshown that B2m+2 = aBm+1. Thereforepm+1(B) = B2m+2 � aBm+1 = 0:It remains to prove pk(B) = Bm+1+k � aBk 6= 0 for all k � m. Note thatit suÆ
es to prove this for k = m, be
ause pk(B) = 0 for some k impliespk+1(B) = 0.Assume that pm(B) = B2m+1 � aBm = 0. Then B2m+1 = aBm. We 
onsiderthe blo
ks at position (1; m+ 1) in B2m+1 and Bm:� in Bm it is Am,� 
ompute B2m+1 as the produ
t Bm+1Bm. Then it is easy to see that theblo
k at position (1; m+ 1) is AmLAm.Now, if pm(B) = 0, then we must have AmLAm = aAm. However, the latterequation 
annot hold: by Lemma 9 below we 
an assume that A is nonsingular.Therefore rank(AmLAm) = 1, whereas rank(aAm) = n, for a 6= 0, and 0,otherwise. We 
on
lude that pm(B) 6= 0.In summary, we get �B(x) = x2m+2 � axm+1, where a = (Am)1;n. This provesthe theorem. �Corollary 8 (1) MinPolynomial is hard for GapL,16



(2) v-MinPolynomial is hard for C=L.It remains to justify that we may assume A to be nonsingular (in the proof ofTheorem 7).Lemma 9 Suppose A is an n� n matrix. Then there is a nonsingular uppertriangular p� p matrix C (that 
an be easily 
onstru
ted) su
h that (Cm)1;p =(Am)1;n.Proof . De�ne C as a (m+ 1)� (m + 1) blo
k matrixC = 0BBBB� I A. . . . . .I AI 1CCCCA ;where I is the n� n identity matrix. Then C is nonsingular and Cm has thefollowing form
Cm =

0BBBBBBBBBBBBBB�
I mA mA2 � � � mAm�1 AmI mA � � � mAm�2 mAm�1. . . . . . ... .... . . mA mA2I mAI

1CCCCCCCCCCCCCCA ;
and, for p = (m+ 1)n, we have (Cm)1;p = (Am)1;n as 
laimed. �4.3 The Invariant Fa
torsSin
e the minimal polynomial is the �rst polynomial in the system of allinvariant fa
tors, it follows from Theorem 7 that this system is hard forGapLas well.Now we show that the veri�
ation of the system of all invariant fa
tors is hardfor C=L.Theorem 10 v-InvSystem is hard for C=L.Proof . We 
ontinue with the setting from the proof of Theorem 7, in parti
ularwith matrix B. Our goal is to determine the system of all invariant fa
torsof B. We have already shown that i1(x) = �B(x) = x2m+2 � axm+1, where17



(Am)1;n = a. It remains to 
ompute the invariant fa
tors i2(x); : : : ; iN(x)of B.From the proof of Theorem 7 we know that dN�1(x) = xN�(2m+2). Sin
edN�1(x) = i2(x) � � � iN (x), ea
h of the invariant fa
tors must have the form xlfor some number l. Note that the non-
onstant invariant fa
tors of the form xlare already elementary divisors of B. Therefore it suÆ
es to determine allelementary divisors of B.De�ne gi to be the number of o

urren
es of the elementary divisor xi, andlet ri denote the rank of Bi. The following formula relates the ranks to num-bers gi (see [Gan77℄, Chapter VI):gi = ri�1 + ri+1 � 2ri; (2)for i = 1; : : : ; t, where r0 = N and t is the smallest index su
h that rt�1 > rt =rt+1. We 
an a
tually 
ompute all the ranks ri from the matri
es Bi whi
h wehave already 
omputed in the proof of Theorem 7.By Lemma 9 we may assume that rank(A) = n and therefore rank(Ai) = nfor all i. Consider the general form of Bi for 1 � i � m. The rank of Bi equalsthe sum of the ranks of the matri
es on the lower and upper sub-diagonals.� Ea
h of them+1�i blo
ks on the upper sub-diagonal of Bi has the form Ai,and rank(Ai) = n.� Ea
h of the i blo
ks on the lower sub-diagonal of Bi has the form Ai�kLAk�1for 1 � k � i, and rank(Ai�kLAk�1) = rank(L) = 1.Therefore rank(Bi) = (m + 1 � i)n + i for 1 � i � m. Analogously we 
an
ompute the ranks of Bm+1 and Bm+2:rank(Bm+1) = rank(Bm+2) = m+ 1:Therefore we get the general form for ri = rank(Bi):ri = 8<:(m + 1� i)n + i; for i = 1; : : : ; m;m + 1; for i = m + 1; m+ 2:Plugged into equation (2), we see that t = m+ 1 be
ause rm > rm+1 = rm+2.Furthermore we get from equation (2)gi = 8>><>>:N � n(m + 1); for i = 1;0; for i = 2; : : : ; m;n� 1; for i = m + 1: (3)From equation (3) we 
an dedu
e the invariant fa
tors: we have n � 2 fa
-tors xm+1 (note that one of the n � 1 elementary divisors xm+1 o

urs in18



i1(x)), furthermore N � n(m + 1) fa
tors x, and 
onstant 1 as the remainingfa
tors: ik(x) = 8>><>>:xm+1; for k = 2; : : : ; n� 1;x; for k = n; : : : ; N � nm� 1;1; for k = N � nm; : : : ; N: (4)In summary, (Am)1;n = a i� i1(x) = x2m+2 � axm+1, and i2(x); : : : ; iN(x)as de�ned in (4) are the invariant fa
tors of A. This 
ompletes the proof ofTheorem 10. �Corollary 11 InvSystem is hard for GapL.Summary and Open ProblemsThe following table summarizes the lower and upper bounds for the problems
onsidered in this paper.Problem hard for 
ontained inDeterminant GapL GapLCharPolynomial GapL GapLv-CharPolynomial C=L C=LMinPolynomial GapL AC0(GapL)v-MinPolynomial C=L C=L ^ 
oC=LInvSystem GapL NC2v-InvSystem C=L AC0(C=L)An obvious task for further resear
h is to 
lose the gaps between the lowerand the upper bounds where they don't mat
h.Another important question is whether C=L is 
losed under 
omplement. Inthe 
ase of an aÆrmative answer, C=L would equal AC0(C=L). In parti
ularthis would 
lose the gap for v-InvSystem and v-MinPolynomial (andwould solve lots of other problems (see [ABO99℄)).A
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