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The harateristi polynomial and the minimal polynomial of a matrix playan important role in matrix theory. In our work we want to study the ompu-tational omplexities of these problems.Valiant [Val79b,Val79a℄ initiated the study of the omputational omplexityof ounting problems. He introdued the ounting lass #P that, intuitively,ounts the number of solutions of NP-problems. An example for a ompleteproblem for this lass is the permanent of a matrix.Sine ounting is restrited to nonnegative integers, Fenner, Fortnow, andKurtz [FFK94℄ extended #P to the lass GapP, the losure of #P undersubtration. It follows that omputing the permanent of integer matries isGapP-omplete.In ontrast, the determinant of a matrix is omplete for GapL[Dam91,Tod91,Vin91,Val92℄, the lass orresponding toGapP in the logspaesetting. This huge di�erene in the omplexity of the two problems 1 is some-what surprising sine the permanent and the determinant have almost thesame ofator expansion; the only di�erene omes with the sign. GapL turnsout to apture the omplexity of many other natural problems: omputing� the powers of a matrix,� iterated matrix multipliation,� the inverse of a matrix,� the harateristi polynomial of a matrix.There are also graph theoreti problems related to ounting the number s-t-paths in a graph.Interesting deision problems an be derived from the above problems. Forexample, instead of omputing the inverse of a matrix, it often suÆes todeide whether the inverse exists. That is, to deide whether the determinantis zero or not. More generally, this motivates the omplexity lass C=L whereone has to verify the value of a GapL funtion. Problems that are ompleteforGapL yield veri�ation problems that are omplete for C=L. For example,the determinant is GapL omplete and heking singularity is omplete forC=L. In ase the result is a matrix or a tuple of numbers there is a subtletyone has to be areful about: for example when we say that matrix poweringis in GapL, what we mean is that eah entry of the resulting matrix anbe omputed within GapL. I.e., for a n � n matrix A this yields n2 GapL-funtions, one for eah entry of Am, and eah of whih is omplete for GapL.Now there are two variants of the veri�ation version: in the �rst version wehave to verify one entry, say (Am)i;j for given i and j. In the seond version,we have to verify all the entries, i.e., Am. Both versions are omplete for C=L.1 Note however that there is no proof yet that GapL 6= GapP.2



But the situation an be di�erent. An example is provided by the inverse of amatrix (if it exists). Again we have two variants of the veri�ation problem.� Verify one entry of the inverse:given matrix A, a, i and j, deide whether (A�1)i;j = a.This problem is omplete for C=L. The seond variant is as follows.� Verify the inverse of a matrix:given matries A and B, hek whether A�1 = B.This problem an be solved by omputing the produt AB and omparing itwith the identity matrix. Hene this an be solved inNC1, a sublass of C=L.In other words, verifying one entry of the inverse is a harder problem thanverifying all elements. 2 In the latter problem, we put too muh informationin the input.We onsider the following problem.� Verify the harateristi polynomial of a matrix:given a matrix A and the oeÆients of a polynomial p, hek whether�A = p.It follows from a theorem of Berkowitz [Ber84℄ that this problem is in C=L,and Santha and Tan [ST98℄ asked whether it is omplete for this lass.Reall that the determinant is the onstant term in the harateristi polyno-mial of a matrix and that verifying the determinant is omplete forC=L. Now,with the di�erent omplexities of the above two inverse problems in mind, thequestion is: is it easier to verify all the oeÆients of the harateristi poly-nomial than to verify just one of them? We show that this is not the ase:verifying the harateristi polynomial is still omplete for C=L.The minimal polynomial of a matrix is one of the fators of the harateristipolynomial of the matrix. Algorithms to ompute the minimal polynomialhave been studied for a long time. The best known deterministi algorithmto ompute the minimal polynomial of an n � n matrix makes O(n3) �eldoperations [Sto98℄. The Smith normal form of a polynomial matrix an beomputed by a randomized NC2-iruit, i.e., in RNC2 [KS87℄. Therefore therational anonial form of a matrix and the minimal polynomial of a matrixan be omputed in RNC2 as well. In the ase of integer matries there areeven NC2-algorithms [Vil97℄.We take a di�erent approah to ompute the minimal polynomial of an integer2 Note however that we don't know whether NC1 6= C=L.3



matrix: we show that the problem an be redued to matrix powering andsolving a system of linear equations. Therefore it is in the lass AC0(GapL),a sublass of NC2. With respet to the hardness of the problem we showthat matrix powering an be redued to the minimal polynomial of a matrix.Therefore the latter problem is hard forGapL. With respet to the veri�ationof the minimal polynomial, we have a similar situation as for the harateristipolynomial: verifying whether the onstant term 0 of the minimal polynomialof a matrix A is zero is omplete for C=L, beause 0 = 0 i� A is singular.We show that verifying all the oeÆents is still hard for C=L.The system of all invariant fators of a matrix A ompletely determines thestruture of A, i.e., these fators are invariant under similarity transforma-tions. Note that the minimal polynomial of A is the �rst polynomial in itssystem of all invariant fators. For integer matries, the invariant fators anbe omputed inNC2 [Vil97℄. We extend our results and tehniques to the veri-�ation of all the invariant fators of a given integer matrix: it is inAC0(C=L)(the AC0-losure of C=L) and is hard for C=L.One goal of our researh is to determine the omplexity of algebrai problemsas desribed above, i.e., in the ideal ase, to show them omplete for someomplexity lass. Another goal we have in mind is to larify the relationshipof these omplexity lasses. The may be most hallenging open problem hereis whether C=L is losed under omplement. Many related lasses have thisproperty:� The most popular one is nondeterministi logspae, NL, shown by Immer-man [Imm88℄ and Szeleps�enyi [Sze88℄.� For symmetri logspae, SL, this was shown by Nisan and Ta-Shma [NTS95℄.Also, for probabilisti logspae, PL, it is trivial. For unambiguous logspae,UL, it is open as well. For the latter lass, however, Reinhardt and Allen-der [RA97℄ showed that the nonuniform version of it,UL=poly, is losed underomplement. This motivates the onjeture that UL might be losed underomplement too.One possible way of proving C=L to be losed under omplement is to re-due the singularity problem to the nonsingularity problem. That is, given amatrix A, onstrut a matrix B (in logspae) suh that A is singular if andonly if B is nonsingular. It is well known that one does not need to onsideran arbitrary matrix A: one an assume that A is an upper triangular matrixexept for the entry in lower left orner (see [ABO99℄). To prove our hard-ness result for the harateristi polynomial, the minimal polynomial, and theinvariant fators we manipulate suh matries. We think that it is quite inter-esting to see suh transformations, beause this an give some hints on how4



to ome up with a redution as above to solve the omplementation problemfor C=L. Therefore the methods we use are interesting in their own right. Formore bakground and interesting results we reommend the paper of Allender,Beals, and Ogihara [ABO99℄.The paper is organized as follows. After some de�nitions in the next setion,we present all the upper bounds, i.e., inlusions in omplexity lasses, of theabove mentioned problems in Setion 3. Our main results are the lower bounds,i.e., the hardness results, in Setion 4. The reason for this organization is thatwe obtain the hardness results via a redution that is suessively extendedfrom one problem to the next one. That way, this line of arguments is notinterrupted.2 PreliminariesComplexity Classes. For a nondeterministi logspae bounded Turing ma-hine M , we denote the number of aepting paths on input x by aM(x),and by rejM(x) the number of rejeting paths. The di�erene of these twonumbers is gapM(x) = aM(x)� rejM(x).For the ounting lasses, we have #L, the lass of funtions aM(x) for somenondeterministi logspae bounded Turing mahineM , andGapL based anal-ogously on funtions gapM(x). Based on ounting, we onsider the lass C=L:a set L is in C=L, if there exists a f 2 GapL suh that for all x:x 2 L() f(x) = 0:Sine it is open whether C=L is losed under omplement, it makes senseto onsider the Boolean losure of C=L. i.e., the lass of sets that an beexpressed as a Boolean ombination of sets in C=L. For our purposes, itsuÆes to onsider the following two lasses:� oC=L is the lass of omplement sets L, where L 2 C=L,� C=L ^ oC=L [ABO99℄ is de�ned as the lass of intersetions of sets inC=L with sets in oC=L. Formally,L 2 C=L ^ oC=L() 9L1 2 C=L; L2 2 oC=L : L = L1 \ L2:For sets A and B, A is AC0-reduible to B, if there is a logspae uniformiruit family of polynomial size and onstant depth that omputes A withunbounded fan-in and-, or-gates, not-gates, and orale-gates for B. In par-tiular, we onsider the lasses AC0(C=L) and AC0(GapL) of sets that areAC0-reduible to a set inC=L, respetively a funtion inGapL. Cook [Coo85℄5



de�ned DET as the lass of funtions that are NC1-reduible to the deter-minant, i.e., the lass NC1(GapL) (see [Coo85℄ for a preise de�nition). Theknown inlusion relations of these lasses is as follows:NL � C=L � C=L ^ oC=L � AC0(C=L) � PL �AC0(GapL) � DET � TC1 � NC2:A set A is AC0 many-one reduible to a set B, in symbols: A �AC0m B, if thereis a funtion f 2 AC0 suh that for all x we have x 2 A() f(x) 2 B. Allredutions used in this paper are AC0 many-one redutions.Linear Algebra. Let A 2 Fn�n be a matrix over the �eld F . The hara-teristi polynomial of A is the polynomial �A(x) = det(xI � A). A nonzeropolynomial p(x) over F is alled an annihilating polynomial of A if p(A) = 0.The Cayley-Hamilton Theorem states that �A(x) is an annihilating polyno-mial. The harateristi polynomial is a moni polynomial : its highest oeÆ-ient is one. The minimal polynomial of A, denoted �A(x), is the unique moniannihilating polynomial of A with minimal degree.Let polynomial dk(x) be the greatest ommon divisor of all sub-determinantsof (xI � A) of order k. For example dn(x) = �A(x). It is known that dkdivides dk+1 for eah index 0 � k < n. De�ne d0(x) � 1. The invariant fatorsof (xI�A) (or A, for short) are de�ned as the following (moni) polynomials:i1(x) = dn(x)dn�1(x) ; i2(x) = dn�1(x)dn�2(x) ; : : : ; in(x) = d1(x)d0(x) :The harateristi polynomial of A is the produt of all the invariant fators,that is �A(x) = i1(x) � � � in(x). Note that the minimal polynomial of A is the�rst invariant fator, i.e., �A(x) = i1(x). The n�n polynomial diagonal matrixthat has the invariant fators of A as its diagonal entries (starting with in(x))and zero elsewhere is the Smith normal form of xI � A.We deompose the invariant fators into irreduible divisors over the givennumber �eld F : i1(x) = [e1(x)℄j1;1 [e2(x)℄j1;2 � � � [es(x)℄j1;s ;i2(x) = [e1(x)℄j2;1 [e2(x)℄j2;2 � � � [es(x)℄j2;s ;...in(x) = [e1(x)℄jn;1 [e2(x)℄jn;2 � � � [es(x)℄jn;s;where j1;k � j2;k � � � � � jn;k � 0 for k = 1; : : : ; s. The irreduible divisorse1(x); e2(x); : : : ; es(x) are distint (with highest oeÆient 1) and our in6



i1(x); i2(x); : : : ; in(x). All powers [e1(x)℄j1;1 ; : : : ; [es(x)℄jn;s, whih are di�erentfrom 1, are alled the elementary divisors of A in FNote that the oeÆients of the harateristi polynomial and the invariantfators of an integer matrix are all integers. Furthermore, the set of eigenvaluesof A is the same as the set of all roots of �A(x) whih, in turn, is the set ofall roots of �A(x).
Problems. Next, we de�ne some natural problems in linear algebra we arelooking at. If nothing else is said, our domain for the algebrai problems arethe integers.(1) PowerElementInput: an n� n matrix A and i, j, and m, (1 � i; j;m � n).Output: (Am)i;j, the (i; j)-th element of Am.(2) DeterminantInput: an n� n matrix A.Output: det(A), the determinant of A.(3) CharPolynomialInput: an n� n matrix A and i � n.Output: i, the i-th oeÆient of the harateristi polynomial �A(x) =xn + n�1xn�1 + � � �+ 0 of the matrix A.(4) MinPolynomialInput: an n� n matrix A and i � n.Output: i, the i-th oeÆient of the minimal polynomial �A(x) = xm +m�1xm�1 + � � �+ 1x+ 0 of the matrix A.(5) InvSystemInput: an n� n matrix A and j, k � n.Output: the k-th oeÆient of the j-th invariant fator of the matrix A.The funtions PowerElement, Determinant and CharPolynomialare omplete forGapL [Ber84,Dam91,Tod91,Val92,Vin91℄.MinPolynomialand InvSystem are inRNC2 [KS87℄, and inNC2 for integer matries [Vil97℄.For eah of them, we de�ne the veri�ation problem as the graph ofthe orresponding funtion: for a �xed funtion f(x), de�ne v-f asthe set all pairs (x; y) suh that f(x) = y. This yields the veri�a-tion problems v-PowerElement and v-Determinant. With respet tov-CharPolynomial, v-MinPolynomial and v-InvSystem, we take thetuple of all oeÆients of a polynomial as the underlying funtion. I.e., forexample in v-CharPolynomial, we have given A and n�1; : : : ; 0, and haveto deide whether 1; n�1; : : : ; 0 are the oeÆients of �A(x).7



A GapL-omplete funtion yields a C=L-omplete veri�ation problem.Hene v-PowerElement and v-Determinant are omplete for C=L. Wenote that a speial ase of v-Determinant is Singularity, where one hasto deide whether the determinant of a matrix A is zero. Singularity isomplete for C=L as well. In ase of v-CharPolynomial we have a tupleof n underlyingGapL-funtions. The onstant term, 0, is omplete forGapL(beause 0 = (�1)n det(A)). But not all oeÆients are omplete for GapL:for example n�1 is the trae of A (the sum of all elements on the main di-agonal). Therefore n�1 an be omputed in NC1. It was an open problemwhether v-CharPolynomial is omplete for C=L [ST98℄. We show thatthis is indeed the ase.A similar omment an be made for v-MinPolynomial. The harateristiand the minimal polynomial of a matrix A have the same set of roots, namely,the eigenvalues of A, and their respetive onstant terms are the produtsof these roots. Therefore A is singular i� the onstant term of the minimalpolynomial of A is zero, and hene the zero-test of the onstant term is om-plete for C=L. We show that also v-MinPolynomial, where we have toverify all the oeÆients, is hard for C=L. The same hardness result holds forv-InvSystem.3 Upper BoundsThe Charateristi Polynomial. Berkowitz [Ber84℄ showed that for agiven matrix A one an onstrut in logspae a sequene of matries suh thatall the oeÆients of �A(x) appear in the iterated produt of these matries.Sine eah element of an iterated matrix produt an be omputed in GapL,it follows that eah oeÆient of �A(x) an be veri�ed in C=L. Sine C=L islosed under logspae onjuntive redutions, also v-CharPolynomial anbe solved in C=L.Theorem 1 [Ber84℄ v-CharPolynomial 2 C=L.The Minimal Polynomial. We mentioned in the previous setion thatthe minimal polynomial �A(x) of an integer matrix A an be omputed inNC2 [Vil97℄. We take a di�erent approah (see [HJ85℄, Setion 3.3, problem5) and show that MinPolynomial is in AC0(GapL), a sublass of NC2.Let p(x) = xm+m�1xm�1+ � � �+0 be a moni polynomial and A be a matrix.Then p(x) = �A(x) , i�(i) p(A) = Am + m�1Am�1 + � � � + 0I = 0, i.e., p(x) is an annihilating8



polynomial of A, and(ii) for every moni polynomial q(x) of degree smaller than p(x), we haveq(A) 6= 0.De�ne vetors ai = ve(Ai) for i = 0; 1; 2; : : : ; n, where ve(Ai) is the vetorof length n2 obtained by putting the olumns of Ai below eah other. Theequation p(A) = 0 an be rewritten asam + m�1am�1 + � � �+ 0a0 = 0: (1)In other words, the vetors am; : : : ;a0 are linearly dependent. Consequently,for some moni polynomial q with degree k < m, the inequation q(A) 6= 0means that the vetors ak; : : : ;a0 are linearly independent.In summary, the oeÆients m�1; : : : ; 0 of �A(x) are the (unique) solution ofthe system (1), for the smallest m where this system has a solution. Hene wehave the following algorithm to ompute �A(x).MinPolynomial(A)1 ai  ve(Ai) for i = 0; : : : ; n2 determine m suh that am�1; : : : ;a1;a0 are linearly independent andam; : : : ;a1;a0 are linearly dependent3 solve the linear system am + m�1am�1 + � � �+ 0a0 = 04 return (1; m�1; : : : ; 0), the oeÆients of �A(x).In step 1 in the above algorithm, eah element of ai an be omputed inGapL.In step 2, heking linear independene of given vetors is in oC=L and lineardependene is in C=L (see [ABO99℄). In step 3, we have to solve a linearsystem of equations. Sine the vetors am�1; � � � ;a0 are linearly independentand am;am�1; � � � ;a0 are linearly dependent, the system of linear equationsin step 3 has a unique solution. Let C be the n2 � m matrix with olumnsam�1; : : : ;a0, i.e., C = (am�1 � � � a0). In step 3 we have to solve the systemC = �am in the unknown  = (m�1; : : : ; 0)T . De�ne the m �m matrix Band vetor b of length m asB = CTC and b = �CTam:Sine C has full olumn rank, matrix B is nonsingular. ThereforeC = �am () B = b:Hene we obtain the unique solution in step 3 as  = B�1b. The inverse of agiven matrix an be omputed in GapL. When m is known after step 2, eahentry of B and b is omputable in GapL, and therefore eah entry of B�1bis in GapL as well [AAM99℄. In summary, eah oeÆient i of �A(x) an beomputed in AC0(GapL). 9



Theorem 2 MinPolynomial 2 AC0(GapL).In the orresponding veri�ation version we have given A and the oeÆientsof a moni polynomial, and have to deide whether these oeÆients representin fat the minimal polynomial of A.To verify the minimal polynomial we an simplify the above algorithm forMinPolynomial as follows:v-MinPolynomial(A; m�1; : : : ; 0)1 ai  ve(Ai) for i = 0; : : : ; m2 if am + m�1am�1 + � � �+ 0a0 = 0 andam�1; : : : ;a1;a0 are linearly independent3 then aept else rejet.Sine the omponents of vetors ai an be omputed in GapL (line 1), the�rst ondition in line 2 an be deided in C=L. For the seond ondition, let Bbe the symmetri m�m matrix de�ned above, i.e.,B = (am�1 � � � a1 a0)T (am�1 � � � a1 a0):Now, am�1; : : : ;a1;a0 are linearly independent i� B is nonsingular.Sine eah entry of B an be omputed in GapL, the determinant of B anbe omputed in GapL as well [AAM99℄. Thus the latter test an be done inoC=L. Therefore v-MinPolynomial an be deided by a C=L prediatein onjuntion with a oC=L prediate.Corollary 3 v-MinPolynomial 2 C=L ^ oC=L.The Invariant Fators. The system of all invariant fators of an integermatrix an be omputed in NC2 [Vil97℄. We show that the invariant fatorsan be veri�ed in AC0(C=L).Theorem 4 v-InvSystem 2 AC0(C=L).Proof . Let S = fi1(x); : : : ; in(x)g be the system of n given moni polynomialsand let A be an n � n matrix. The algorithm exploits a result from linearalgebra (see [Gan77℄): we onstrut the ompanion matries that orrespondto the non-onstant polynomials in S. Let D denote the diagonal blok matrixof all these ompanion matries. Then S is the system of all invariant fatorsof A i� A is similar to D. Testing similarity an be done in AC0(C=L) [ST98℄,therefore v-InvSystem is in AC0(C=L) too. �10



4 Lower BoundsThe harateristi polynomial is known to be hard for GapL. In this setionwe show that the same holds for the minimal polynomial and the invariantfators. We show that all the orresponding veri�ation problems are hard forC=L.A problem known to be omplete forGapL isPowerElement where one hasto ompute the entry (i; j) of Am, for an n�n integer matrix A. W.l.o.g. we anfous on entry (1; n) of Am, i.e. (Am)1;n. Consequently, v-PowerElementis omplete for C=L. We take PowerElement and v-PowerElement asthe referene problems to show our hardness results. Sine the onstrution ofthe graph G below in this setion an be done in AC0, all redutions here areAC0 many-one redutions.4.1 Verifying the Charateristi PolynomialThe redution from v-PowerElement to v-CharPolynomial builds ontehniques from Toda [Tod91℄ and Valiant [Val92℄ to redue iterated ma-trix multipliation to the determinant. In parts of our presentation we fol-low [ABO99℄.Theorem 5 v-PowerElement �AC0m v-CharPolynomial.Proof . Let A be an n�n matrix and 1 � m � n. We will onstrut a matrix Bsuh that the value (Am)1;n ours as one of the oeÆients of �B(x).Interpret A as representing a direted bipartite graph on 2n nodes and eedges. That is, the nodes are arranged in two olumns of n nodes eah. Inboth olumns, nodes are numbered from 1 to n. If entry ak;l of A is not zero,then there is an edge labeled ak;l from node k in the �rst olumn to node l inthe seond olumn. The number of non-zero entries in A is exatly e.Now, take m opies of this graph, put them in a sequene and identify eahseond olumn of nodes with the �rst olumn of the next graph in the sequene.Call the resulting graph G0. Graph G0 has m + 1 olumns of nodes, and eaholumn has exatly n nodes. The weight of a path in a graph is the produtof all labels on the edges of the path. The ruial observation now is that theentry at position (1; n) in Am is the sum of the weights of all paths in G0 fromnode 1 in the �rst olumn to node n in the last olumn. Call these two nodes sand t, respetively. Add an edge labeled 1 from t to s, and all the resultinggraph G. An example for the above onstrution of G for A = � 2 1 00 1 10 3 0 � is shownin �gure 1. 11
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Fig. 1. The graph G onstruted from matrix A for m = 3. The three olumns areindiated by the dashed lines. The edge labels are the orresponding entries of A.The thiker edges indiate the two paths from s to t. The weights of these two pathssum up to 3, whih is the value of (A3)1;3. For the harateristi polynomial of theadjaeny matrix B we get �B(x) = x12� 3x8. As we will see in Setion 4.2, for theminimal polynomial we get �B(x) = x8 � 3x4.Let B be the adjaeny matrix of G. So B is an N � N matrix, where N =(m+ 1)n is the number of nodes of G. Let the harateristi polynomial of Bhave the form �B(x) = det(xIN � B) = xN + N�1Xi=0 ixi;where IN is the N � N identity matrix. We give two ways how to omputethe oeÆients i in �B(x):(1) one way is to use elementary linear transformations and bring the polyno-mial matrix xIN �B into triangular blok form. Then the harateristipolynomial of B an be omputed from the resulting polynomial matrix.(2) a very elegant proof is provided by ombinatorial matrix the-ory. From there we know that the oeÆients of the harateris-ti polynomial an be expressed as yle overs in the graph G(see [BR91,CDS80,Zei85,MV97,MV99℄).We start by giving the ombinatorial argument whih is muh shorter thanthe algebrai argument.The Combinatorial WayIt is known that the oeÆient i in �B(x) equals the sum of the disjointweighted yles that over N�i nodes in G, with appropriate sign (see [BR91℄or [CDS80℄ for more details). In the graph G, all edges go from a layer to the12



next layer. The only exeption is the edge (t; s). So any yle in G must usepreisely this edge (t; s), and then trae out a path from s to t. Thereforeeah yle in G has exatly the length m + 1, and the weighted sum of allthese yles is preisely (�1)m+1(Am)1;n (for the sign, reall that we onsiderxIN � B). The sign of the yle (as a permutation) is (�1)m. HeneN�(m+1) = (�1)m+1(�1)m(Am)1;n = �(Am)1;nand all other oeÆients must be zero. That is, for a = (Am)1;n,�B(x) = xN � axN�(m+1)is the harateristi polynomial of B.The Algebrai WayWe onsider the adjaeny matrix B of the graph G. Exept for the edgefrom t to s, graph G is ayli. Thus we an put the nodes of G in suh anorder, that adjaeny matrix B is upper triangular for the �rst N � 1 rowswith zeros along the main diagonal. The last row of B has a one in the �rstposition (representing edge (t; s)), and the rest is zero.Now we an write B as a (m+ 1)� (m+ 1) blok matrix as followsB = 0BBBB� A . . . AL 1CCCCA :Matrix A oursm-times on the upper sub-diagonal of B. L is the n�n matrixwith a one at position (n; 1) and zero elsewhere. The empty plaes in B areall zero (matries).Therefore xIN �B has the formxIN �B = 0BBBB�xIn (�A). . . . . .xIn (�A)�L xIn 1CCCCA :To ompute �B(x) we transform xIN � B into an upper triangular blokmatrix. Note that it already is upper triangular exept for matrix L in thelower left orner. We want to eliminate this blok.The �rst step is to multiply the last blok row by xIn, and add to it the �rstblok row multiplied by L (from right). This transforms the last blok row13



into 0; � AL; 0; : : : ; 0; x2In:In the seond step, we multiply the last blok row again by xIn, and add to itthe seond blok row multiplied by AL (from right). This transforms the lastblok row into 0; 0; � A2L; 0; : : : ; 0; x3In:Continuing that way for m iterations, we bring the last blok row into0; : : : ; 0; xm+1In � AmL:Let D(x) be the resulting upper triangular matrix. The diagonal of D(x) isxIn; : : : ; xIn; xm+1In � AmL:The determinant ofD(x) is the produt of the determinants of diagonal bloks,that is det(D(x)) = xN�n det(xm+1In � AmL):It remains to ompute the determinant of xm+1In � AmL. Reall the form ofmatrix L: the only non-zero entry is a 1 in the lower left orner. ThereforeAmL has the last olumn of Am as its �rst olumn and 0 elsewhere. Henexm+1In � AmL is an n� n lower triangular matrix with the diagonalxm+1 � (Am)1;n; xm+1; : : : ; xm+1;that has determinantdet(xm+1In � AmL) = x(n�1)(m+1) (xm+1 � a);where a = (Am)1;n. Thusdet(D(x)) = xN�n x(n�1)(m+1) (xm+1 � a):Note however that this is not the same as �B(x): we hanged �B(x) with eahmultipliation of the last blok row by xIn, and we did thism-times. Therefore�B(x) = det(D(x))= det(xmIn)= xN�n x(n�1)(m+1) (xm+1 � a) x�mn= xN � axN�(m+1):In summary, both methods expliitly yield the oeÆients of �B(x) and wehave (Am)1;n = a() �B(x) = xN � axN�(m+1):This proves the theorem. �14



Corollary 6v-CharPolynomial is omplete for C=L.
4.2 The Minimal PolynomialWe show in this setion that the minimal polynomial of a matrix is hardfor GapL. To do so, we extend the redution from v-PowerElementto v-CharPolynomial to a redution from PowerElement toMinPolynomial. Namely, we show that the minimal polynomial of the ma-trix B above has the value (Am)1;n as one of its oeÆients.Theorem 7 PowerElement �AC0m MinPolynomial.Proof . We onsider the N � N matrix B from the previous setion. Theharateristi polynomial of B is �B(x) = xN � axN�(m+1): We laim that theminimal polynomial of B is �B(x) = x2m+2 � axm+1:Reall that polynomial dN�1(x) is the greatest ommon divisor of all sub-determinants of (xIN�B) of order N�1. We observe that the sub-determinantat position (1; 1) is xN�1. Hene dN�1(x) = xl for some l. Therefore the mini-mal polynomial must have the form�B(x) = �B(x)dN�1(x) = xN�l � axN�(m+1)�l;for some l � 0.De�ne polynomials pk(x) = x(m+1)+k�axk for 0 � k � N� (m+1). We laimthat �B = pm+1. To prove our laim, we have to show that pm+1(B) = 0 andpk(B) 6= 0 for all k < m + 1. To do so, we expliitly ompute all the powersof B, i.e., Bi for i = 2; : : : ; m+ 1. We get

B2 = 0BBBBBBB� A2 . . .A2ALLA
1CCCCCCCA ; B3 = 0BBBBBBBBB�

A3 . . .A3A2LALALA2
1CCCCCCCCCA :

15



The general form of Bi for i � m is as followsi i+ 1# #
Bi = 0BBBBBBBBBBBB�

Ai . . . AiAi�1L Ai�2LA . . . LAi�1
1CCCCCCCCCCCCA
 1 m+ 1� i m+ 2� i m+ 1 :

Finally, matrix Bm+1 is a diagonal blok matrix. Its i-th diagonal blok isAm+1�iLAi�1 for all 1 � i � m + 1. Matrix B2m+2 = (Bm+1)2 is thereforea diagonal blok matrix too. Its i-th diagonal blok is the square of the i-thdiagonal blok of Bm+1, i.e.,(Am+1�iLAi�1)2 = Am+1�iLAmLAi�1:Now, observe that there ours the fator LAmL in eah of the diagonal entriesof B2m+2. It is easy to verify that LAmL = aL. Therefore we an pull thefator a in front of the matrix and what remains is again Bm+1. I.e., we haveshown that B2m+2 = aBm+1. Thereforepm+1(B) = B2m+2 � aBm+1 = 0:It remains to prove pk(B) = Bm+1+k � aBk 6= 0 for all k � m. Note thatit suÆes to prove this for k = m, beause pk(B) = 0 for some k impliespk+1(B) = 0.Assume that pm(B) = B2m+1 � aBm = 0. Then B2m+1 = aBm. We onsiderthe bloks at position (1; m+ 1) in B2m+1 and Bm:� in Bm it is Am,� ompute B2m+1 as the produt Bm+1Bm. Then it is easy to see that theblok at position (1; m+ 1) is AmLAm.Now, if pm(B) = 0, then we must have AmLAm = aAm. However, the latterequation annot hold: by Lemma 9 below we an assume that A is nonsingular.Therefore rank(AmLAm) = 1, whereas rank(aAm) = n, for a 6= 0, and 0,otherwise. We onlude that pm(B) 6= 0.In summary, we get �B(x) = x2m+2 � axm+1, where a = (Am)1;n. This provesthe theorem. �Corollary 8 (1) MinPolynomial is hard for GapL,16



(2) v-MinPolynomial is hard for C=L.It remains to justify that we may assume A to be nonsingular (in the proof ofTheorem 7).Lemma 9 Suppose A is an n� n matrix. Then there is a nonsingular uppertriangular p� p matrix C (that an be easily onstruted) suh that (Cm)1;p =(Am)1;n.Proof . De�ne C as a (m+ 1)� (m + 1) blok matrixC = 0BBBB� I A. . . . . .I AI 1CCCCA ;where I is the n� n identity matrix. Then C is nonsingular and Cm has thefollowing form
Cm =

0BBBBBBBBBBBBBB�
I mA mA2 � � � mAm�1 AmI mA � � � mAm�2 mAm�1. . . . . . ... .... . . mA mA2I mAI

1CCCCCCCCCCCCCCA ;
and, for p = (m+ 1)n, we have (Cm)1;p = (Am)1;n as laimed. �4.3 The Invariant FatorsSine the minimal polynomial is the �rst polynomial in the system of allinvariant fators, it follows from Theorem 7 that this system is hard forGapLas well.Now we show that the veri�ation of the system of all invariant fators is hardfor C=L.Theorem 10 v-InvSystem is hard for C=L.Proof . We ontinue with the setting from the proof of Theorem 7, in partiularwith matrix B. Our goal is to determine the system of all invariant fatorsof B. We have already shown that i1(x) = �B(x) = x2m+2 � axm+1, where17



(Am)1;n = a. It remains to ompute the invariant fators i2(x); : : : ; iN(x)of B.From the proof of Theorem 7 we know that dN�1(x) = xN�(2m+2). SinedN�1(x) = i2(x) � � � iN (x), eah of the invariant fators must have the form xlfor some number l. Note that the non-onstant invariant fators of the form xlare already elementary divisors of B. Therefore it suÆes to determine allelementary divisors of B.De�ne gi to be the number of ourrenes of the elementary divisor xi, andlet ri denote the rank of Bi. The following formula relates the ranks to num-bers gi (see [Gan77℄, Chapter VI):gi = ri�1 + ri+1 � 2ri; (2)for i = 1; : : : ; t, where r0 = N and t is the smallest index suh that rt�1 > rt =rt+1. We an atually ompute all the ranks ri from the matries Bi whih wehave already omputed in the proof of Theorem 7.By Lemma 9 we may assume that rank(A) = n and therefore rank(Ai) = nfor all i. Consider the general form of Bi for 1 � i � m. The rank of Bi equalsthe sum of the ranks of the matries on the lower and upper sub-diagonals.� Eah of them+1�i bloks on the upper sub-diagonal of Bi has the form Ai,and rank(Ai) = n.� Eah of the i bloks on the lower sub-diagonal of Bi has the form Ai�kLAk�1for 1 � k � i, and rank(Ai�kLAk�1) = rank(L) = 1.Therefore rank(Bi) = (m + 1 � i)n + i for 1 � i � m. Analogously we anompute the ranks of Bm+1 and Bm+2:rank(Bm+1) = rank(Bm+2) = m+ 1:Therefore we get the general form for ri = rank(Bi):ri = 8<:(m + 1� i)n + i; for i = 1; : : : ; m;m + 1; for i = m + 1; m+ 2:Plugged into equation (2), we see that t = m+ 1 beause rm > rm+1 = rm+2.Furthermore we get from equation (2)gi = 8>><>>:N � n(m + 1); for i = 1;0; for i = 2; : : : ; m;n� 1; for i = m + 1: (3)From equation (3) we an dedue the invariant fators: we have n � 2 fa-tors xm+1 (note that one of the n � 1 elementary divisors xm+1 ours in18



i1(x)), furthermore N � n(m + 1) fators x, and onstant 1 as the remainingfators: ik(x) = 8>><>>:xm+1; for k = 2; : : : ; n� 1;x; for k = n; : : : ; N � nm� 1;1; for k = N � nm; : : : ; N: (4)In summary, (Am)1;n = a i� i1(x) = x2m+2 � axm+1, and i2(x); : : : ; iN(x)as de�ned in (4) are the invariant fators of A. This ompletes the proof ofTheorem 10. �Corollary 11 InvSystem is hard for GapL.Summary and Open ProblemsThe following table summarizes the lower and upper bounds for the problemsonsidered in this paper.Problem hard for ontained inDeterminant GapL GapLCharPolynomial GapL GapLv-CharPolynomial C=L C=LMinPolynomial GapL AC0(GapL)v-MinPolynomial C=L C=L ^ oC=LInvSystem GapL NC2v-InvSystem C=L AC0(C=L)An obvious task for further researh is to lose the gaps between the lowerand the upper bounds where they don't math.Another important question is whether C=L is losed under omplement. Inthe ase of an aÆrmative answer, C=L would equal AC0(C=L). In partiularthis would lose the gap for v-InvSystem and v-MinPolynomial (andwould solve lots of other problems (see [ABO99℄)).AknowledgmentsWe wish to thank Eri Allender. He gave many helpful omments on the pa-per. Also he pointed us to the results in [AAM99℄ whih lead to an improvedupper bound for v-MinPolynomial (Corollary 3). We thank Meena Maha-jan and V Vinay for pointing out to us the ombinatorial proof of Theorem 5.19
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