
Exploiting Bounded Signal Flow for Graph
Orientation Based on Cause–Effect Pairs?

Britta Dorn1, Falk Hüffner2, Dominikus Krüger3, Rolf Niedermeier4, and
Johannes Uhlmann4,??

1 Fakultät für Mathematik und Wirtschaftswissenschaften, Universität Ulm,
Helmholtzstr. 18, D-89081 Ulm, Germany, britta.dorn@uni-ulm.de

2 Institut für Informatik, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany,
hueffner@informatik.hu-berlin.de

3 Institut für Theoretische Informatik, Universität Ulm, James-Franck-Ring O27,
D-89081 Ulm, Germany, dominikus.krueger@uni-ulm.de

4 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, D-10857
Berlin, Germany, {rolf.niedermeier, johannes.uhlmann}@tu-berlin.de

Abstract. We consider the following problem: Given an undirected net-
work and a set of sender–receiver pairs, direct all edges such that the
maximum number of “signal flows” defined by the pairs can be routed
respecting edge directions. This problem has applications in communi-
cation networks and in understanding protein interaction based cell reg-
ulation mechanisms. Since this problem is NP-hard, research so far con-
centrated on polynomial-time approximation algorithms and tractable
special cases. We take the viewpoint of parameterized algorithmics and
examine several parameters related to the maximum signal flow over ver-
tices or edges. We provide several fixed-parameter tractability results,
and in one case a sharp complexity dichotomy between a linear-time
solvable case and a slightly more general NP-hard case. We examine the
value of these parameters for several real-world network instances. For
many relevant cases, the NP-hard problem can be solved to optimality.
In this way, parameterized analysis yields both deeper insight into the
computational complexity and practical solving strategies.

1 Introduction

Consider a communication network, with a given list of one-way connection
request pairs. Each link between two network nodes can only be used in one
direction. The task is now to orient the links such that as many communication
requests as possible can be fulfilled. We formalize this as follows.

? Main work done while BD and DK were with the Universität Tübingen, and RN
and JU were with the Universität Jena.

?? Supported by the Deutsche Forschungsgemeinschaft (DFG), research project PABI
(NI 369/7).

2 B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann

Problem Formalization. Let G = (V,E) be an undirected graph. An orienta-

tion ~G of G is a directed graph ~G = (V, ~E) obtained from G by replacing every

undirected edge {u, v} ∈ E by a directed one, i. e., either by (u, v) ∈ ~E or by

(v, u) ∈ ~E. Let P ⊆ V × V be a set of ordered source–target pairs, which we
sometimes refer to as “signals”. In order to distinguish pairs from edges or arcs,
we use the notation [a, b] ∈ P to denote the pair starting in a and ending in b.

We say that a pair [a, b] ∈ P is satisfied by a given orientation ~G if there exists

a directed path from a to b in ~G. The central problem considered in this work is
to find an orientation of a given graph maximizing the number of satisfied pairs.
As pointed out by Medvedovsky et al. [9], we can assume that the given graph
is a tree: it is clearly optimal to orient the edges of a cycle to form a directed
cycle, and, hence, one can contract each cycle to a single vertex, obtaining a
tree. Thus, formalized as a decision problem, Maximum Tree Orientation is
defined as follows.

Maximum Tree Orientation (MTO)
Given an undirected tree T , a set P of ordered pairs of vertices of T , and
an integer k ≤ |P |, is it possible to find an orientation of T such that at
most k pairs in P are not satisfied?

We also consider the weighted version, called Weighted Maximum Tree Ori-
entation (W-MTO), where every pair [a, b] ∈ P is associated with a rational
weight ω([a, b]) ≥ 1, and the goal is to maximize the sum of weights of the
satisfied pairs.

MTO also has applications in network biology [1,13], more specifically, in
the inference of causal relations in biological networks. Often experimental tech-
niques do not yield (enough) information concerning causal relations. This is
particularly true for protein–protein interaction (PPI) networks: current tech-
nologies like two-hybrid screening can find many protein interactions, but can-
not decide the direction of the interaction. Medvedovsky et al. [9] introduced
a graph-theoretic model to study signal transmission in PPI networks and the
corresponding inference of causal relations. Roughly speaking, the challenge is
to orient a given network by combining causal information on cellular events.
Medvedovsky et al. [9] formalized this as MTO.

Previous Work. MTO was introduced by Medvedovsky et al. [9]; they showed
that the problem is NP-complete even when the underlying tree is a star (that is,
a diameter-two tree) or a tree with maximum vertex degree three. Moreover, they
provided a cubic-time algorithm for MTO restricted to paths. Seeing MTO as the
task to maximize the number of satisfied pairs, Medvedovsky et al. also provided
polynomial-time approximation algorithms with approximation factor 1/4 in the
case of stars and O(1/ log n) in the case of general n-vertex trees. The latter
approximation factor was recently improved to O(log log n/ log n) by Gamzu
et al. [6], who furthermore extended the studies of MTO to “mixed graphs”
where some of the edges are already oriented based on causal relations known
in advance. Besides these theoretical investigations, Medvedovsky et al. [9] also

Exploiting Bounded Signal Flow for Graph Orientation 3

provided some experimental results based on a yeast PPI network and some
synthetic data. Silverbush et al. [14] very recently did experiments on mixed
graphs using integer linear programming. In earlier work Hakimi et al. [8] studied
the special case of MTO where the list of pairs to be satisfied contains all possible
pairs; they developed a quadratic-time algorithm for this case.

Our Contributions. We mainly continue and complement the so far mostly the-
oretical studies on MTO [9,6] by starting a parameterized and multivariate com-
plexity analysis of MTO. That is, we try to better understand the border be-
tween tractable and intractable cases of MTO while sticking to optimal (instead
of approximate) solutions. In particular, our focus is on the “amount of signal
flow” over vertices and edges, respectively, and how this influences the com-
putational complexity of MTO. First, we show that W-MTO can be solved in
O(2mv ·|P |+n3) time on an n-vertex tree, where mv denotes the maximum num-
ber of connections paths (one-to-one corresponding to the input vertex pairs)
over any tree vertex. In other words, W-MTO is fixed-parameter tractable with
respect to the parameter mv. Second, we introduce the concept of cross pairs
and show that cross-pair-free instances of W-MTO can be solved in quadratic
time, as a corollary also improving the cubic-time algorithm of Medvedovsky et
al. [9] for MTO on paths to quadratic time. Third, we additionally show that
W-MTO is fixed-parameter tractable with respect to the parameter qv which is
the maximum number of cross pairs over any vertex; namely, it can be solved
in O(2qv · n2 · qv) time. Fourth, shifting the focus from “maximum vertex signal
flow” to “maximum edge signal flow”, we show a sharp complexity dichotomy:
W-MTO can be solved in linear time if no tree edge has to carry more than two
signals, but if this maximum edge signal flow is three, MTO already becomes
NP-hard. Finally, we briefly discuss some practical aspects of exactly solving
the so far very few considered real-world instances and conclude that these can
be already solved to optimality within milliseconds (via at least three different
strategies). However, we also make the point that with the future availability
of further real-world data, our new algorithms can be of significant practical
relevance beyond so far known or straightforward approaches.

Because of space constraints, some proofs and details are deferred to the full
version of this paper.

2 Preliminaries, Basic Facts, and Simple Observations

For ease of presentation, for a W-MTO instance (T, P, ω), we always assume
that ω([s, t]) = 0 for all pairs s, t ∈ V with [s, t] 6∈ P . Moreover, subsequently
mostly referring to MTO, the presented concepts and definitions clearly apply
to W-MTO as well. Note that in a tree T = (V,E), for each ordered pair [a, b]
of vertices, there exists a uniquely determined path connecting these vertices.
We will therefore often write the path defined by the pair [a, b] when we refer to
the unique path in the tree starting in vertex a and ending in vertex b, or talk
about pairs and paths interchangeably. Sometimes, we also talk about paths in

4 B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann

the tree which do not necessarily correspond to pairs. We denote the undirected
path connecting vertices v and w in T by pathT (v, w). Moreover, Pv := {[s, t] ∈
P | v ∈ V (pathT (s, t))} denotes the set of paths passing through a vertex v. An
MTO instance is called rooted if the underlying tree T is rooted. In a rooted
tree T = (V,E), if vertex a ∈ V is an ancestor of vertex b ∈ V , then we use the
notation a ≺ b. The subtree of T rooted at v ∈ V is denoted Tv.

Let (T = (V,E), P) be an MTO instance, and let x, y ∈ P be two pairs. We
say that x conflicts with y if there exists no orientation of T for which both x
and y are satisfied. From an n-vertex MTO instance, we build in O(n3) time a
conflict graph in which each vertex corresponds to an input pair of the MTO
instance, and where there is an edge between two pairs if and only if they conflict
with each other. More formally, given an MTO instance (T = (V,E), P), the
corresponding conflict graph Gc(T, P) is defined as Gc(T, P) := (P,Ec) where
Ec := {{u, v} | u, v ∈ P ∧ u conflicts with v}.

Clearly, for an orientation of (T, P), in Gc there are no edges (that is, con-
flicts) between the vertices corresponding to the satisfied source–target pairs,
and hence the vertices corresponding to the non-satisfied source–target pairs
form a vertex cover for Gc, that is, a vertex set V ′ ⊆ P such that for every
edge e ∈ Ec at least one endpoint of e is in V ′. This yields the following useful
observation.

Proposition 1. Finding a minimum-weight vertex cover in the conflict graph
Gc(T, P) one-to-one corresponds to determining a minimum-weight set of pairs
that cannot be satisfied in (T, P).

Parameterized complexity is a two-dimensional framework for the analysis
of computational complexity [4,5,10]. One dimension is the input size n, and
the other one is the parameter (usually a positive integer). A problem is called
fixed-parameter tractable (fpt) with respect to a parameter k if it can be solved
in f(k) · nO(1) time, where f is a computable function only depending on k.
For instance, it is well-known that finding an optimal (weighted) vertex cover is
NP-hard but fixed-parameter tractable with respect to the parameter “solution
size”. Due to Proposition 1 we can immediately conclude that MTO and W-
MTO are fixed-parameter tractable with respect to the parameters “number of
unsatisfied vertex pairs” or “total weight of unsatisfied vertex pairs”, respectively
(parameter k).

3 Bounded Signal Flow Over Vertices

In this section, we investigate how the vertex-wise structure of the source–target
pairs influences the computational complexity of Maximum Tree Orienta-
tion. More specifically, first we consider the parameter mv denoting the max-
imum number of source–target paths passing through a vertex. We show that
MTO can be solved in O(2mv · |P | + n3) time. In other words, MTO is fixed-
parameter tractable with respect to the parameter mv. Motivated by this pos-
itive result, we explore in more depth the structure of the source–target paths

Exploiting Bounded Signal Flow for Graph Orientation 5

that pass through a vertex. To this end, we introduce the concept of “cross
pairs” and show that for cross-pair-free instances MTO can be solved in O(n2)
time. Informally speaking, an instance is cross-pair-free if the input tree can be
rooted such that for each source–target pair one endpoint is an ancestor of the
other one. Then, for a rooted MTO instance a cross pair is a source–target pair
such that none of its endpoints is the ancestor of the other endpoint. By refin-
ing the solving strategy for cross-pair-free instances, we show that Maximum
Tree Orientation can be solved in O(2qv · n2 · qv) time, where qv denotes the
maximum number of cross pairs passing through a vertex.

All algorithms in this section are based on dynamic programming, and, hence,
since source–target pair weights can easily be incorporated, extend to W-MTO.

3.1 Parameter “Maximum Number of Pairs Per Vertex”

Here, we show that W-MTO is fixed-parameter tractable for the parameter mv

denoting the maximum number of source–target pairs passing through a vertex.
To this end, we construct in polynomial time a tree decomposition of the con-
flict graph of treewidth at most mv (proof omitted). Informally speaking, the
treewidth [10] measures the “tree-likeness” of a graph, and a tree decomposition
is the “embedding” of a graph into a tree depicting the tree-like structure of the
graph. Recall that (weighted) MTO is equivalent to (weighted) Vertex Cover
on the conflict graph (see Proposition 1). Thus, the running time follows by the
fact that (weighted) Vertex Cover can be solved in O(2twn) time, given a
tree decomposition of width tw [10].

Theorem 1. On n-vertex trees, Weighted Maximum Tree Orientation is
solvable in O(2mv · |P | + n3) time, where mv denotes the maximum number of
source–target pairs passing through a vertex.

3.2 Cross Pairs

In the previous subsection, we have shown that W-MTO is fixed-parameter
tractable with respect to the parameter mv. In the following two subsections, we
will strengthen this result by showing that W-MTO is fixed-parameter tractable
with respect to the parameter “number of a special type of source–target pairs
(the so-called cross pairs) passing through a vertex”. The idea in the next two
subsections is to identify a “trivial” (that is, polynomial-time solvable) special
case of the problem and then to investigate instances that are close to these
trivial instances, their closeness measured in terms of a certain parameter which
is referred to as distance from triviality [7,11].

In the following, we will always consider rooted trees. Informally speaking,
a cross-pair-free instance only contains source–target pairs whose corresponding
paths are directed either towards the root or towards the leaves, but do not
change their direction. Cross-pair-free instances of W-MTO are of special interest
since they constitute our “trivial instances”.

6 B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann

Definition 1. Let (T = (V,E), P, ω) be an instance of W-MTO where T is a
rooted tree. A source–target pair p = [a, b] ∈ P is called cross pair if neither a
is an ancestor of b nor b an ancestor of a. An instance of W-MTO is called
cross-pair-free if T can be rooted such that P does not contain any cross pairs.

3.3 Cross-pair-free Instances

Now, we devise a dynamic-programming-based algorithm solving W-MTO in
quadratic time on cross-pair-free instances.

Theorem 2. On n-vertex trees, Weighted Maximum Tree Orientation
for cross-pair-free instances with given root can be solved in O(n2) time.

Proof. We present a dynamic programming algorithm with quadratic running
time solving a cross-pair-free W-MTO instance (T = (V,E), P, ω) with root r.
For the presentation of the algorithm, we use the following notation. For all v, w ∈
V with v ≺ w (that is, v is an ancestor of w) let T v

w denote the subtree
of T induced by V v

w := V (Tw) ∪ V (pathT (v, w)). For ease of presentation,
let V w

w := V (Tw). Moreover, let P v
w := {[s, t] ∈ P | s, t ∈ V v

w}. That is, T v
w

is the tree consisting of the path pathT (v, w) and the subtree Tw rooted at w,
and P v

w are the pairs with both endpoints in T v
w. Finally, the weight of an ori-

entation ~T v
w of (T v

w, P
v
w) is the sum of the weights of the pairs in P v

w satisfied

by ~T v
w.

The algorithm maintains an n×n dynamic programming table S, containing
for each v, w ∈ V with v ≺ w or v = w the two entries S(v, w) and S(w, v). The
goal of the dynamic programming procedure is to fill S in accordance with the
following definition.

For all v, w ∈ V with v ≺ w, entry S(v, w) is the maximum weight of an
orientation of (T v

w, P
v
w) among all orientations of (T v

w, P
v
w) orienting the path

between v and w from v to w (that is, away from the root). Analogously, S(w, v)
is the maximum weight of an orientation of (T v

w, P
v
w) among all orientations

of (T v
w, P

v
w) orienting the path between v and w from w to v (that is, towards

the root). Note that in the case v = w, we have that S(v, v) is the weight of an
optimal orientation of the subtree rooted at v.

Next, we describe how our algorithm computes the entries of S in accordance
with this definition. The weight of an optimal orientation of (T, P) can then be
found in S(r, r).

To compute the entries of S, visit all vertices w ∈ V in a bottom-up traversal.
Then, for each w consider all vertices v ∈ V with v = w or v ≺ w and set (omit
the sum if w is a leaf):

S(v, w) := A(v, w) +
∑

u is a child of w

max {S(u,w), S(v, u)−A(v, w)} ,

S(w, v) := A(w, v) +
∑

u is a child of w

max {S(w, u), S(u, v)−A(w, v)} .

Exploiting Bounded Signal Flow for Graph Orientation 7

Herein, A(v, w) denotes the sum of the weights of the source–target pairs with
both endpoints on pathT (v, w) that are satisfied when orienting the path be-
tween v and w from v to w, that is,

A(v, w) := ω({[s, t] ∈ P | s, t ∈ V (pathT (v, w)) ∧ s ≺ t}).

Analogously, A(w, v) := ω({[s, t] ∈ P | s, t ∈ V (pathT (v, w))∧t ≺ s}). Moreover,
for ease of presentation we assume that A(v, v) = 0.

For the correctness of the algorithm note the following. For a leaf w and an
ancestor v of w, the tree T v

w is identical to the path pathT (v, w). Hence, the sum
of the weights of pairs that can be satisfied by orienting the path either from v
to w or from w to v is A(v, w) and A(w, v), respectively. Next, consider the case
that w is an inner vertex and let v be an ancestor of w. Moreover, let u1, . . . , u`

denote the children of w. We argue that the maximum weight of an orientation
of (T v

w, P
v
w) orienting the edges on pathT (v, w) towards w equals

A(v, w) +
∑̀
i=1

max {S(ui, w), S(v, ui)−A(v, w)} , (1)

and, hence, S(v, w) is computed correctly. To this end, consider a maximum-

weight orientation ~T v
w of (T v

w, P
v
w) orienting the edges on pathT (v, w) towards w.

If, for a child ui, ~T
v
w contains the arc (ui, w), then the contribution of the source–

target pairs in P v
w with at least one endpoint in Tui

to the weight of ~T v
w is S(ui, w);

note that no source–target pair of P v
w with exactly one endpoint in Tw

ui
is satisfied

by ~T v
w, and, thus, the contribution of these pairs is S(ui, w) (a smaller contri-

bution would contradict the optimality of ~T v
w). Moreover, if for a child ui the

oriented tree ~T v
w contains the arc (w, ui), then it follows by a similar argument

that the contribution of the paths in P v
w with at least one endpoint in V (Tui

)
is S(v, ui)−A(v, w). The only difference is that the contribution of the source–
target pairs with both endpoints in V (pathT (v, w)) is already considered in the
above formula, and, hence, must be subtracted from S(v, ui).

We omit the proof of the running time. ut

Note that if the root of a cross-pair-free W-MTO instance is not known, it
can be calculated in O(n|P |) time by trying all roots and then checking for each
pair if the least common ancestor is one of the two endpoints.

As an immediate consequence of Theorem 2, we can improve the cubic-time
algorithm for MTO on paths by Medvedovsky et al. [9] to quadratic time. Herein,
we use that every path rooted at one of its endpoints results in a cross-pair-free
instance of MTO.

Corollary 1. Weighted Maximum Tree Orientation on n-vertex paths
can be solved in O(n2) time.

8 B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann

3.4 Parameter “Maximum Number of Cross Pairs Passing Through
a Vertex”

Next, we show that W-MTO is fixed-parameter tractable with respect to the
parameter qv by extending the dynamic programming algorithm for cross-pair-
free instances. Formally, qv is defined as follows. For a rooted W-MTO in-
stance (T = (V,E), P) with root r, let Q denote the set of cross pairs. Moreover,
for v ∈ V let Qv := Pv ∩ Q be the set of cross pairs passing through v. With
respect to the root r the maximum number qv(r) of cross pairs passing through
a vertex is given by maxv∈V |Qv|. Then, qv is the minimum value of qv(r) over
all possible choices r to root T .

Theorem 3. On n-vertex trees, Weighted Maximum Tree Orientation
with given root can be solved in O(2qv ·qv·n2) time, where qv denotes the maximum
number of cross pairs passing through a vertex.

The basic idea of the algorithm is to incorporate the cross pairs by trying for
every vertex all possibilities to realize the cross pairs passing through this ver-
tex. To this end, we extend the matrix S by an additional dimension. As a
consequence, the dynamic programming update step becomes significantly more
intricate. The details are omitted for space constraints.

4 Bounded Signal Flow Over Edges

We now consider MTO instances where the number me of paths that pass
through an edge is limited. We show that the problem is linear-time solvable
for me ≤ 2, but NP-hard for me ≥ 3, thereby establishing a dichotomy on the
complexity of MTO with respect to me.

First, we note that if me ≤ 2, then the conflict graph has treewidth at most
two (proof omitted). Since width-two tree decompositions can be constructed
in linear time [2] and weighted Vertex Cover can be solved in linear time
on graphs with constant treewidth [10], this yields linear-time solvability for
Weighted Maximum Tree Orientation with me ≤ 2.

Theorem 4. If me ≤ 2, then Weighted Maximum Tree Orientation can
be solved in linear time.

We can further prove that for me ≥ 3, MTO is NP-hard even on stars, that
is, on trees where all leaves are attached to the same vertex. The proof is by
reduction from MaxDiCut.

Theorem 5. Maximum Tree Orientation on stars with me ≥ 3 is NP-
complete.

Exploiting Bounded Signal Flow for Graph Orientation 9

5 Observations on Protein Networks

The goal in this section is to explore the space of practically meaningful pa-
rameterizations, here focusing on biological applications. We first performed
experiments based on the same data as used by Medvedovsky et al. [9]. The
network is a yeast protein–protein interaction network from the Database of In-
teracting Proteins (DIP) [12], containing 4 737 vertices and 15 147 edges. The
cause–effect pairs were obtained from gene knockout experiments by Yeang et
al. [15] and contain 14 502 pairs. After discarding small connected components
and contracting cycles, we obtained a tree with 1 278 vertices and 5 569 pairs.5

The resulting tree is, as already observed by Medvedovsky et al. [9], very star-
like: there is one vertex of degree 1151 and 1048 degree-one vertices attached to
it. The remaining 229 vertices have degree 1 to 4. All paths connecting cause–
effect pairs pass through the central vertex.

We first note that this MTO instance is actually fairly easy to solve exactly.
The Integer Linear Program (ILP) by Medvedovsky et al. [9, Sect. 3.1] and
Vertex Cover on the conflict graph (see Section 2) solved by either an ILP
or a simple branching strategy with data reduction all solve the instance in less
than a second.6 The branching strategy finds a vertex v of maximum degree
and branches into the two cases of taking v into the vertex cover or taking all
neighbors of v into the vertex cover. Before each branch, degree-1 vertices are
eliminated by taking their neighbor into the vertex cover. The search in the
second branch is cut short when the accumulated vertex cover is larger than
that of the first branch.

The reason that these strategies work so well is probably due to the low value
of the parameter k: only 77 cause–effect pairs cannot be satisfied. This limits
the size of the branch-and-bound tree that underlies all three methods.

In Table 1, we examine several other parameters. Since there are still p =
5 569 pairs left, using this parameter for a fixed-parameter algorithm seems
infeasible. Unfortunately, since all paths run through a single vertex, the pa-
rameter mv is not any more useful. Only about 5 % of the pairs are cross
pairs, so q is already a more promising parameter. However, with a value of
q = 417, direct application of Theorem 3, with a worst-case running time bound
of O(n3 + 2q · (|P | + n2)) seems not practical. Even if we eliminate pairs that
do not conflict with any other pairs, leaving only nc = 1 287 pairs, we still find
at least 306 cross pairs (parameter q′). Again, because all paths run through a
single vertex, considering cross pairs per vertex does not help. In summary, for
this particular instance the number of unsatisfiable pairs k is clearly the most
useful parameter.

5 These numbers differ slightly from the ones stated by Medvedovsky et al. [9]. We do
not use the additional kinase–substrate data, which is only meaningful to evaluate
the orientations obtained, and requires an arbitrary parameter choice not docu-
mented by Medvedovsky et al. [9].

6 The running times are 0.09 s, 0.02 s, and 0.13 s, respectively, on a 2.67 GHz Intel
Xeon W3520 machine, using GLPK 4.44 for the ILPs, and with the branching strat-
egy implemented in Objective Caml.

10 B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann

Table 1. Values for various parameters for the protein interaction network instance
from Medvedovsky et al. [9].

Parameter Value

n Number of network vertices 4 654
m Number of network edges 15 104
p Number of pairs 14 155
nt Vertices in MTO instance 1 278
pt Number of pairs in MTO instance 5 569
n∗ Number of vertices in star 1 049
mv Max. number of pairs per vertex 5 569
me Max. number of pairs per edge 371
q Number of cross pairs 417
qv Max. number of cross pairs per vertex 417
q′ Number of cross pairs after data reduction 306
q′v Max. number of cross pairs per vertex after data reduction 306
nc Number of vertices in conflict graph 1 287
mc Number of edges in conflict graph 4 626
k Number of unsatisfiable pairs 77

To examine the effect of the sparseness of the input instance on the various
parameters, we investigated another yeast protein interaction network assembled
by Nir Yosef from various sources (see references in [3]). In this network, each
edge is annotated with a probability of interaction. Thus, by thresholding, we
can obtain graphs of different sparseness. The results are shown in Table 2.

We see that, here, the parameter k is not always a clear winner. When the
network becomes sparser, the components that will be shrunk to a single vertex
by the cycle contraction will be smaller, leaving fewer pairs with both endpoints
on the same tree vertex, and thereby increasing the number of potential conflicts.
Only for very high thresholds, the parameter becomes small again, since then
the original instance is already much smaller. Still, all instances can be solved
in less than one second by the three algorithms mentioned above, which exploit
low values of k.

We also see that for denser graphs, the parameter values based on the number
of cross pairs are quite low, e. g. q′v = 3 for the whole graph. Thus, it seems
very likely that these instances can be quickly solved by the algorithm from
Theorem 3, running in O(2q

′
v · n2 · q′v) time. One possible explanation for the

low value for these parameters is that the networks exhibit a linear structure.
For example, if each protein can be assigned a distance to the nucleus, and
interactions mostly transport information to or from the nucleus, then we would
expect to have only few cross pairs.

The parameter mv could be expected to be not too high in biological net-
works, since otherwise this would make the network less robust, since elimina-
tion of one vertex would disrupt too many paths. However, one vertex in the
tree under consideration can actually correspond to a very large component in

Exploiting Bounded Signal Flow for Graph Orientation 11

Table 2. Parameters for the largest connected component of the protein interaction
network assembled by Nir Yosef [3] with different thresholds for the edge probability.
The uneven gaps in the sizes of the instances are because many edges have identical
weights.

threshold n m p nt pt n∗ mv me q qv q′ q′v nc mc k

0.000000 5385 39921 14393 799 2014 750 2014 59 7 7 3 3 115 292 17
0.154420 4530 35041 11522 747 2203 705 2203 298 27 27 20 20 475 1632 40
0.371369 4254 32135 10740 796 2443 749 2443 275 47 47 35 35 528 2424 46
0.573290 3871 27128 9445 777 2225 704 2225 268 32 32 13 13 140 311 32
0.573313 2546 8977 5279 638 2311 477 2310 208 252 252 151 151 561 2394 68
0.830093 2206 7136 4346 643 2206 449 2206 192 304 304 193 193 727 4017 83
0.886308 1407 3646 1607 441 787 260 785 45 106 106 88 88 311 1876 75
0.943001 1135 3069 920 361 464 195 463 32 57 57 42 42 179 801 44
0.954421 1039 2504 843 350 489 175 461 45 85 73 71 61 215 3001 81
0.957338 895 2060 681 304 405 119 375 39 64 54 58 50 240 3092 89
0.965986 874 2018 666 299 477 103 411 165 90 78 85 75 358 12284 110
0.984753 668 1676 312 206 163 95 162 20 7 7 6 6 55 222 15
0.989212 581 1322 188 192 167 69 161 86 24 24 24 24 141 1088 32
0.989233 307 681 71 121 70 32 66 36 21 21 11 11 52 219 7
0.990409 294 666 28 114 27 26 26 21 2 2 2 2 9 8 2

the original graph, which weakens this effect. Therefore, this parameter is more
useful in sparser graphs, where not too many graph vertices are joined into a tree
vertex. However, for the given instances, it seems small enough to be exploited
only for fairly small instances, where other parameters would give good results,
too.

The parameter me could similarly be expected to be low in sparse networks;
however, the NP-hardness result already for me ≥ 3 (Theorem 5) makes practical
use of this parameter unlikely.

6 Conclusion

We started a parameterized complexity analysis of (Weighted) Maximum
Tree Orientation, obtaining a more fine-grained view on the computational
complexity of this NP-hard problem. In this line, there are still several challenges
for future investigations. For instance, in the spirit of “distance-from-triviality
parameterization” [7,11] it would be interesting to study the parameterized com-
plexity of MTO with respect to the parameter “number of all possible pairs mi-
nus the number of input pairs”—recall that for parameter value zero MTO is
polynomial-time solvable [8]. MTO restricted to stars is still NP-hard, but then
at least one quarter of all input pairs can always be satisfied [9]. Hence, it would
be interesting to study above guarantee parameterization [10,11] with respect to
the number of satisfied pairs. MTO can be translated into a vertex covering prob-
lem (see Proposition 1) on a graph class that is K4-free—this motivates to study

12 B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann

whether vertex covering on this graph class can be done faster than on general
graphs. Clearly, MTO brings along numerous further parameters and parameter
combinations which can make a more comprehensive multivariate complexity
analysis [11] very attractive. Often, it is desirable to not only list a single solu-
tion, but to enumerate all optimal solutions. Our dynamic-programming-based
algorithms seem suitable for this. Following Gamzu et al. [6] and extending the
studies for MTO as pursued here to the more general case of mixed graphs with
partially already oriented edges is of high interest. First steps in this direction
have very recently been undertaken by Silverbush et al. [14]. Finally, it seems
promising to examine the parameters based on cross pairs in other networks
such as communication networks, and to try to apply the concept to other hard
network problems.

References

1. Alm, E., Arkin, A.P.: Biological networks. Current Opinion in Structural Biology
13(2), 193–202 (2003)

2. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees.
SIAM Journal on Algebraic and Discrete Methods 7(2), 305–314 (1986)

3. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free query-
ing of protein interaction networks. Journal of Computational Biology 17(3), 237–
252 (2010)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
6. Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In:

Proc. 10th WABI. LNBI, vol. 6293, pp. 215–225. Springer (2010)
7. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-

lems: distance from triviality. In: Proc. 1st IWPEC. LNCS, vol. 3162, pp. 162–173.
Springer (2004)

8. Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reach-
ability. Information Processing Letters 63(5), 229–235 (1997)

9. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orienting
graphs based on cause-effect pairs and its applications to orienting protein net-
works. In: Proc. 8th WABI. LNBI, vol. 5251, pp. 222–232. Springer (2008)

10. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. No. 31 in Oxford Lec-
ture Series in Mathematics and Its Applications, Oxford University Press (2006)

11. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameter-
ization. In: Proc. 27th STACS. Leibniz International Proceedings in Informatics,
vol. 5, pp. 17–32. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)

12. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg,
D.: The database of interacting proteins: 2004 update. Nucleic Acids Research
32(Database issue), D449–D451 (2004)

13. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nature Biotechnology 24, 427–433 (April 2006)

14. Silverbush, D., Elberfeld, M., Sharan, R.: Optimally orienting physical networks.
In: Proc. 15th RECOMB. LNCS, Springer (2011), to appear.

15. Yeang, C.H., Ideker, T., Jaakkola, T.: Physical network models. Journal of Com-
putational Biology 11(2–3), 243–262 (2004)

	Exploiting Bounded Signal Flow for Graph Orientation Based on Cause–Effect Pairs

