
A Space E�cient Solution to the Frequent String

Mining Problem for Many Databases

Adrian Kügel and Enno Ohlebusch

Faculty of Engineering and Computer Sciences, University of Ulm, D-89069 Ulm
Adrian.Kuegel@uni-ulm.de, Enno.Ohlebusch@uni-ulm.de

Abstract. The frequent string mining problem is to �nd all substrings
of a collection of string databases which satisfy database speci�c min-
imum and maximum frequency constraints. Our contribution improves
the existing linear-time algorithm for this problem in such a way that the
peak memory consumption is a constant factor of the size of the largest
database of strings. We show how the results for each database can be
stored implicitly in space proportional to the size of the database, making
it possible to traverse the results in lexicographical order. Furthermore,
we present a linear-time algorithm which calculates the intersection of
the results of di�erent databases. This algorithm is based on an algo-
rithm to merge two su�x arrays, and our modi�cation allows us to also
calculate the LCP table of the resulting su�x array during the merging.

1 Introduction

In string mining problems, one is given m databases D1, ...,Dm of strings and
searches for the (unknown) strings that ful�ll certain constraints, which are
usually speci�ed by the user. Here, we focus on the frequent string mining prob-
lem. In this problem, the constraints consist of m pairs of frequency thresh-
olds (minf 1,maxf 1), ..., (minf m,maxf m) and one wants to �nd all strings φ
that satisfy minf i ≤ freq(φ,Di) ≤ maxf i for all i with 1 ≤ i ≤ m, where
freq(φ,Di) = |{ψ ∈ Di : φ is a substring of ψ}|.

We would like to give a medical example as a motivation to study the prob-
lem. Suppose a genetic disease, e.g. Huntington's disease, is suspected of being
caused by a defect on a certain locus of a certain chromosome, say on the short
arm of chromosome 4. To �nd the cause of the disease, a possible approach
would be to sequence that segment of the DNA molecules of many healthy in-
dividuals and ill persons. Then one database contains the DNA sequences of
the healthy individuals, while the second database contains the DNA sequences
of the ill individuals. Now, one searches for all strings (contiguous DNA subse-
quences) that occur frequently (or always) in one of the databases and not too
often (or never) in the other database. If one �nds, for example, that the string
CAGCAGCAG...CAG, in which the codon CAG (coding for the amino acid glu-
tamine) is tandemly repeated more than 36 times, occurs frequently (or always)
in the database of ill persons but not too often (or never) in the database of
healthy persons, then this gives a hypothesis for the cause of the disease.

Fischer et al. [1] presented an algorithm that solves the frequent string min-
ing problem in optimal time, that is, in time linear in the size of the input (the
databases) and the output (the strings that satisfy the constraints). Although
their algorithm is a breakthrough in string mining, it still has certain disadvan-
tages. First, their method is based on the construction of the su�x array of a
very long string, namely the concatenation of all strings in all databases (the
strings are separated by special separator symbols). Thus, the space consump-
tion of their algorithm is proportional to the space occupied by all databases.
It turned out that this space consumption is the bottleneck of their algorithm
(Fischer 2007, personal communication). Second, the method is not very �exible
if one is interested in di�erent combinations of databases. For example, if just
one database is replaced with another database, then the whole procedure has
to be restarted again: One must construct the su�x array of the concatenation
of all strings in all databases, etc. Third, their result is based on the assumption
that the number of databases is treated as a constant.

In this paper, we presented an algorithm without these disadvantages. First,
its peak memory consumption is merely proportional to the size of the largest
database. Second, it is �exible in the sense that one of several databases can
be replaced without having to recalculate everything, that is, intermediate data
can be stored on �le and be reused. Third, our algorithm has optimal worst case
running time, regardless of the number of databases.

2 Preliminaries

We will consider strings φ = φ1...φn consisting of symbols φi from a ordered
alphabet Σ of constant size. The length of a string φ is the number of symbols it
contains, and is denoted by |φ|. A substring ranging from position n to m will be
written as φn..m. A substring φn..|φ| is also called a su�x of φ, and a substring
φ1..m is also called a pre�x of φ.

Let Σ∗ be the set of all strings over Σ, and φ, ψ ∈ Σ∗. If φ is a substring of
ψ, we write φ � ψ. We de�ne lcp(φ, ψ) to be the length of the longest common
pre�x of φ and ψ.

We will call D ⊆ Σ∗ a database of strings over Σ, and |D| denotes the
number of strings in D. The frequency of a string φ ∈ Σ∗ is then de�ned as the
number of strings of D which have φ as a substring. Formally, we can de�ne it
as follows: freq(φ,D) := |{ψ ∈ D : φ � ψ}|. Note that we do not count duplicate
occurrences of φ within one string of D.

We will write A[i] to refer to the value at position i in an array A. Arrays will
be indexed starting from one (if not indicated otherwise). If we have an array A
of tuples, where the tuples consist of variables (for example (a, b)), we will refer
to the individual tuple entries as A[i]. <variable_name> (for example A[i].a).

We will use the notation [i, j] to denote an interval of natural numbers.

The su�x array SA of a string φ is an array of integers in the range 1 to n,
which describes the lexicographic order of the n su�xes of φ. More precisely,

φSA[1]..n, φSA[2]..n, . . . , φSA[n]..n is the sequence of su�xes of φ in ascending lexi-
cographic order; see Fig. 1.

We assume that we only calculate su�x arrays for strings of size < 232, i.e.
we can store each number using 4 bytes of memory. The su�x array can be
constructed in linear time [2�4].

In addition to the su�x array, we also need the inverse su�x array SA−1,
which is de�ned by SA−1[SA[i]] = i for all 1 ≤ i ≤ n.

i SA−1 SA LCP φSA[i]..16

1 9 16 0 $

2 8 15 0 #$

3 7 11 1 #aba#$

4 6 5 1 #baaab#aba#$

5 4 14 0 a#$

6 16 4 2 a#baaab#aba#$

7 10 3 1 aa#baaab#aba#$

8 11 2 2 aaa#baaab#aba#$

9 12 1 3 aaaa#baaab#aba#$

10 14 7 3 aaab#aba#$

11 3 8 2 aab#aba#$

12 13 9 1 ab#aba#$

13 15 12 2 aba#$

14 5 10 0 b#aba#$

15 2 13 1 ba#$

16 1 6 2 baaab#aba#$

Fig. 1. Su�x array, inverse su�x array and LCP table for the string φ =
aaaa#baaab#aba#$

The LCP table is an array of integers which is de�ned relative to the suf-
�x array of a string φ. It stores the length of the longest common pre�x of
two adjacent su�xes in the lexicographically ordered list of su�xes. Formally,
LCP [i] = lcp(φSA[i]..n, φSA[i−1]..n) for 2 ≤ i ≤ n, and LCP [1] = 0. The LCP
table can be calculated in O(n) from the su�x array and the inverse su�x array
(cf. [5]).

The LCP table can also be used to determine the length of the longest com-
mon pre�x of several consecutive su�xes in the lexicographically ordered list of
su�xes. Let φSA[i]..n, . . . , φSA[j]..n (1 ≤ i < j ≤ n) be these consecutive su�xes.
The length of the longest common pre�x is mini<k≤j{LCP [k]}.

We adopt the de�nition of lcp-intervals from [6]. Let 1 ≤ i < j ≤ n. The in-
terval [i, j] is an lcp-interval of lcp-value l (also called l-interval), if the following
conditions hold:
1. LCP [i] < l and LCP [j + 1] < l.

2. LCP [k] ≥ l for all k with i < k ≤ j.
3. LCP [k] = l for at least one i < k ≤ j.

Alternatively, for an l-interval [i, j] we may also write l-[i, j]. Indices p with
i < p ≤ j and LCP [p] = l are called l-indices. Informally, an l-interval is a max-
imal set of lexicographically consecutive su�xes which have a longest common
pre�x of length l.

Let [i, j] be an lcp-interval, and let ω be the longest common pre�x of the
su�xes φSA[i]..n, ..., φSA[j]..n. Then [i, j] is also called the ω-interval.

We can de�ne a parent-child relationship for lcp-intervals (cf. [6]): We say an
l′-interval [i′, j′] is embedded in an l-interval [i, j] if i ≤ i′ ≤ j′ ≤ j and l < l′.
Consequently we say the l-interval [i, j] encloses the l′-interval [i′, j′]. If there
is no other lcp-interval [i′′, j′′] enclosing [i′, j′] embedded in [i, j], we say that
the lcp-interval [i′, j′] is a child interval of [i, j], and [i, j] is the parent interval
of [i′, j′]. This parent-child relationship de�nes a tree of all lcp-intervals, which
we will call the lcp-interval tree. We label each edge from an l-interval [i, j] to a
child interval l′-[i′, j′] by the string φSA[i]+l..SA[i]+l′−1. Note that this labelling
is only for ease of presentation and is not used in an actual implementation. If
we concatenate the edge labels from the root of the lcp-interval tree to some
l-interval [i, j], we get the string φSA[i]..SA[i]+l−1. This is exactly the longest
common pre�x of the su�xes φSA[i]..n, ..., φSA[j]..n.

Let [i, j] be an l-interval, and p1, p2, ..., pm be the l-indices. The child intervals
of [i, j] are [i, p1−1], [p1, p2−1], ..., [pm, j]. Some of these intervals can be singleton
intervals, which are strictly speaking no lcp-intervals, but we can extend the
de�nition of lcp-intervals to also include singleton intervals. We assign an lcp-
value of n− SA[i] + 1 to the singleton interval [i, i].

For every aω-interval (a ∈ Σ) of lcp-value l there is an ω-interval of lcp-value
l − 1. We call the ω-interval the su�x link interval of the aω-interval. Since
each l-index belongs to exactly one lcp-interval, we can store the left and right
boundary of the su�x link interval of an lcp-interval at the �rst l-index. Su�x
links can be constructed in linear time, cf. [6, 7].

In order to be able to evaluate so-called range minimum queries of the form
RMQLCP (i, j) := arg mini<k≤j{LCP [k]} in constant time we use the data struc-
ture presented in [8] which can be calculated in O(n) time using only o(n) bits
of extra memory. This data structure returns the smallest index k for a query
if the answer is not unique. Therefore, it can also be used to traverse the lcp-
interval tree. To determine the �rst l-index p1 of an lcp-interval [a, b], we evaluate
RMQLCP (a + 1, b). Given the position of some l-index pi, the position of the
next l-index can be found by evaluating RMQLCP (pi + 1, b). There is no next
l-index if pi = b or if LCP [RMQLCP (pi + 1, b)] > LCP [pi].

3 Algorithm for the Frequent String Mining Problem

The Frequent String Mining Problem is de�ned as follows (cf. [1]): Given m
databases D1, ...,Dm of strings over Σ and m pairs of positive frequency thresh-
olds (minf 1,maxf 1), ..., (minf m,maxf m), �nd all strings φ ∈ Σ∗ that satisfy
minf i ≤ freq(φ,Di) ≤ maxf i for all 1 ≤ i ≤ m. We will call the strings φ ∈ Σ∗

which satisfy minf i ≤ freq(φ,Di) ≤ maxf i for at least one 1 ≤ i ≤ m relevant
substrings. The solution to the Frequent String Mining Problem is the intersec-
tion of the relevant substrings of each database Di.

We now give an overview of our algorithm, which is explained in more detail
in the following sections.

� For each database D from the set of databases {D1, . . . ,Dm} do:
• Preprocessing (as in [1], only for one database at a time):

∗ TD = s1# . . . si# . . .#s|D|#$, where D = {s1, . . . , si, . . . , s|D|} con-
sists of the strings si.

∗ Construct the su�x array SA and the LCP array of TD.
∗ Preprocess the LCP array so that range minimum queries can be
answered in constant time.

• Extraction phase: 1

∗ Calculate array C ′
D as in [1].

∗ For each ω-interval [l, r] compute freq(ω,D) = SD(ω)−CD(ω), where
SD(ω) = r − l + 1 and CD(ω) =

∑r
i=l+1 C

′
D[i] is a correction term,

see Sect. 3.2.
∗ Store each relevant substring φ (i.e. minf ≤ freq(φ,D) ≤ maxf)
at the lexicographically smallest su�x which has φ as a pre�x. For
details how to store these strings e�ciently as results intervals, see
Sect. 3.3.

∗ Remove all relevant substrings that contain the separator symbol #.
� Iteratively calculate the intersection of the relevant substrings of databases
D1 and D2, then the intersection of the result with the relevant substrings
of D3, and so on.
• Intersection of relevant substrings of two databases D1 and D2:

∗ Match the string TD2 against the su�x array of TD1 , and calculate
values which can be used to merge the su�x arrays of TD1 and TD2 .

∗ Process all su�xes of TD1 and TD2 in lexicographical order using
the information calculated during the matching.

∗ Reassign common relevant substrings to su�xes of TD1 .

3.1 Preprocessing step

We de�ne T := s1#s2# . . .#s|D|#$, so T is a string consisting of the concate-
nation of the strings in D, using # as a separation symbol and $ as termination

1 Although the algorithm of [1] has a similar extraction phase, we want to stress that
our non-recursive calculation of the frequency freq(φ,D), as well as our implicit
representation of the relevant substrings, are new.

symbol. Let n denote the length of T . # and $ are selected in such a way that
they do not occur in any string of D. Note that it would be easier to use pairwise
di�erent separation symbols, but this would mean that the alphabet size is not
constant any more. We require it to be constant, however, to obtain linear time
complexity. We can work around this problem by �ltering out substrings which
have been wrongly recognized as relevant substrings at the end of the extraction
phase.

In the preprocessing step we will set up data structures which are needed in
later steps of the algorithm. In particular, we calculate the su�x array SA and
the LCP table LCP for T . Furthermore, we calculate a data structure which
supports range minimum queries on the LCP table in O(1) time. These data
structures can be calculated in linear time.

3.2 Frequency calculation using correction terms

To solve the Frequent String Mining Problem, we need an e�cient method to
calculate freq(φ,D) for D ∈ {D1, ...,Dm}, where φ is a string which occurs as
substring in a string of at least one of the databases. The idea used in [1] is to �rst
calculate the number of times that a string φ occurs in D and then subtract so
called correction terms which take care of multiple occurrences within the same
string of D. The method to calculate the correction terms is based on Hui's color
set size technique (cf. [9]). As in [1] we will use the following de�nitions:

Let D = {s1, ..., s|D|} be a given database of strings si.

SD(φ) = |{(j, k) : sk
j..j+|φ|−1 = φ}| (1)

CD(φ) =
∑

sk∈D
φ�sk

(|{j : sk
j..j+|φ|−1 = φ}| − 1) (2)

Here, SD(φ) denotes the total number of occurrences of φ in D, and CD(φ)
is the correction term. Then, freq(φ,D) = SD(φ)− CD(φ).

As in [1], we will use an array C ′ of length n to store intermediate values which
can be used to calculate the correction terms. For each pair TSA[i]..n, TSA[j]..n of
lexicographically adjacent su�xes from the same string, we increase C ′[m] by
one, where m = arg mini<m≤j LCP [m]. The details of the algorithm to calculate
the array C ′ can be found in [1].

Lemma 1. Let {TSA[i]..n : l ≤ i ≤ r} be all su�xes which have φ as pre�x.
Then, CD(φ) =

∑r
i=l+1 C

′[i].

Proof. Since φ is a pre�x of TSA[i]..n for l ≤ i ≤ r, LCP [i] ≥ |φ| for l < i ≤ r. C ′[i]
was increased only for pairs of lexicographically adjacent su�xes from the same
string which have a longest common pre�x of TSA[i]..SA[i]+LCP [i]−1, so φ must be
a pre�x of their longest common pre�x. Also, if two lexicographically adjacent
su�xes from the same string have a longest common pre�x which in turn has φ
as a pre�x, then both su�xes have φ as a pre�x. Therefore some value C ′[i] has
been increased, where l < i ≤ r. Thus, it follows that CD(φ) =

∑r
i=l+1 C

′[i]. ut

3.3 Extraction of the Relevant Substrings

The extraction of the relevant substrings is done by a post-order traversal of the
lcp-interval tree. We can use the fact that for each ω-interval, the frequency of
ω is the same as the frequency of ω1..i (l < i ≤ |ω|), where l is the lcp-value of
the parent lcp-interval. Therefore, we only need to calculate the frequency of ω
for each ω-interval.

To determine the frequency freq(ω,D) of a longest common pre�x ω of some
ω-interval [l..r], we need to calculate SD(ω) and CD(ω). Since we process only
one database at a time, the value SD(ω) is just the size of the lcp-interval. Also,
according to Lemma 1, CD(ω) =

∑
i=l+1..r C

′[i]. In an array C ′′ we will store the
partial sums of the values C ′, formally, C ′′[i] =

∑
j=1..i C

′[j]. We can evaluate∑
i=l+1..r C

′[i] as C ′′[r] − C ′′[l]. In [1], a recursive calculation of SD and CD is
used. Our simpli�cation to calculate CD could also be applied to their algorithm.

In [1] the results are not printed in lexicographic order. For the purpose of
intersecting results of di�erent string databases it would be better, however,
to obtain the results in lexicographic order. We have found a way to store the
results implicitly and process them later in lexicographic order.

All relevant substrings are pre�x of at least one su�x, i.e. it is possible to
assign each relevant substring to exactly one su�x which has this substring as
a pre�x. We will assign each relevant substring to the lexicographically smallest
su�x which has this substring as a pre�x. This enables us to print all relevant
substrings in lexicographic order by processing the su�xes in lexicographic order,
and print all relevant substrings which are assigned to the current su�x in order
of increasing lengths.

Lemma 2. Let Tp..n be a su�x with at least one assigned relevant substring. Let
a be the minimum length and b the maximum length of all relevant substrings
assigned to Tp..n. Then for each a ≤ i ≤ b there exists a relevant substring of
length i which is assigned to Tp..n.

Proof. Assume there is an i ∈ [a, b] such that no relevant substring of length i
was assigned to Tp..n. The string Tp..p+i−1 must be a relevant substring, because
minf ≤ freq(Tp..p+b−1,D) ≤ freq(Tp..p+i−1,D) ≤ freq(Tp..p+a−1,D) ≤ maxf .
Obviously, Tp..p+i−1 is a pre�x of Tp..n, so if it has not been assigned to Tp..n, it
must have been assigned to a lexicographically smaller su�x. But then, Tp..p+a−1

can be assigned to the same su�x as Tp..p+i−1. This is a contradiction to the
fact that Tp..p+a−1 has already been assigned to the lexicographically smallest
su�x which has Tp..p+a−1 as a pre�x. ut

In other words, for each su�x, the lengths of assigned relevant substrings form
a (possibly empty) interval [a, b]. Let us call this interval the results interval.

The post-order traversal of the lcp-interval tree can be done as described in
[5]. We go through the su�xes in lexicographic order. This means, in step i we
process su�x TSA[i]..n. We maintain a stack with values (l, h) where h is the
length of the longest common pre�x of TSA[l]..n and TSA[i]..n, and LCP [l] < h.
This corresponds to an lcp-interval [l..r] with r ≥ i. The tuples on the stack are

sorted by l and h, i.e. there is no tuple (l, h) on top of a tuple (l2, h2) with l ≤ l2
or h ≤ h2.

At the beginning of step i, the stack consists of tuples corresponding to
ω-intervals where ω is a pre�x of TSA[i−1]..n. Now, if there is an ω-interval
on the stack with |ω| > LCP [i], then ω is not a pre�x of TSA[i]..n, because
TSA[i]+LCP [i] 6= TSA[i−1]+LCP [i]. Therefore, we can remove all tuples with a value
of h > LCP [i]. This means we have found the right boundary of an h-interval,
and we can now calculate the frequency of the corresponding longest common
pre�x. We store the value l of the last tuple to be removed; this is the smallest
index such that ∀j : l < j ≤ i,LCP [j] ≥ LCP [i]. If no tuple has been removed,
we set l to i − 1. All remaining tuples correspond to lcp-intervals with longest
common pre�xes which are a pre�x of TSA[i]..n. We add another tuple (l,LCP [i])
to the stack if the tuple at the top of the stack has a value of h < LCP [i]. This
corresponds to the lcp-interval starting at l which has a longest common pre�x
of length LCP [i].

We can improve memory usage by storing only the values l on the stack. The h
values can be calculated using the LCP table. This is very similar to the method
used in [6] to calculate the child table. Let the stack contain the values l1, l2, ..., lk
where lk is the tuple on top of the stack. We know that l1 < l2 < ... < lk, and each
value li (1 ≤ i ≤ k) is the left boundary of an ωi-interval, where ωi is a pre�x of
the currently processed su�x. Therefore, in the lcp-interval tree, the lcp-interval
with left boundary li is a parent of the lcp-interval with left boundary li+1 for
each i with 1 ≤ i < k. Moreover, li+1 must be an l-index of the lcp-interval with
left boundary li, and it follows that hi = LCP [li+1]. Since lk corresponds to the
singleton lcp-interval [lk, lk], we know that hk = n − SA[lk] + 1, thus we can
calculate all h values without having to store them on the stack.

To assign relevant substrings to su�xes, we also keep two arrays a and b
of length n. When removing a value l from the stack in step i, we calculate
the frequency of ω for the ω-interval [l, i − 1] as described above. If we �nd
that ω1..LCP [l]+1, . . . , ω1..|ω| are relevant substrings, we can update a[l] and b[l].
According to Lemma 2, we only need to keep track of the minimum and maxi-
mum length of all relevant substrings being assigned. a[l] will hold the minimum
length, b[l] will hold the maximum length of the relevant substrings assigned to
the su�x Tl..n. Because we do a post-order traversal of the lcp-interval tree, we
know that for each su�x the �rst relevant substring to be assigned is the one
with maximum length, and the last relevant substring to be assigned is the one
with minimum length.

To remove wrongly recognized relevant substrings, we calculate for each su�x
the �rst occurrence of the separation symbol #, and reduce the size of the
results intervals such that they do not include any separation symbol. Let next(i)
(1 ≤ i < n) point to the �rst occurrence of the separation symbol # in su�x Ti..n,
and next(n) = 1. Then, next(i) = 1 if Ti = #, otherwise next(i) = 1+next(i+1).
Therefore, the values next can be calculated by processing the su�xes of T in
order of increasing length. Using the next values, we adjust the b values of the

results intervals to min{b[i],next(SA[i])−1}, thereby making sure that no results
interval includes a separation symbol.

We store n tuples (SA[i],LCP [i], a[i], b[i]) which represent the information
about the relevant substrings. Su�xes TSA[i]..n to which no relevant substring
has been assigned will have a[i] > b[i]. The tuples with a[i] > b[i] do not have to
be stored explicitly, we just need to mark the corresponding su�xes that they
do not have any relevant substring assigned.

3.4 Intersection of results of several string databases

To �nd those substrings which satisfy the frequency conditions for all databases,
we need to intersect the relevant substrings of each database. The relevant sub-
strings are represented as a table of tuples, as described in the previous section.
Let us call such a table of tuples a result table. A result table is always linked to a
certain database of strings, and the tuple values refer to the string T representing
a database D. This means each tuple represents a su�x of TD.

We use a kind of merging algorithm to build the intersection of two result
tables and get a result table representing the intersection of the two input result
tables. This algorithm is a modi�ed version of the algorithm of [10] which merges
two su�x arrays. The output result table will have the same format as the input
result table, assigning the relevant substrings which occur in both input result
tables to the lexicographically smallest su�x of the �rst input result table which
has this substring as a pre�x. It can be seen that actually no relevant substring
of the �rst result table is reassigned, only the results intervals for some su�xes
may be shortened. Therefore, we can use the merging algorithm iteratively to
produce the intersection of more than two result tables.

Let L1 and L2 be result tables linked to databases D1 and D2, respectively.
Let TD1 be the string representing D1 and TD2 be the string representing D2.
Furthermore, let n1 = |TD1 | and n2 = |TD2 |. Let SA be the su�x array and
LCP be the LCP table for the string TD1 .

In order to process the su�xes of TD1 and TD2 in lexicographical order,
as in [10] we calculate values c[i] for each su�x TD1

SA[i]..n1
, which indicate how

many su�xes of TD2 have to be placed between TD1
SA[i−1]..n1

and TD1
SA[i]..n1

. The

processing of the su�xes in lexicographical order can then be done easily: in
step i we select the next c[i] su�xes from the su�x array of TD2 , and then su�x
TD1
SA[i]..n1

. Note that in constrast to [10], we do not store the merged su�x array.

Calculating the c values can be done by matching the string TD2 against the
enhanced su�x array of TD1 . We calculate the index p(i) during the matching
such that TD1

SA[p(i)−1]..n1
≤ TD2

i..n2
< TD1

SA[p(i)]..n1
, and then increase the counter

c[p(i)] by one.
We de�ne the matching statistics ms(i) (1 ≤ i ≤ n2) to be the length of

the longest pre�x of TD2
i..n2

which matches a substring of TD1 . Using su�x link
intervals, matching statistics can be calculated in O(n+m) time; see [11, 12].

Let [l, r] be the lcp-interval where the mismatch occurred when matching
TD2

i..n2
against the lcp interval tree of TD1 , and let x be the currently processed

symbol of TD2
i..n2

which did not match. Also, let αβ be the pre�x of TD2
i..n2

which has

been matched, where α is the longest common pre�x of {TD1
SA[l]..n1

, ..., TD1
SA[r]..n1

}.
We already know that TD1

SA[l−1]..n1
< TD2

i..n2
< TD1

SA[r+1]..n1
, because otherwise we

would be in a di�erent branch of the lcp-interval tree.

If |β| = 0 (i.e. there is no edge label to a child interval starting with x),
we determine the child interval [l′, r′] with the smallest starting symbol y of
its edge label with y > x. If there is no such child interval, it follows that
TD1
SA[r]..n1

< TD2
i..n2

, and TD2
i..n2

< TD1
SA[r+1]..n1

, i.e. p(i) = r + 1. Otherwise, we

know that TD1
SA[l′−1]..n1

< TD2
i..n2

< TD1
SA[l′]..n1

, i.e. p(i) = l′.

If |β| ≥ 1, β is a pre�x of the edge label of a child interval [l′, r′] of [l, r].
If x is smaller than the next symbol of the edge label, TD2

i..n2
< TD1

SA[l′]..n1
, and

TD1
SA[l′−1]..n1

< TD2
i..n2

, i.e. p(i) = l′. Otherwise, TD1
SA[r′]..n1

< TD2
i..n2

< TD1
SA[r′+1]..n1

,

i.e. p(i) = r′ + 1.
In our algorithm we also need information about the length of the longest

common pre�x between su�xes of TD1 and su�xes of TD2 . This is needed to
determine the intersection of the results intervals of two su�xes. Therefore, for
each pair of consecutively processed su�xes, we calculate the length of their
longest common pre�x (which is in fact the LCP table of the merged suf-
�x arrays). Whenever two consecutively processed su�xes are from the same
string, we can use the value of the corresponding LCP table of this string.
But if these two su�xes belong to two di�erent strings, we do not know the
length of their longest common pre�x. Since su�x TD2

i..n2
is placed between

TD1
SA[p(i)−1]..n1

and TD1
SA[p(i)]..n1

, we also need to calculate lcp(TD1
SA[p(i)]..n1

, TD2
i..n2

)

and lcp(TD1
SA[p(i)−1]..n1

, TD2
i..n2

).
There are two cases:

(1) lcp(TD1
SA[p(i)−1]..n1

, TD2
i..n2

) = LCP [p(i)], lcp(TD2
i..n2

, TD1
SA[p(i)]..n1

) = ms(i)

(2) lcp(TD1
SA[p(i)−1]..n1

, TD2
i..n2

) = ms(i), lcp(TD2
i..n2

, TD1
SA[p(i)]..n1

) = LCP [p(i)]

Case (1) applies if l ≤ p(i) ≤ r, and case (2) occurs only if p(i) = r + 1. We can
use the sign bit of ms(i) to indicate which case applies; a positive sign indicates
case (1), a negative sign indicates case (2).

We process the su�xes of TD1 and TD2 in reverse lexicographical order, i.e.
we start with the lexicographically largest su�xes. For each relevant substring
φ of TD2 we need to �nd the lexicographically smallest su�x of TD1 for which
φ is a pre�x (if there is such a su�x of TD1). We maintain a set of relevant
substrings of TD2 which are a pre�x of the currently processed su�x TD1

SA[i]..n1
.

This set will consist of all such relevant substrings assigned to su�xes of TD2

which are lexicographically larger than TD1
SA[i]..n1

, and the set can be represented

as a results interval of TD1
SA[i]..n1

, which can be proved similar to Lemma 2. We

will denote this results interval by [acur, bcur].

Lemma 3. Let p(i) be de�ned such that TD1
SA[p(i)−1]..n1

≤ TD2
i..n2

< TD1
SA[p(i)]..n1

.

The su�x TD2
i..n2

(1 ≤ i ≤ n2) can only have common relevant substrings with

su�xes at positions ≤ p(i) in the su�x array of TD1 .

Proof. Suppose that there exists a su�x TD1
SA[k]..n1

(k > p(j)) to which a relevant

substring φ was assigned, which was also assigned to TD2
j..n2

. Since φ is a com-

mon relevant substring, |φ| ≤ lcp(TD2
i..n2

, TD1
SA[k]..n1

). From the de�nition of p(i)

it follows that lcp(TD2
i..n2

, TD1
SA[k]..n1

) ≤ lcp(TD2
i..n2

, TD1
SA[p(i)]..n1

). This means φ can

also be assigned to TD1
SA[p(i)]..n1

, which is a contradiction to the condition that

each relevant su�x of L1 was assigned to the lexicographically smallest su�x of
TD1 . ut

It follows that in addition to the relevant substrings in the results interval
[acur, bcur], the su�x TD1

SA[i]..n1
can only have common relevant substrings with

su�xes from TD2 which are processed between TD1
SA[i]..n1

and TD1
SA[i−1]..n1

. There-

fore, when we process the su�xes from TD2 which would be placed between
TD1
SA[i]..n1

and TD1
SA[i−1]..n1

in the merged su�x array, we update [acur, bcur]. Be-

fore processing TD1
SA[i−1]..n1

, we can then calculate the intersection of [acur, bcur]

and the results interval assigned to TD1
SA[i]..n1

.

When processing the su�xes of TD2 that would be placed between TD1
SA[i]..n1

and TD1
SA[i−1]..n1

in the merged su�x array, we also need to calculate the re-

sults interval [aprev, bprev] representing relevant substrings of TD2 which are

a pre�x of TD1
SA[i−1]..n1

. If LCP [i] ≥ acur, [aprev, bprev] can be initialized to

[acur,min{LCP [i], bcur}]. Otherwise, we start with an empty results interval.

Now we will show how to handle the case in which one of the minimum
frequency thresholds minf D1

or minf D2
is zero. This case is also supported by

the algorithm of [1]. We can assume that not both minf D1
= 0 and minf D2

= 0,
because there must be at least one database Di with minf i > 0 (otherwise,
there would be in�nitely many solutions), and we can select the order in which
we merge result tables such that always the result table linked to Di is involved.

Without loss of generality, assume minf D2
= 0. This means, we want to keep

all relevant substrings from L1 whose frequency in D2 do not exceed maxf D2
.

Therefore, we only adjust the a values of the tuples of L1, but leave the b
values untouched. Note that since minf D2

= 0, the relevant substrings φ with
freq(φ,D2) > maxf D2

are all substrings φ of TD2 which do not belong to any
results interval of L2. This means that if for some tuple in L1 there are no
common relevant substrings with tuples in L2, we have to remove those relevant
substrings which are also substrings of TD2 . This can be done by setting L1[i].a
to max{L1[i].a,maxlcp +1}, where maxlcp is the maximum length of a common
pre�x of TD1

i..n1
with a su�x of TD2 .

The time complexity to intersect the result tables of all databasesD1,D2, ...,Dm

can be determined as follows: We will successively intersect D2 with D1, then

D3 with D1, and so on until we have intersected Dm with D1. Since intersect-
ing the result table of database Di with the result table of the database D1

takes O(n1 + ni), the overall time complexity is O((m − 1) · n1 +
∑m

i=2 ni).
If all values minf i are positive, we may assume D1 is the smallest database
(i.e. n1 is smaller than or equal to ni for all 1 < i ≤ m), and it follows that
(m− 1) · n1 +

∑m
i=2 ni ≤ 2 ·

∑m
i=1 ni, so the overall time complexity to intersect

all databases is linear in the total size of all databases.
Otherwise, if some value minf i is zero, we reorder the databases such that
minf 1 > 0. Now the database D1 may be the largest database. However, the
time complexity in this case is not worse than the complexity of [1], since
(m− 1) · n1 +

∑m
i=2 ni ≤ (m− 1) ·

∑m
i=1 ni +

∑m
i=1 ni = O(m ·

∑m
i=1 ni).

4 Implementation

4.1 Program overview

We have compared performance results of the implementation of our algorithm
described in Sect. 3 with performance results of the implementation of [1], which
is available at [13]. We have made a small modi�cation to the implementation
of [13] to be able to evaluate the approximate peak memory consumption. We
wrote a function which keeps track of the total amount of memory which is
currently allocated. We will refer to the program of [13] as frequent_linear.

Our own program is written in C, and we use low-level I/O functions in order
to obtain high performance. For example, we use the function mmap to be able
to quickly read and write to a �le. This functionality is necessary because we
try to keep only those values in memory which are currently needed in order to
reduce peak memory consumption as much as possible. In fact, peak memory
consumption for our program will be at most 25 times the size of the largest
database. We refer to our program as slink_merge.

In our program, we use the su�x array construction algorithm of [14] in-
stead of one of the linear time algorithms, because it performs better for non-
degenerate test cases. This su�x array construction algorithm is also used in
[13]. Our implementation and the pseudocode of our algorithm are available at
www.uni-ulm.de/in/theo/mitarbeiter/kuegel.html.

The implementation of [13] handles exactly two databases of strings, and
uses a �xed value ∞ for maxf 1, and 0 for minf 2. Therefore, we have created a
modi�ed version of the code which handles a variable number m of databases,
and supports arbitrary, valid minf i and maxf i values. In this version, we also
included our idea to save memory by using the cumulative sums of the array C ′.
We will refer to this program as frequent_linear2.

4.2 Test data

As in [1], we use the proteins of human and mouse, obtained from Swissprot using
the NEWT taxonomy browser ([15]) as one dataset. One database consists of

the primary structure of 70747 proteins of humans, the other database consists
of 61716 proteins of mice. Each protein represents one entry in the database.
The total size of the databases is about 28 MB and 27 MB, respectively.

The second dataset consists of two databases, each containing 10000 random
bitstrings of a length between 10000 and 20000. The total size of each database
is about 150 MB.

For the �rst two datasets, we use �xed values maxf 1 = ∞ and minf 2 =
0 in order to be able to compare our results with the results of the program
frequent_linear.

The third dataset consists of four databases, the �rst two are identical to the
second dataset, the third and fourth also contain 10000 random bitstrings of a
length between 10000 and 20000.

The fourth dataset consists of twelve databases, each containing 10000 ran-
dom strings consisting of between 100 and 3000 lowercase letters, i.e. the alpha-
bet size is 26. The total size of each database is about 15 MB.

4.3 Test results

All given time intervals are measured in seconds, and are calculated on a com-
puter with a 2.8 GHz processor and 16 GB of RAM. We used �xed values of
maxf 1 = ∞ and minf 2 = 0 to be able to compare our results to the results
of frequent_linear. We picked di�erent parameter combinations for minf 1 and
maxf 2.

Table 1. Runtimes (in seconds) and memory consumption on the �rst dataset

Test parameters slink_merge frequent_linear frequent_linear2
minf1 maxf2

10 1000 216.88 264.19 296.67

500 1000 195.71 77.24 109.45

3000 57950 205.85 76.94 111.84

10000 57950 194.02 77.72 100.53

30000 57950 206.21 76.31 101.14

Max. memory 703 MB 1307 MB 1307 MB

We can see by looking at Table 1 and Table 2 that the program frequent_linear
is the fastest. Our modi�ed version frequent_linear2 is a little bit slower, be-
cause it does not have the number of databases hard-coded. Our own program
slink_merge is slower by a factor of less than 2, which is caused by the string
matching during the intersection of the relevant substrings of the two databases.
The slower runtime of frequent_linear and frequent_linear2 in line 1 of Table 1
can be explained by the large amount of output, which is optimized in our pro-
gram slink_merge. Note that even for two databases, the memory consumption
of frequent_linear and frequent_linear2 is worse than the memory consumption
of our program.

Table 2. Runtimes (in seconds) and memory consumption on the second dataset

Test parameters slink_merge slink_merge frequent_linear frequent_linear2
minf1 maxf2 reuse of results

200 1000 1056.72 - 397.86 595.34

1000 9500 961.12 - 397.31 536.33

3000 9500 878.89 575.57 398.66 586.01

5000 9500 830.01 617.39 400.27 577.08

Max. memory 3745 MB 3745 MB 7193 MB 7193 MB

Also, our algorithm gives us the possibility to reuse the calculated relevant
substrings for individual databases if another test contains these databases with
the same minf and maxf parameters. With our second dataset, for example,
we use three times minf 2 = 0, maxf 2 = 9500 as parameter for the second
database, and minf 1 = 1000, 2000, and 3000 for the �rst database, respectively.
The column "slink_merge reuse of results" gives the runtimes if we reuse the
results of previous test runs, or "-" if the relevant substrings are calculated for
the �rst time.

Table 3. Runtimes (in seconds) and memory consumption on the third dataset

Test parameters slink_merge frequent_linear2
minfi maxfi

50 1000 2050.73 -

200 1500 1988.32 -

500 1000 1888.98 -

Max. memory 3745 MB > 12 GB

Table 3 only shows the results of our program.We tried to run frequent_linear2
on this dataset, but it needed more memory than we had available.

Table 4. Runtimes (in seconds) and memory consumption on the fourth dataset

Test parameters slink_merge frequent_linear2
minfi maxfi

2 3 855.91 392.44

10 1000 855.00 390.52

Max. memory 386 MB 10614 MB

With a higher number of databases, the advantage of our algorithm becomes
more apparent. Note that on this dataset, frequent_linear2 needs about 27 times
more memory than our program.

Although the program frequent_linear performs faster on all our tests, the
runtime of our program slink_merge is still competitive. Moreover, for large

databases, memory consumption is the bottleneck, and it becomes more impor-
tant to save memory than to save time. Thus, we conclude that our algorithm
improves the possibility to solve large problem instances, especially when more
than two databases are used.

References

1. Fischer, J., Heun, V., Kramer, S.: Optimal string mining under frequency con-
straints. In Fürnkranz, J., Sche�er, T., Spiliopoulou, M., eds.: PKDD. Volume
4213 of Lecture Notes in Computer Science., Springer (2006) 139�150

2. Kärkkäinen, J., Sanders, P.: Simple linear work su�x array construction. In
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J., eds.: ICALP. Volume
2719 of Lecture Notes in Computer Science., Springer (2003) 943�955

3. Ko, P., Aluru, S.: Space e�cient linear time construction of su�x arrays. In Baeza-
Yates, R.A., Chávez, E., Crochemore, M., eds.: CPM. Volume 2676 of Lecture
Notes in Computer Science., Springer (2003) 200�210

4. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of su�x arrays.
In Baeza-Yates, R.A., Chávez, E., Crochemore, M., eds.: CPM. Volume 2676 of
Lecture Notes in Computer Science., Springer (2003) 186�199

5. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-pre�x computation in su�x arrays and its applications. In Amir, A.,
Landau, G.M., eds.: CPM. Volume 2089 of Lecture Notes in Computer Science.,
Springer (2001) 181�192

6. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing su�x trees with enhanced
su�x arrays. J. Discrete Algorithms 2(1) (2004) 53�86

7. Maaÿ, M.G.: Computing su�x links for su�x trees and arrays. Inf. Process. Lett.
101(6) (2007) 250�254

8. Fischer, J., Heun, V.: A new succinct representation of rmq-information and im-
provements in the enhanced su�x array. In Chen, B., Paterson, M., Zhang, G., eds.:
ESCAPE. Volume 4614 of Lecture Notes in Computer Science., Springer (2007)
459�470

9. Hui, L.C.K.: Color set size problem with application to string matching. In Apos-
tolico, A., Crochemore, M., Galil, Z., Manber, U., eds.: CPM. Volume 644 of Lec-
ture Notes in Computer Science., Springer (1992) 230�243

10. Jeon, J.E., Park, H., Kim, D.K.: E�cient construction of generalized su�x arrays
by merging su�x arrays. Journal of KISS : computer systems and theory 32(6)
(2005) 268�278

11. Chang, W.I., Lawler, E.L.: Sublinear approximate string matching and biological
applications. Algorithmica 12(4/5) (1994) 327�344

12. Gus�eld, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

13. Fischer, J.: Linear Frequent String Miner and Emerging Substring Miner
(PKDD'06). http://www.bio.i�.lmu.de/ �scher/frequentLinear.tgz (2007)

14. Manzini, G., Ferragina, P.: Engineering a lightweight su�x array construction
algorithm. Algorithmica 40(1) (2004) 33�50

15. NEWT taxonomy browser. http://www.ebi.ac.uk/newt/ (2007)

