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1 Constant Probability of an Optimal Lower Bound

Lemma 1. When using a best-first search Branch-and-Bound algorithm which
breaks ties among nodes with equal lower bounds by selecting the node with greater
depth, at most one node in each depth needs to be visited for which the calculated
lower bound is optimal.

Proof. Lets assume that there are two nodes u and v in depth d for which the
calculated lower bound is optimal, and u is visited first among all nodes in depth
d with optimal lower bound. This implies that the lower bound of v is not smaller
than the lower bound of u. A best-first search Branch-and-Bound algorithm only
visits nodes with lower bounds not greater than the global minimum. It follows
that the lower bound of u must be equal to the global minimum, and at least
one leaf node in the sub-tree of u has this minimum value. If the best-first search
strategy breaks ties among nodes with equal lower bound by selecting a node
with greater depth, all nodes in the subtree of u with lower bound values smaller
or equal to the global minimum will be visited before node v, therefore also the
leaf node with the global minimum value will be visited before node v. It follows
that node v will not be visited, since a leaf node with the global minimum value
has already been found. ut

T (n) = 1

T (d) = 1 + b · (1− p) · T (d+ 1)
(1)

Explanation how this recurrence relation is derived: The recurrence
relation only deals with nodes which do not lie on the path from the root node
to the leaf node where the search stops. For each child node of a visited node,
there are two cases: it can have an optimal lower bound, or it can have a sub-
optimal lower bound. If it has a sub-optimal lower bound (which happens with
probability (1 − p)), the node has to be visited in the worst case. If it has an
optimal lower bound (which happens with probability p), the node will not be
visited, because an optimal lower bound implies that the lower bound value is



greater or equal to the global minimum value. If the node would have a lower
bound value equal to the global minimum value, it will either lie on the path
from the root node to the leaf node with the minimum value (and thus, it should
not be considered for the recurrence relation), or it will not be visited according
to Lemma 1.

Theorem 1. The expected number of visited nodes is in O(n2) if b · (1−p) ≤ 1.

Proof. According to Lemma 1, in each depth there will be at most one visited
node for which an optimal lower bound was calculated. Therefore, an upper
bound for the expected number of visited nodes is

∑n
i=0 T (i). Let b · (1− p) ≤ 1.

n∑
i=0

T (i) ≤
n∑

i=0

n− i+ 1 ≤ (n+ 1)2 = O(n2)

ut

2 Probability Distribution of Leaf Node Values and
Lower Bound Values

Since a node is only visited if its lower bound is smaller than the minimum
value of a leaf node visited so far, the condition for a node to be visited can be
formulated as follows:

Yd,i < min
0≤k<i·bn−d

{Xn,k} ⇔ Yd,i < min
0≤k<i

{Xd,k} (2)

In the next step we derive a formula for the expected number of nodes which
are visited by a depth-first search Branch-and-Bound algorithm. We start by
calculating the probability that the i-th node in depth d is visited.

P

(
Yd,i < min

0≤k<i
{Xd,k}

)
=

I∑
j=1

P (Yd,i = cj) · P (Xd,k > cj , 0 ≤ k < i)

=

I∑
j=1

gd (cj) · (1− Fd (cj))
i

(3)



With Equation 3 and using the geometric sum we are now able to derive the
formula for the expected number of nodes satisfying the condition in Equation
2.

n∑
d=0

E
[∣∣∣∣{i | Yd,i < min

0≤k<i
{Xd,k}}

∣∣∣∣]

=

n∑
d=0

bd−1∑
i=0

P

(
Yd,i < min

0≤k<i
{Xd,k}

)

=

n∑
d=0

bd−1∑
i=0

I∑
j=1

gd (cj) · (1− Fd (cj))
i

=

n∑
d=0

I∑
j=1

gd (cj) ·
bd−1∑
i=0

(1− Fd (cj))
i

=

n∑
d=0

I∑
j=1

gd (cj) ·
1− (1− Fd (cj))

bd

Fd (cj)

=

n∑
d=0

I∑
j=1

gd (cj) ·
1− (1− Fn (cj))

bn

Fd (cj)

(4)

Theorem 2. The expected number of nodes visited by a depth-first search Branch-
and-Bound algorithm is polynomial if gd (ci) ≤ c · nk · Fd (ci) for 1 ≤ i ≤ I,
0 ≤ d ≤ n, where c and k are constants.

Proof. Let gd (ci) ≤ c · nk · Fd (ci), 1 ≤ i ≤ I, 0 ≤ d ≤ n.

n∑
d=0

E
[∣∣∣∣{i | Yd,i < min

0≤k<i
{Xd,k}}

∣∣∣∣] =

n∑
d=0

I∑
i=1

gd (ci) ·
1− (1− Fn (ci))

bn

Fd (ci)

≤
n∑

d=0

I∑
i=1

c · nk · Fd(ci) ·
1− (1− Fn (ci))

bn

Fd (ci)

≤
n∑

d=0

I∑
i=1

c · nk = c · I · (n+ 1) · nk

As I was assumed to be polynomial in n, c · I · (n+ 1) · nk is a polynomial in
n. ut

Corollary 1. The expected number of nodes visited by a depth-first search Branch-
and-Bound algorithm with any lower bound function is polynomial if Fn (c1) =
Ω
(

1
nk

)
, where k is some constant.

Proof. The worst case for the depth-first search Branch-and-Bound algorithm
would be if gd(c1) = 1, i.e., the lower bound function always provides the smallest



possible value c1. In that case, the search would stop as soon as the first leaf
node with a value of c1 is found, otherwise if no such leaf node exists, the whole
Branch-and-Bound tree is traversed. Therefore without loss of generality we can
assume that gd(c1) = 1 and gd(ci) = 0 for 1 < i ≤ I. Also let Fn (c1) = Ω

(
1
nk

)
.

n∑
d=0

E
[∣∣∣∣{i | Yd,i < min

0≤k<i
{Xd,k}}

∣∣∣∣] =

n∑
d=0

I∑
i=1

gd (ci) ·
1− (1− Fn (ci))

bn

Fd (ci)

≤
n∑

d=0

1− (1− Fn (c1))
bn

Fd (c1)

≤
n∑

d=0

1

Fd (c1)
=

n∑
d=0

1

1− (1− Fn (c1))
bn−d

≤ (n+ 1) · 1

Fn (c1)
= O(nk+1)

ut
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