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Chapter 1

Introduction

One of the main subjects of theoretical computer science is complexity theory
which is more or less concerned with determining the intrinsic complexity of
computational problems. A very important aim of complexity theory is to clas-
sify computational problems into different complexity classes defined by various
bounds and types of resources (usually time and space). For such classifica-
tion, the difficulty of some given computational problems within a complexity
class can be meaningfully compared by using the fundamental concept of reduc-
tions. Thereby, in many instances the hardest of all computational problems in
a complexity class can be identified, they are called the complete problems for
the considered complexity class. Another obvious aim of complexity theory is to
search for the interrelationship between various complexity classes.

Linear algebra is one of the most known mathematical disciplines because of
its rich theoretical foundations and its many useful applications to science and
engineering. Solving systems of linear equations and computing determinants are
two examples of fundamental problems in linear algebra that have been studied
for a long time ago. Leibnitz found the formula for determinants in 1693, and in
1750 Cramer presented a method for solving systems of linear equations, which
is today known as Cramer’s Rule (see [AMS87]). This is the first foundation stone
on the development of linear algebra and matrix theory. At the beginning of
the evolution of digital computers, the matrix calculus has received very much
attention. John von Neumann and Alan Turing were the world-famous pioneers
of computer science. They introduced significant contributions to the develop-
ment of computer linear algebra. In 1947, von Neumann and Goldstine [vNGA47]
investigated the effect of rounding errors on the solution of linear equations. One
year later, Turing [Tur48] initiated a method for factoring a matrix to a product
of a lower triangular matrix with an echelon matrix (the factorization is known
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CHAPTER 1. INTRODUCTION

as LU decomposition). At present, computer linear algebra is broadly of interest.
This is due to the fact that the field is now recognized as an absolutely essen-
tial tool in many branches of computer applications that require computations
which are lengthy and difficult to get right when done by hand, for example: in
computer graphics, in geometric modeling, in robotics, etc.

In the complexity-theoretic viewpoint, in particular with respect to parallel
computations, computational problems in linear algebra provide a sure enough
interesting topic. The present thesis focuses on this topic. The main goal of this
thesis is to determine precisely the complexity of some fundamental problems
in linear algebra. On the other hand, the interrelationship between complexity
classes in which the considered problems are located will be clarified.

The motivation for this thesis comes mainly from the purpose to understand
the complexity of computational problems in linear algebra. Many tasks of linear
algebra are recognized usually as elementary problems, but the precise complexity
of them was not known for a long time ago. Computing the determinant is an ex-
ample. There are polynomial-time algorithms for the determinant (see [vzGG99],
Part I, Chapter 1, Section 5.5., Algorithm 5.10). With respect to parallel com-
putations, the problem of computing determinants attracted a great attention.
It was shown in [Ber84, BvzGH82, Chi85, Csa76] that the determinant is com-
putable simultaneously in polylog-time by using a polynomial number of proces-
sors. In particular, the result of Berkowitz [Ber84] showed that the problem of
computing the determinant is solvable by uniform Boolean circuits of O(log*n)-
depth and polynomial-size, i.e. the determinant is in the class NC? (see Chapter 2
below for more detail on NC and its subclasses). Many computational problems
in linear algebra are reducible in a natural way to computing determinants, and
hence they are known to be in NC?. However, NC? does not capture the ex-
act complexity of linear-algebraic problems. Taking in consideration that the
determinant is not known to be NC?-complete, it is natural to ask for which
complexity class this problem is complete, and whether the complexity of other
fundamental problems in linear algebra can be found.

Counting problems and counting classes

Counting problem is a type of computational problems, which is more difficult
than decision problem and search problem. The major difference between these
three types of computational problems can be explained as follows: a decision
problem asks whether a solution exists, a search problem demands to compute



a solution, but a counting problem counts the number of all solutions. The
perfect matching problem for graphs seems to be a good example: for a given
graph G, the decision problem asks whether there is a perfect matching in G,
the search problem demands to construct one of the perfect matchings in G
(if one exists), and the counting version requires to compute the number of all
perfect matchings in GG. Although the perfect matching decision problem can
be solved in deterministic polynomial-time [Edm65], counting the number of all
perfect matchings in a graph is a very difficult problem for which maybe no
polynomial-time algorithm can be developed. Just now is the question: How
difficult the problem of counting the number of all perfect matchings in a graph
will be stepped?.

The two most known time-complexity classes are P and NP. P is the class
of all decision problems solvable in deterministic polynomial-time, and NP is
the class of all decision problems solvable in nondeterministic polynomial-time.
A deterministic polynomial-time algorithm is usually called efficient. Therefore,
one can intuitively say that P contains only efficient computational problems. In
contrast to P, NP-complete problems are called intractable, since no polynomial-
time algorithm for any of these problems is known today. A large number of
computational problems were shown by Cook and Karp [Coo71, Kar72] to be NP-
complete. Whether there is a polynomial-time algorithm for any NP-complete
problem is a formulation (in the algorithmic viewpoint) for the number-one open
question P ~ NP in theoretical computer science.

Other complexity classes beyond NP were (and are) widely of interest. One
of them is the counting class #P which is extended from NP among the most
natural way. In 1979, Valiant [Val79b, Val79c¢] initiated the study of the compu-
tational complexity of counting problems. He introduced the counting class #P
that counts the number of solutions of NP-problems, or equivalently, the number
of all accepting computation paths of a nondeterministic Turing machine on an
input.

Computing the number of all truth assignments satisfying a given Boolean ex-
pression is the counting version corresponding to the very popular NP-complete
decision problem SAT. This counting problem is known to be complete for
#P (the proof can be found in [Pap94], Chapter 18, page 442). More interest-
ingly, there are #P-complete counting problems derived from problems solvable
in polynomial-time. For example: one can decide in polynomial-time whether a
bipartite graph has a perfect matching [Edm65], but the number of all perfect
matchings in a bipartite graph is a #P-complete function [Val79b]. Moreover,
since the number of all perfect matchings in a bipartite graph G is equal to the
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permanent of the adjacency matrix of GG, the problem of computing the perma-
nent of 0-1 matrices is also #P-complete.

In the logspace setting, some interesting classes related to the number of
accepting computation paths of a nondeterministic logspace Turing machine (INL
machine) are defined. Further on, we mention briefly some of these classes that
are characterized by linear-algebraic problems.

The starting point in this direction is the class #L. In analogy to #P, a
function of #L counts intuitively the number of all accepting computation paths
of an NL machine on an input. Counting the number of all paths from node
s to node t in an acyclic directed graph is a natural example of #L-complete
functions. Furthermore, there are also #L-complete functions that are descended
from linear algebra. An example of them is the problem of computing an element
of the power matrix A™, for a given 0-1 matrix A and an exponent m > 1.

Due to the fact that functions in #P are restricted to nonnegative integers,
Fenner, Fortnow, and Kurtz [FFK94] extended #P to the class GapP which is
the closure of #P under subtraction, i.e. any difference of two #P functions is a
GapP function. The permanent of an integer matrix is an example of functions in
GapP. Corresponding to GapP in the logspace setting is the class GapL defined
as the class of differences of #L-functions. Since the determinant of an integer
matrix is a GapL-complete function [Dam91, Tod91, Vin91, Val92|, GapL seems
to be one of the most suitable classes for elementary linear-algebraic problems.
The huge difference in the complexity of the permanent and the determinant
is somewhat surprising because of the fact that these functions have almost the
same cofactor expansion', the only difference comes from the sign. This difference
is more obvious by the following formulas

det(A) = Z sign(d) Hflz’,é(z’) , perm(A) = Z Haiﬁ(i)’
i=1

0€Sn 0€Sp =1

where A = [a;;] is a matrix of order n, S, is the symmetric permutation group
of {1,2,...,n}, and sign(¢) is the sign of the permutation .

GapL turns out to capture the complexity of many other natural problems in
linear algebra. For example, computing an element in integer matrix powering,
or iterated integer matrix multiplication, is complete for GapL. There are also
graph-theoretic problems which are complete for GapL [Tod91] (see also [ST98]).
An example is the problem of counting the number of all shortest s-t-paths in a
given directed graph G, for given two distinguished nodes s and ¢.

!Note that GapL C GapP. However, there is no proof yet that GapL # GapP.
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Important and fundamental decision problems can be derived from GapL
problems. For example: testing singularity of matrices, i.e. testing if the deter-
minant of a given matrix is zero. Probably, the singularity problem is relevant
for computing the inverse of a matrix because of the fact that, often in practice,
it is necessary to decide whether there exists the inverse before computing it.
The importance of decision problems derived from GapL problems motivates
onward the complexity class C_L (Ezact Counting in Logspace). Allender and
Ogihara [AO96] introduced C_L as the class of decision problems that verify
GapL functions. Obviously, the class C_L captures the complexity of problems
defined in a most natural way because GapL-complete functions yield decision
problems that are complete for C_L. For example, verifying the determinant is
a C_L-complete problem [AO96, ST98].

Apart from the importance that C_L characterizes many fundamental prob-
lems in linear algebra, C_L is widely of interest because it is still open whether
this class is closed under complement [ABO99]. As usual in complexity theory, it
is plausible to expect that there is a positive answer to this open question because
the following classes related to C_L are closed under complement.

e NL (Nondeterministic Logspace) [Imm88, Sze88§].
e SL (Symmetric Logspace) [NTS95].
e PL (Probabilistic Logspace) [Ogios].

e UL/poly (nonuniform Unambiguous Logspace) [RA00], this result gives rise
to conjecture that (uniform) UL is closed under complement as well.

Actually, together with the wish to understand the complexity of fundamental
problems in linear algebra, the open question C_L ~ coC_L and other unsolved
questions about classes related to counting the number of accepting computation
paths of an NL machine motivate the present thesis.

This thesis

The main contribution of this thesis is in determining the complexity of some
problems in linear algebra.

The problems considered in this thesis can be divided into two categories. The
first category consists of problems related to the structure of a matrix: about the
characteristic polynomial, the minimal polynomial, and the invariant factor sys-
tem. Testing similarity and testing diagonalizability of matrices, two classical
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problems, belong to the first category. Problems in the second category are re-
lated to counting the eigenvalues: the rank, the inertia, and stability of matrices.

The main results presented in Chapter 3 and 4 of this thesis have been pub-
lished in refereed form in the papers [HT00, HT01, HT03a, HT02b, HT02a,
HTO03b].

The contribution of Chapter 5 hasn’t been published yet. Chapter 5 deals
with the complexity of the unique perfect matching problem, and with some
necessary and sufficient conditions for collapsing logspace counting classes.

In the remaining text of this chapter we explain in detail the backgrounds
and the results of this thesis.

The characteristic polynomial

Suppose the output of a computational problem is a matrix or a tuple of numbers.
There is a subtlety one has to be careful about: for instance, by saying that integer
matrix powering is in GapL we mean that each element of the resulting power
matrix can be computed within GapL, i.e., for an n x n matrix A, this yields
n? GapL-functions according to n? elements of the power matrix A™, and each
of them is a GapL-complete computation. Now there are two variants of the
verification version derived from matrix powering:

1. one has to verify one element of A™, ie. verifying (A™);; = a, for given
integer matrix A, integers a, numbers m, i, and 7,

2. the other has to verify all elements of A™, i.e., verifying A™ = B, for given
integer matrices A and B, and a number m.

These both decision problems are complete for C_L. But the situation can be
different: an example taken from [ST98] is provided by the inverse of a matrix
(assume that the inverse exists). There are again two following variants of the
verification version.

e V-INVERSEELEMENT (verifying one element of the inverse)

Input : A regular n X n integer matrix A, integers i, j, a, and b # 0.
Question : (A71);; = 47

e V-INVERSE (verifying the inverse)
Input: Two regular matrices A and B.
Question: A~' = B?



The first problem, V-INVERSEELEMENT, is known to be complete for C_L. The
second problem can be solved by computing the product AB and comparing it
with the identity matrix I. Testing whether AB = I can be done in NC', a
subclass of C_L. Thus v-INVERSE is in NC'. Now, under the assumption that
there is a logspace reduction from V-INVERSEELEMENT to V-INVERSE, there
exists always a positive answer to the most prominent open question NL L (L
is the deterministic logspace)! Obviously, in the second decision problem above,
namely V-INVERSE, we put too much information into the input. This is the
reason why the problem of verifying one element is harder than the problem of
verifying all elements of the inverse?.

The observation about two different variants of the inverse decision prob-
lem inspires the problem of verifying the characteristic polynomial by Santha
and Tan [ST98]: given a matrix A and the coefficients of a polynomial p, one
has to verify whether p is the characteristic polynomial of A. It was shown by
Berkowitz [Ber84| that the coefficients of the characteristic polynomial of a ma-
trix are reducible to the elements of an iterated matrix multiplication. Therefore,
verifying one or all these coefficients can be done in C_L (see Chapter 3, Sec-
tion 3.1.1 for more detail). Since the determinant is the constant term (apart
from the sign) of the characteristic polynomial, it is obvious to see that verify-
ing one coefficient of the characteristic polynomial is a C_L-complete problem.
Now, with the different complexities of two in above mentioned inverse prob-
lems in mind, V-INVERSEELEMENT and V-INVERSE, the question is: is it easier
to verify all the coefficients of the characteristic polynomial than to verify just
one of them? We show in Chapter 3, Section 3.1.2 that this is not true, and
in particular, verifying the characteristic polynomial is still C_L-complete. This
result is the positive answer to an open problem by Santha and Tan [ST98|:
whether verifying the characteristic polynomial of a matrix is complete for the
class m —V — DET (note that the latter class and C_L are the same).

The minimal polynomial, similarity, and diagonalizability

Let A be a square matrix. Obviously, the invariant factors of A are significant
because these factors determine completely the structure of A. For a matrix, the
invariant factors are usually given by the rational canonical form of the matrix
(the word rational corresponds to the fact that the rational canonical form can
be computed by using only rational operations on the elements of the matrix).
The minimal polynomial of A is known to be the invariant factor with the highest

2Note however that it is still open whether NC' # C_L.

7



CHAPTER 1. INTRODUCTION

degree under all invariant factors of A.

Due to the importance of the invariant factors, and in particular, of the mini-
mal polynomial, algorithms for the rational canonical form have been intensively
studied before. Both problems, computing the rational canonical form as well
as computing the minimal polynomial of a matrix, can be done in randomized
NC? [KS87]. For integer matrices, there are even NC?-algorithms [Vil97]. The
best known deterministic algorithm for the minimal polynomial of an n x n inte-
ger matrix makes O(n?) field operations [Sto98]. Moreover, some procedures to
compute the rational canonical form can be found in the standard textbooks of
linear algebra (e.g. [Gan77a, Gan77b, HJ85, HJ91]).

The invariant factors and the minimal polynomial of an integer matrix be-
long to the topic of this thesis. By taking a different approach to compute the
minimal polynomial of an integer matrix, we show in Chapter 3 that the problem
of computing the minimal polynomial can be reduced to matrix powering and
solving systems of linear equations. Therefore, the minimal polynomial can be
computed within the TCclosure of GapL. Note that this closure, denoted by
TC’(GapL), is a subclass of TC" which is contained in NC?. Furthermore, we
show that the problem of computing the invariant factors is hard for GapL.

With respect to the verification of the minimal polynomial of a matrix, for a
square matrix A, observe that it is the same situation as for the characteristic
polynomial: deciding whether the constant term dy of the minimal polynomial
of A is identically equal to zero is a C_L-complete problem because of the fact:
dy = 0 if and only if A is singular. By comparing these two polynomials, there is
a question: Is verifying the minimal polynomial complete for C_L as the problem
of verifying the characteristic polynomial? We show that verifying the minimal
polynomial can be done in C_L A coC_L, the class of sets that can be written
as the conjunction of sets in C_L and in coC_L, and it is hard for C_L.

A difference between the characteristic polynomial and the minimal polyno-
mial of a matrix is composed of their degrees. For a matrix of order n, although
the degree of its characteristic polynomial is exactly n, the degree of its minimal
polynomial is at most n. Actually, determining the degree of the minimal poly-
nomial is a fundamental and important task in linear algebra. The complexity of
the problem of computing the degree of the minimal polynomial is investigated
in Chapter 3, Section 3.2.3 of this thesis where it is shown that this problem is
computationally equivalent to the problem of computing matrix rank. Note that
the rank of matrix A, denoted by rank(A), is the number of all linearly indepen-
dent rows of A. The complexity of matrix rank has been studied systematically
by Allender, Beals, and Ogihara [ABO99]. They showed that, given a matrix A

8



and a number r, the problem of
e deciding whether rank(A) < r is C_L-complete,
e deciding whether rank(A) = r is complete for C_L A coC_L, and
e computing a bit of rank(A) is complete for AC’(C_L).

Similarly to these results we show that the problem of

e deciding whether the degree of the minimal polynomial is less than some
given m is C_L-complete,

e deciding whether the degree of the minimal polynomial is equal to some
given m is complete for C_L A coC_L, and

e computing a bit of the degrees of the minimal polynomial is complete for

AC’(C_L).

As mentioned before, the problem of deciding whether the constant term d
of the minimal polynomial is equal to zero is still C_L-complete. Let’s consider
the constant term of the characteristic polynomial: this is a GapL-complete
function and the corresponding verification problem is complete for C_L. By
the minimal polynomial, the situation is inverted: from the C_L completeness
result of the decision problem whether the constant term dj is identically equal
to zero we cannot definitely say that the computation of dy is GapL-complete.
It is natural to ask whether the constant term of the minimal polynomial can be
computed in GapL, too. We show that this question is strongly connected to
another open problem about C_L, namely if the constant term of the minimal
polynomial can be computed in GapL, then C_L is closed under complement.
This is an immediate consequence of a hardness result: the problem of deciding
whether two matrices have the same constant term of the minimal polynomials
is complete for AC°(C_L). Our results on the constant term of the minimal
polynomial offer a new point of attack to the open question of whether C_L is
closed under complement.

A fundamental topic in linear algebra is the study of equivalence relations on
matrices that naturally arise in theory and in applications. Similarity of matrices
is one of such equivalence relations: two square matrices A and B are similar if
there exists a nonsingular transformation matrix P such that A = P~'BP. A
fact in linear algebra states that A and B are similar if and only if they have
the same rational canonical form. Santha and Tan [ST98] observed that testing

9
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similarity of two matrices can be done in AC’(C_L). The question whether the
problem of testing similarity of matrices is AC"(C_L)-complete was still open
in [ST98]. In Chapter 3, Section 3.3.1 we give a positive answer to this question:
the similarity problem is complete for AC’(C_L).

Related to similarity is the problem of deciding whether a matrix is diago-
nalizable. A matrix is called diagonalizable if it is similar to a diagonal matrix.
We show in Chapter 3, Section 3.3.2 that testing diagonalizability of matrices is
AC(C_L)-complete as well as testing similarity. We extend the result to simul-
taneous diagonalizability which is the problem of deciding whether all k given
matrices are diagonalizable by the same diagonalizing matrix.

Matrix inertia for testing stability and congruence

Besides the similarity relation on matrices, there are still two other relations,
namely equivalence and congruence of matrices. Matrices A and B are equivalent
if there are nonsingular matrices P and () such that A = PB(Q. Actually, testing
equivalence of matrices is equivalent to computing the rank of a matrix, i.e. it is
complete for AC°(C_L).

Note that congruence of matrices is defined only for symmetric matrices: two
symmetric matrices A and B are congruent if there exists a nonsingular matrix
P such that A = PBPT. Sylvester’s Law of Inertia states that matrices A and
B are congruent if and only if they have the same inertia. Hence, an approach
towards the inertia of a symmetric matrix is useful for testing matrix congruence.
In this direction, we give an approach towards the inertia of an arbitrary square
matrix. In general, the inertia of a square matrix A is defined to be the triple of
the number of eigenvalues of A, counting multiplicities, with positive, negative,
and zero real part, respectively. Matrix inertia belongs to a difficult topic in
linear algebra. In the linear-algebraic context, the inertia problem is well known
under alias the problem of Routh-Hurwitz (see e.g. [Gan77b], Volume II, Chapter
XV). Chapter 4 of this thesis studies the complexity of matrix inertia and its
related problems.

A simple idea to compute the inertia could be to determine all the roots
of the characteristic polynomial of the given matrix. With the NC?-algorithm
provided by Neff and Reif [Nef94, NR96] these roots can be approximated to
some precision [ABO]. However, it is not clear to what precision we have to
approximate a root in order to tell it apart from zero. The result by Neff and
Reif is different from our approach because our aim is to compute precisely the
inertia. Using Routh-Hurwitz’s Theorem, we show that the inertia of a matrix

10



(under the restrictions of the Routh-Hurwitz Theorem) can be computed in the
probabilistic logspace PL, and furthermore, the inertia is hard for PL.

Consider the classical verification of the inertia: for a given square matrix A
and integers p, n, and 3, one has to decide whether (p,n,3) is the inertia of A.
We show in Section 4.1 that for certain matrices the verification of the inertia
is complete for PL. Verifying the inertia is a general version for the decision
problem whether a system of differential equations is stable, a important task in
engineering science. Note that a system of differential equations is stable if and
only if its coefficient matrix is stable, i.e. all eigenvalues of its coefficient matrix
have negative real parts. We show in Section 4.2 that testing stability of matrices
is complete for PL.

By modifying the standard Routh-Hurwitz method, we show in Section 4.1
that the inertia of a symmetric integer matrix can be computed within PL. It
follows that testing congruence of matrices can be done in PL. In addition, we
show that ACY(C_L) is a lower bound for the latter problem. Note that there
are deterministic sequential algorithms to compute the inertia of a symmetric
integer matrix, an example of them can be found in [For00].

Unique perfect matching

The problem of deciding whether a graph has a perfect matching is a classical
example for which there are polynomial-time algorithms [Edm65] and random-
ized NC algorithms [KUW86, MVV8&T7|, but at present no fast parallel algorithm
in deterministic NC has been found. Whether there is a deterministic NC al-
gorithm for this decision problem is an outstanding open question in the area of
parallel computation. Many researchers believe that the answer to this question
lies in the affirmative.

The perfect matching problem can be equivalently represented as two linear-
algebraic problems: given graph G, one asks whether the symbolic Tutte matrix
corresponding to G is nonsingular [Tut47], the other asks whether the permanent
of the 0-1 adjacency matrix of G is positive. Note that the problem of comput-
ing the symbolic determinant in variables 1, xs,...,x,, is very hard: even the
problem of deciding whether a symbolic determinant contains a nonzero multi-
ple of the term z;xy-- -z is NP-complete (see e.g. [Pap94], Problem 11.5.4).
Therefore, one can believe that an algorithm for solving (in deterministic NC)
the perfect matching problem would require some advances and tools of (linear)
algebra.

Although it is still open whether the perfect matching problem belongs to

11
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NC, there are deterministic NC algorithms for some of its special cases. An
example of them is for the unique perfect matching problem where one has to
decide whether a given graph has only one perfect matching. The unique perfect
matching problem for bipartite graphs has been studied first of all by Rabin
and Vazirani [RV89], and later by Kozen et al. [KVV85] (see also [Vaz93]). In
Chapter 5 we redemonstrate the problem as a new example of graph theoretic
problems that can be solved in C_L. Another motivation for our interest in
the unique perfect matching problem comes from a totally unrelated subject, i.e.
from the question: which class is characterized by this problem. Furthermore,
we show that the problem is hard for NL and that the unique perfect matching
in a given graph can be constructed in GapL.

Conditions for collapsing logspace counting hierarchies

Allender, Ogihara, and Beals [ABO99] noted that whether C_L is closed under
complement is more or less (with respect to the used notions of reducibility)
equivalent to the open question by Von zur Gathen [vzG93]: Is there a reduction
from the problems of deciding whether given rational vectors are linearly indepen-
dent (INDEPENDENCE) to the problem of deciding whether a rational matrix
is singular (SINGULAR)? C_L < coC_L is an interesting question because
a positive answer to it would close some gaps between lower and upper bounds
on the complexity of some fundamental problems in linear algebra, and on the
other hand, many still unknown relations between small complexity classes in the
logspace setting would be clarified. The question seems to be simple, although
at present no affirmative answer is known.

A part of Chapter 5 discusses the mentioned open question by showing some
necessary and sufficient conditions for the collapse of the C_L hierarchy. More
precisely, we show that C_L = coC_L if and only if for given matrix A one
can compute in GapL two numbers 7 and s such that the rank of A is equal to
the fraction Z. A condition for C_L = coC_L is similarly established over the
degree of the minimal polynomial.

Obviously, C_L = coC_L if the matrix rank can be computed in GapL.
Is the rank of a matrix computable in GapL? In Chapter 5, we show that the
latter happens if and only if C_L = SPL. In analogy to the class SPP [FFK94],
SPL [ARZ99] is the class of all languages having characteristic functions in
GapL. Allender and Ogihara [AO96] noted that there is no reason to believe
that NL is a subset of (uniform) SPL. It follows that there is no reason to expect
that the rank of a matrix is computable in GapL.

12



Similarly to the conditions concerning the rank, for further collapse of PL we
determine some conditions concerning matrix rank. In particular, we show that
PL = SPL if and only if the signature, or the number of all positive eigenvalues
of a symmetric matrix can be computed in GapL.

Organization of this thesis

The present thesis consists of five chapters. The remainder of this thesis is orga-
nized as follows.

In preliminary Chapter 2, we describe briefly some basic notions, definitions,
and concepts of complexity theory and linear algebra that are used throughout
this thesis.

In Chapter 3, we study mainly the rational canonical form of matrices; the
results on the characteristic polynomial, the invariant factor system, and the
minimal polynomial are presented. Furthermore, the chapter treats the problem
of testing similarity and diagonalizability of matrices.

In Chapter 4, we investigate the complexity of problems concerning inertia,
stability, and congruence of matrices.

In Chapter 5, after the unique perfect matching problem we show some nec-
essary and sufficient conditions for collapsing logspace counting hierarchies.

This thesis ends with a summary of results and with some open problems.
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INTRODUCTION
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Chapter 2

Preliminaries

This chapter describes some basic materials, standard definitions and nota-
tions that are used though the thesis. The specified preliminaries will be
given at the corresponding places of their use. We assume familiarity with
fundamental notions and concepts of complexity theory as well as with basic
linear algebra that can be found in standard textbooks in the area of com-
plexity theory (e.g. [Pap94, BDGS88, BDGI1, HO02]), and of linear algebra
(e.g. [Gan77a, Gan77b, HJ85, HJ91]), respectively. This chapter consists of two
sections concerning linear algebra and complexity theory, respectively.

2.1 Linear algebra

2.1.1 Basic notations
We gather some standard notations from linear algebra. Let’s denote by
e [ an arbitrary field,
e N the set of natural numbers,
e 7 the ring of integers, and
e Q the set of rational numbers.

An m x n matrix over the field F is denoted by A = [a; ;] € F™*", i.e.

11 Q12 A1,n

Q21 Q22 a2n
A= ’

m,1 Am,2 Qm,n
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The element at position (¢,7) in the matrix A sometimes is denoted by A, ;.
Partitioning a matrix into blocks we get a so-called block matrix whose elements
are again matrices. Matrix A is called real, rational, integer, or 0-1 matrix if
all of its elements are real numbers, rational numbers, integers, or from {0, 1},
respectively. A matrix whose elements are purely zero is called zero-matrix which
is denoted by 0. In the case when m = n, A is a square matrix of order n, and
we write shortly A € F,,. A square matrix A is called diagonal if a; ; = 0, for all
i # j, and we denote it by A = diaglay 1, a2, ..., an,). A diagonal matrix whose
diagonal elements are purely 1 is called identity matriz which is denoted by I. For
clarity, sometimes we denote the identity matrix of order n by I,,. The transpose
of matrix A is denoted by AT ie., AT = [a;;] € F™*™, for A = [a;;] € F™". A
square matrix that fulfills A = A7 is called symmetric.

By a column vector, or shortly a vector, of length m we mean an m x 1 matrix.
We denote vectors by bold letters. A row vector, or shortly a line, is the transpose
of a vector. For A = [a; ;] € F"™*", there is another representation of A, we write

A=la;as - - a,l,

where ai,as, - ,a, are the columns of A. We denote the vector of length nm
that concatenates all the n columns of A by vec(A), i.e.

a;

as
vec(A) =

a’n

For A = [a;;] € F™", B = [b;;] € F**! and s € F, one can define

e the addition of two matrices by A+ B = [a;; + b; j], for m =k and n = [,

the product of a scale with a matrix by sA = [sa; ],

the product of two matrices by AB = [Y.;", a; by ;] € F™! for n =k

the tensor product of two matrices by A ® B = [a; ;B] € F™>" and

the Kronecker sum of two square matrices by A® B =1, ® A+ B® I,,,
for m =n and k = n.

These basic operations are associative, and except for the matrix multiplication
and the tensor product they are commutative.

16
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2.1.2 The rank, the determinant, and the characteristic

polynomial
The vectors ai, as, ..., a, are called linearly dependent if there exist non-trivial
S1,82,...,8, from F such that sia; + ssas + -+ + s,a, = 0, otherwise these

vectors are called linearly independent.

Basically, it is known that the number of all linearly independent columns of
matrix A is equal to the number of all the linearly independent rows of A. This
number is called the rank of A and denoted by rank(A).

One of the most important functions for square matrices is the determinant.
Recall that the determinant and the permanent of matrix A € I,, is defined by

det(A) = Zsign(a)ﬂaw(i), (2.1)

€S,
perm(A) = Z Haiv(g(i), (2.2)
5€S,, i=1
where S, is the symmetric permutation group of {1,2,...,n}, and sign(d) is

the sign of the permutation 0 (sign(d) is +1 or —1, according to whether the
permutation is even or odd, respectively). There is a 1-1 relation mapping each
permutation d from S, to a permutation matriz Ps which is obtained by permuting
the rows of [ in conformity with J. In particular, det(Ps) = sign(J).

Let A be a matrix of order n. If det(A) = 0, then A is called singular,
otherwise A is called nonsingular (or regular, or invertible). A very fundamental
connection between the rank and the determinant is stated by

rank(A) =n <= det(A) # 0.

If A is nonsingular, then there always exists the inverse of A. The inverse is de-
noted by A~! that fulfills AA~! = I,,. Matrix A~! can be computed by Cramer’s
rule, i.e. by the following formula

1
~ det(A)

-1

adj(A) (2.3)

where adj(A) is the (classical) adjoint of A. The matrix adj(A) is defined as the
transpose of the matrix B = [b; ;] with the elements b; ; = (—1)"*/ det(A;};), for
all 4, j, where Aj; is the matrix obtained by deleting the j-th row and the i-th
column of A.

The determinant of a square sub-matrix of a matrix A is called minor. For
AeF,and o, C {1,2,...,n}, we denote the sub-matrix of A by A, g obtained

17
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by deleting all rows and columns with indexes from « and (3, respectively. For
o = 3, the minor det(A,g) is called principal.

With respect to minors, the determinant of a matrix can be inductively com-
puted by the Laplace expansion along a row or a column, i.e.,

n

det(A) = > (=1)"a;x det(Ai) (2.4)

= Z(—l)j—i_lam det(A”j), (25)

J=1

for each 1 < k,I < n. Based on the Laplace expansion one can show that the
determinant of a triangular matrix is equal to the product of all diagonal elements
in the matrix.

There are other ways to compute the determinant of a matrix. For example,
using elementary operations on rows and columns one can transform a matrix
to a diagonal matrix and the determinant of the resulting matrix is the product
of all diagonal elements of the resulting matrix. This method is usually called
Gaussian elimination provided by the following observations. For A € F, and
ceF,c#0,

1. the sign of det(A) changes by changing two rows,
2. det(A) changes to cdet(A) by adding i-th row multiplied by ¢ to j-th row,
3. the last two statements hold by substituting the word “column” into “row”.

Note that the rank of an arbitrary matrix can be determined by using similar
operations on its rows and columns.

The characteristic polynomial of a matrix A € F,, is defined to be the deter-
minant of the polynomial matrix x1 — A, where z is an indeterminate. We denote
this polynomial by y4(z), i.e.

xa(x) =det(xl — A).

By using inductively the Laplace expansion for computing x 4(z), one can show
that the degree of x4(x) is precisely n and the coefficient corresponding to the
term with highest degree, i.e. to the term z" in y4(z), is equal to 1. Note that
a polynomial whose highest coefficient is equal to 1 is called monic. Let’s ¢; be
the coefficients of y4(z), i.e.

xa(@) =" + e 2"+ ar + o

18
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The constant term ¢ is important as well as the determinant because
co = xa(0) =det(—A) = (—=1)" det(A).

The roots A, Ag, ..., A, of xa(x) over the set of complex numbers are called
the eigenvalues of the matrix A, i.e. one can write

n

xalz) = H(l’—)\i), and

=1
det(A) = ]\
=1

The latter equation implies the fact: A is singular if and only if one of its eigen-
values is zero. Let trace(A) be the sum of all diagonal elements of A. A theorem
in linear algebra states that

trace(A’) = Z )\é», for all 7. (2.6)
j=1

A non-zero polynomial p(z) over F is called an annihilating polynomial for A
if p(A) = 0. Cayley-Hamilton’s Theorem states that x4(z) is an annihilating
polynomial for A, i.e.

xa(A) = A"+ ¢, A" b At ol = 0. (2.7)

2.1.3 The invariant factors and canonical forms

For A € F,,, the minimal polynomial (of A) is defined to be a monic polynomial
with minimal degree that annihilates the matrix A. We denote the minimal
polynomial of A by pa(z). Let m and 1,d,,_1,...,dy be the degree and the
arranged coefficients of p4(x), respectively. Then p4(z) is presented by

pa(z) = 2™ + dp12™ - dyx + d.
In analogy to (2.7) we have
pa(A) =A™ 4 dp A" b dy A4 dod = 0. (2.8)

Let’s denote the degree and the constant term of a polynomial p by deg(p) and
ct(p), respectively. We have deg(pa(x)) = m and ct(pa(z)) = do.
Let’s define

Z.n*jJrl(x) = D. 1(1’)’ DO(:’U) = 17 fOI'j = 1,2,...,77,, (29)
—
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where D;(z) is the greatest common divisor (for short: ged) of all minors of order j
of the characteristic matrix I — A. Then the monic polynomials iy, is, ..., %, are
called the invariant factors of the matrix A. They remain unchanged by every
similarity transformation. The collection of these factors is called the invariant
factor system of A. An observation about this system states that

i;(z) divides i;_1(x), for j =2,3,...,n+1,
xa(r) = Dy(z) = [[j_ i;(x), and (2.10)
pale) = in(a).

Obviously, if A is an integer matrix, then all coefficients of xa(z), pa(x), and
invariant factors are also integers. Moreover, the set of all distinct roots of x ()
is equal to the set of all distinct roots of pa(x). It is obvious to see from (2.10)
that the minimal polynomial is a factor of the characteristic polynomial, and
1 < deg(pa(z)) < n = deg(xa(z)). Thus, if the eigenvalues of matrix A are
pairwise different, then pa(x) = ya(x). There are other matrices fulfilling the
latter property. Let’s consider the following matrix P, constructed from the
polynomial p(z) = "™ 4 pp_12" " + -+ - 4 p1x + po,

0 -~ 0 —pp
10 -0 —p

P=]01 -0 =—p |. (2.11)
(00 1 —p,y

By using the Laplace expansion (2.4) along the last column of xI — P we can
compute yp(z). Observe that det((zI — P)y),) = (—1)""', thus the ged of all
minors of order n — 1 of I — P is exactly 1. Therefore, due to (2.9) and (2.10)
we get

xp(@) = pp(r) = p(r). (2.12)

The matrix P such as in (2.11) is usually called the companion matriz of the
polynomial p(z).

Some canonical forms are defined for square matrices. As follows we describe
three important kinds of them.

The n x n diagonal polynomial matrix
Sa(x) = diag[iy (x), in_1(2), ..., i1 ()] (2.13)
is called the Smith canonical form of xI — A (or shortly of A).
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The rational canonical form of a square matrix A is given by
Ra(z) = diag[Cy, Cy, ..., Cy), (2.14)

where C; is the companion matrix of the invariant factor i;(x) of A, for j =
1,2,...,n, respectively.

The invariant factors can be decomposed into irreducible divisors over the
given field F approximately as follows

in(@) = (@) (@) (ew)

where j1 5 > Jor > -+ > Jpr > 0, for k =1,...,s. The monic irreducible divisors
e1(z),ea(x), ..., es(x) are distinct and they occur in i1 (x),iz(x),. .., i,(z). The
powers (ej(x))71, ..., (es(x))™* that are different from 1 are called elementary

divisors of A over F. For simplicity, we denote the elementary divisors of A by

51<l’)782<.§l})’ s 7€k<x>'
The n; X n; upper triangular matrix of the form

Al 0
Al
Ji =

0

is called the Jordan block corresponding to the invariant divisor of the
form g;(x) = (xr — A\)™ (where X is in F). The Jordan canonical form of the
matrix A is defined to be the matrix

jA = diag[]l, JQ, ey Jk]

Thereby, the diagonal elements of J4 are the eigenvalues of A.

2.1.4 Equivalence relations on matrices

We are interested in three types of equivalence relations on matrices. Arbitrary
matrices A and B are said to be equivalent if there are nonsingular matrices P
and () such that A = PB(Q. Matrices A, B € [, are called similar if there
is a nonsingular matrix P € F, such that A = PBP~!. Symmetric matrices
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A, B € F,, are called congruent if there is a nonsingular matrix P € [F,, such that
A= PBPT.

The first type of these relations, namely matrix equivalence, is simply related
to the rank: A and B are equivalent if and only if rank(A) = rank(B).

For the second relation, a fact in linear algebra states that x1 — A is similar to
Sa(z), and A is similar to R 4 and J4, for every square matrix A. Therefore, there
is a condition for similarity: A and B are similar if and only if Sa(z) = Sg(x), or
equivalently R4 = Rp, or equivalently 74 = Jp. Diagonalizability of matrices is
immediately related to similarity of matrices. A matrix A is called diagonalizable
if A is similar to a diagonal matrix. For example, symmetric matrices are diago-
nalizable because the Jordan canonical form of a symmetric matrix is a diagonal
matrix. Matrices Ay, ..., A, are called simultaneously diagonalizable if there is a
nonsingular matrix P such that PA; P71, ..., PA,P~! are diagonal matrices.

Congruence of symmetric matrices is conditional on the inertia. We explain
the term “the inertia” in more detail.

Recall that the eigenvalues of a square matrix A are the roots of the charac-
teristic polynomial x 4(x) over the set of complex numbers. For a given matrix,
counting the eigenvalues satisfying a particular property is meaningful and im-
portant to tell more about the matrix. The inertia of an n x n matrix A is
defined to be the triple (i1 (A),i_(A),ig(A)), where iy (A), i_(A), and io(A) are
the number of eigenvalues of A, counting multiplicities, with positive, negative,
and zero real part, respectively. Note that the inertia of a matrix consists of non-
negative integers and the sum of these is exactly n. Furthermore, square matrix
A is called positive stable if i(A) = (n,0,0) negative stable if i(A) = (0,n,0), and
positive semi-stable if i_(A) = 0. In the case when A is a Hermitian matrix, i.e.
A and the conjugation of its transpose are equal: A = AT" all eigenvalues of A
are real and the word stable will be replaced by definite. Note that in case of
integer matrices we use the word “symmetric” instead of “Hermitian”.

A theorem in linear algebra states that symmetric matrices A and B are
congruent if and only if i(A) = i(B).

2.2 Complexity theory

Let ¥ be a finite alphabet. A string is an element of ¥* and a subset of ¥*
is called a language or shortly a set. The complement of a set L is denoted
by L. The complement of a class C of sets is defined by coC = {L | L € C}.
A computational integer problem is defined to be a subset of {0,1}* x {0,1}*.

22



2.2. COMPLEXITY THEORY

In this thesis, we consider only integer problems, hence we fix our alphabet to
¥ =40,1}.

For x € ¥* by |z| we denote the length of x. By abs(a) we denote the absolute
value of a real number a. For a set S, its characteristic function is defined by
cs : X* — {0,1} such that for all z € ¥*:

1, ifz e S
_ )b 2.1
s () { 0, ifx ¢S (2.15)

We denote the base 2 logarithm function by log. The keyword logspace is abbre-
viated for logarithmic space bounded.

We assume familiarity with the basic computational models such as standard
Turing machine, either deterministic or nondeterministic, or Boolean circuits. In
particular, we refer the reader to the papers [AO96, ABO99| for more detail on
the logspace counting classes considered in this thesis.

2.2.1 Logspace counting classes
First of all, we assume familiarity with the following classes

e NP, the class of sets accepted by nondeterministic polynomial-time Turing
machines,

e P the class of sets accepted by deterministic polynomial-time Turing ma-

chines,

e NL, the class of sets accepted by nondeterministic logspace Turing ma-
chines,

e L, the class of sets accepted by deterministic logspace Turing machines,

e FL, the class of functions computed by deterministic logspace Turing ma-
chines, and

e SL. the class of sets accepted by deterministic symmetric logspace Turing
machines.

Furthermore, AC?, TC-, and NC-classes, which are for integer problems, attend
to our interest.

e AC' s the class of problems solvable by a uniform family of Boolean circuits
of polynomial-size and constant-depth with unbounded fan-in AND- and
OR-gates, and NOT-gates.
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e TC', for each i > 0, is the class of problems solvable by a uniform family
of Boolean circuits of polynomial-size and depth O(log’ n) with unbounded
fan-in AND- and OR-gates, NOT-gates, and unbounded fan-in MAJ-gates
(majority gates). Thereby, a majority gate outputs 1 if at least a half of its
inputs is purely 1. TC = U;>g TC'.

e NC', for each i > 0, is the class of problems solvable by a uniform family
of Boolean circuits of polynomial-size and depth O(log’n) with bounded
fan-in AND- and OR-gates, NOT-gates. NC = U;>¢ NC'.

These classes and their properties can be found in [Pap94] (among other standard
textbooks in the area of complexity theory). A simple relationship between them

is well known as follows:
AC°CcTC'CNC'CLCSLCNLCTC!CNC?CNCCPCNP.

As stated below, we describe the logspace counting classes.

For a nondeterministic Turing machine M, we denote the number of accepting
and rejecting computation paths on input x by accy,(z) and rej,,(x), respectively.
The difference of these two quantities is denoted by gap,,(x), i.e., for all z,

gapy (7) = acear(z) — rejy ().

For counting problems, the class #P is defined by Valiant [Val79b] to be
the class of functions of the form accy/(x) where M is an NP machine. In the
logspace setting, #L is defined by Alvarez and Jenner [AJ 93], in analogy to #P,
to be the class of all functions accy; where M is an NL machine.

Definition 2.2.1 ([AJ93])
#L = {accy | M is a nondeterministic logspace Turing machine}.

It was noted in [AJ93] that FL is contained in #L.

The class GapL is defined by Allender and Ogihara [AO96] to be the closure
of #L under subtraction. Actually, GapL is the set of all functions gap,, such
that M is a nondeterministic logspace Turing machine.

Definition 2.2.2 ([AO96])
GapL = {gap,, | M is a nondeterministic logspace Turing machine }.

As we shall see, in the logspace setting, GapL is defined analogously to class
GapP in [FFK94]. Note that, in all the above mentioned definitions of #L and
GapL, M is restricted (as in [AJ93, AO96]) to such a nondeterministic logspace
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machine that halts on all computation paths on all inputs. For function classes
C; and C,, define
Ci=C={f-glfel, gela}

Then GapL can be defined (JAO96], Proposition 2) by
GapL = #L — #L = #L — FL = FL — #L.
Based on GapL, the classes C_L and PL are defined.
Definition 2.2.3 ([AO96])
(i) C_ZL={S|3f € GapL, Vx: z €S < f(z)=0}.
(ii)) PL={S|3f €e GapL, Vo : z € S < f(z) >0 }.

Since it is open whether C_L is closed under complement, it makes sense to
consider the Boolean closure of C_L, i.e., the class of sets that can be expressed
as a Boolean combination of sets in C_L. The class C_L A coC_L is defined
in [ABO99] to be the class of intersections of sets in C_L with sets in coC_L.

Definition 2.2.4 ([ABO99))
LeC_LAcoC_L < dL, € C_L, Ly e coC_L: L=1L1N L.

Note that C_L € C_L A coC_L C PL.

2.2.2 Reducibility and logspace counting hierarchies

In complexity theory, reducibility is a useful and central concept for comparing
the difficulty of computational problems within a complexity class. The complex-
ity classes described in the preceding section have been defined in a very formal
way. There is another way to define these classes by using reduction concepts.
For example, we can define NL to be the class of computational problems which
are logspace many-one reducible to the s-t connectivity problem. (The latter is
the problem of deciding whether there is a path in G from s to ¢, for a given
acyclic directed graph G and two distinguished vertices s and t). In general,
most of the complexity classes can be naturally defined to be the class of things
reducible to some important problems.

Roughly, we say that problem P; reduces to problem P, if there is a function
R to transform every input = of P; to an equivalent input R(x) of P, such that
for solving P; on input = we have equivalently to solve P, on input R(x). The
function R is called a reduction from P; to Ps.
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Depending on the upper bound on the complexity of the used transformation
function there are different kinds of reducibility that have been studied in the lit-
erature of complexity theory. For example, there are Turing reduction, logspace
many-one reduction, quantifier-free projection, AC° reduction, NC' reduction,
etc.. Allender and Ogihara [AO96] observed that most of the important complex-
ity classes remain unchanged by defining as the class of all things reducible to a
complete problem regardless of the notion of used reducibility. NL is an example
of them. But the situation seems to be not the same as for classes characterized
by linear-algebraic problems, i.e. they don’t have the same considered property
as of NL. It is necessary to describe in detail some reductions which are used in
forthcoming.

For sets S; and S;, we say that S; is logspace many-one reducible to Sy, de-
noted by S; <L S, if there is a function R computable in deterministic logspace
such that for all inputs z, © € 5 <= R(z) € S,.

A logspace disjunctive truth table reduction from set Sy to set S5, denoted by
Sy <k, Sy, is defined in [ABO99] to be a function f, computable in logspace, such
that for all z, f(x) produces a list of strings (y1,ye,...,¥y,), with the property
that x € 57 if and only if at least one of the y; is in Sy. By substituting “all” into
“at least one” in the definition of logspace dtt reduction we get the definition of
logspace conjunctive truth table reduction from S; to Sy (notation: S; <&, Sy).

For sets S; and Sy, we say that S is AC -reducible to Sy, denoted by Sp SACO
Sy, if there is a family of logspace uniform circuits over unbounded fan-in AND-
and OR-gates, NOT-gates, and (unbounded fan-in) oracle gates for S,, with
polynomial-size and constant-depth (for short: a uniform AC? family of circuits)
that computes S;. Note that this kind of reducibility is not the same as SI‘?CO (see
e.g. [ST98] for AC -reductions over some field F). A family of logspace uniform
circuits means in the sense of [Ruz81, Gre93| that there is a deterministic logspace
Turing machine to compute on input 0" the description of the n-th circuit in the
family:.

An NC'-reduction, denoted by <NC' is a family of logspace uniform cir-
cuits over fan-in two AND- and OR-gates, NOT-gates, and oracle gates, with
polynomial-size and logarithmic depth ([Bal91], see [ABO99]).

For functions f and g, we say that f is logspace many-one reducible to g,
denoted by f <L g, if there is a function R computable in deterministic logspace
such that for all inputs z, f(x) = g(R(z)). In an analogous way one can define
AC-, TC’-, and NC'many-one reductions from function f to function g: if
there is an ACY, TC", and NC' family of logspace uniform circuits a such that
f(z) = g(a(z)) for every input x, respectively.
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Under a particular notion of reducibility, we say that computational problem
P is hard for class C if all problems in C can be reduced to P. Additionally, if the
hard problem P is itself in C, then P is called a complete problem for C. We say
that problem P; is equivalent to problem P, under a reduction if P; is reducible
to P, and P, is reducible to P; (under the particular notion of reducibility).

In this thesis, we will show some hardness and completeness results. Unless
otherwise stated, the used reductions are logspace many-one reductions.

We continue to gather some complexity classes for linear-algebraic problems.

Let C be a complexity class. Based on the AC -reduction one can define
AC(C), the so-called AC"-closure of C, to be the class of all sets AC -reducible
to a set in C. For our purpose, we consider the classes AC"(GapL), AC"(C_L)
and AC’(PL), which are the classes of problems AC’-reducible to a GapL-
complete function, a C_L- and a PL-complete set, respectively.

Firstly, Cook [Coo085] defined and studied the class of problems NC'-reducible
to the determinant function. He denoted this class by DET. As mentioned be-
fore, some important complexity classes are unchanged by using different nota-
tions of reducibility. However, it isn’t known whether DET fulfills this property.
The question whether DET is the same as the class of problems AC°-reducible
to the determinant was first posed by Allender and Ogihara [AO96]. They have
defined the logspace versions of the counting hierarchy by using Ruzzo-Simon-
Tompa reducibility [RST84]. It was shown in [AO96] (see also [ABO99]) that the
C_L-, the PL-, and the #L-hierarchy correspond to AC’-closures, respectively,
in the following sense.

C=L

e The C_L-hierarchy is defined to be C_LC-% .
It was shown in [ABO99] that this hierarchy collapses to AC°(C_L) =
LC-L = NC'(C_L).
PL
e The PL-hierarchy is defined to be PLPL
It was shown in [Ogi98, BF97] that PL-hierarchy coincides with
AC’(PL) = PL = NC'(PL).
#L
e The #L-hierarchy is defined to be #L#L which coincides with
AC’(GapL). Any sort of collapse of this hierarchy isn’t known today.

Moreover, it was noted in [ABO99] that all these hierarchies are contained in TC",
a subclass of NC?, and that the above mentioned hierarchies are contained in the

class DET. Furthermore, Allender [All97] proved that if DET = AC°(GapL),
then the #L-hierarchy collapses to some of its levels.
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In analogy to the closure AC"(GapL), we can introduce TC°(GapL), i.e. the
TCP-closure of GapL, as the class of problems TC-reducible to the determinant.
Since AC? ¢ TC" C NC', it is obvious to see the containments AC’(GapL) C
TC"(GapL) C DET C TC'. But we don’t know whether these classes are the
same.

The following relation between the classes are known
C_L C C_LAcoC_L C AC°(C_L) C PL C AC°(GapL).

Some other complexity classes are defined in terms of GapL. For example,
Mod,,,L is the class of GapL functions f such that f(z) # 0 (mod m), for every
natural number m, respectively. The most important class of them is ModsL, i.e.
@L. Over Z,, computing the determinant of a 0-1 matrix as well as computing an
element in a power of a 0-1 matrix are complete for Mod,L [Dam90]. At present,
no relationship between Mod,,LL and C_L is known. A further important open
problem attracting a great attention is whether NL C ®L.

SPL is another small logspace counting class which is defined in [ARZ99] to
be the class of all languages having characteristic function in GapL, i.e. SPL =
{L | ¢, € GapL}. It is known that SPL is contained in C_L, coC_L, and
Mod,,L for each m > 2. However, we don’t know any complete problem for
SPL. It was noted in [AO96] that there is no reason to conjecture that NL is
contained in GapL, or SPL. The following relations are known.

NC'! C GapL C AC’(GapL) C TC"(GapL) C DET C TC'
NL C C_L, coC_L, C_LAcoC_L, AC°(C_L), PL
SPL C C_L, coC_L, Mod,,L for each m > 2.

2.2.3 Characterizations of logspace counting classes

Since each NL computation can be interpreted by an acyclic directed graph, the
following problem

e PATH
Input: An acyclic directed graph G, and two nodes s and ¢
Output: path(G, s,t) (the number of paths s ~» ¢ in G )

is known to be complete for #L. Moreover, due to NL computations note that
w.l.o.g. we can assume that the maximal out-degree of the input graph G is equal
to 2.
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We are interested in the logspace counting classes GapL, C_L, C_LAcoC_L,
AC’(C_L), and PL. These classes are characterized by linear-algebraic prob-
lems. It is necessary to describe in detail some basic properties, including com-
plete problems, of these classes.

W.l.o.g. we can restrict all matrix problems in this thesis to problems for inte-
ger matrices, i.e., unless otherwise stated, all input matrices are restricted to in-
teger matrices. The reason for this restriction was already mentioned in [ABO99]
that integer matrix problems are equivalent to rational matrix problems (un-
der logspace reductions) based on the following observation: for given ratio-
nal matrix A (each element of A is viewed as a division of two given integers),
and for integer a and b, in order to verify det(A) = ¢ one can decide whether
bdet(cA) — adet(cl) = 0 where integer ¢ is the product of all the denominators

appearing in elements of A.

The class GapL

Let’s define the problem of computing the determinant of a matrix by

e DETERMINANT
Input: An n X n integer matrix A.

Output: det(A).

The class GapL can be defined in terms of the function DETERMINANT in the
sense of the following theorem.

Theorem 2.2.5 ([Tod91, Dam91, Vin91l, Val92|, see also [AO96, MVI7])
DETERMINANT is complete for GapL under logspace many-one reductions.

As in [AO96] we note that a function f is logspace many-one reducible to
DETERMINANT if there is a function g computable in logspace such that, for
all inputs x, f(z) (which is viewed as a number written in binary) is equal to

det(g(z)).

GapL possesses some standard closure properties by the following theorem.

Theorem 2.2.6 ([AO96], Theorem 9) Let f be any function in GapL. The
following functions are in GapL

(1) f(g(+)), for any function g in FL,
(2) X2 f (@),
(3) TII", f(x,i), and

29



CHAPTER 2. PRELIMINARIES

(4) (ggg), for any function g in FL such that g(z) = O(1).

Closure properties according to (2) and (3) of Theorem 2.2.6 state that GapL is
closed under addition and multiplication. An improvement of the closure property
according to (1) is given by Corollary 3.3 of [AAMO3] that GapL is closed under
composition.

Corollary 2.2.7 ([AAMO03], Corollary 3.3) The determinant of a matriz having
GapL-computable elements can be computed in GapL.

The problem of computing an element of a power matrix is defined by

¢ POWERELEMENT
Input: An n x n matrix A, and natural numbers 1 < m,,j < n.

Output: (A™); ;.

POWERELEMENT is complete for GapL. This result was shown by several peo-
ple, including Berkowitz [Ber84], and Toda [Tod91].

Since a graph can be represented by its adjacency matrix, there are some
problems about graphs that are complete for GapL [Val79a, Tod91, Dam9l,
ST98]. For example:

o WPATH
Input: An acyclic directed graph G with edges weighted by integers, and
two distinguished nodes s and t.
Output: The sum of weights of all paths from s to ¢ in G.
(Note that the weight of a path is defined to be the product of weights of
all edges belonging to the path.)

e PATHDIFFERENCE
Input: An acyclic directed graph G, and distinguished nodes s, t1, 5.
Output: path(G, s,t;) — path(G, s, ts).
(Recall that path(G, s,t) is the number of paths from s to ¢ in G. Similarly
to PATH, we can w.l.o.g. assume that the maximal out-degree of G is
exactly 2.)

The class C_L

As an immediate consequence of Theorem 2.2.5, the problem of deciding whether
an integer matrix is singular, i.e. whether the determinant of given matrix is
zero, is C_L-complete. We denote this decision problem by SINGULARITY.
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Theorem 2.2.8 ([AO96, ST98]) SINGULARITY is complete for C_L under
logspace many-one reductions.

For a fixed function f, we define v-f to be the set of all pairs (x,y) such that
y = f(z). The set v-f is called the verification of the function f. For example,
verifying the determinant is defined by

V-DETERMINANT = { (A,a) | det(A) =a }.

The fact that Vv-DETERMINANT and V-f, for any GapL-complete function f,
are C_L-complete follows directly from part (2) of Theorem 2.2.6. Hence,
V-POWERELEMENT and V-WPATH are known to be complete for C_L.

Some closure properties of C_L can be immediately transformed from GapL
closure properties appearing in part (1), (2), and (3) of Theorem 2.2.6.

Proposition 2.2.9 ([AO96]) C_L is closed under logspace many-one, logspace
congunctive truth table, and logspace disjunctive truth table reductions.

Let FINL be the class of all functions computable in nondeterministic logspace.
In analogy to <L <L ~and <%  the nondeterministic reductions <ENE <ENL
and <ENL were defined respectively in [AO96]. Tt was shown by Allender and Ogi-
hara [AO96] (Theorem 16, Proposition 17) that Proposition 2.2.9 can be strength-
ened by adding the word “nondeterministic” to each place before “logspace”.
Proposition 2.2.9 states the fact that C_L is closed under intersection and union.

Although many closure properties of C_L are known, it is still unknown
whether C_L is closed under complement. Note that there is a positive answer
to the latter question if and only if there exists a logspace many-one reduction

from SINGULARITY t0 SINGULARITY.

The class PL

The properties of PL have been completely summarized in [AO96].

Let’s denote by POSDETERMINANT the set of all square integer matrices with
positive determinants. Then POSDETERMINANT is a complete set for PL. More
general, the problem of deciding whether f(z) > a, for given a and GapL-
function f, is complete for PL.

PL is known to be closed under complement [Ogi98]. Furthermore, this class
is closed under (deterministic and nondeterministic) logspace many-one, ctt, and
dtt reductions.
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The classes AC’(C_L) and C_L A coC_L

It is known that the classes AC"(C_L) and C_L A coC_L are characterized by
problems concerning matrix rank.

Recall that the rank of a matrix A is the number of all linearly independent
rows of A. The complexity of matrix rank has been studied by Allender, Beals,
and Ogihara [ABO99]. They showed that the problem of computing any bit of
the rank is complete for the C_L hierarchy. The problem of computing matrix
rank can be interpreted by the following decision problem

RANK = {(A, k,b) | the k-th bit of rank(A) is b}.

Since the C_L-hierarchy collapses to ACO(C:L), RANK is a complete problem
for AC°(C_L). Furthermore, it was shown in [ABO99] that the set of all matrices
having odd ranks, denoted by ODDRANK, the set of all matrices having even
ranks, denoted by EVENRANK, and the decision problem whether a system of
linear equations is feasible, i.e. the set

FSLE = {(A4,b) | A€ Z™" b e 7™ Jz € Q"' : Az = b},

are also complete for ACY(C_L) under logspace many-one reductions. For sim-
plicity, one can say that matrix rank characterizes AC°(C_L).

Theorem 2.2.10 ([ABO99]) RANK, ODDRANK, EVENRANK, and FSLE are
complete for AC°(C_L).

We denote the problem of deciding whether the rank of a matrix is equal to
some number k£ by V-RANK, i.e.

V-RANK = { (A, k) | rank(A) =k }.

The latter set is known to be complete for the second level of the Boolean hier-
archy over C_L.

Theorem 2.2.11 ([ABO99]) v-RANK s complete for C_L A coC_L.

Obviously, the rank of an m xn matrix A can be determined by finding a number
i:0 < i< min{m,n} such that rank(A) = i. Therefore, sets from AC"(C_L)
are logspace disjunctive truth table reducible to C_L A coC_L. Conversely, each
set which is logspace disjunctive truth table reduced to C_L A coC_L is logspace
many-one reducible to FSLE, a complete set for AC"(C_L) [ABO99] (Lemma
2.11). However, note that it is still unknown whether C_L A coC_L is closed
under logspace disjunctive truth table reductions.

Furthermore, the problem of deciding whether the rank of a given matrix is
smaller than some given number k, denoted by RANK<, is complete for C_L.
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Chapter 3

On the Matrix Structure

This chapter deals with the complexity of linear-algebraic problems concerning
the structure of matrices. Results presented in this chapter are mainly sum-
marized from the results presented in the papers [HT00, HT01, HT03a, HT02b,
HTO03b]. The text of this chapter is divided into three sections. So, in turn, we
study the problem of verifying the characteristic polynomial in Section 3.1, some
problems concerning the minimal polynomial and the invariant factor system in
Section 3.2, and testing similarity and diagonalizability of matrices in Section 3.3.

3.1 The characteristic polynomial of a matrix

In this section we investigate the complexity of computing and verifying the
characteristic polynomial of a matrix. Some basic facts about computing the
characteristic polynomial are presented in 3.1.1. The main result that verifying
the characteristic polynomial is complete for C_L is shown in 3.1.2.

3.1.1 Computing the characteristic polynomial

Recall that the characteristic polynomial of an n x n matrix A, denoted by x (),
is defined to be det(zl — A) where x is a formal variable. Inductively, by using
the Laplace expansion for computing det(xl — A) (see equations (2.4) and (2.5)),
we see the fact that the degree of xa(z) is equal to n. Let 1,¢,_1,...,¢1,¢o be
the arranged coefficients of x4(z), i.e.

xa(x) = det(xl — A)

= "4 cp 2"+ ez + .
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CHAPTER 3. ON THE MATRIX STRUCTURE

The problem of computing the coefficients of the characteristic polynomial
is a fundamental task in linear algebra. These coefficients can be derived to
get some precise information about the mathematical object represented by the
matrix. In the complexity-theoretic viewpoint, and especially with respect to
parallel computations, this problem is also fundamental and interesting.

We define the problem of computing the characteristic polynomial by

e CHARPOLYNOMIAL
Input: An n x n matrix A, and a natural number ¢ < n.
Output: The ith coefficient of the characteristic polynomial x4 (x).

Our starting point is the following relation between the last coefficient ¢
of xa(x) and the determinant:

co = (—=1)"det(A). (3.1)

Therefore, det(A) can be read off from ¢y and vice versa. Actually, this is the
first idea to design a parallel NC? algorithm for the determinant in the context
of polynomials.

Furthermore, we concentrate on the question: “how to compute the other
coefficients of y4(z)?”. Using a fact in linear algebra that (apart from the sign)
¢; is equal to the sum of all the principal minors of order n — ¢ in A, for ¢ =
1,2,...,n— 1, one can not answer the question in the affirmative because there
are (T:) minors of order n — i in A.

A well known method for computing the coefficients of x4(x) is given by
Leverrier (see [Gan77al, page 87):

1. Compute the traces s; = trace(A?), for i = 0,1,...,n.

2. Compute the coefficients ¢; successively by Newton’s formula

1
Cnoj = _3<5j + Cno18k—1 + A Cug—151), for j=1,2,...,n.  (3.2)

Using Newton’s formula (3.2) and a parallel algorithm for solving systems
of linear recurrences, Csanky [Csa76] presented the first NC? parallel algorithm
for the coefficients of the characteristic polynomial, and consequently for the
determinant of a matrix. Unfortunately, Csanky’s algorithm can not be used
over finite fields, and obviously, it isn’t division-free.

Berkowitz [Ber84] found the first NC? algorithm for the characteristic polyno-
mial and for the determinant. He showed that, for a given matrix A, a sequence
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of matrices can be constructed in logspace such that all the coefficients of x 4(x)
correspond to the elements in the iterated product of the constructed matrices.
Berkowitz’s Theorem is given by [ABO99] without a proof as follows.

Theorem 3.1.1 [Ber84| Given an n xn matriz A, one can construct in logspace
a sequence of p X p matrices B; such that the coefficients ¢, 1, ..., c1,co of xa(x)
appear respectively at positions (1,n),...,(1,2),(1,1) in the matriz [ [, B;.

Since iterated matrix multiplication is equivalent to matrix powering [vzG93],
the coefficients of the characteristic polynomial of a matrix are computable in
GapL.

Proposition 3.1.2 The coefficients of the characteristic polynomial of a matrix
are computable in GapL. CHARPOLYNOMIAL is complete for GapL.

3.1.2 Verifying the characteristic polynomial

As mentioned in Chapter 1 (see page 6), there are two versions of verifying the
characteristic polynomial: one has to verify only one coefficient of this polyno-
mial, the other has to verify all coefficients of this polynomial. By (3.1), apart
from the sign det(A) is the constant term of the characteristic polynomial x 4(z).
Hence, the first verification version, i.e. the verification of one coefficient of the
characteristic polynomial, is C_L-complete. The second verification version of
the characteristic polynomial can be formally defined by

e V-CHARPOLYNOMIAL =
{ (A cocr,eenn) [ xale) =a" +epaa™ '+ Fax+ o )

By Proposition 3.1.2, each coefficient of y4(z) is computable in GapL. So,
verifying each coefficient is a C_L predicate. Since C_L is closed under logspace
ctt reductions, v-CHARPOLYNOMIAL is in C_L. Santha and Tan [ST98] asked
whether Vv-CHARPOLYNOMIAL is complete for C_L. For a positive answer to
this question we have to show that v-CHARPOLYNOMIAL is hard for C_L.
Recall that a GapL-complete function is POWERELEMENT. The function
POWERELEMENT computes the element (A™);;,
for natural numbers m, 4, j; note that w.l.o.g. we can restrict POWERELEMENT
to the problem of computing (A™);,. Thus the problem v-POWERELEMENT
is complete for C_L. We take V-POWERELEMENT as the reference prob-
lem to show that v-CHARPOLYNOMIAL is hard for C_L. The reduction
from V-POWERELEMENT to V-CHARPOLYNOMIAL is based on techniques of

for an n X n matrix A and
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Toda [Tod91] and Valiant [Val79a], which show that iterated matrix multipli-
cation is reducible to the determinant. In parts of our presentation we follow the
reduction presented in Proposition 2.2 of [ABO99].

Theorem 3.1.3 v-POWERELEMENT <A’ v-CHARPOLYNOMIAL.

Proof. Let A be an n x n matrix and 1 < m < n. We will construct a matrix B
such that the value (A™);,, occurs as one of the coefficients of xp(x).

Interpret A as the representation of a directed bipartite graph Gy on 2n nodes
and e edges. That is, the nodes of GGy are arranged in two columns of n nodes
each. In both columns, nodes are numbered from 1 to n. If element a;; of A is
not zero, then there is an edge labeled a;; from node k in the first column to
node [ in the second column. The number of non-zero elements in A is exactly e.

Now, take m copies of graph Gg, put them in a sequence and identify each
second column of nodes with the first column of the next graph in the sequence.
Call the resulting graph G’. Graph G’ has m + 1 columns of nodes, and each
column has exactly n nodes. Recall that the weight of a path p in a graph
is the product of all labels on the edges belonging to the path p. The crucial
observation now is that the element at position (1,n) in A™ is the sum of the
weights of all paths in G’ from node 1 in the first column to node n in the last
column. Call these two nodes s and ¢, respectively. Add an edge labeled 1 from ¢
to s, and call the resulting graph GG. An example for the above construction of G
for A = [(%) i g} is shown in figure 3.1.

Let B be the adjacency matrix of G. So B is an N x N matrix, where
N = (m + 1)n is the number of nodes of G. Let the characteristic polynomial
of B have the form

where I is the N x N identity matrix. We give two ways how to compute the
coefficients ¢; in y ()

1. one way is to use elementary linear transformations and bring the polyno-
mial matrix zIy — B into triangular block form. Then the characteristic
polynomial of B can be computed from the resulting polynomial matrix.

2. a very elegant proof is provided by combinatorial matrix theory from which
it is known that the coefficients of the characteristic polynomial can be
expressed as cycle covers in the graph G (see e.g. [BR91, CDS80, Zei85,
MV97, MV99]).
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Figure 3.1: The graph G constructed from matrix A for m = 3. The three copies
of Gy are indicated by the dashed lines. The edge labels are the corresponding
elements of A. The thicker edges indicate the two paths from s to t. The weights
of these two paths sum up to 3, which is the value of (A%), 3. For the characteristic

polynomial of the adjacency matrix B we get xg(r) = z'? — 325.

We start by giving the combinatorial argument which is much shorter than the

linear-algebraic argument.

The combinatorial way

It is known that, for each i, the coefficient ¢; in yp(x) is equal to the sum of
the disjoint weighted cycles that cover N — ¢ nodes in GG, with appropriate sign
(see [BR91] or [CDS80] for more detail). In the graph G, all edges go from a layer
to the next layer. The only exception is the edge (t,s). So any cycle in G must
use precisely this edge (t,s), and then trace out a path from s to t. Therefore,
each cycle in GG has exactly the length m + 1, and the weighted sum of all these
cycles is precisely (—1)™*1(A™);,, (for the sign, recall that we consider zIy — B).

The sign of the cycle (as a permutation) is (—1)™. Hence,

CN—(m+1) = (—1)m+1(—1)m(Am)1,n
- _<Am)1,n7

and all other coefficients must be zero, i.e

xs(z) =2V — azN D for g = (A™) 10
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The linear-algebraic way

Consider the adjacency matrix B of the graph G. Except for the edge (,s),
graph G is acyclic. Thus we can put the nodes of G in such an order that
adjacency matrix B is upper triangular for the first N — 1 rows with zeros along
the main diagonal. The last row of B has 1 in the first position (representing
edge (t, s)), and all the other elements are zero.

Now we can write B as a (m + 1) x (m + 1) block matrix by

A

A

L

Matrix A occurs m-times on the upper sub-diagonal of B. L is the n x n matrix
having 1 at position (n, 1) and 0 elsewhere. All the empty places in B are filled
with zero (matrices).

Therefore, xIy — B has the form

xl, —A

eIy — B = e
zl, —A
—L zl,

To compute xp(z) we transform xIy — B into an upper triangular block matrix.
Note that it is already upper triangular except for matrix L in the lower left
corner. We want to eliminate this block.

The first step is to multiply the last block row by xI,, and add to it the first
block row multiplied by L (from right). This transforms the last block row into

0, —AL, 0, ..., 0, 2°I,.

In the second step, we multiply the last block row again by x1,, and add to
it the second block row multiplied by AL (from right). This transforms the last
block row into

0,0, —A°L, 0, ..., 0, 2°I,.

Continuing that way for m iterations, we bring the last block row into
0, ..., 0 z™[, — A™L.
Let D(x) be the resulting upper triangular matrix, i.e.,

D(z) = diag[z1,,, ..., xI,, ™I, — A™L].
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The determinant of D(z) is the product of the determinants of diagonal blocks,
ie.

det(D(z)) = 2V ™" det(z™ 1, — A™L). (3.3)

We compute the determinant of ™11, — A™L. Recall the form of matrix L:
the only non-zero element is a 1 in the lower left corner. Therefore, A™L has the
last column of A™ as its first column and 0 elsewhere. Hence, 2™, — A™L is
an n X n lower triangular matrix with the diagonal

g™t — (A™) 2™ 2
that has the determinant
det(z™H11, — A™L) = g D0mHED (gmtl _ g (3.4)

where a = (A™)1 .
Based on (3.3) and (3.4) we get

det(D(z)) = 2V =DM+ (pm+l _ ), (3.5)

Note, however, that this is not the same as yp(x) because we changed yp(x)
with each multiplication of the last block row by x1,,, and because we did this m
times. Therefore,

xg(z) = det(D(x))/ det(z™1,)

N—n x(n—l)(m-{—l) ($m+1 o a) —mn

=X X

=N — qaN-(mtD),

In summary, both methods explicitly yield the coefficients of yp(z) such that

(A, =a <= xp(z) =2 —azx™¥ ", (3.6)

Since the graph G has been constructed in AC?, the used reduction is AC°
many-one. U

By Proposition 3.1.2 and Theorem 3.1.3 we obtain the following corollary.

Corollary 3.1.4
V-CHARPOLYNOMIAL is complete for C_L.
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3.2 The invariant factors of a matrix

In this section we investigate the complexity of some problems concerning the in-
variant factors of a matrix. Recall that the invariant factors i,(x), is(z), ..., i, (),
of an n x n matrix A are defined by formula 2.9 (see page 19) as follows

: Dj(x .
in—jp1(T) = D»Jii(;:)’ Dy(z) =1, forj=1,2,...,n,
i

where D;(x) be the greatest common divisor of all minors of order j of the
characteristic matrix I — A. Note that the polynomials i;(z),2(x),. .., i,(x)
are invariant under every similarity transformation, i.e. two square matrices of
order n are similar if and only if they have the same invariant factor system, or
equivalently, if and only if they have the same Smith normal form. Recall that
the diagonal polynomial matrix Sa(x) = diagi,(x), - - - ,i2(x),d1(x)] is called the
Smith normal form of A.

In computer algebra, the problem of computing the Smith canonical form
of a polynomial matrix is widely of interest. Note that computing the in-
variant factors of a matrix A and computing the Smith normal form of the
polynomial matrix I — A are in fact the same. Polynomial-time algorithms
to compute the Smith normal form of an integer matrix have been developed
in [Fru77, KB79]. An improvement of these algorithms can be found in [Sto96].
Kaltofen et al. [KS87, KKS90] presented the first RNC?-algorithm for the Smith
normal form of a rational polynomial matrix. An NC? algorithm for comput-
ing the Smith normal form of a polynomial matrix is given by Villard [Vil97].
Therefore, each invariant factor of an integer matrix can be computed also in
NC?. Since the minimal polynomial of matrix A is the first invariant factor, i.e.

pa(x) = i1(z), the minimal polynomial can be computed in NC? as well.

Our approach towards the invariant factors concentrates on the minimal poly-
nomial. We show in this section some new bounds on the complexity of the
minimal polynomial and the invariant factor system. Furthermore, we show that
the considered logspace counting classes can be characterized by some interesting
problems concerning the degree and the constant term of the minimal polynomial.

This section is organized as follows: the minimal polynomial and the invariant
factor system are studied in 3.2.1 and 3.2.2, respectively; problems concerning the
degree and the constant term of the minimal polynomial are presented in 3.2.3.
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3.2.1 Computing and verifying the minimal polynomial

For an n x n matrix A, let

1

pa(r) =a™ + dpy2™ " + -+ dix 4 do.

We define respectively two problems of computing and verifying the minimal
polynomial of an integer matrix as follows:

e MINPOLYNOMIAL
Input: An n x n matrix A, and a natural number 1 <7 < n.
Output: The i-th coefficient of pa(z).

o V-MINPOLYNOMIAL = { (A, p(z)) | pa(z) = p(x) }.

These problems are known to be in NC? [Vil97]. In this section, we
show that MINPOLYNOMIAL is in TC%(GapL) and hard for GapL, and
V-MINPOLYNOMIAL is in C_L A coC_L and hard for C_L.

An algorithm for computing the minimal polynomial

The algorithm for the minimal polynomial below is based on [HJ85], Section 3.3,
Problem 5.

Let A be an n x n integer matrix. Let p(z) = 2% + pp_12871 + - -+ + py where
all p; are integers. Observe that p(z) is the minimal polynomial of A if and only
if

(i) p(A) = AF + pp 1 A1 4. 4 poI =0, and
(i) q(A) # 0, for every monic polynomial g(x) of degree deg(q(x)) < k

(see the definition of the minimal polynomial on page 19).

Define vectors a; = vec(A") for ¢ = 0,1,2,...,n. Recall that vec(A") is the
n2-dimensional vector obtained by putting the columns of A’ below each other
(see page 16). The equation p(A) = 0 above can be equivalently rewritten as

ap + pr-1ak—1 + -+ poao = 0. (3.7)
By (3.7), the vectors ay, ..., aq are linearly dependent. Furthermore, for monic
polynomial ¢ of degree [ less than k, it follows from the inequation g(A) # 0 that
the vectors ay, . .., aq are linearly independent.
For each i = 1,2,...,n, we define C; to be the following n? x i matrix
Ci=la;-y -+ ag].
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Let Y be a variable vector of length i over rational numbers. Consider the
following systems of linear equations

Cix™ = —q;, fori=1,2,...,n. (3.8)

Obviously, there exist always indices 1 < i < n such that the corresponding
systems (3.8) are feasible, and the minimum of them is exactly the degree of
the minimal polynomial of A. Let m be the degree of ps(x). Then all the
columns of C,, are linearly independent, i.e. rank(C,,) = m, and the columns
of Cy1 are linearly dependent, i.e. rank(C,,11) = m. Thus, the coefficient
vector d = [d,,_1, ..., do)T of pa(x) is the unique solution of the system of linear
equations

C,z™ =—a,,

Based on the above observations, one could obtain the following algorithm for
the minimal polynomial.

MINPOL(A)
1 a; + vec(AY), fori=0,...,n
Ci —laji_1---apl,fori=1,....n
2 determine m such that rank(C,,) = rank(C,,41) =m
3 solve the system C,,z™ = —a,,
4 return the solution as the coefficients d,, 1, ...,dy of pa(x).

Upper bounds

We prove the following theorem.
Theorem 3.2.1 MINPOLYNOMIAL is in TC"(GapL).

Proof. Let’s analyse Algorithm MINPOL(A).

In step 1, each element of a;, or equivalently, each element of C}; is an element
of a power matrix, thus it is computable in GapL.

Step 2 can be done in C_L A coC_L because rank(C,,) = m and
rank(C,,.1) = m are coC_L- and C_L-predicate, respectively.

In step 3, note that we have to solve a uniquely feasible system of linear
equations with the solution d = [d,,_1,...,do]?. Define the m x m matrix B,,
and vector b, of length m by

B, =CLC,, and b, =—CTa,,. (3.9)
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Since Cy, has the full column rank, we get rank(B,,) = m, i.e. the matrix B, is
nonsingular. We show that d = B,.'b,, is the solution of the system of the linear
equations in step 3.

Obviously, C*C,,.d = —-CTa,,, ie. CL(C,d + a,) = 0. Assume for a
moment that C,,d + a@,, # 0. Then the equality C? (C,,d + a,,) = 0 can not
be true because rank(CL) = m. Therefore, d = B;.'b,, is the unique solution of
linear equation system in step 3.

Expressing
B*l — ad.](Bm)
" det(Bp)
where adj(B,,) is the adjoint matrix of B,, (see formula (2.3) on page 17), we get
adj(Bp) b
d= d
det(B,,) (3.10)

For any i, all elements of B;, b;, and adj(B;) are computable in GapL. Thus
det(B;) and all elements of adj(B;)b; are computable in GapL because GapL
is closed under composition. Since m is determined in C_L A coC_L, det(B,,)
and all elements of adj(B,,)b,, are computable in AC°(GapL). According to
formula (3.10), each element of d is expressed as a division of two integers which
are computable in AC"(GapL). A breakthrough by Hesse [Hes01] shows that
integer division with remainder can be done in TC", therefore all elements of d
are computable in TC?(GapL). Furthermore, note that d is anyway an integer
vector.

In summary, MINPOLYNOMIAL is in TC"(GapL). O

Remark 3.2.2 There is another method to compute the minimal polynomial.
Let’s sketch briefly its idea. The minimal polynomial will be computed by the

following formula @
Xal®
pa(z) = Do (2)’ (3.11)
where D,,_1(x) is the greatest common divisor of all n? minors of order n—1 in the
polynomial matrix zI — A. To do so, we use Algorithm 15.4 and 15.1 in [TK93] for
computing D,,_1(x), and thereafter, Algorithm 15.2 in [IK93] for computing the
polynomial division presented in (3.11). By this means, the idea is very simple,
but it is more tricky to show that MINPOLYNOMIAL is in TC°(GapL) than in

the proof of Theorem 3.2.1.

Remark 3.2.3 It is important to make a remark about matrix inversion. For
an invertible integer matrix A, since the inverse A~! is uniquely equal to
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adj(A)/ det(A), the elements of A™! seem not to be division-free. Even in the
case when A~! is an integer matrix, it is not clear how to develop a division-free
algorithm for the inverse A~!. Therefore, it seems to be incorrect in saying that
matrix inversion is in GapL. With respect to MINPOLYNOMIAL, the situation is
the same. As we have seen, although the coefficients of p4(x) are integers (A is
an integer matrix), we don’t know how to get a division-free algorithm for com-
puting the minimal polynomial. Therefore, the statement in [HT01, HT03a] that
AC°(GapL) is an upper bound for MINPOLYNOMIAL is only flawless if there is
a division-free procedure for solving the system of linear equations in step 3 of
Algorithm MINPoOL. Let’s hope it goes well!

We consider the verification version of the minimal polynomial. Recall that
V-MINPOLYNOMIAL is the problem of deciding whether a given monic integer
polynomial is the minimal polynomial of a given integer matrix A. We show the
following corollary.

Corollary 3.2.4 v-MINPOLYNOMIAL is in C_L A coC_L.

Proof. To verify the minimal polynomial we can simplify Algorithm MINPOL
presented on page 42 as follows:

v-MINPOL(A, d,,—1,...,do)

1 a; «— vec(AY), fori=0,...,m

2 if a,,_1,...,aq,aq are linearly independent, and
a, +d, 1,1+ -+ dyag=0

3 then accept else reject.

Since in step 1 all the elements of vectors a; are computable in GapL, the
equality in step 2 can be verified in C_L. For checking linear independence in
step 2, let B,, be the symmetric m x m matrix defined by (3.9), i.e.,

B, = [am—l R 2 5] GO]T[am—l IR 51 ao]-

Then the vectors a,,_1, ..., a1, aqy are linearly independent if B,, is nonsingular.
Since each element of B,, is computable in GapL, so is the determinant of B,, (see

Corollary 2.2.7). Therefore, det(B,,) # 0 is a coC_L-predicate.
In summary, v-MINPOLYNOMIAL can be presented as a C_L-predicate in con-
junction with a coC_L-predicate, i.e. V-MINPOLYNOMIAL is in C_L A coC_L.
O
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Lower bounds

Lower bounds on the complexity of MINPOLYNOMIAL and V-MINPOLYNOMIAL
are given by showing the following theorem.

Theorem 3.2.5 POWERELEMENT <’ MINPOLYNOMIAL.

Proof. We reconsider the N x N matrix B in the proof of Theorem 3.1.3 (see
page 36). Recall that the characteristic polynomial of B is as follows:

xs(z) =2V — azN D for q = (A™) 1.0

For the reduction POWERELEMENT gf}fo MINPOLYNOMIAL, we show that the
value (A™);, is one of the coefficients of the minimal polynomial of B. In par-
ticular, we show upg(r) = x*™2 — qz™ "1,

Let Dy_1(z) be the greatest common divisor of all minors of order N — 1 in
(xIn—B). Observe that the sub-matrix obtained by deleting the first row and the
first column of (zly — B) is a triangular matrix having purely x on its diagonal.
Therefore, its determinant is equal to z¥~1. Tt follows that Dy_;(x) = 2! for
some [ > 0. Putting this in (3.11) we get

jip(7) = XB(2) Nt N(men)-

l
= , for some [ > 0.
DN,1<.§L’>

By defining polynomials pg(z) = 2™+ —aak for 0 <k < N —(m+1), we
shall show pp(x) = ppy1(x). In order to prove this, we show that the following
two statements hold:

(i) pme1(B) =0, and

(i) pr(B) # 0 for all k <m + 1.

Our first step is to compute explicitly the powers B?, for i = 2,...,m + 1.
Elementary calculations yield

_ 2 _ A3

.A3

B* = A, BP=
AL
AL

ALA
LA | e
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For each i < m, B can be generalized by

1+ 1
— l l -
A - 1
Al — m+1—1
B = |A-1[ — m+2—1i.
A2LA
LA—1 — m+1

Furthermore, the matrix B™*! is a diagonal block matrix having A™*1=1[ A*~1
as its i-th diagonal block, for each 1 < i < m + 1. Hence, matrix B*"*2 (=
(Bm+1)2) is also a diagonal block matrix where its i-th diagonal block is equal to
the square of the i-th diagonal block of B™*!:

(Am+17iLAi71>2 — Am+17iLAmLAi71_

Let’s observe that the factor LA™ L occurring in each diagonal block of B?*™+2 is
of an easy form, in particular, LA™L = aL. It follows that on the matrix B*™*2

we can pull the factor a in front of the matrix and what remains is again B™*!,
i.e., B?"t2 = qB™*! Therefore,

Pms1(B) = B — qB™ = 0.

It remains to prove (ii) (see page 45): pp(B) = B™*F — qB* £ 0, for
all k& < m. Note that it is sufficient to prove this for £k = m, because, for
some k, pi(B) = 0 implies py1(B) = 0.

Assume for a moment that p,,(B) = B*"™! — aB™ = 0. Observe that the
blocks at position (1,m+1) in B***! and B™ are A™LA™ and A™, respectively.
Hence, A" LA™ = aA™. The latter equality implies rank(A™LA™) = rank(aA™).
Due to Lemma 3.2.7 below we can assume that A is nonsingular. Therefore,

rank(A™LA™) = rank(L) =1,

rank(aA™) = { n, for a7 0

0, otherwise.

Obviously, since rank(A™LA™) # rank(aA™), pm(B) # 0.

2m+2 m+1

In summary, we get ug(zr) =z —ax™*! where a = (A™)1,. As mentioned

in the proof of Theorem 3.1.3, the used reduction is AC" many-one. U
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Corollary 3.2.6 MINPOLYNOMIAL is hard for GapL.
V-MINPOLYNOMIAL is hard for C_L.

To complete the proof of Theorem 3.2.5 we show the following lemma.

Lemma 3.2.7 Given annxn matriz A and m > 1, there is a nonsingular upper
triangular p x p matriz C' constructed from A and m such that (C™)1, = (A")1.5.

Proof. Define C' to be the (m + 1) x (m + 1) block matrix
I A
o |
I A
I

where [ is the n x n identity matrix. Then C' is nonsingular and C™ has the
following form

I mA mA? ... mA™! Am ]
I mA -+ mA™ 2 mA™!
om - - : : |
. mA mA?
I mA
L r |
and, for p = (m + 1)n, we have (C™);, = (A™)1. O

3.2.2 The invariant factor system of a matrix

Let’s define the problem of computing the invariant factor system of an integer
matrix as follows.

e INVSYSTEM
Input: An n x n matrix A, and two natural numbers 1 < k, 7 < n.
Output: The k-th coefficient of the j-th invariant factor i;(z) of A.

Note that INVSYSTEM is in NC? [Vil97].
By Corollary 3.2.6, MINPOLYNOMIAL is hard for GapL, therefore
INvSYSTEM is hard for GapL as well.

Corollary 3.2.8 INVSYSTEM is hard for GapL.
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Furthermore, we define the problem of verifying the invariant factor system
of an integer matrix by

e V-INVSYSTEM =
{ (Air(2), ... in(2)) | Sa(z) = diaglin(z),in-1,...,i1(z)] }.

Theorem 3.2.9 v-INVSYSTEM is in AC’(C_L).

Proof.  Let iy(x),...,i,(z) be n given monic polynomials, and let A be an
n X n matrix. For each non-constant polynomial of the given polynomials, we
construct a companion matrix corresponding to it. Let’s denote the diagonal
block matrix of all constructed companion matrices by D. Then the polynomials

i1(z),...,i,(x) are the invariant factors of A if and only if A is similar to D.
Since testing similarity can be done in ACY(C_L) [ST98], v-INVSYSTEM is in
AC’(C_L) as well. O

By Corollary 3.2.8, INVSYSTEM is hard for GapL. Unfortunately, from this
result one can not directly justify that C_L is a lower bound for v-INVSYSTEM
because the latter problem requires to verify all invariant factors of a given matrix.
However, we show the following theorem.

Theorem 3.2.10 V-POWERELEMENT <AC” v_INVSYSTEM.

Proof. We continue with the setting in the proof of Theorem 3.2.5 (see page 45),
in particular, with the matrix B of order N. Our goal is to determine explicitly
the invariant factor system of B. From the proof of Theorem 3.2.5, we have

2m+2 axm—i—l

already received iy (z) = ug(x) =z , where a = (A™)1,,. It remains
to compute the invariant factors is(z), ..., iy(z) of B.

Recall from the proof of Theorem 3.2.5 that Dy_;(x) = 2V =™+ Accord-
ing to the expression Dy_i(z) = is(x)---in(x), each of the invariant factors
is(x),... ,iy(z) is of the form 27, for some j > 0.

Since the non-constant invariant factors of the form 27 are already elementary
divisors (see page 21), it is sufficient to determine all elementary divisors of B.

Define g; to be the number of occurrences of the elementary divisor 27, and
let r; denote the rank of B/. The numbers g; can be determined from the rank

values r; by the following formula (see [Gan77al, Chapter VI, page 155).
gj:Tj—1+Tj+1_2rja fOl"j: 1,...,t, (312)
where rg = N and t is the smallest index satisfying the condition

Tl > Ty = Tea1-
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Fortunately, we can compute all the values r; as follows.

By Lemma 3.2.7, we may assume that the input matrix A to
v-POWERELEMENT is nonsingular, i.e. rank(A) = n. Therefore, we have
rank(A7) = n, for every j > 1.

Consider the general form of B7 (see page 46), for 1 < j < m. The rank
of B’ is equal to the sum of all ranks of the matrices on the lower and upper
sub-diagonals. The following two observations are useful for computing rank(B7).

(i) Each of the m + 1 — j blocks on the upper sub-diagonal of B’ has the
form AJ.

(i) Each of the j blocks on the lower sub-diagonal of B has the form
AIRL AR for 1 < k < j, where rank(A7"*LAF1) = rank(L) = 1.

Therefore, we get
rank(BY) = (m+1—j)n+j, for 1 <j<m.
Similarly, we compute rank(B™"!) and rank(B™"?), and we get
rank(B™) = rank(B™"?) = m + 1.

According to formula (3.12), it is obvious to see that ¢ = m + 1 because r,, >
Tmi1 = Tmio2. Lherefore,

(m+1—jn+j forj=1,...,m,
o=

m—+1, forj=m+1,m+ 2.
Plugging the values 7; into formula (3.12), we obtain
N —n(m+1), fori=1,

9i =140, fori=2,...,m, (3.13)

n—1, fori =m+ 1.
From (3.13) we can deduce the invariant factors, there are

m+1 (

(a) n — 2 factors x note that one of the n — 1 elementary divisors ™!

occurs in iy (z)),
(b) N —n(m + 1) factors x, and

(¢) nm + 1 factors 1.
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In summary, (A™);,, = a if and only if the invariant factors of A are as follows:

(g2m+2 _ ax™t, fork=1
, ™t fork=2,...,n—1,
in(z) =
x, fork=n,....N—nm—1,
1, fork=N —nm,...,N.

3.2.3 More about the minimal polynomial

The main contribution of this section is in obtaining some new characterizations
for the logspace counting classes ACO(C:L), C_L A coC_L, and C_L, by in-
vestigating the complexity of problems concerning the degree and the constant

term of the minimal polynomial of a matrix.

For square matrices A and B, and for a natural number m, we define the

problem of

computing the k-th bit of deg(ua(z)) by
DecMINPOL = { (A, k,b) | the k-th bit of deg(pa(z)) is b },

verifying the value deg(ua(x)) by
v-DEGMINPOL = { (A, m) | deg(pa(x)) =m },

deciding whether the value deg(ua(z)) is at most m by
DEGMINPOL< = { (A,m) | deg(pa(x)) <m },

deciding whether two minimal polynomials have the same degree by
EQDEGMINPOL = { (4, B) | deg(pa(z)) = deg(up(z)) },

deciding whether two minimal polynomials are equal by
EQMINPOLYNOMIAL = { (A, B) | pa(x) = pup(z) },

computing the value ct(pa(z)) to be the function CTMINPOL(A), and

deciding whether two minimal polynomials have the same constant term by
EQCTMINPoOL = { (A4, B) | ct(pua(z)) = ct(up(x)) }.

An aim of this section is to show that the degree of the minimal polynomial is

computationally equivalent to the rank of a matrix. Recall that the complexity

of matrix rank has been studied in [ABO99], where it was shown that
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e RANK is complete for AC°(C_L),
e V-RANK is complete for C_L A coC_L, and
o RANK< ={ (A,r) | rank(A) <r } is complete for C_L.

We will show that these results can be extended respectively for the sets
DeEcMINPoL, v-DEGMINPoOL, and DEGMINPOL<.

Furthermore, we show that EQMINPorLyNOMIAL, EQDEGMINPOL, and
EQCTMINPOL are complete for AC’(C_L). It follows from the latter result
that CTMINPOL can not be computable in GapL unless the C_L-hierarchy
collapses to C_L.

Upper bounds

For DEGMINPOL< and v-DEGMINPOL, we show the following proposition.

Proposition 3.2.11
(1) DEGMINPOL< is in C_L.
(2) v-DEGMINPOL is in C_L A coC_L.

Proof. Let A be given n X n matrix, and let m be a given natural number. As
stated in Section 3.2.1 (see page 42), we define

Cj = [CLO a; --- a,j,l], and
B; = C'jTCj, forj=1,...,n.

Let deg(pa(z)) = k < n. Observe that the matrices Cy,...,C, and By, ..., B,
have the same rank which is equal to k, i.e.

rank(B,,) = deg(ua(x)) = k.

Let

X8, (1) = 2" + o 12"+ + G

Since B, is a symmetric matrix, we get rank(B,) = n — [, for the smallest index
[ so that ¢; # 0. It follows that

deg(pa(z)) =n—1.
Therefore, we get the following equivalences

deg(pa(z)) <m <= cq=c1=-=Cppm=0,
deg(pa(z))=m <= co=c1=-=cCpm=0and ¢, 1 #0.
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Since all elements of B,, are computable in GapL, the coefficients ¢; of xp, (z) are
also computable in GapL because GapL is closed under composition. Moreover,
testing whether ¢; = 0 simultaneously for multiple values of 7 can be done in C_L
because C_L is closed under conjunction (see Proposition 2.2.9). It follows that
the sets DEGMINPOL< and vV-DEGMINPOL are in C_L and C_L A coC_L,
respectively. O

For EqQDEcMINPOL, DEGMINPoOL, EQMINPOLYNOMIAL, and
EQCTMINPOL we show the following proposition.

Proposition 3.2.12 EQDEcMINPoL, DEGMINPOL, EQMINPOLYNOMIAL,
and EQCTMINPOL are in AC(C_L).

Proof. Let A and B be matrices of order n and p, respectively.

The polynomials 4 () and pp(z) have the same degree if and only if there is a
number m € {1,..., min{n, p}} such that deg(ua(x)) = m and deg(up(x)) = m.
By Proposition 3.2.11, verifying the degree of the minimal polynomial can be
done in C_L A coC_L, therefore EQDEGMINPOL is in AC°(C_L).

Let (A, k,b) be an input to DEGMINPOL and let n be the order of A. A
straightforward approach to obtain an upper bound for DEGMINPOL might be
to use the fact that

(A, k,b) € DEGMINPOL <= (B, k,b) € RANK, (3.14)

where B,, is defined as in the proof of Proposition 3.2.11 (see page 51). However,
every element of B, seems to require a GapL-computation because B, = CIC,
and the elements of (), are computable in GapL. Therefore the right-hand side
of (3.14) verifies the k-th bit of the rank of matrix B,, computable in GapL.
Using the fact that RANK is complete for AC°(C_L), we can argue that (3.14)
can be done in AC’(C_L). For simplicity, we explain another way as follows.

We construct an AC-circuit with oracle gates from C_L for DEGMINPOL:
for each number m € {1,...,n} whose k-th bit is b we construct an AC’(C_L)
circuit to decide whether deg pi4(z) = m. The final output is the disjunction of
these circuits. It follows that DEGMINPOL is in AC"(C_L).

Due to formula (3.10), the coefficient vector d4 of pa(x) can be expressed as
follows.
adj(Bpn) bm

det(B,,) ’

where m = deg(pa(x)), and B, and b,, are defined in terms of powers of A (see

page 43). Recall from the proof of Theorem 3.2.1 that, for each i, det(B;) and
all elements of adj(B;)b; are GapL-computable.

dy =
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Similarly, we can express the coefficient vector dg as in (3.15). It follows that
in AC°(C_L) we can compare d4 with dz. Therefore, EQMINPOLYNOMIAL and
EQCTMINPOL are in AC’(C_L). O

Lower bounds

It was shown in [ABO99] that RANK< is hard for C_L and that v-RANK is hard
for C_L A coC_L. We show the following theorem.

Theorem 3.2.13
(1) DEGMINPOL< is hard for C_L.
(2) v-DEGMINPOL is hard for C_L A coC_L.

Proof. (1) For the first part of the theorem we show that v-POWERELEMENT
is reducible to DEGMINPOL<.

Let an n x n matrix A and an integer m > 1 be given as input to
V-POWERELEMENT. Recall that, for v-POWERELEMENT, one has to decide
whether (A™);, = 0.

As already seen in the proof of Theorem 3.2.5, one can construct matrix B
such that

pp(z) = 2?2 —ax™ where a = (A™)1,.

Define C' to be the companion matrix of the polynomial 2*™*2, i.e. C is the
following (2m + 2) x (2m + 2) matrix

[0 0 --- 0 0]
1 0 0 0
C = 1 -+ 00
00 1 0|

It is known that yco(z) = pc(r) = 222 (see (2.12) on page 20).
Define the diagonal block matrix

B 0

D:
0 C

It is known that the minimal polynomial of D is the least common multiple (for
short: lem) of pp(x) and pc(z) (see [HI85], Section 3.3, exercise 8). Using this
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fact we get
ND(SU> — lcm{merl (merl _ a)’ x2m+2}
B xmt2 for a =0,
B p?m P2 (gt —q), for a # 0.
Therefore,

a=(A")1,=0 < deg(up(x)) =2m+2.

Note that the used reduction is AC” many-one.

(2) To show the second part of the theorem, we construct a reduction from
an arbitrary language L in C_L A coC_L to the set v-DEGMINPOL.

Since V-POWERELEMENT is complete for C_L, in logspace we can compute
matrices A; and A, of order n; and ns, respectively, and integers m, [ > 1, such

that for every w:
weL <= (A7), =0 and (45),, # 0. (3.15)

Due to Lemma 3.2.15 below we may assume w.l.o.g. that m > [.
Let a; = (A7")1,, and ay = (A4})1,,. As explained in the first part of the
proof, in logspace we can compute matrices B; and B, such that

1B, ([L‘) — x2m+2 _ alxm—i-l’
[LBy (SL’) — $21+2 o aleJrl.
Define the matrix
B, 0 O
D= 0 BQ 0 ;
0O 0 C

2m—+2

where C' is the companion matrix of = . Then the minimal polynomial of D

can be computed as follows

pp(x) = lem{pg (x), pp,(2), pe(z)}
— lcm{xm+1(xm+1 o a1)7 l’l+1($l+1 o a2>’ I2m+2}

_ x2m+21cm{xm+1 —ay, l,lJrl o a2}.
For m > [, we get

2m+1+3, fora; =0, ay # 0,

3m + 3, for a; # 0, as =0,
d = 3.16
eg(rp(w)) 2m + 2, for a; =0, ay = 0, ( )

3m+3+r, fora #0, az # 0, where r > 0.
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Based on (3.15) and (3.16), we have for every w:

weL <= a =0anday#0
< deg(up(z)) =2m+1+3.

Therefore, v-DEGMINPOL is hard for C_L A coC_L. U
By Proposition 3.2.11 and Theorem 3.2.13 we obtain the following corollary.

Corollary 3.2.14
(1) DEGMINPOL< is complete for C_L.
(2) DEGMINPOL_ is complete for C_L A coC_L.

The following lemma completes the proof of Theorem 3.2.13.

Lemma 3.2.15 Given an n X n matrix A and m > 1, there is a matriz A of
order p = n(mk + 1) such that (A™);,, = (A*™)y,, for any k > 1.

Proof. For a number k, define the following (mk + 1) x (mk + 1) block matrix
[0 A

Each block of A is a matrix of order n. In the first block super-diagonal of A the
pattern of an A followed by (k — 1) times [ is repeated m times. All the other
blocks are 0.

An elementary calculation shows that A™F has A™ as its upper right block at
position (1, mk + 1), and all other blocks are 0, i.e.

gk _ |0 00
0 0 0
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Therefore, we have (A™),,, = (AFm), . O
Continuously, we prove the following theorem.

Theorem 3.2.16 EQMINPoLyNOMIAL, EQDEGMINPOL, DEGMINPOL, and
EQCTMINPOL are hard for AC°(C_L).

Proof . FSLE (see page 32) was shown in [ABO99] to be complete for
AC’(C_L). We show that FSLE is reducible to the considered sets.

Let (A, b) be an input to FSLE. Define the symmetric (m + n) x (m + n)
matrix

0 A

B =
AT 0

and the vector ¢ = (b”,0)7 of length m +n. We define further the following two
(m+n+1) x (m+n+ 1) matrices

B B
C = 0 and D = ¢ )
0 0
Let Ay, ..., Az be distinct eigenvalues of C'. It will be useful later on to observe

that

(I) C' is a symmetric matrix. Therefore, C' is diagonalizable, its elementary
divisors have the form (z—\;), and pc(x) = (x—XA1) - - (x— Ay (see [HI85],
Section 3.3, Theorem 3.3.6 and Corollary 3.3.8).

(IT) C and D are singular matrices. They have the same characteristic poly-
nomial: xco(z) = xp(x) = = xg(x), and consequently they have the same
eigenvalues. It follows that deg(uc(z)) < deg(up(z)), and the elementary
divisors of D have the form (z — \;)%, for some ¢; > 1.

In order to show that FSLE is reducible to EQMINPOLYNOMIAL,
EQDeEcMINPoL, DEGMINPOL, and EQCTMINPOL, we prove the following
equivalences

(A,b) € FSLE (B,c) € FSLE (3.17)
C' is similar to D (3.18)
D is diagonalizable (3.19)
e () = () (3.20)
deg(pc(x)) = deg(pp(x)) (3.21)
deg(pn(z)) s odd (3.22)

(3.23)

ct(pc, (v)) = ct(pp, (7)),

rrrreey
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3.2. THE INVARIANT FACTORS OF A MATRIX

where C, = C' + ol and D, = D + al for an appropriate positive integer « to
be chosen later.

Note that equivalences (3.18) and (3.19) will be used later for showing Corol-
lary 3.3.3 and Theorem 3.3.4 in Section 3.3.

Equivalence (3.17). The equivalence holds because the system ATx = 0 is
always feasible.

Equivalence (3.18). Consider the case where the system Bx = c is feasible.
Let @y be a solution of the system. Define the (m +n + 1) x (m 4+ n+ 1) matrix

T by
I o
0 -1 |’

Obviously, T' is nonsingular and the equalities C'T" = T'D = D hold. Thus, C is
similar to D.

T =

Conversely, if the above system is not feasible, then C' and D have different
ranks. Hence they can not be similar.

Equivalence (3.19). Based on observation (I) (see page 56), matrix C' is sim-
ilar to a diagonal matrix C’. If C' is similar to D, then D is similar to C’ because
the similarity relation is transitive. Hence D is diagonalizable.

Conversely, if D is diagonalizable, then all elementary divisors of D are linear.
Based on observation (II) (see page 56), C' and D have the same eigenvalues. It
follows that C' and D must have the same system of elementary divisors. Thus
they are similar.

Equivalence (3.20). If C is similar to D, then clearly pc(z) = up(z).

Conversely, if pc(x) = pp(x), then pp(z) contains only linear irreducible
factors, because pc(z) has this property due to observation (I). Therefore, D is
diagonalizable (see [HJ85], Section 3.3, Corollary 3.3.10).

Equivalence (3.21). Based on observation (II) (see page 56), we have
deg(uc(x)) < deg(pp(x)). These degrees are equal if and only if every root
of pup(x) has multiplicity 1. The latter holds if and only if D is diagonalizable.
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Equivalence (3.22). Let the distinct non-zero eigenvalues of the matrix AT A
be 01,09, ...,0; (note that these numbers are positive). Then the distinct eigen-
values of C' are

_\/57l7_\/5l717-"7_\/a707\/5717"-7\/51717\/571 (324>

(see [HJ91], Chapter 3). The matrix C is singular because its last row is O.
Therefore, the number of all distinct eigenvalues of C'is exactly 2] 4+ 1. Suppose
deg(pc(z)) = k. Then k = 2]+ 1, k is always odd.
To prove the claim, we show that deg(up(z)) € {k, k + 1}. By observa-
tion (II), deg(up(z)) > k. Hence, it is sufficient to show deg(up(x)) < k + 1.
For each i > 0, we have

. [ pi
ci— o1 (3.25)
0 O
' [ g pi1
D = © (3.26)
0 0

Let pc(z) = 2% + dj_12* 1+ -+ dyz + dy. Using the fact puc(C) = 0 we have

k-1
CF = —(dprC*" ' -+ diC  doD) = = Y diC" (3.27)
i=0
From (3.27) and (3.25) we get
k-1
Bf=->"d;B" (3.28)
=0
Putting (3.28) into (3.26) we get
Dk—i—l _ Bk+1 Bkc
0 0

k—1 ) k—1 ]
— E diBH—l — Z diBZC
1=0 1=0
0 0

e
= —) dD"" (3.29)
=0
Let’s consider the following polynomial
p(x) = zpc(z) = 2 + dyg2® + -+ di2® + dow.
By (3.29) we have p(D) = 0. Therefore,
deg(pup(z)) < deg(p) = k + 1.
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3.2. THE INVARIANT FACTORS OF A MATRIX

Equivalence (3.23). Observe that, for any «, equivalences (3.17) to (3.22)
still hold by substituting C, and D, into C' and D, respectively. Therefore, the
following implication is true

pe. () = pp, (¥) = ct(pc, (v)) = ct(pp, (7).

We have still to select an appropriate value for a such that

ct(pe, (1)) = ct(up, (2)) = pealz) = pp, (). (3.30)
Fix any a. Let’s denote the distinct eigenvalues of C' by Ay, ..., Ax. Then
the distinct eigenvalues of C, = C' + al are \{ +«, ..., A + a. Observe that

C, is symmetric and ¢, (z) = xp, (). So, we can write

k
pe, () = H(x — (A + @)), and

i=1
k
up,(z) = H(SL’ — (N + )", where t; > 1.
i=1
Suppose A; +« > 1 for all . Then the implication in (3.30) holds. Therefore,
it is sufficient to choose such an « that A\; + a > 1 for all 7.
Let ||C|| be the mazimum column sum matriz norm of the (m+n-+1) x (m+

n+ 1) matrix C' = [¢; /], 1.e.

m+n+1
Il = 1< Smintl Zl el
Let p(C) be the spectral radius of C| i.e.
p(C) = max |Al.

Then it is known that p(C) < ||C|| (see [HJ85], Section 5.6). Define

Obviously, p(C) < ||C|| < @« and A\; + @ > 1, for i = 1,2,... k. Note that « can

be computed in logspace. O

By Proposition 3.2.11 and 3.2.12, and by Theorem 3.2.16 we get the following
corollary.
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Corollary 3.2.17 EQMINPoLYNOMIAL, EQDEGMINPOL, DEGMINPOL, and
EQCTMINPOL are complete for AC°(C_L).

As we have seen in Section 3.2.3, for given matrix A, there is a matrix B,
with GapL-computable elements such that deg(pa(z)) = rank(B,). On the
other hand, we don’t know whether there exists a converse reduction, i.e. given
matrix A, compute matrix B such that rank(A) = deg(ug(z)). Note that Corol-
lary 3.2.17 provides such a reduction only for the bitwise versions of the corre-
sponding functions, namely DEGMINPOL and RANK.

Recall that the constant term of the characteristic polynomial xa(z) is
(—1)™det(A). This term is computable in GapL. Now assume for a moment that
the constant term of the minimal polynomial is in GapL as well. It follows that
EQCTMINPoOL is in C_L, because this is asking whether the difference of two
constant terms (a GapL-function) is zero. By Theorem 3.2.16, EQCTMINPOL
is complete for AC’(C_L). Therefore, AC°(C_L) = C_L.

Corollary 3.2.18 If CTMINPOL is computable in GapL, then C_L is closed

under complement.

We can considerably weaken the assumption in Corollary 3.2.18: it is suffi-
cient to have a certain addition property of the constant term of the minimal
polynomial. Namely, given matrices A and B, suppose there is a matrix C' such
that each element of C'is computable in GapL, and

ct(pc(z)) = ct(pa(x)) — ct(up(x)).
Then we have
(A, B) € EQCTMINPOL <= ct(uc(z)) =0 <= det(C) = 0.
Therefore, AC°(C_L) would be collapsed to C_L.
Corollary 3.2.19 If the constant term of the minimal polynomial has the above
addition property, then C_L is closed under complement.
3.3 Similarity and diagonalizability of matrices

As a consequence of the results presented in the preceding sections, in this sec-
tion we show that testing similarity and testing diagonalizability of matrices are
complete for AC’(C_L).
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3.3.1 Testing similarity

Let A and B be matrices of order n. Recall that A is similar to B if and only
if there exists a non-singular matrix P such that A = PBP~!. We define the
problem of testing similarity of two matrices by

SIMILARITY = { (A, B) | A is similar to B }.

Testing similarity of matrices is known as a classical and fundamental task in
linear algebra. There are some necessary and sufficient conditions for similarity
of matrices. One of these criteria states that A and B are similar if and only if
they have the same invariant factor system, i.e. if and only if S4(z) = Sg(x) (see
Chapter 2, page 22). Thus, testing similarity of matrices A and B can be done
by computing and comparing the Smith normal form S4(z) and Sg(z). Since the
invariant factors of matrices can be computed in NC? [Vil97], testing similarity
is also in NC?. But the NC? upper bound on the complexity of SIMILARITY has
been improved.

A very simple criterion for similarity of matrices was shown by Byrnes and

Gauger [BGT7].

Theorem 3.3.1 [BG77] Matrices A and B of the same order are similar if and
only if

(i) xa(x) = xp(z), and
(11) rank(A® [ — I ® A) =rank(A® [ — I ® B) =rank(B® I — I ® B).

By modifying Theorem 3.3.1 of Byrnes and Gauger, Dixon [Dix79] proved
another similarity-criterion based on matrix rank.

Theorem 3.3.2 [Dix79] Matrices A and B of the same order are similar if and
only ifrank*(A® [ — [ ®@ B) =rank(A®@ [ — [ ® A)rank(B® [ — I @ B).

Using Theorem 3.3.2 of Dixon, Garzon and Zalctein [GZ89] presented the first
parallel algorithm for testing similarity of matrices. Since computing matrix rank
is in NC? [Mul87], SIMILARITY is in NC? as well.

Santha and Tan [ST98] reconsidered similarity of matrices. They ob-
served that SIMILARITY is dtt reducible to verifying matrix rank. Therefore,
SIMILARITY is in AC°(C_L) ([ST98], Theorem 4.4). It was open in the work of
Santha and Tan [ST98] whether the problem of testing similarity of matrices is
hard for AC°(C_L). Indeed, equivalence (3.18) in the proof of Theorem 3.2.16
(see page 56) shows a many-one reduction from FSLE to SIMILARITY. We get
the following corollary.
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Corollary 3.3.3 SIMILARITY is complete for AC°(C_L).

Let’s say a few words about testing simultaneous similarity of matrices. By
SIMSIMILARITY we denote the problem of deciding whether there is a nonsingular
matrix P such that A; = PB;P~!, for all pairs of matrices (A;, B;), where i =
1,2,...,k and k > 2. Although SIMILARITY is complete for AC"(C_L), it is
still open whether SIMSIMILARITY can be solved in P. SIMSIMILARITY belongs
to the so-called “wild” matriz problems in the work of Grigoriev [Gri83]. He
showed that SIMSIMILARITY is in NP and asked whether SIMSIMILARITY is in
P. A recent result by Ogihara and Zalcstein [0Z02] shows that SIMSIMILARITY
is solvable in nonuniform TC' (i.e. in logspace uniform randomized TC"). This
gives rise to conjecture that SIMSIMILARITY is efficiently solvable in P. Moreover,
note that SIMSIMILARITY is hard for AC? because asking if A is similar to B is
equivalent to asking if (A, I) is simultaneously similar to (B, I).

3.3.2 Testing diagonalizability

Recall that a square matrix A is called diagonalizable if it is similar to a diagonal
matrix. Hence, diagonalizability is strongly related to similarity of matrices.
Let’s define DIAGONALIZABLE to be the set of all diagonalizable matrices. The
following theorem shows that similarity and diagonalizability of matrices are in

fact equivalent.
Theorem 3.3.4 DIAGONALIZABLE is complete for AC°(C_L).

Proof. FEquivalence 3.19 in the proof of Theorem 3.2.16 shows that FSLE is
reducible to DIAGONALIZABLE. Thus, DIAGONALIZABLE is hard for AC°(C_L).
We have still to show that DIAGONALIZABLE is in AC"(C_L).

It was shown in Section 3.2.3 how to construct a matrix B, for a given
n X n matrix A, such that deg(ua(x)) = rank(B,,). Moreover, it is known from
linear algebra that A is diagonalizable if and only if p4(z) contains only linear
irreducible factors. Therefore, A is diagonalizable if and only if deg(ua(x)) is
equal to the number of distinct eigenvalues of A.

Let [ be the number of all distinct eigenvalues of A. Let Hy = [h; ;] be the
Hankel matrix associated with A. The elements of H4 are defined as follows

hlv] — traCG(AH_j_Q), for ’L’j = 1’ - ’n’

where trace(X) is the sum of all elements on the diagonal of the matrix X.
The rank of H,4 is related to [ with the fact [ = rank(H4) (see e.g. [Gan77al,
Chapter XV, Theorem 6).
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In summary,

A is diagonalizable <= deg(pua(z)) =1
<= rank(B,) =rank(Hj,).

Since all elements of B,, and H4 are computable in GapL, testing if rank(B,,) =
rank(H4) can be done in AC°(C_L). So, DIAGONALIZABLE is in AC°(C_L).
O

Testing diagonalizability of a matrix can be extended to testing simultaneous
diagonalizability of several matrices. Matrices Ay, Ao, ..., Ay are called simulta-
neously diagonalizable if there exists a nonsingular matrix P such that all the
matrices PA, P71, ... PA,P~! are diagonal. Let’s define

SIMDIAGONALIZABLE =
{ (A}, Ay, ..., Ay) | Fregular P: PA P~ ...  PA,P~! are diagonal }.

In sharp contrast to SIMSIMILARITY where we don’t know whether
SIMSIMILARITY is in P, SIMDIAGONALIZABLE is efficiently solvable in
AC°(C_L) as follows.

Consider the case when all matrices A; are diagonalizable: these matrices are
simultaneously diagonalizable if and only if they are pairwise commutable, i.e.,
AA; = AjA; for all 1 < 4,5 < k (see [HJ85], Section 1.3). For every pair 1, j,
the equality A;A; = A;A; can be verified in NC'. Therefore, the main part of
SIMSIMILARITY is to decide whether A; € DIAGONALIZABLE for all 1 < ¢ < k.
This can be done in AC’(C_L) by Theorem 3.3.4. We get the following corollary.

Corollary 3.3.5 SIMDIAGONALIZABLE is complete for AC°(C_L).
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Chapter 4

The Inertia of a Matrix

In this chapter, we investigate the complexity of some problems concerning the
inertia of a matrix. The main contribution of this chapter is in improving the
results presented in [HT02a]. The text of this chapter is divided into two sections.
In Section 4.1, we show how to compute and verify the inertia of a matrix.
Section 4.2 deals with the complexity of testing stability of matrices.

4.1 Computing and verifying matrix inertia

Recall from Chapter 2, Section 2.1, that the inertia of an n x n matrix A, denoted
by i(A), is defined to be the triple (i (A),i_(A),i0(A)), where i, (A), i_(A), and
ip(A) are the number of eigenvalues of A, counting multiplicities, with positive,
negative, and zero real part, respectively.

Let A be a matrix of order n, and let k, p, n, and 3 be nonnegative integers.
We define the problem of

e computing one bit of the inertia (regarding to some fixed coding) by

INERTIA = { (A, k,b) | the k-th bit of i(A) is b }, and
e verifying the inertia by
V-INERTIA = { (A, p,n.2) | i(A) = (p.n.2) ).
Additionally, we define the following two sets

e POSPOWERELEMENT = { (A,m) | (A™);,, >0 }, and

e NEGDETERMINANT = { A | det(A) <0 }.

Since the functions POWERELEMENT and DETERMINANT are complete for
GapL, POSPOWERELEMENT and NEGDETERMINANT are known to be com-
plete for PL.
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4.1.1 Routh-Hurwitz’s Theorem

At the end of the 19th century, Routh and Hurwitz have found a necessary and
sufficient condition under which all the roots of a given polynomial lie in the
left half plane. Well, actually Routh-Hurwitz’s Theorem provides a method for
determining the number of roots in the right half-plane of a given real polynomial
(see e.g. [Gan77b], Chapter XV). Since the roots of the characteristic polynomial
xa(x) are the eigenvalues of matrix A, the inertia of A can be computed by
applying the Routh-Hurwitz method to y4(x). We describe this in detail.

Let A be an n x n matrix. Let the characteristic polynomial of A be the
polynomial

XA(z) = 2" + 12" cpo™ T 4 - o

Define ¢, = 1. The Routh-Hurwitz matriz Q(A) = |w; ;| is defined to be the

following n X n matrix

Cn-1 Cn—3 Cpn—s5 Cp_7 0

Cn Ch—2 Cn—4a Cpn_p 0

Q(A) 0 Ch-1 Cn—3 Cpn_5 0
o 0 Cn  Cpn—o Cp—a 0

O 0 0 0 - ¢

That is, the diagonal elements of (A) are w;; = ¢,—;. In the i-th column, the
elements above the diagonal are w;_1; = ¢,—i—1, Wi—2; = Cp_i—2, ... until we
reach either the first row w;; or ¢p. In the latter case, the remaining entries are
filled with zeros. The elements below w;; are wit1; = ¢p_it1, Wit = Cn—it2, - - -,
Cn—1, Cn, 0, 0, ... down to the last row w, ;.

The successively leading principal minors D; of {2(A) are called the Routh-
Hurwitz determinants, they are

Dl = Cp—1, DQ = det( [ Cn-1 Cn=3 ] ), ceey Dn = det(Q(A))
Cn Cn—2

For computing the inertia of a matrix, Routh-Hurwitz’s Theorem can be formu-

lated as follows.

Theorem 4.1.1 (Routh-Hurwitz) If D, # 0, then the number of roots of the
polynomial x a(x) in the right half-plane is determined by the formula

. D D,
ZJr(A) = V<17D17 D_?7' LK) D 71)7
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where V(xq,xs,...) computes the number of sign alternations in the sequence of
numbers x1, %o, .... For the calculation of the values of V', for every group of p
successive zero Routh-Hurwitz determinants (p is always odd!)

Ds#0, Dyyy=---= Ds+p =0, Ds+p+1 # 0
we have to set V(Dls)jl, ng s gziiﬁ) =h+ 17(;1)% , where p =2h — 1 and
€= sign(%ﬁ%ﬁﬁ). Fors=1, D[s)_l is to be replaced by D1; and for s =0, by

Co.

A proof of this theorem can be found in [Gan77b], Chapter XV, Section 6.
Let’s discuss the case when D, = 0. It is known that D, = 0 if and only

if xa(z) has at least a pair of opposite roots zo and —zy (see [Gan77b], Chap-
ter XV). Define

b (1‘) = 2" 40" 2+ cn_4;p"*4 +--+, and

pa(x) = @™tz 4

(4.1)

Obviously, we have ya(z) = p1(x) + p2(z) and py(zo) = p2(x9) = 0. Therefore,
xo is also a root of the polynomial g(z) = ged(pi(z), p2(x)). Observe that by

decomposing

xa(@) = g(z) Xa(z) (4.2)
the polynomial x%(z) has no pair of opposite roots, i.e. the Routh-Hurwitz
matrix of x%(x) is nonsingular. Thus we can use the Routh-Hurwitz theorem
to compute the inertia of the companion matrix of x%(z). Let B and C be the
companion matrix of g(x) and x%(x), respectively. Then we get

i(A) = i(B) +i(C).

Since all non-zero eigenvalues of B are pairs of opposite values, the Routh-
Hurwitz method can not be used for computing i(B). No method is known to get
the exact number of roots of an integer polynomial on an axis (to the best of our
knowledge). However, the number of distinct roots of an integer polynomial p(x)
on an axis can be determined as follows. Let P be the companion matrix of a
polynomial p(z), and let deg(p(z)) = n. Recall that the Hankel matrix H = [h; ;]
associated with p(z) is the n xn matrix with the elements h; ; = trace(P™7~2), for
i,j =1,...,n, where trace(P""7=2) is the sum of all diagonal elements of P*/=2,
So H is always symmetric. We denote the signature of H by signature(H), i.e.

signature(H) =i (H) —i_(H).

The following is a useful theorem relating the signature to the rank of the Hankel
matrix H associated with the polynomial p(z).
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Theorem 4.1.2 ([Gan77b], Theorem 6, page 202)
(1) The number of all distinct real roots of p(z) is equal to signature(H).
(2) The number of all distinct roots of p(x) is equal to rank(H ).

We will show below that using this theorem we can compute the inertia i(A) in

at least some cases where D, = 0.

4.1.2 Upper bounds

We analyze the computation of i(A) by using Theorem 4.1.1.

Using Routh-Hurwitz’s method, we must compute all the coefficients ¢; of
Xa(x), and then all Routh-Hurwitz determinants D;, for ¢ = 1,...,n. Since
the coefficients ¢q,...,¢, are computable in GapL, each of the determinants
Dy, ..., D, is computable in GapL as well (note that by Corollary 2.2.7 GapL
is closed under composition). Therefore, in PL one can decide, for i = 1,...,n,
whether D; is positive, negative, or zero.

If D, # 0, ie. if Q(A) is nonsingular, then i, (A) can be determined by
using Theorem 4.1.1. Since i_(A) = i, (—A), we can apply the same method
to compute i_(A), and then we get ig(A) = n — i (A) —i_(A). Recall that
INERTIA is the problem of computing one bit of i(A) regarding to some fixed
coding. Actually, each bit of i(A) is computable in PL as follows. According to
Theorem 4.1.1, we construct n ACC-circuits with oracle gates from PL so that
i+ (A) is equal to the number of 1 in the output-vector of these circuits. To verify
the k-th bit of the number of 1 in a binary vector v, we construct an AC’-circuit
with oracle gates from C_L for verifying the k-th bit of the rank of the diagonal
matrix having diagonal v. In summary, INERTIA is solvable by an AC’-circuit
with oracle gates from PL. Recall that AC°(PL) = PL.

Theorem 4.1.3 FEach bit of the inertia of a matriz A where Q(A) is nonsingular

can be computed in PL.

Let’s consider the case when D,, = 0, i.e. when Q(A) is singular. We de-
compose xa(x) = g(z)x’(z), as described in the previous section (see equation
(4.2) on page 67). Recall that g(z) = ged(pi(z),p2(x)) = ged(xa(x), p1(x)) is
the ged of two monic polynomials consisting of GapL-computable coefficients.
The problem of computing the ged of two polynomials can be reduced to the
problem of solving systems of linear equations (see [Koz91|, Lecture 34). Based
on this reduction, we can prove that the coefficients of g(x) are computable in
TC"(GapL).
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We describe another way to argue that TC’(GapL) is an upper bound for
computing the ged of two monic polynomials ¢; (z) and go(z). Let Gy and G2 be
the companion matrices of g;(z) and gs(x), respectively. Let G = diag[G1, Ga).
Observe that

ged(gi(z), g2(x)) =

Obviously, the coefficients of xg(x) are computable in GapL. By Theorem 3.2.1,
the minimal polynomial y¢(7) is computable in TC?(GapL). In order to com-
pute ged(gi(x), g2(x)), we use Algorithm 15.2 in [IK93] for the polynomial divi-
sion x¢(7)/pe(x). By Algorithm 15.2 in [IK93], the coefficients of the quotient
q and the remainder r of the polynomial division f/h (where h is monic) are
expressed as GapL computations of the coefficients of f and h. Thus, in turn,
ged(gy(z), g2(2)) is computable in TC’(GapL).

When g(x) has been found, the polynomial y* (z) = Xg‘zg(f)) can be computed by
using Algorithm 15.2 in [IK93]. This can be done also in TC"(GapL). In sum-
mary, each element of B, the companion matrix of g(x), and C, the companion

matrix of x%(z)), is computable in TC’(GapL). Furthermore, it is important
to note that these elements (of B and C') can be expressed as divisions (without
remainders) of GapL values.

Since each element of C' is expressed as a division (without remainder) of two
GapL values, we can compute i(C') by formula ¢(C') = sign(d)i(C"), where d is the
product of all denominators in C' and C" = dC'. Note that i(C") can be computed
by using Routh-Hurwitz’s Theorem. Since each bit of i(C”) is computable in PL,
so is each bit of i(C').

It remains a major problem: How to compute i(B)?. There is no method for
computing i(B) in general. However, in some cases when ¢(z) is simple, we can
do so anyway.

Suppose for example that

g(z) = 2', for some t > 0,

equivalently, we can say that B (and hence A) has no opposite non-zero eigen-
values. Then we get i(B) = (0,0,¢) and i(A) = (0,0,¢) + i(C). Note that in
coC_L we can decide whether A has no opposite non-zero eigenvalues as follows:
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with the greatest ¢ so that a' is a divisor of xa(z) (it is possible that ¢ = 0) we
decide whether the Routh-Hurwitz matrix associated with the polynomial X/;—Sf)

is nonsingular.

Corollary 4.1.4 FEach bit of the inertia of a matriz having no opposite non-zero
eigenvalues can be computed in PL.

We can considerably extend Corollary 4.1.4 to the following theorem.

Theorem 4.1.5 FEach bit of the inertia of a matriz A satisfying one of the fol-
lowing properties:

(1) A has all opposite eigenvalues on the imaginary azis, and
(2) A has no opposite eigenvalues on the imaginary azis

1s computable in PL.

Proof. Assume that the condition on A is fulfilled. Let B and C' be respectively
the companion matrix of g(z) and x%(x) by decomposing xa(x) = g(z)x%(x), as
mentioned before. We compute the inertia of A by i(A) = i(B) + i(C).

The triple i(B) can be easily expressed from deg(g(z)) as follows:

e i(B)=(0,0,deg(g(z)) if all opposite eigenvalues of A lie on the imaginary
axis, and

e i(B) = (1deg(g(x)), 5 deg(g(z)), 0), if no opposite eigenvalues of A lie on
the imaginary axis.

Moreover, note that deg(g(z)) and i(C') can be determined in PL. Therefore,
each bit of i(A) is computable in PL.

Theorem 4.1.2 can be used to decide whether A fulfills one of the considered
properties. This can be done in PL as follows.

Since Theorem 4.1.2 deals with the real axis instead of the imaginary axis, we
first turn g(x) by 90°. It is well known from linear algebra that the eigenvalues
of the matrix P ® (), for matrices P and @ of order n and m, are A\;(P)\;(Q)
where \;(P) and \¢(Q) are the eigenvalues of P and @, for all 1 < j < n and
1 < k < m, respectively. For our purpose, observe that the eigenvalues of the
matrix E = [{ '] are +i and —i. Define D = A® E. Then the eigenvalues of D
are i\ (A) and —iA,(A) where A\i(A) runs through all eigenvalues of A. W.l.o.g.
we can assume that A is nonsingular. It follows that the number of distinct
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imaginary eigenvalues of A is equal to the number of distinct real eigenvalues

of D.
Let H be the Hankel matrix of xp(x). By Theorem 4.1.2 we get the following

equivalences

A fulfills (1) <= signature(H) = deg(g(z)), (4.3)
A fulfills (2) <= signature(H) = 0.

Since H is symmetric, all eigenvalues of H are real.

Let’s decompose y g (z) = h(z)x% () as described in (4.2). Then signature(H )
is equal to the difference i, (H*) —i_(H*), where H* is the companion matrix of
X3 (x), because all roots of h(x) are in pairs of opposite values. By Corollary 4.1.4,
i(H*) can be determined in PL. Therefore, the right-hand sides of (4.3) and (4.4)
can be done in PL as well. 4

Based on closure properties of PL, we get the same upper bounds for verifying
as for computing the inertia.

Proposition 4.1.6 Verifying the inertia of a matriz A having one of the follow-
g properties

1. Q(A) is nonsingular,

2. A has no opposite non-zero eigenvalues,

3. A has all opposite eigenvalues on the imaginary axis,
4. A has no opposite eigenvalues on the imaginary axis

can be done in PL.

4.1.3 Lower bounds

The following theorem shows a lower bound on the complexity of INERTIA and
V-INERTIA.

Theorem 4.1.7 INERTIA and V-INERTIA are hard for PL.

Proof. We construct a many-one reduction from a PL-complete problem, in
particular from POSPOWERELEMENT, to INERTIA and V-INERTIA. Let A be
an n X n matrix, and let m be a positive integer. POSPOWERELEMENT is the
problem of deciding whether (A™);,, > 0.
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Recall the reduction from matrix powering to computing the characteristic
polynomial of a matrix (Theorem 3.1.3): a matrix B has been constructed such
that

(A™)10 = @ = xp() = 221 (B2 — ).

where N = m(n + d) + n, and d is the number of non-zero elements in A. We
show that i(B) or one of its bits can be used to tell the sign of (A™) .

Let’s consider the eigenvalues of B, i.e. the roots of yg(x). Observe that in
the case when a = (A™);,, # 0, then the roots of 2*™! — @ are the corners of a
regular (2m + 1)-gon inscribed in a circle of radius az»1 with its center at the
origin. Since 2m + 1 is odd, none of these roots lies on the imaginary axis. This
implies that io(B) = N — (2m + 1), and one of i;(B) and i_(B) is m and the
other is m + 1. Moreover, these values depend only on the sign of a. Namely, if
a > 0, then

i(B) =

{m+1, if2m+1=1 (mod 4), (45)

m, if2m+1=3 (mod 4).
This implies that i, (B) in (4.5) is always odd. Analogously, i, (B)isevenifa < 0.

Note that in the case where (A™);,, = 0, we have i(B) = (0,0, N).
In summary, in logspace we can compute p, n, 3 such that

(A™)1n >0 <= i(B) = (pn3)
<= i,(B) = odd.

g

Note also that the matrix B in the proof of Theorem 4.1.7 has no pair of op-
posite non-zero eigenvalues. Therefore, B fulfills the condition of Corollary 4.1.4.
We get the following corollary.

Corollary 4.1.8 The computation and the verification of the inertia of a matriz
with no opposite non-zero eigenvalues are complete for PL.

Congruence of symmetric matrices

Recall that two symmetric matrices A and B are called congruent if there is an
invertible matrix P such that A = PBPT. Sylvester’s Law of Inertia states the
following relation between matrix congruence and matrix inertia: A and B are
congruent if and only if they have the same inertia. Let’s consider

e CONGRUENCE = { (4, B) | A, B : symmetric, i(A) = i(B) }.
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We show the following proposition.
Proposition 4.1.9 CONGRUENCE is in PL, and is hard for AC°(C_L).

Proof. Since all eigenvalues of a symmetric matrix are real, by Theorem 4.1.5
the inertia of a symmetric matrix can be computed and verified in PL. Thus
CONGRUENCE € PL.

CONGRUENCE is hard for AC’(C_L) by showing a reduction from FSLE to
CONGRUENCE. Let (A,b) be an input to FSLE. The reduction is presented as
follows.

(A,b) e FSLE <= rank(A) = rank([A|b])
<= rank(A”TA) = rank([A|b]"[A|b])
T
s rank( AOA O 1) = rank([A[BT[Ab)
T
= AOA g is congruent to [A|b]”[A|b]
T
— AoAg , [A|b]"[A|b]) € CONGRUENCE.

4.2 Stability of matrices

By PoSSTABLE and POSSEMISTABLE we denote the sets of all positive stable
and positive semi-stable matrices, respectively, i.e.

e POSSTABLE = { A |i(A) = (n,0,0) }, and
e POSSEMISTABLE ={ A |i_(A) =0},

where A is a matrix of order n. (In case of Hermitian matrices, we call these sets
POSDEFINITE and POSSEMIDEFINITE, respectively.)
We show the following theorem.

Theorem 4.2.1 POSSTABLE and POSSEMISTABLE are in PL.

Proof. Let A be a matrix of order n. It is known from linear algebra that A is
a positive stable matrix if and only if all the Routh-Hurwitz determinants of the
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matrix §2(A) are positive. Hence, positive stability of matrices can be decided
in PL, i.e. POSSTABLE € PL.

If Q(A) is nonsingular, then POSSEMISTABLE € PL due to Theorem 4.1.3.

So assume that Q(A) is singular. As mentioned in the preceding section (see
page 67), decomposing ya(z) = g(z)x*%(z) can be done in TC’(GapL). Let B
and C' be the companion matrices of g(x) and x* (z), respectively. Then matrix A
is positive semi-stable if and only if matrix B is positive semi-stable and matrix
C is positive stable. Furthermore, since all non-zero eigenvalues of matrix B are
pairs of opposite values, B is positive semi-stable if and only if all eigenvalues of
B are on the imaginary axis. It follows from Theorem 4.1.5 that the inertia of B
can be computed within PL.

In summary, POSSEMISTABLE is in PL. O

A simple observation leads to lower bounds for POSSTABLE and
POSSEMISTABLE is as follows: a matrix A is nonsingular if and only if the sym-
metric matrix AAT is positive definite. Since the product AAT can be computed
in NC', POSDEFINITE is hard for coC_L.

Corollary 4.2.2 POSDEFINITE is hard for coC_L.

As an immediate consequence of Corollary 4.2.2, coC_L is a lower bound
for POSSTABLE and POSSEMISTABLE (note that POSDEFINITE is a subset of
PoOSSTABLE). Actually, this bound can be improved by the following theorem.

Theorem 4.2.3 POSSTABLE and POSSEMISTABLE are hard for PL.

Proof. Recall that the set of all matrices with negative determinant, denoted by
NEGDETERMINANT, is complete for PL. To show that POSSTABLE is hard for
PL we construct a reduction from NEGDETERMINANT to POSSTABLE.

Let A be an n X n integer matrix. Let d; 1, ...,d,, be the diagonal elements
of ATA. The Hadamard Inequality (see [Gan77a], Chapter IX) states that

| det(A)| < (diy -~ dnn) 2. (4.6)

Allender [All02] pointed out that w.l.o.g. one can assume that the input
matrix A is over {0, 1}, in which no row of A consists of more than two one’s.
For clarity, this restriction will be shown by Lemma 4.2.4 below. As a conse-
quence, putting d;; < 2 in Hadamard’s Inequality (4.6) we get the following
bound for det(A)

—2" < det(A) < 2™,
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Define
t=1

Since n < t, we have

n
CT— 11(2m + 1), for an integer m > 1.
m

det(A) + 2" > det(A) + 2" > 0, and

4.7
det(A) <0 <= det(A) + 2" < 2. (4.7)

Lemma 4.2.5 below states that in logspace a matrix B of order k£ and a positive
integer m can be computed such that

(B™)1 4 =det(A) +2°, fort = 1(2m +1). (4.8)

2m +1

Note that m depends on t, and we defined t in terms of m. This makes the
construction a bit tricky.
We further reduce B to a matrix C' such that

XC(x) — xN72m71<l,2m+1 o b),

where N = m(k + d) + k, d is the number of elements different from zero of B,
and b = (B™); ;. Recall that this is the AC -reduction from POWERELEMENT
to CHARPOLYNOMIAL in the proof of Theorem 3.1.3.

As explained in the proof of Theorem 4.1.7, matrix C' has N —2m — 1 eigenval-
ues, which are equal to zero, and 2m+1 eigenvalues as the roots of the polynomial

2m—+1

x — b. The latter 2m + 1 eigenvalues of C are complex and lie on the circle

of radius r = bzni (with the origin as center). Since b > 0, the eigenvalue with
the largest real part is Apax(C) = 7.
Finally, we define

D=—-C+sl, for s = 23ms1 = 2lamri!,

Thereby, to obtain the eigenvalues of D we add s to the eigenvalues of —C/ i.e.
the eigenvalues of D can be computed by the following formula

Ai(D) =s—=XN(C), forall 1 <i<mn.

Hence, the eigenvalue of C' with the largest real part (which is equal to r) becomes
the eigenvalue of D with the smallest real part (which is denoted by A;(D)), i.e.

M(D)=s—r.

Therefore,
b<2 < r<s < \(D)>0. (4.9)
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From (4.7), (4.8), and (4.9) we get
A € NEGDETERMINANT <= D € POSSTABLE.

An analogous argument reduces the set of matrices having non-positive de-
terminants, POSDETERMINANT, to POSSEMISTABLE. O

We complete the proof of Theorem 4.2.3 by showing the following two lemmas.

Lemma 4.2.4 The problem of computing the determinant of a 0-1 matriz, in
which no row consists of more than two 1’s, is complete for GapL

Proof. 1t is sufficient to show that the considered problem is GapL-hard.
Recall that PATHDIFFERENCE is the problem of computing path(G, s,t;) —
path(G, s, ts), given an acyclic directed graph G, and nodes s,t;, and t.
PATHDIFFERENCE is complete for GapL (see page 30). We show a reduction
from PATHDIFFERENCE to the determinant of a 0-1 matrix.
By using Valiant’s technique [Val79a] (see also the proof of Theorem 3.2
in [ST98]), we modify the directed graph G as follows.

(1) Add the edges (t1,t) and (to,t) where ¢ is a new node.

(2) Replace every edge e = (u,v), except (ta,t) by two new edges (u,u.) and
(ue, v) where u, is a new node corresponding to edge e.

(3) Add a self-loop on each node, except s and ¢.

We denote the resulting graph by H, and we show that det(B) = path(G, s, ;) —
path(G, s, ts), where B is the adjacency matrix of H.

A combinatorial method for computing the determinant (see e.g. [MV97,
BR91, CDS80]) states that det(B) is the sum of all cycles covering H, with
appropriate sign. Consider the graph H. Any cycle covering H consists of a cy-
cle consisting of a path s ~» ¢ and the edge (t, s), and self-loops on the remaining
nodes. Furthermore, observe that

- there is a 1-1 relation mapping paths s ~» t; and s ~» ¢ in G to cycles
consisting of a path s ~» t passing the node t; and ¢, respectively,

- since a self-loop and every cycle consisting of a path s ~~ t passing the node
t; are of odd length, they have the sign 1, and

- since every cycle consisting of a path s ~» t passing the node t5 is of even
length, its sign is —1.
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Therefore, we get det(B) = path(G, s,t1) — path(G, s, t3).

As mentioned on the problem PATH (see page 28), w.l.o.g. we can assume
that the maximal out-degree of G equals 2. Hence, no row of the 0-1 matrix B
consists of more than two one’s. O

Lemma 4.2.5 Given annxn matriz A, one can construct in logspace a matriz B

of order k and a positive integer m such that

(B™)11, = det(A) + 2, fort=] 12m+1).

n
2m +1
Proof. The construction of the matrix B can be described as follows.
1. Since the function POWERELEMENT is complete for GapL, there is a
logspace many-one reduction from DETERMINANT to POWERELEMENT,

i.e. in logspace one can compute a matrix By of order [ and an expo-
nent m > 0 such that det(A) = (B{")1,, for given matrix A of order n.

2. Define an (m+1) x (m+ 1) block matrix F’ whose all m blocks on the first
upper sub-diagonal are purely By, and whose all other blocks are zero, i.e.

By 0
By

By

3. Define

2 3
S:[% %],fors:Q[WnJrﬂ.

An elementary calculation yields

SQm 82m+1
Sm = and s?mtl = 2f,

0 0
4. Define
Lo
0 0
T = : | of the dimension I(m 4 1) x 2.
0
01
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5. Define
F FTH+TS

0 S

B = of order k =Il(m+1) + 2.

Now we show (B™); = det(A) + 2"
An elementary calculation yields

Fm™ FT 4+ 2F™ 178 ... 4 2FTS™ 1L 4 TS™
0 Sm

B™ = (4.10)

Observe that, for each 1 < i < m, the power matrix F' is of a very simple
form: on its i-th upper sub-diagonal are purely B’ and all the other blocks are
zero-matrix. Furthermore, we have F™“T'S? = 0, for all i < m. Therefore, we
can deduce the form of B™ in (4.10) into

F™ FmT 4 TS™
0 Sm

B™ =

It follows that

(B"hgp = (F"T4+T8S")1,
— (FmT)LQ —|— (TSm)l,Q
= (Bg")i+ s
= det(A) +2°, fort =]

571 2m D).
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Chapter 5

Further Results

This chapter is organized as follows: in Section 5.1, we give an approach towards
the complexity of the unique perfect matching problem for bipartite graphs; in
Section 5.2 and 5.3, we show some necessary and sufficient conditions for collaps-

ing counting logspace hierarchies.

5.1 Unique perfect matching

For a graph G = (V, E) with n nodes and m edges, a subset of edges, M C E,
with the property that no two edges of M are adjacent by a common node, is
called a matching of G. A matching which is incident to all nodes in V' is called
perfect. We denote the number of all perfect matchings of G by #pm(G).

One of the most prominent open questions in complexity theory regarding
parallel computations asks whether there is an NC algorithm to decide whether
a given graph contains a perfect matching. The perfect matching problem is
known to be in P [Edm65], and in randomized NC? by Mulmuley, Vazirani,
and Vazirani [MVV87]. The randomized NC? algorithm presented in [MVV87]
has been used in [ABO99] for showing that the perfect matching problem is in
coC_L/poly. The latter result has been improved by Allender, Reinhardt, and
Zhou [ARZ99] to nonuniform SPL.

Since no NC algorithm for detecting perfect matchings in a graph is known,
some special cases of perfect matching problem attract a great attention.
For example, an NC upper bound has been found even for regular bipartite
graphs [LPV81], dense graphs [DHKO93]|, and strongly chordal graphs [DK86]. Al-
though the number of all perfect matchings in a graph is hard for #P [Val79b],
the perfect matching problem for graphs having polynomially bounded number
of perfect matchings is in NC by Grigoriev and Karpinski [GK87].
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The unique perfect matching problem is given by Lovéasz. He asked whether
there is an NC algorithm for testing if a given graph has a unique perfect match-
ing. Kozen, Vazirani, and Vazirani showed in [KVV85] that the unique perfect
matching problem for bipartite graphs as well as for general graphs is in NC.
This result seems to be corrected only for bipartite graphs [KVV86], and the
unique perfect matching problem for general graphs is still open.

We reconsider the unique perfect matching problem. Taking in considera-
tion that a completeness result on the complexity of the considered problem isn’t
known, an approach towards the complexity of the problem is motivated always.
We show that the unique perfect matching problem for bipartite graphs is sand-
wiched between C_L and NL.

Formally, we denote the problem of deciding whether a graph has exactly one
perfect matching by the set UPM = { G | #pm(G) = 1 }. In this thesis we
consider the case when the given graph is bipartite, and then we give a method
for constructing the unique perfect matching in a general graph.

Let G = (U, V; F) be a bipartite graph with 2n nodes from U = {1,2,...,n}
and V = {1,2,...,n}, and m edges from £ C U x V. Let’s denote by A the 0-1
bipartite adjacency matrix corresponding to G, i.e. for all 1 <4, 5 < n, we have

1, if(i,j) e E
0 :{ , i (i,j) € E,

0, otherwise.

Define matrices B = [b;;] by b;; = a;; det*(A;;), for all 1 < 4,5 < n, and
C = ABT — I. Let M be a subset of E. To obtain a lower bound on the
complexity of UPM for bipartite graphs we prove the following lemma.

Lemma 5.1.1 The bipartite graph G has a unique perfect matching if and only
of

(1) B is a permutation matriz, and

(2) xc(x) = ™.
Proof. Consider the case when G has exactly one perfect matching M.

e Observe that the determinant of the adjacency matrix corresponding to a
bipartite graph having a unique perfect matching equals either +1 or -1. For
each edge (i,7) from the unique perfect matching M, the bipartite graph
obtained by deleting nodes ¢ € U and 7 € V from G belongs to UPM.

Therefore, the corresponding adjacency matrix A;; satisfies det®(A;;) = 1.

¥ ilj
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Based on the fact that the perfect matching M is unique in G, each row
as well as each column of the 0-1 matrix B contains only one 1, i.e. B is a
permutation matrix.

e The directed graph corresponding to C' = ABT —I doesn’t have any directed
cycles, therefore xco(x) = 2™ (see Theorem 3.1.3, page 37).

Conversely, if (1) and (2) are satisfied, then we show that G is in UPM by
using the following two observations.

e The permutation matrix B from (1) corresponds to a perfect matching M

in G, and the diagonal elements of ABT are 1 corresponding to the edges
from M.

e Since z™ is the characteristic polynomial of the 0-1 matrix C, the directed
graph interpreted by C' contains no cycle, i.e. M cannot be alternated. The
perfect matching M is unique.

O

Let G be an arbitrary graph with 2n nodes from U = {1,2,...,2n} and m
edges from £ C U x U. Let A = [a;;] be the adjacency matrix of G, i.e. for all
1<4,5 <2n,

0, otherwise.

1, if(i,j)€E
%jzam=={ , () €

Let A" = [a;j] be the skew-symmetric matrix obtained by negating elements
below the diagonal of A, i.e. for all 1 <i,j <mn,

, { i, ifi<j
ai; = :
—a;; , otherwise.
The pfaffian of A’, denoted by pf(A’), is defined by det(A’) = pfi(A") (see
e.g. [MSV99] for more detail). In particular, pf(A’) is the signed sum of all perfect
matchings in G. For example, if G has no perfect matching, then pf(A’) = 0,
and if G has a unique perfect matching, then pf(A’) = +1 or —1 depending on
the sign of the unique perfect matching.
Furthermore, we define B = [b; ;| where

bij = ai; det(A'; i),

B’ to be the matrix obtained by negating elements below the diagonal of B, and
C=AB" -1
We show the following lemma for arbitrary graphs.
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Lemma 5.1.2 If the graph G has a unique perfect matching, then

(1) B is a symmetric permutation matriz, and
(2) xc(r) = 2"

Proof. Suppose G has the unique perfect matching M. Observe that each graph
obtained from G by deleting two adjacent nodes ¢ and j has either only one
perfect matching, if (i,j) € M, or no perfect matching, if (i,j) & M. Therefore,
we have pf(A'; j;;) € {+1,—1,0}, ie. det(A'; ;) € {0,1}. Since M is unique in
G, anode i of G can be only matched by an edge (i, 7) € M. Therefore, each row
of B contains only one 1. Consequently, B is a symmetric permutation matrix.
Observe that B"" B’ = I and det(B'") = 1. Thus we get ¢ (z) = det(zB’ —
A"+ B’). Since the unique perfect matching M is interpreted by B’, the latter
determinant is equal to 2" O

Note that a perfect matching M corresponds to the symmetric permutation
matrix B: b; ; = 1 indicates that (i, j) € M. Hence, the unique perfect matching
in an arbitrary graph G € UPM can be determined by computing the matrix B.

Using Lemma 5.1.1 we show that C_L is an upper bound for bipartite
UPM. Note thereby that all elements of the matrices mentioned in Lemma 5.1.1
and 5.1.2 are computable in GapL, and that a matrix B = [b; ;] is a permutation
matrix if and only if B is a 0-1 matrix such that Y "  b;; = > bg; = 1, for
each 1 < 7,k < 2n. We conclude:

Theorem 5.1.3 UPM for bipartite graphs is in C_L.

Now we show that UPM is hard for NL (note that NL = coNL [Imm88,
Sze88]). Let G be a directed acyclic graph, and let s and ¢ be two designed
nodes. For simplicity, by #path(G,s,t) we denote the number of paths in a
graph G going from s to t. The connectivity problem which is hard for coNL
asks whether #path(G, s,t) = 0. The construction of a new bipartite graph H is

followed by Chandra, Stockmeyer, and Vishkin [CSV84]:
1. Retain nodes s and ¢ in H.

2. Add to H new nodes u;, and u,,; and new edges (w,, Upy), for each node

u of G except for s and t¢.
3. Add to H edges (s,u;,), for each node u of G that u is adjacent to s.

4. Add to H edges (tou,t), for each node u of G that u is adjacent to t.
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5. Add the edge (s,t) to H.

Let’s denote by H’ the graph obtained from H by deleting the edge (s,t). Then
we get
#path(G,s,t) = #pm(H') (see [MSV99]), and
#pm(H) = #pm(H')+ 1.

Note that there is a perfect matching M consisting of the edge (s,t) and all the
edges (Uin, Uoyt). Therefore,

#path(G,s,t) =0 < #pm(H) = 1.

Mahajan [Mah03] pointed out that the used reduction is based on the reduc-
tion from the directed connectivity problem to the perfect matching problem by
Chandra, Stockmeyer, and Vishkin [CSV84]. Furthermore, there is another way
by Mahajan [Mah03] to argue a proof. We describe it as follows.

(i) Since NL = coNL, there are functions f, g € #L such that

f(z) > 0= g(x) and

=0,
f(x) =0= g(z) > 0.
(ii) For a new function h = g + 1 we get the following implications

1, and

Y

f(z) > 0= h(x)
f(z)=0= h(z) > 1

(iii) We shall construct, as described above, the graph H' from G corresponding
to the NL machine computing h. It follows that

f(x) >0 < #pm(H') = 1.

We conclude:
Theorem 5.1.4 UPM for bipartite graphs is hard for NL.

Let’s say some words about the complexity of UPM for bipartite graphs. Ob-
viously, it will be very interesting and surprising, if the unique perfect matching
problem for bipartite graphs is in (uniform) SPL. Assume for a moment, if the
considered problem is sandwiched between NL and SPL (in the uniform setting),
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then this would imply that NL C SPL. As already noted in [AO96], there is no
reason in believing that the latter conclusion is true. With this in mind one can
say that there is no reason to expect that the unique perfect matching problem is
in SPL. So as to get the exact complexity of UPM, one can think over whether
UPM is complete for either C_L or NL. Unfortunately, all these two variants
seem to be very difficult!

5.2 Conditions for collapsing the C_L-hierarchy

The complexity of matrix rank has been studied in [ABO99]. The problem of
verifying the rank of a matrix, v-RANK, is known to be complete for C_L A
coC_L. It is obvious to see that C_L = coC_L if the rank of a matrix is
computable in GapL. It is natural to ask whether the rank can be computed in
GapL. We show the following theorem.

Theorem 5.2.1 rank € GapL. <= C_L = SPL.

Proof. Suppose rank € GapL. Then C_L = coC_L because Vv-RANK € C_L.
Furthermore, recall that there is a reduction [ABO99] (Corollary 2.3, see also
Chapter 3) from v-POWERELEMENT to V-RANK in the following sense

(A")1, =0 <= rank(B)=N—1, and
(A™)1n #0 <= rank(B) =N,

where matrix B of order N can be computed from the input to
V-POWERELEMENT. Define a GapL-function g to be the difference between
the order and the rank of a matrix, i.e. ¢g(B) = N — rank(B). One can use
this function as the characteristic function for deciding whether (A, m,1,n,0) €
V-POWERELEMENT

g(B):{ 1, if (A™)1, =0

0, otherwise.

Therefore, AC°(C_L) = C_L = SPL. We explain briefly another method for
showing the implication: Taking h = 2 — rank(A’) as the seeking characteristic
function, where A’ is the 2 x 2 diagonal matrix having (A™);, and 1 on its
diagonal, we get
- { 1, if (A™)y, =0,
0, otherwise.
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Suppose C_L = SPL. Then AC’(C_L) = C_L A coC_L = C_L = SPL,
because SPL is closed under complement. As a consequence, the rank of a matrix
can be verified in SPL. Hence, there is a function ¢ € GapL such that for a
given matrix A of order n and for all 1 < i < n we have the following implications

rank(A) =i = g(A,i)=1
rank(A) #i = g(A,i)=0.
It follows that

n

rank(A) = Zz g(A, ).

i=1
Since g is computable in GapL, so is the rank. O
As mentioned in [AO96], NL seems unlikely to be a sub-class of GapL or
SPL. Since NL is contained in C_L and PL, the assumption that C_L, or
PL, collapses to SPL doesn’t have much intuitive clout. Thus, Theorem 5.2.1
states another fact that there is no reason to believe that the rank function is
computable in GapL.
The following theorem shows a necessary and sufficient condition for the col-
lapse C_L = coC_L.

Theorem 5.2.2 Let g and h be integer functions such that rank(A) = %, for

any integer matriz A. Then
g,h € GapL < C_L = coC_L.

Proof. Suppose the functions g and h are computable in GapL. Define f(A, k) =
g(A)—k h(A) for any integer matrix A and for any integer £ > 0. Then f € GapL
and we have the following equivalence

rank(A) =k < f(A4,k)=0.

It follows that the rank of a matrix can be verified in C_L. Therefore, C_L =
coC_L.

Conversely, if C_L = coC_L, then verifying the rank of a matrix is complete
for coC_L. It follows that there are matrices B; computable in logspace such
that for any matrix A of order n and for 1 =1,2,...,n,

rank(A) =i <= det(B;) # 0.

From these equivalences we get

> iz @ det(B;)
rank(A) = S det(B,)
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Therefore the following functions are in GapL.

g(A) = Zz det(B;),  h(A) = Zdet(BZ-).

n

Let’s say more about the formula (5.1). If C_L = coC_L, then the rank
can be expressed as a division (without remainder) of two GapL values. Un-
fortunately, we don’t know how to obtain a division-free and GapL-computable
formula for the rank. Under assumption that such a formula exists, we get the
following implication: if C_L = coC_L, then C_L = SPL. Since the latter
seems to be impossible, there is no reason to expect that C_L is closed under
complement.

We generalize the condition for the collapse C_L = coC_L. Recall that the
rank of an n X n symmetric matrix A can be determined from the coefficients of
xa(x) as follows. Let

XA($) =a" + Cn_w"_l + -+ ax+ .

For 0 < k < n, rank(A) =k ifand only if ¢, y ZOand ¢, 1 =¢cpg2="-+=
co = 0. By defining

n—j
T 2 .
W = [Wy, Wy_1, -+ , w1, wp)" where w,_; = E c;, for j=0,1,... n,
1=0

every element of w is computable in GapL. Let’s consider the following property
of w: there is a number k such that w,, w,_1,...,w,_ g1 are positive and w,,_p =
Wy_pq1 = -+ = wg = 0. Whereby k is exactly the rank of A. Therefore,
the function rank computes the number of all positive elements appeared in w.
Conversely, for a given nonnegative GapL vector, the number of its positive
elements is exactly the rank of the diagonal matrix whose diagonal is the given
vector. We conclude another simple question which is equivalent to the open
question C_L ~ coC_L: Is it possible to compute in GapL two integers a and b
such that § is the number of all positive elements in a given nonnegative GapL-
vector?

As stated in Section 3.2.3, the degree of the minimal polynomial is compu-
tationally equivalent to matrix rank. We can extend the mentioned conditions
concerning the rank to ones regarding the degree of the minimal polynomial. For
example, the degree of the minimal polynomial is GapL computable if and only
if rank € GapL.
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5.3 Conditions for further collapse of PL

Recall that the signature of a symmetric integer matrix A is defined by
signature(A) =i (A)—i_(A), where i (A) and i_(A) are the number of positive
and negative eigenvalues of A, respectively. The function signature is very useful
for testing the congruence of two symmetric matrices A and B, i.e. whether
i(A) = i(B). The set of congruent matrices is denoted by CONGRUENCE.
By Corollary 4.1.9 (see page 73), CONGRUENCE is in PL and it is hard for
AC"(C_L). The signature and the number i, of a symmetric integer matrix are
related to the collapse of PL by the following theorem.

Theorem 5.3.1 PL = SPL <= signature € GapL <= i, € GapL.

Proof. Suppose PL = SPL. Let A be a symmetric matrix of order n. For
Jj=1,2,...,n, we define matrices B;,C;, D;, E; of order n + j as follows

A A

Cj — —Bj 5 Ej — —Dj.
Then we have

signature(4) =j <= (Bj;,(;) € CONGRUENCE,
<~

signature(A) = —j (D;, E;) € CONGRUENCE.

By Corollary 4.1.9, CONGRUENCE is in PL and it is hard for AC°(C_L). Since
PL = SPL, CONGRUENCE is complete for SPL. Hence, there are functions
f,g € GapL such that

(Bj,C;) € CONGRUENCE = f(B;,C;) =1,
(B;,C;) € CONGRUENCE = f(B;,C;) =0,

and analogously for (D;, E;) and the function g.
Therefore, we can write

signature(A) = ij(Bj, Cy) — ng(Dja Ej).
j=1 Jj=1

This shows that signature(A) € GapL.
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From rank(A) =i (A) +i_(A) and signature(A) = i, (A) —i_(A) we get
i (A) = %(rank(A) + signature(A)).

By Theorem 5.2.1 rank € GapL because C_L = SPL. Therefore, i, is com-
putable in GapL.

Conversely, if 7, is in GapL, then the function signature is anyway in GapL
because signature(A) = i (A) — iy (—A). (Note that the functions i, and i_
are equivalent because iy (A) = i_(—A).) Therefore, it remains to show that if
signature € GapL then PL = C_L = SPL.

Observe that the function rank is in GapL because rank(A) = rank(AT A) =
signature(AT A). Tt follows that AC°(C_L) = SPL. Now the function 2i, (A)
is in GapL because 2i, (A) = rank(A) + signature(A). We further observe that
det(A) > 0 if and only if i, (B) = 1, where B = [det(A)]. Since GapL is closed
under composition, testing i, (B) = 1 can be done in C_L. Hence, PL = C_L =
SPL. O

We show another condition for the collapse PL = SPL. In the following
theorem, by abs(f) we denote the absolute value of f.

Theorem 5.3.2 PL = SPL <= abs(f) € GapL, for every GapL-function
f.

Proof. Suppose PL = SPL. Define abs(f) = (29 — 1)f where f is any GapL
function and g is the characteristic function for deciding whether f is nonnegative,

1.e.

) 0, if f <0,
I=Y 1, itf>o.

Since ¢ is in GapL, so is abs(f).
Conversely, suppose abs(f) € GapL for every f € GapL. Then the following
functions g and h are in GapL:

g = abs(f+1)—abs(f), and

- (1)

0, if f <0,
h = .
1, iff>0

Therefore, we get
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as the characteristic function for testing if f > 0. It follows that PL = SPL.
O

At the end of this chapter we show the following theorem for collapsing PL =
C_L.

Theorem 5.3.3 Suppose A is a square integer matrix having no opposite non-
zero eigenvalues. PL = C_L if and only if i, (A) can be expressed by r/s where
r and s are computable in GapL.

Proof. Recall from Corollary 4.1.8 that verifying the inertia of a matrix with no
opposite non-zero eigenvalues it is complete for PL.

If PL = C_L, then verifying i, (A) can be done in coC_L, for every n x n
matrix A with no opposite non-zero eigenvalues. It follows that in logspace we
can compute By such that

it(A) =k < det(By) #0, for k=0,1,...,n.

Thus we get a division of two GapL values for i (A) as follows

. Dot det(By)
A =S ety

Conversely, if i, (A) can be expressed by r/s where r and s are computable

in GapL, then it is clearly that verifying the inertia of A can be done in C_L.
Therefore, PL = C_L. U
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Conclusions and Open Problems

The following table summarizes some bounds on the complexity of problems in
linear algebra that have been considered in this thesis.

Problem hard for ‘ contained in ‘ see
CHARPOLYNOMIAL GapL GapL Section 3.1.1
V-CHARPOLYNOMIAL C_L C_L Section 3.1.2
MINPOLYNOMIAL GapL TC’(GapL)
V-MINPOLYNOMIAL C_L C_L A coC_L | Section 3.2.1
INVSYSTEM GapL NC? and 3.2.2
V-INVSYSTEM C_L AC’(C_L)

DEGMINPOL< C_L C_L

DEGMINPOL- C_LAcoC_L | C_LL AcoC_L

DEGMINPOL AC’(C_L) AC’(C_L)
v-DEGMINPOL AC’(C_L) AC°(C_L) | Section 3.2.3
EQDEGMINPOL AC’(C_L) AC’(C_L)
EQMiNPoLyNoMIAL | ACY(C_L) AC’(C_L)
EQCTMINPOL AC’(C_L) AC’(C_L)

SIMILARITY AC°(C_L) AC’(C_L)
DIAGONALIZABLE AC°(C_L) AC°(C_L) | Section 3.3
SIMDIAGONALIZABLE | ACY(C_L) AC’(C_L)

INERTIA PL PL, or NC? | Section 4.1
V-INERTIA PL PL, or NC?

POSSTABLE PL PL

POSSEMISTABLE PL PL Section 4.2
CONGRUENCE AC’(C_L) PL

UPM NL C_L Section 5.1
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Some necessary and sufficient conditions for collapsing the C_L-Hierarchy
and the class PL have been presented in Section 5.2 and 5.3.

(1) C_.L = SPL <= rank € GapL.

(2) C_L = coC_L <= g,h € GapL, where g and h are integer functions
such that rank(A) = g(A)/h(A).

(3) PL = SPL <= signature € GapL <= i, € GapL.
(signature and i, are functions for symmetric integer matrices).

(4) PL = C_L <= g¢g,h € GapL, where g and h are integer functions such
that i, (A) = g(A)/h(A), for every matrix A having no opposite non-zero
eigenvalues.

The conditions in (1) and (2) can be extended to the corresponding conditions
concerning the degree of the minimal polynomial of a matrix, simply by substi-
tuting the function deg(u) into the function rank. Two other weaker conditions
for the collapse C_L = coC_L are given by Corollary 3.2.18, and 3.2.19. Obvi-
ously, these conditions offer a new insight into the open question C_L ~ coC_L.
However, we don’t know how to prove or disprove one of the following conjectures:

(a) C_L = coC_L <= rank € GapL. (In particular, if it is true, then there
are some interesting consequences. For instance, if C_L = coC_L then all
classes between C_L and PL are equal to SPL.)

(b) If C_L = coC_L then C_L C @L.
(¢) C_ZL =coC_L <— PL=C_L.
(d) If PL = C_L then PL C oL.

(¢) PL=C_L <= PL = SPL.

An important task for further research is to close the gap between the lower
and the upper bound where it doesn’t match in the above table.
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Deutsche Zusammenfassung

Diese Dissertation befasst sich mit der Komplexitidt von einigen fundamen-
talen Problemen aus der linearen Algebra. Die untersuchten Probleme, die das
charakteristische Polynom, das Minimalpolynom, das System der Invarianten-
teiler und die Inertia einer Matrix betreffen, werden nach entsprechenden Kom-
plexitatsklassen geordnet.

Bevor wir einen Uberblick iiber Resultate der vorliegenden Arbeit geben,
erwahnen wir kurz die Namen der Klassen, die durch linear algebraische Probleme
charakterisiert sind. Alvarez and Jenner [AJ93] definierten #L als die Klasse
von allen Funktionen, die die Anzahl der akzeptierenden Berechnungen einer
nichtdeterministischen logarithmisch platzbeschrankten Turingmaschine (kurz:
NL Turingmaschine) berechnen. Dann definiert man GapL als die Klasse von
allen Funktionen, die als Differenzen von #L-Funktionen darstellbar sind. An-
hand von GapL kann man weitere Klassen definieren. C_L (FEzact Counting in
Logspace) ist die Klasse, in der alle Verifikationen von GapL-Funktionen sind,
und in PL (Probabilistic Logspace) sind alle Vorzeichenberechnungen von GapL-
Funktionen. Die Berechnung der Determinante ist zum Beispiel vollstandig fiir
GapL [Tod91, Dam91, Vin91, Val92], folglich ist die Verifikation der Determi-
nante vollstandig fiir C_L, und das Entscheidungsproblem, ob die Determinante
einer Matrix positiv ist, ist vollstdandig fiir PL. Ausserdem interessieren wir uns
fiir den AC°-Abschluss von C_L, AC"(C_L), welcher durch die bitweise Rang-
berechnung charakterisiert ist, und den TCAbschluss von GapL, TC"(GapL),
der die Division von GapL-Werten enthalt.

Fiir das charakteristische Polynom beweisen wir, dass die Verifikation aller
ihrer Koeffizienten vollstandig fiir C_L ist.

Die Berechnung sowie die Verifikation des Minimalpolynoms werden in dieser
Arbeit studiert. Wir zeigen, dass sich das Minimalpolynom in TC"(GapL)
berechnen lasst und es hart fir GapL ist, und dass die Verifikation des Min-
imalpolynoms in der zweiten Stufe der Booleschen Hierarchie iiber C_L liegt
und sie hart fiir C_L ist. Unsere Untersuchung wird auf die Invariantenteiler
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erweitert. Wir zeigen, dass die Verifikation der Invariantenteiler in AC°(C_L)
liegt und sie hart fiir C_L ist. FEinige interessante Probleme hinsichtlich des
Grads sowie der Konstante des Minimalpolynoms werden definiert und genau
analysiert. Dazu zeigen wir, dass die betrachteten Klassen durch diese Probleme
charakterisiert werden konnen. Insbesondere wird bewiesen, dass die bitweise
Berechnung des Grads des Minimalpolynoms vollsténdig fiir AC®(C_L) ist, d.h.
dass die Berechnung des Rangs und die Berechnung des Grads des Minimalpoly-
noms aquivalent sind.

Als eine Konsequenz der Resultate tiber das Minimalpolynom koénnen wir die
Komplexitat zweier klassischer Probleme bestimmen. Namlich sind das Entschei-
dungsproblem, ob zwei gegebene Matrizen ahnlich sind, und das Entschei-
dungsproblem, ob eine gegebene Matrix diagonalisierbar ist, vollstandig fiir
AC’(C_L).

Die Inertia einer n x n Matrix A ist definiert als das Tripel i(4) =
(14(A),1_(A),79(A)), wobei i (A), i_(A), und ip(A) die jeweilige Anzahl der
Eigenwerte von A mit positivem, negativem, und 0-Realteil sind. Fiir bes-
timmte Matrizen zeigen wir, dass die Berechnung sowie die Verifikation der Inertia
vollstandig fiir PL sind. Wir zeigen weiter, dass das Entscheidungsproblem, ob
eine gegebene Matrix positiv stabil ist, auch vollstandig fiir PL ist, und dass das
Entscheidungsproblem, ob symmetrische Matrizen kongruent sind, in PL liegt
und es hart fiir AC°(C_L) ist.

Ein sehr wichtiges Ziel dieser Dissertation ist die Untersuchung der Beziehun-
gen zwischen Komplexititsklassen, in denen Probleme aus der linearen Al-
gebra liegen. Wir versuchen einerseits die betrachteten Komplexitatsklassen
sowie ihre Eigenschaften griindlich zu erlautern, andererseits beweisen wir einige
notwendige und hinreichende Bedingungen fiir die Beziehungen wie C_L =
coC_L, C_L = SPL, PL = C_L oder PL = SPL, wobei coC_L das Komple-
ment von C_L ist und SPL (Stoic Probabilistic Logspace) die Klasse bestehend
aus Sprachen mit charakteristischen Funktionen in GapL ist. Unter dem kom-
plexitétstheoretischen Aspekt sind diese Resultate moglicherweise interessant fiir
eine potenzielle Problemlosung der offenenen Frage, ob C_L unter Komplement
abgeschlossen ist.
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