
Being Caught Between a Rock and a Hard Place
in an Election—Voter Deterrence by Deletion of

Candidates

Britta Dorn1 and Dominikus Krüger2

1 Universität Tübingen, Wilhelm-Schickard-Institut für Informatik, Sand 13,
72076 Tübingen, Germany

2 Universität Ulm, Institut für Theoretische Informatik, James-Franck-Ring 5 / O27,
89081 Ulm, Germany

Abstract. We introduce a new problem modeling voter deterrence by
deletion of candidates in elections: In an election, the removal of certain
candidates might deter some of the voters from casting their votes, and
the lower turnout then could cause a preferred candidate to win the
election. This is a special case of the variant of the Control problem
in which an external agent is allowed to delete candidates and votes
in order to make his preferred candidate win, and a generalization of
the variant where candidates are deleted, but no votes. We initiate a
study of the computational complexity of this problem for several voting
systems and obtain NP-completeness and W[2]-hardness with respect
to the parameter number of deleted candidates for most of them.

1 Introduction

Imagine: finally, you have the chance of getting rid of your old mayor, whom
you absolutely cannot stand. Luckily, in addition to the normal unscrupulous
opponents, the perfect candidate is running for the vote this year. You agree
with everything he says and therefore you are even looking forward to Election
Day. But suddenly the word is spread that he has withdrawn his candidacy.
Again, you are feeling caught between a rock and a hard place. Does it make
any sense to go to the polls if you only have a choice between the lesser of two
evils?

Low voter turnouts caused by scenarios such as the one in the above example
may lead to modified outcomes of an election. This is reminiscent of a family
of problems which have been studied extensively in the computational social
choice literature recently, the Control problems [1–5] where an external agent
can change the outcome of an election by adding or deleting candidates and/or
voters, respectively. In particular, in the setting of constructive control by delet-
ing candidates, the agent can prevent candidates from running for office, which
causes other candidates to rise in ranking for certain voters. This may ultimately
result in the external agent’s preferred candidate winning the election.

In real life, this process is a little bit more complicated and control of an
election can occur in a more entangled way: As in our introductory example, if

some candidates do not stand for election, then certain voters will not even take
part in the election because they feel that there is nothing interesting to decide
or no relevant candidate to vote for. The lower turnout could have consequences
for the remaining candidates: the winner of the election under normal conditions
might lose points because of the lower polling after the deletion of certain can-
didates, and this can produce a different winner. Hence, by deterring the voters
by means of deleting their favorite candidates, one might prevent them from
casting their votes and therefore change the outcome of the election. Therefore,
we call this phenomenon voter deterrence.

This situation can be observed in the primaries in US elections or in mayoral
elections, where mayors often are elected with single-digit turnout, sometimes
caused by the withdrawal of candidacy of one or several alternatives in the run-
up.

As to our knowledge, this problem has not yet been considered from a com-
putational point of view. In this paper, we want to initiate the study of the cor-
responding decision problem Voter Deterrence defined below. We mainly
consider the case where voters are easily deterred: As soon as their most pre-
ferred candidate does not participate in the election, they refrain from the elec-
tion. This is what we denote as 1-Voter Deterrence, but clearly, one can also
consider x-Voter Deterrence, where a voter only refuses to cast his vote if his
top x candidates are removed. Surprisingly, it turns out that 1-Voter Deter-
rence is already computationally hard for several voting systems, even for Veto.

This paper is organized as follows. After introducing notation and defining
the decision problem x-Voter Deterrence in Section 2, we investigate the
complexity of this problem for the case of x = 1 for the voting systems Plurality
(for which it turns out to be solvable in polynomial time, but with x = 2 it
is NP-complete), Veto, 2-approval, Borda, Maximin, Bucklin, Fallback Voting,
and Copeland (for all of which the problem turns out to be NP-complete).
As a corollary, we can show that the hard problems are also W[2]-hard with
respect to the solution size, i.e., with respect to the parameter number of deleted
candidates, which means that they remain hard even if only few candidates have
to be deleted to make the preferred candidate win. This is stated in Section 4
together with a short discussion of the complexity with respect to the parameter
number of candidates. We conclude with a discussion of open problems and
further directions that might be interesting for future investigations.

2 Preliminaries

Elections. An election is a pair E = (C, V) consisting of a candidate set C =
{c1, . . . , cm} and a multiset V = {v1, . . . , vn} of votes or voters, each of them
a linear order over C, i.e., a transitive, antisymmetric, and total relation over
the candidates in C, which we denote by �. A voting system maps (C, V) to a
set W ⊆ C called the winners of the election. All our results are given for the
unique winner case, where W consists of a single candidate.

We will consider several voting systems. Each of them is shortly described
in the corresponding subsection. Most of them are positional scoring protocols,
which are defined by a vector of integers α = 〈α1, . . . , αm〉, with m being the
number of candidates. For each voter, a candidate receives α1 points if he is
ranked first by the voter, α2 if he is ranked second, etc. The score of a candidate is
the total number of points the candidate receives. Normally, whenever candidates
receive points in a voting system, the one with the highest score wins.

Voter Deterrence, Control. In an x-Voter Deterrence instance, we con-
sider a fixed natural number x, and we are given an election E = (C, V), a
preferred candidate p ∈ C, and a natural number k ≤ |C|, as well as a voting
system. It will always be clear from the context which voting system we are
using, so we will not mention it explicitly in the problem description. Let R ⊆ C
denote a subset of candidates, and let VR ⊆ V denote the set of voters who have
ranked only candidates from R among the first x ranks in their vote. The task
consists in determining a set R of at most k candidates that are removed from C,
and who therefore prevent the set of voters VR from casting their votes, such that
p is a winner in the election Ẽ = (C \R, V \VR). The set R is then called a solu-
tion to the x-Voter Deterrence instance. The underlying decision problem
is the following.

x-Voter Deterrence
Given: An election E = (C, V), a preferred candidate p ∈ C, k ∈ N and
a fixed x ∈ N.
Question: Is there a subset of candidates R ⊆ C with |R| ≤ k, such

that p is the winner in the election Ẽ = (C \R, V \ VR)?

x-Voter Deterrence is a special case of one of the many variants of the
Control problem [5], where the chair is allowed to delete candidates and votes,
which is defined as follows.

Constructive Control by Deleting Candidates and Votes
Given: An election E = (C, V), a preferred candidate p ∈ C, and
k, l ∈ N.
Question: Is there a subset C ′ ⊆ C with |C ′| ≤ k, and a subset V ′ ⊆ V
with |V ′| ≤ l, such that p is a winner in the election Ẽ = (C \C ′, V \V ′)?

Note that in the Voter Deterrence problem, the deleted candidates and
votes are coupled, which is not necessarily the case in the above Control
problem. If we set x = m, we obtain Constructive Control by Delet-
ing Candidates, which is the above Constructive Control by Deleting
Candidates and Votes problem with l = 0. The latter variant hence is a spe-
cial case of m-Voter Deterrence, implying that the hardness results from [1]
carry over to m-Voter Deterrence.

In this paper, we will mainly consider 1-Voter Deterrence, i.e., a voter
will refuse to cast his vote if his most preferred candidate does not participate in
the election. For the voting system Plurality, we also consider 2-Voter Deter-
rence, where a voter only refrains from voting if his two top ranked candidates

are eliminated from the election.

Parameterized complexity. The computational complexity of a problem is
usually studied with respect to the size of the input I of the problem. One can
also consider the parameterized complexity [6–8] taking additionally into account
the size of a so-called parameter k which is a certain part of the input, such as the
number of candidates in an election, or the size of the solution set. A problem is
called fixed-parameter tractable with respect to a parameter k if it can be solved
in f(k) · |I|O(1) time, where f is an arbitrary computable function depending
on k only. The corresponding complexity class consisting of all problems that
are fixed-parameter tractable with respect to a certain parameter is called FPT .

The first two levels of (presumable) parameterized intractability are captured
by the complexity classesW[1] andW[2]. Proving hardness with respect to these
classes can be done using an FPT -reduction, which reduces a problem instance
(I, k) in f(k) · |I|O(1) time to an instance (I ′, k′) such that (I, k) is a yes-instance
if and only if (I ′, k′) is a yes-instance, and k′ only depends on k but not on |I|,
see [6–8].

For all our hardness proofs, we use the W[2]-complete Dominating Set
(DS) problem for undirected graphs.

Dominating Set
Given: An undirected graph G = (V, E), and a nonnegative integer k.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ k such that every vertex
v ∈ V is contained in V ′ or has a neighbor in V ′?

Notation in our proofs. In all our reductions from Dominating Set, we
will associate the vertices of the given graph G = (V, E) with candidates of the
election E = (C ′ ∪ I, V) to be constructed. For that sake, we use a bijection
g : V → I. By N(v) := {u ∈ V | {u, v} ∈ E}, we denote the set of neighbors or
the neighborhood of a vertex v ∈ V. Analogously, we define the neighborhood of
a candidate ci ∈ I as N(ci) = g(N(vi)) for ci = g(vi), i.e., the set of neighbors
of a candidate ci ∈ I corresponding to the vertex vi ∈ V is the set of candidates
corresponding to the neighborhood of vi in G. By N(vi) ⊂ I we denote the set
of non-neighbors of vi, analogously for neighborhoods of candidates.

In our reductions, we usually need one dummy candidate for every ci ∈ C,
these will be denoted by ĉi. All other dummy candidates appearing are marked
with a hat as well, usually they are called d̂ or similarly. When building the votes
in our reductions, we write ‘k ‖ a1 � · · · � al’ which means that we construct
the given vote a1 � · · · � al exactly k times.

In our preference lists, we sometimes specify a whole subset of candidates,
e.g., c � D for a candidate c ∈ C and a subset of candidates D ⊂ C. This
notation means c � d1 � · · · � dl for an arbitrary but fixed order of D =

{d1, . . . , dl}. If we use a set
→
D in a preference list, we mean one specific, fixed

(but arbitrary, and unimportant) order of the elements in D, which is reversed

if we write
←
D. Hence, if c �

→
D stands for c � d1 � · · · � dl, then c �

←
D means

c � dl � · · · � d1. Finally, whenever we use the notation Drest for a subset of
candidates in a vote, we mean the set consisting of those candidates in D that
have not been positioned explicitly in this vote.

3 Complexity-theoretic analysis

In this section, we will give several hardness proofs for Voter Deterrence for
different voting systems. All our results rely on reductions from theNP-complete
problem Dominating Set. We only prove NP-hardness for the different voting
systems, but since membership inNP is always trivially given,NP-completeness
follows immediately. For all these reductions we assume that every vertex of the
input instance has at least two neighbors, which is achievable by a simple poly-
nomial time preprocessing.

We will give the first of the following reduction proofs in detail. For the
remaining reductions, we specify the constructed instances together with further
helpful remarks. The proofs that these are indeed equivalent to the Dominating
Set-instances are straightforward and can be found in the appendix. In each of
them, one obtains a solution to the x-Voter Deterrence-instance by deleting
exactly those candidates that correspond to the vertices belonging to a solution
of the corresponding Dominating Set-instance, and vice versa.

3.1 Plurality

The Plurality protocol is the positional scoring protocol with α = 〈1, 0, . . . , 0〉 [9].
It is easy to see that 1-Voter Deterrence can be solved efficiently for

Plurality. One can simply order the candidates according to their score and
if there are more than k candidates ahead of p, this instance is a no-instance.
Otherwise p will win after deletion of the candidates that were ranked higher than
him, because all the votes which they got a point from are removed. Therefore
the following theorem holds.

Theorem 1. 1-Voter Deterrence is in P for Plurality.

For 2-Voter Deterrence, it is not so easy to see which candidates should
be deleted. In fact, the problem is NP-complete.

Theorem 2. 2-Voter Deterrence is NP-complete for Plurality.

Proof. We prove Theorem 2 with an FPT -reduction from Dominating Set.
Let 〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we need one candidate ci and one dummy
candidate ĉi, as well as the preferred candidate p and his dummy candidate p̂,
so C = I ∪ D ∪ {p} with I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn, p̂}. For ease of
presentation we denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

n ‖ p � p̂ � Crest, (1)

∀ci ∈ I :

|N(ci)| ‖ ci � ĉi � Crest, (2)

∀cj ∈ N(ci) ∪ {p} :

1 ‖ ci � cj � Crest. (3)

Note that n votes are built for every candidate ci. Therefore each candidate
in I∗ has the score n. The score of a candidate can only be decreased if the
corresponding candidate himself is deleted. Note also that the score of every
dummy candidate cannot exceed n− 1.
We will now show that one can make p win the election by deleting up to k
candidates if and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is
a solution to the corresponding 2-Voter Deterrence-instance. Since S is a
dominating set, every candidate in I will be at least once in the neighborhood
of a candidate ci ∈ R or be a candidate in R himself. Therefore p is the only
candidate who gains an additional point from every deleted candidate cx ∈ R
from the vote built by (3) and will therefore be the unique winner.

“⇐”: Let R be a given solution to a 2-Voter Deterrence-instance. Note
that every candidate in I∗ has the original score n. These scores can be increased
if the corresponding candidate himself is not deleted. If p wins, then with the
same argument as before, we see that every candidate cx ∈ I either must be a
member of the set R, or must not appear as cj on the second position of the votes
built by (3) for at least one candidate of R, hence must be in the neighborhood
of R. Therefore S = g−1(R) is a solution to the equivalent DS-instance. ut

3.2 Veto

The positional scoring protocol with α = 〈1, 1, . . . , 1, 0〉 is called Veto [9].

Theorem 3. 1-Voter Deterrence is NP-complete for Veto.

We show Theorem 3 with an FPT -reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we need one candidate ci, as well as the
preferred candidate p and k+1 dummy candidates, so C = I ∪D∪{p} with I =

{c1, . . . , cn} and D = {d̂1, . . . , d̂k+1}. For ease of presentation we denote I ∪ {p}
by I∗.
Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ I∗ \ (N(ci) ∪ {ci}) :

1 ‖ ci � Crest � D � cj , (1)

∀cj ∈ N(ci) ∪ {ci} :

1 ‖ p � Irest � D � cj , (2)

∀d̂j ∈ D :

2 ‖ p � I � Drest � d̂j . (3)

Note that every vote built by (2) and (3) can only be removed by deleting
the candidate p, who should win the election. Therefore these votes will not be
removed. Note also that for each set of votes constructed for a candidate ci ∈ I,

every candidate in C \D takes the last position in one of theses votes, hence the
score of every such candidate is the same. In contrast, the dummy candidates
cannot win the election at all, due to the fact that they are on the last position
of the constructed votes twice as often as the other candidates.

3.3 2-approval

The 2-approval protocol is the positional scoring protocol with the scoring vector
α = 〈1, 1, 0, . . . , 0〉 [9].

Theorem 4. 1-Voter Deterrence is NP-complete for 2-approval.

We show Theorem 4 by an FPT -reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V, we create one candidate ci and one addi-
tional dummy candidate ĉi, finally we need the preferred candidate p. So with
I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}, the candidates are C = I ∪D ∪ {p}.
Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ N(ci) :

1 ‖ ci � cj � ĉj � Crest � p, (1)

∀cj ∈ I \ (N(ci) ∪ {ci}) :

1 ‖ ĉi � cj � ĉj � Crest � p, (2)

2 ‖ ĉi � p � Crest, (3)

n− |N(ci)| ‖ ci � ĉi � Crest � p. (4)

Without any candidate deleted, all ci ∈ I and p have the same score of 2n,
while the dummy candidates ĉj ∈ D have a score less than 2n. Note that one
decreases p’s score by deleting a dummy candidate, because a deletion of this
kind results in losing a vote built in (3). Therefore one has to delete candidates
in I to help p in winning.

3.4 Borda

The positional scoring protocol with α = 〈m−1,m−2, . . . , 0〉 is called Borda [9].

Theorem 5. 1-Voter Deterrence is NP-complete for Borda.

We show Theorem 5 by an FPT -reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy
candidate ĉi, finally we need the preferred candidate p. So the candidates are
C = I ∪ D ∪ {p} with I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}. For ease of

presentation, we denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ N(ci) :

1 ‖ ci �
→
I∗rest � cj � ĉj �

→
Drest � ĉi, (1)

1 ‖ ci � cj � ĉj �
←
I∗rest �

←
Drest � ĉi, (2)

1 ‖ ĉi � ĉj � cj �
←
I∗rest � ci �

←
Drest, (3)

1 ‖ ĉi �
→
I∗rest � ĉj � cj � ci �

→
Drest. (4)

Recall that
→
A denotes one specific order of the elements within the set A which

is reversed in
←
A. Keeping this in mind, it is easy to see that every candidate in I∗

has the same score within one gadget constructed by the four votes built by (1)
to (4) for one cj , while the dummy candidates all have a lower score. Note that
the deletion of any candidate will decrease the score of every other candidate.
Therefore the scores of the candidates in I have to be decreased more than the
one of p, whereas the scores of the candidates in I∗ can never be brought below
the score of any candidate in D.

3.5 Maximin

This voting protocol is also known as Simpson. For any two distinct candidates
i and j, let N(i, j) be the number of voters that prefer i to j. The maximin score
of i is minj 6=iN(i, j) [9].

Theorem 6. 1-Voter Deterrence is NP-complete for Maximin.

We show Theorem 6 by an FPT -reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy
candidate ĉi, finally we need the preferred candidate p. So the candidates are
C = I ∪D ∪ {p} with I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci �
→
I rest �

→
N(ci) � p �

→
Drest � ĉi, (1)

1 ‖ ci �
←
N(ci) � p �

←
I rest �

←
Drest � ĉi, (2)

1 ‖ ĉi �
→
I rest � p �

→
N(ci) �

→
Drest � ci, (3)

1 ‖ ĉi � p �
←
N(ci) �

←
I rest �

←
Drest � ci. (4)

Recall that
→
A denotes one specific order of the elements within set A which

is reversed in
←
A. With this in mind, it is easy to see that every candidate in I

has the same score as p, namely 2n. The dummy candidates are not able to win
the election as long as at least one of the candidates in I or p is remaining.

3.6 Bucklin and Fallback Voting

A candidate c’s Bucklin score is the smallest number k such that more than half
of the votes rank c among the top k candidates. The winner is the candidate
that has the smallest Bucklin score [10].

Theorem 7. 1-Voter Deterrence is NP-complete for Bucklin.

Note that Bucklin is a special case of Fallback Voting, where each voter
approves of each candidate, see [11]. We therefore also obtain

Corollary 1. 1-Voter Deterrence is NP-complete for Fallback Voting.

We show Theorem 7 by an FPT -reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy
candidate ĉi. Additionally, we need the preferred candidate p and several dummy
candidates. We need n(n+k) filling dummies f̂ , k(2n+k−1) security dummies ŝ,

and finally k− 1 leading dummies l̂. So the candidates are C = I ∪D ∪ S ∪ F ∪
L ∪ {p} with I = {c1, . . . , cn}, D = {ĉ1, . . . , ĉn}, S = {ŝ1, . . . , ŝk(2n+k−1)},
F = {f̂1, . . . , f̂n(n+k)}, and L = {l̂1, . . . , l̂k−1}. For ease of presentation, we
denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci � N(ci) � {f̂(i−1)(n+1)+1, . . . , f̂i(n+1)−|N(ci)|−1}
� {ŝ(2i−2)(k+1)+1, . . . , ŝ2(i−1)(k+1)} � Crest � p, (1)

1 ‖ ĉi � N(ci) � {f̂i(n+1)−|N(ci)|, . . . , f̂(i)(n+1)} � p
� {ŝ(2i−1)(k+1)+1, . . . , ŝ2i(k+1)} � Crest, (2)

∀r ∈ {1, . . . , k − 1} : one vote of the form

1 ‖ l̂r � {f̂n(n+1)+(r−1)n+1, . . . , f̂n(n+1)+in}
� {ŝ2n(k+1)+(r−1)(k+1)+1, . . . , ŝ2n(k+1)+r(k+1)} � Crest � p. (3)

Note that every candidate in I∗ occurs within the first n+ 2 positions in the
votes built by (1) and (2) for every candidate ci ∈ I exactly once. Therefore p
is not the unique winner without modification. Note also that deleting some of
the dummy candidates is not helping p, as they all appear just once within the
first n + 2 positions. Because of the security dummies, no candidate in I∗ can
move up to one of the first n+ 2 positions, if he has not been there before. Af-
ter the deletion of k candidates, up to k votes can be removed—note that every
removed vote has to be built by (1) or (3) if p wins the election with this deletion.

3.7 Copeland

For any two distinct candidates i and j, let again N(i, j) be the number of
voters that prefer i to j, and let C(i, j) = +1 if N(i, j) > N(j, i), C(i, j) = 0 if

N(i, j) = N(j, i), and C(i, j) = −1 if N(i, j) < N(j, i). The Copeland score of
candidate i is

∑
j 6=i C(i, j) [9].

Theorem 8. 1-Voter Deterrence is NP-complete for the voting system
Copeland.

We show Theorem 8 by an FPT -reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy
candidate ĉi. Additionally we need the preferred candidate p, one thievish candi-
date t̂ and furthermore n filling dummy candidates. So the candidates are C =
I ∪D∪F ∪{t̂, p} with I = {c1, . . . , cn}, D = {ĉ1, . . . , ĉn}, and F = {f̂1, . . . , f̂n}.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci �
→
N(ci) � t̂ �

→
I rest � p �

→
F �

→
Drest � ĉi, (1)

1 ‖ ci � p �
←
I rest �

←
N(ci) �

←
F � t̂ �

←
Drest � ĉi, (2)

1 ‖ ĉi � t̂ �
→
N(ci) �

→
I rest � p �

→
F � ci �

→
Drest, (3)

1 ‖ ĉi � p �
←
I rest �

←
F � t̂ �

←
N(ci) � ci �

←
Drest. (4)

These n gadgets (consisting of the above 4 votes) cause that the candidates
have different scores. Note that the candidates of each set are always tying with
the other candidates in their set, since every gadget has two votes with one
specific order of the members and another two of the reversed order. Since can-
didates in D are losing every pairwise election against all other candidates, they
have a score of −(2n + 2). The candidates in F are just winning against the
candidates in D and are tied against t̂ and therefore have a score of −1. Since
the candidates in I and p are on a par with t̂, this gives them a score of 2n and t̂
a score of n. Note that if there exists a deletion of k candidates which makes p
win the election, there also exists a deletion of up to k candidates in I doing so.
The main idea here is that the thievish candidate can steal exactly one point
from every candidate in I by winning the pairwise election between them due
to the deleted candidate and thereby removed votes. Since t̂ starts with a score
of n, this will only bring him to a score of 2n − k with k deleted candidates.
Therefore he cannot get a higher score than p initially had.

4 Parameterized complexity-theoretic analysis

In this section, we shortly take a closer look at the parameterized complexity of
Voter Deterrence for the previously considered voting systems.

Since all the NP-hardness proofs of the previous section are based on FPT -
reductions from Dominating Set, we immediately obtain

Corollary 2. 1-Voter Deterrence isW[2]-hard for Copeland, Veto, Borda,
2-approval, Maximin, Bucklin, and Fallback Voting, and 2-Voter Deter-
rence is W[2]-hard for Plurality, all with respect to the parameter number
of deleted candidates.

In contrast, considering a different parameter, one easily obtains the following
tractability result.

Theorem 9. The problem x-Voter Deterrence is in FPT with respect to
the parameter number of candidates for all voting systems having a polynomial
time winner determination.

It is easy to see that Theorem 9 holds: An algorithm trying out every com-
bination of candidates to delete has an FPT -running time O(mk · n ·m · Tpoly),
where m is the number of candidates, n the number of votes, k ≤ m is the num-
ber of allowed deletions, and Tpoly is the polynomial running time of the winner
determination in the specific voting system.

5 Conclusion

We have initiated the study of a voting problem that takes into account correla-
tions that appear in real life, but which has not been considered from a compu-
tational point of view so far. We obtained NP-completeness and W[2]-hardness
for most voting systems we considered. However, this is just the beginning, and it
would be interesting to obtain results for other voting systems such as k-approval
or scoring rules in general. Also, we have concentrated on the case of 1-Voter
Deterrence and so far have investigated 2-Voter Deterrence for Plurality
only.

One could also look at the destructive variant of the problem in which an
external agent wants to prevent a hated candidate from winning the election,
see, e.g., [2] for a discussion for the Control problem.

We have also investigated our problem from the point of view of parameter-
ized complexity. It would be interesting to consider different parameters, such
as the number of votes, or even a combination of several parameters (see [12]),
to determine the complexity of the problem in a more fine-grained way. This
approach seems especially worthwile because Voter Deterrence, like other
ways of manipulating the outcome of an election, is a problem for which NP-
hardness results promise some kind of resistance against this dishonest behavior.
Parameterized complexity helps to keep up this resistance or to show its failure
for cases where certain parts of the input are small, and thus it provides a more
robust notion of hardness. See, e.g., [11, 13–16], and the recent survey [17].

However, one should keep in mind that combinatorial hardness is a worst
case concept, so it would clearly be interesting to consider the average case com-
plexity of the problem or to investigate the structure of naturally appearing
instances. E.g., when the voters have single peaked preferences, many problems
become easy [18]. Research in this direction is becoming more and more popular
in the computational social choice community, see for example [18–20].

Acknowledgments. We thank Oliver Gableske for the fruitful discussion which
initiated our study of Voter Deterrence, and the referees of COMSOC 2012
and SOFSEM 2013 whose constructive feedback helped to improve this work.

References

1. Bartholdi, J., Tovey, C., Trick, M., et al.: How Hard is it to Control an Election?
Math. Comput. Mod. 16(8-9) (1992) 27–40

2. Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but him: The com-
plexity of precluding an alternative. Artif. Intell. 171(5-6) (2007) 255–285

3. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and
Copeland voting computationally resist bribery and constructive control. J. Artif.
Intell. Res. 35(1) (2009) 275–341

4. Erdélyi, G., Rothe, J.: Control complexity in fallback voting. In: Proc. of 16th
CATS. (2010) 39–48

5. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Multimode control attacks
on elections. J. Artif. Intell. Res. 40 (2011) 305–351

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, New York (2006)

8. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press (2006)

9. Conitzer, V., Lang, J., Sandholm, T.: How many candidates are needed to make
elections hard to manipulate? In: Proc. of 9th TARK, ACM (2003) 201–214

10. Xia, L., Zuckerman, M., Procaccia, A.D., Conitzer, V., Rosenschein, J.S.: Com-
plexity of unweighted coalitional manipulation under some common voting rules.
In: Proc. 21st IJCAI. (2009) 348–353

11. Erdélyi, G., Fellows, M.: Parameterized control complexity in bucklin voting and
in fallback voting. Proc. of 3rd COMSOC (2010) 163–174

12. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameter-
ization. In: Proc. of 27th STACS. (2010) 17–32

13. Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elec-
tions and related digraph problems. Theor. Comput. Sci. 410(52) (2009) 5425–5442

14. Christian, R., Fellows, M., Rosamond, F., Slinko, A.: On complexity of lobbying
in multiple referenda. Rev. Econ. Design 11(3) (2007) 217–224

15. Dorn, B., Schlotter, I.: Multivariate complexity analysis of swap bribery. Algorith-
mica 64(1) (2012) 126–151

16. Bredereck, R., Chen, J., Hartung, S., Niedermeier, R., Suchỳ, O., Kratsch, S.: A
Multivariate Complexity Analysis of Lobbying in Multiple Referenda. In: Proc. of
26th AAAI. 1292–1298

17. Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in Computational
Aspects of Voting—a Parameterized Complexity Perspective. In Bodlaender et al.,
H., ed.: Fellows Festschrift, LNCS 7370. Springer, Heidelberg (2012) 318–363

18. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: The shield that
never was: Societies with single-peaked preferences are more open to manipulation
and control. Inf. Comput. 209(2) (2011) 89–107

19. Friedgut, E., Kalai, G., Nisan, N.: Elections can be manipulated often. In: Proc.
of 49th FOCS. (2008) 243–249

20. Faliszewski, P., Procaccia, A.D.: AI’s War on Manipulation: Are We Winning? AI
Mag. 31(4) (2010) 53–64

