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M. Maucher∗ U. Schöning† H.A. Kestler‡

Abstract

When designing and analyzing randomized algorithms, one usually assumes that
a sequence of uniformly distributed, independent random variables is available
as a source of randomness. Implementing these algorithms, however, one has
to use pseudorandom numbers. The quality of the used pseudorandom number
generator may severely influence the quality of an algorithm’s output. We exam-
ined the effect of using low quality pseudorandom numbers on the performance
of different search heuristics like Simulated Annealing and a basic evolutionary
algorithm.

Keywords: pseudorandom number generators, simulated annealing, evolu-
tionary algorithms

1 Introduction

Many search heuristics use randomness to find solutions. Karloff et al. [7] and Bach
[4] showed that some algorithms, like QuickSort or primality testing, have bad running
times or even yield wrong results when used with unsuitable pseudo-random number
generators. Karloff et al. also showed that a good average case behavior can be guar-
anteed by the right kind of pseudorandom generator. In the case of QuickSort, they
prove a good average case behavior when using an explicit polynomial generator (see
Section 3). Meysenburg showed that a simple evolutionary algorithm’s solution did
not significally depend on the choice of the random number generator [14]. Tompkins
and Hoos showed that stochastic local search methods for the satisfiability problem
seem not to be influenced by the quality of the pseudorandom number generator [17].

We were interested in the effects of generators with very low quality on local search
heuristics, especially Simulated Annealing, and population based heuristics like evolu-
tionary algorithms. To this end, we conducted some experiments where we gradually
decreased the quality of our pseudorandom number generator, and tested if this de-
crease in quality directly affected the output of our search heuristics.
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2 Search Heuristics

2.1 Simulated Annealing

The Simulated Annealing heuristic has been popularized by Kirkpatrick in 1983 [9]
and is based on the Metropolis-Hastings algorithm [13] that dates back to 1953. Since
then, it has been widely used for various optimization problems. It simulates the cool-
ing of physical matter, where a state changes to a state with higher energy only with a
certain probability that decreases during the proceeding of the algorithm. When opti-
mizing a function f , we interpret f (x) as the energy of state x. Beginning in a randomly
chosen state, this state slightly changes step by step, i.e. transforms into a neighbor-
ing state. This transformation prefers new states with lower energy. The chance that
a state with higher energy is accepted depends on a temperature parameter T , which
is gradually decreased. This way, the acceptance probability for higher energy states
decreases and the system gradually tends to stick to lower energy states.

Simulated Annealing is a typical local search heuristic: Beginning at one point in
the search space, the algorithm moves through the search space, trying to find a global
minimum.

Input: Function f
Output: x with f(x) as small as possible
Initialize temperature T ;
x← random;
m← x;
while T > T0 do

y← random neighbour of x;
if f (y) < f (x) then

x← y;
else

x← y with probability e−
f (y)− f (x)

T ;
end
if f (x) < f (m) then

m← x;
end
decrease T ;

end
output m;

Algorithm 1: Pseudocode of the Simulated Annealing heuristic.

For fixed temperature T , the algorithm simulates a Markov process where the variable
x holds the random state. It can be shown [6] that this process limits to the Gibbs
distribution where an element x occurs with probability

P(x) =
e−

f (x)
T

∑x e−
f (x)
T

.
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For T →∞, this distribution limits to the uniform distribution. For T → 0, it limits
to the uniform distribution on Ω = {x| f (x) = minx f (x)}, the set of all global minima.

For low temperature T , however, such a Markov chain remains at local optima for
many steps and only converges to the stationary distribution very slowly. To speed up
convergence, Simulated Annealing starts with a high value of T and gradually lowers
T . This random process does not have a stationary transition matrix like a Markov
chain, but still converges to the uniform distribution on the global minima if T (t)→ 0
slowly enough. More precisely, let T (t) be the temperature at iteration t = 0,1,2, . . .
and let Ω0 be the set of all global minima as defined above. Then the simulated an-
nealing process converges to the uniform distribution on Ω0 if limt→∞ T (t)→ 0 and
T (t) ∈Ω( 1

logn) (see [6]).

2.2 Population based heuristics

Population based search heuristics try to optimize a function by searching at many
objects of the search space simultaneously. They are usually inspired by populations
found in nature. Genetic algorithms, for example, are inspired by evolution: An initial
population changes during the course of time with the help of some basic operations:

• Selection: Each object of the population is evaluated with the help of a fitness
function. Objects with a higher fitness are more likely to survive.

• Mutation: Some objects are slightly changed.

• Crossover: Pairs of parent objects are combined into new objects that resemble
both parent objects.

Evolutionary algorithms use randomness at various places: The initial population
is often chosen at random. The crossover and mutation operators are often applied to
random objects, their probability usually depending on their individual fitness. When
replacing unfit objects, we may choose these objects randomly, too. This way, the
population is kept diverse and is prevented from concentrating around a local optimum;
e.g. crossover with an unfit object might lead away from such a local optimum and help
find the global optimum. The crossover itself requires random choices, too: Usually
there are many ways to combine two parent objects. See Algorithm 2 for pseudocode
of a basic genetic search heuristic.

Input: Function f
Output: x; the goal is to output an x with minimal f (x).
Initialize population P;
repeat

Replace unfit objects by mutations of fit objects;
Replace unfit objects by crossover of fit objects;

until termination condition ;
Output best object found so far;

Algorithm 2: Pseudocode for a simple evolutionary algorithm.
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In our experiments, we usually replaced the whole population in the mutation step.
The individuals were chosen by a roulette wheel algorithm, an algorithm that chooses
elements with a probability that depends on their fitness (for an implementation in R,
see the appendix). In each loop, we checked that the best object so far was not removed
from the population. In the crossover step, we replaced about 10% of the population
by crossover offsprings. The algorithm terminated after a fixed number of loops.

3 Pseudorandom Generators

A pseudorandom number generator (short PRNG) is an algorithm that outputs a new
number each time it is called. Its output depends on an internal state that is changed in
a deterministic way each time a number is output. A PRNG is initialized with the help
of a number or sequence called the seed, which is usually chosen at random (when
reproducing a result however, we might as well reuse an experiment’s seed). We will
call the output X0,X1,X2, . . . of a PRNG a pseudorandom sequence. A pseudorandom
sequence, although deterministically created, should look like a random sequence of
numbers. One way to formalize the notion of “looking random” is a statistical test.

A statistical test is based on a null hypothesis H0 and a statistic f : Rk → R. It
measures the plausibility of the statistic’s outcome s = f (X0,X1, . . . ,Xk) under the as-
sumption that the null hypothesis is true. To this end, the probability
p0 = P[ f (X0,X1, . . . ,Xk) > s | H0] is computed. The input is accepted if p0 is not too
close to 0 or 1, i.e. if p0 lies within a confidence intervall [a,b]⊂ [0,1]. Otherwise, the
input is rejected. Typical values for the size of the confidence interval are 0.9, 0.95 or
0.99. In the case of pseudorandom number generators, H0 is an assumption like ”the
numbers X0,X1, . . . ,Xk are uniformly and independently distributed in [0,1)”, and if
this sequence is accepted by a statistical test, we can say it ”looks random”, at least to
that specific statistical test. Since every pseudorandom generator produces only a tiny
fraction of the sequences a random process would produce, there is always a statisti-
cal test that rejects the output of a given pseudorandom generator (and accepts almost
all random sequences). So it is only possible to construct a pseudorandom generator
that can fool a given, fixed set of statistical tests. There is no solid criteria for which
tests a “good” PRNG should pass. Commonly, one constrains to tests that are easy to
implement and that check properties that are rather simple but considered important.

Examples for popular statistical tests are the Kolmogorov-Smirnov test, χ2 test,
poker test, run test or gap test. Many more popular tests exist, and depending on
the application, some more exotic tests may be suited even better to determine which
pseudorandom generator will work well with that application.

Two of the most desirable properties for pseudorandom numbers are uniformity
(i.e. every single pseudorandom number should be distributed evenly among all pos-
sible values) and k-wise independence (see definition below). For these measures, we
assume that the seed of the pseudorandom generator was chosen under the uniform
distribution from the set of all possible seeds.
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Definition 1 A sequence of random numbers X1,X2, . . . is k-wise independent if any
subsequence Xi1 , . . . ,Xik of length k is independent, i.e. for any x1, . . . ,xk

P[Xi1 = x1, . . . ,Xik = xk] =
k

∏
j=1

P[Xi j = x j] .

For k = 2 we call such a sequence pairwise independent.

3.1 Classical Pseudorandom Generators

There exist many different kinds of pseudorandom number generators. We here list
some that are or were used intensively in practice or that were used to theoretically
analyze algorithmic behavior.

• A linear congruential generator with parameters a,b and m and seed
X0 ∈ {0, . . . ,m−1} is defined by the recursion

Xn+1 = aXn +b mod m .

For further reference, see [10]. In our experiments, we always chose the parame-
ters a and b in a way that the linear congruential generator had a period length of
m. Additionally, we chose the parameters that resulted in the least compressible
sequences. Compressibility was checked with the bzip2 software.

• An explicit polynomial generator of degree k with parameters a0,a1, . . . ,ak and
m is defined by

Xn =
k

∑
i=0

aini mod m .

Its use with the QuickSort algorithm is analyzed in [7]. An important property
of explicit polynomial generators is k-wise independence. Within one period,
any k output numbers of this generator are independent. The period length of
such a generator is at most m, since p(x)≡m p(x+m) for any polynomial p.

• The Mersenne Twister [12] is a relatively recent pseudorandom number gener-
ator with an extremely huge period length of 219937− 1 in the most commonly
used version. It is based on a combination of linear recurrences and is currently
used as the standard source of random numbers in many mathematical software
projects like R or Maple [1]. Any 623 subsequent numbers of its output are
independent and uniformly distributed.

• Marsaglia’s Diehard suite [2] is a set of statistical tests that was published on
CDROM in 1995, along with several files of bit sequences that pass these tests.
These sequences were obtained by the bitwise XOR of several sequences, some
of them obtained from physical devices, some of them from other sources like
pseudorandom number generators or even an audio CD. This approach is based
on the following fact: Let X ,Y ∈ {0,1} be two independent random variables.
Then X ⊕Y is uniformly distributed if at least one of the two variables is uni-
formly distributed. This way, the bitwise XOR of several sequences is uniformly
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distributed among the set of all bit sequences of the same length, if at least one
of those sequences was uniformly distributed. Thus, one could hope to obtain
a good pseudorandom sequence when forming the bitwise XOR of several se-
quences that are supposed to behave like true random numbers.

3.2 Quasi-random sequences

Quasi-Monte Carlo algorithms and their analysis do not depend on uniformity and
independence of the “random” numbers they use. They rather need numbers that are
spread over their domain evenly. A major discipline in the field of Quasi-Monte Carlo
algorithms is the numerical integration of a function f . Here, the integral

R 1
0 f (x)dx

is approximated by the sum 1
N ∑

n
i=1 f (xi) (see [16]), where x1,x2, . . . ,xN is s sequence

of random numbers. It can be shown that the difference between the integral and the
approximating sum can be bounded from above by V ( f )D∗(x1, . . . ,xn), where V ( f ) is
the variation of f and D∗ is the star discrepancy. Discrepany measures how evenly a
set of points in a k-dimensional cube is distributed.

Definition 2 Let P := {x1,x2, . . . ,xN} ⊂ [0,1)d . then the star discrepancy D∗ of P is
defined as

D∗(P) := sup
x∈[0,1)d

(
|{xi ∈ P | ∀ j.x( j)

i < x( j)}|
N

−
d

∏
i=1

x(i)

)
,

where x( j) denotes the j-th component of the vector x.

An example of a sequence with low star discrepancy is the van der Corput se-
quence.

Definition 3 Let nk, . . . ,n0 be the b-ary representation of a number n, i.e. n = ∑
k
i=0 nibi,

with 0≤ ni < b for all i. We then define

φb(n) =
∞

∑
j=0

nib−i−1 .

The van der Corput sequence in base b is defined as

Xn = φb(n) .

Intuitively, φb takes the digits of a number n in b-ary representation, reverses their
order and places them behind a decimal point. For example, φ2(110012) = 0.100112.

When tupels of higher dimension are needed, the van der Corput sequences can be
generalized to sequences of k-tuples:

Definition 4 A Halton sequence in the bases b1, . . . ,bk is defined as

Xn = (φb1(n), . . . ,φbk(n)) .

A Halton sequence is just a simple composition of multiple van der Corput se-
quences with different bases.
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4 Implementation

Our test cases were implemented in the statistical programming language R [3] and run
on a system with R version 2.6.1 installed. We used R because it allows the quick de-
velopment of code as well as an easy visualisation of data. Disadvantages of R include
the absence of a call by reference and the fact that R is an interpreter. Both these facts
make it somehow difficult to develop fast software. Due to these limitations, we imple-
mented some time-consuming parts, e.g. the crossover operation for the evolutionary
algorithm, in C.

5 Experimental Setup and Results

In our experiments, we were interested in the dependency between the quality of the
pseudorandom generator and the quality of the solution given by two search heuristics,
namely Simulated Annealing and an evolutionary algorithm.

One problem we used for our analysis was the Traveling Salesman Problem (short
TSP).

Definition 5 The Traveling Salesman Problem is defined as follows:
Given a quadratic n× n matrix D of positive values (a distance matrix), what is the
permutation π ∈ Sn where

Dπnπ1 +
n−1

∑
i=1

Dπiπi+1

is minimized?

Intuitively, The Traveling Salesman Problem asks for a tour that visits each of n nodes
exactly once, then goes back to the initial node and minimizes the total cost of the tour.
Costs for moving from any node i to a node j are given by the matrix entry Di j, and to
obatin the total cost of a tour, we can just add up the costs of the individual steps.

Another interesting set of test functions was published by DeJong [5] in 1975.
The set was specially designed to measure the performance of search heuristics and
consists of the following 5 test functions:

• f1(x1, . . . ,xk) = ∑
k
i=1 x2

i , with −5.12≤ xi ≤ 5.12.

This function should not be a problem for an optimization algorithm. The func-
tion is very smooth and has only one local minimum, which is also the global
minimum.

• f2(x1, . . . ,xk) = ∑
k−1
i=1

(
100(xi+1− x2

i )
2 +(xi−1)2

)2, with −5.12≤ xi ≤ 5.12.

f2 is rather hard to optimize: the points with good values lie on a thin line, with
the function growing rapidly when moving away from that line.

• f3(x1, . . . ,xk) = 6k +∑
k
i=1bxic, with −5.12≤ xi ≤ 5.12.

This function consists of many plateaus, where almost every point is a local min-
imum. Search algorithms with small step sizes could have problems optimizing
this function, due to difficulties finding a good direction.
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• f4(x1, . . . ,xk) = ∑
k
i=1 ix4

i +N (0,1), with −5.12≤ xi ≤ 5.12.

Here, each time the function is evaluated, a new term is added, drawn from a
normal distribution with mean 0 and variance 1.

• f5(x1,x2) =
(

0.002+∑
25
j=1

1
∑

2
i=1

j +(xi−ai j)6
)−1

,
with −65536≤ xi ≤ 65536 and matrix

(ai j) =
(
−32 −16 0 16 32 · · · 0 16 32
−32 −32 −32 −32 −32 · · · 32 32 32

)
.

This function has 25 local minima. It was designed to ”trap” optimization algo-
rithms in one local optimum to research if they could still find a global optimum
after being trapped. In our experiments, neither Simulated Annealing nor the
evolutionary strategy consistently found a value smaller than 500. So this func-
tion is not well suited to compare the influence of the random number generator.

One aspect of “quality” of a pseudorandom generator is its period length. In order
to achieve pseudorandom sequences with scalable period length, we artificially short-
ened period lengths of PRNGs by counting the output numbers and resetting the seed
after a fixed amount of output numbers. On the one hand, this method enabled us to
compare various pseudorandom sequences with equal period lengths. On the other
hand, it allowed us to scale the period length of pseudorandom sequences that had oth-
erwise a very long period length. Corresponding R code can be found in Listing 2 in
the appendix.

Our results will be shown in boxplot diagrams: The three horizontal lines of a box
represent first quantile, median and third quantile. The ends of the whiskers represent
minimum and maximum values, where a whisker’s maximum length is 1.5 times the
interquartile range (distance between first and third quartile). Any values outside of
that range are plotted as individual points.

5.1 Simulated Annealing

Experiment 1

In Experiment 1, we ran the Simulated Annealing heuristic on a traveling salesman
instance with 50 cities and measured the quality of the solutions, i.e. the length of the
optimal tour found. The distance matrix D was symmetric, i.e. Di j = D ji for all i, j,
and its entries were chosen at random, distributed uniformly in {1,2, . . . ,40}. As our
source of randomness, we used a Mersenne Twister, where we artificially reduced the
period length to values ranging from 1003 to 512009.

The period lengths were chosen as prime numbers because we wanted to prevent
moving in cycles as much as possible. Each run started at temperature 20. For each
temperature, we executed 3000 iterations, then slightly decreased the actual temper-
ature by multiplying it with the factor 0.97. The program ended after 100 different
temperature values had been used. For each pseudorandom generator we used, the
algorithm was run with 50 different seeds.

The pseudorandom numbers were used at two places: To compute a random neigh-
bor permutation, we randomly swapped two elements of the current permutation, and
to compute if a new permutation is accepted, we tested if a random number was smaller
than e−∆ f /T .
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Parameter Value
Heuristic Simulated Annealing
Input symmetric 50×50 distance matrix
Run time 100 temperature values,

3000 iterations per temperature
Generators Mersenne Twister with reduced period length

(denoted by r-x with x=period length)
Seeds per generator 50

Table 1: Parameters of Experiment 1.
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Figure 1: Simulated Annealing and the Traveling Salesman Prob-
lem (Experiment 1). Horizontal axis: Generator used. Vertical axis:
Length of the shortest tour found with the help of that generator. For
further parameters, see Table 1.

The optimal tour lengths we achieved can be seen in Figure 1. Increasing the
period length had a remarkable effect on the quality of our solutions. Note that the
total number of random numbers that were used in each run lies between 900,000 and
910,000.

Experiment 2

In Experiment 2, we tested the performance of Simulated Annealing on DeJong’s test
function 2 [5], which is defined as

f2(x1, . . . ,xk) :=
k−1

∑
i=1

100(xi+1− x2
i )

2 +(xi−1)2 .

This function has a global minimum f (1, . . . ,1) = 0. In our experiment, we used
dimension k = 20. The function was optimized in the range [−5.12,5.12]20.

The Simulated Annealing heuristic started at temperature 20. For some common
parameters of this experiment, see Table 2. To obtain a neighbor of the actual state,
we changed every component of the 20-dimensional vector by a pseudorandom num-
ber in the interval [−0.5,0.5]. The source of randomness was a modified Mersenne
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Figure 2: Solving DeJong’s test function f2 with Simulated Annealing
(Experiment 2). Horizontal axis: Generator used. Vertical axis: Min-
imum value of f2 found with the help of that generator. For further
parameters, see Table 2.

Parameter Value
Heuristic Simulated Annealing
Run time 100 temperature values,

500 iterations per temperature
Generators Mersenne Twister with reduced period length

(denoted by r-x)
Seeds per generator 50

Table 2: Parameters of Experiment 2.

Twister, where the period length was artificially reduced to values ranging from 1003
to 512009. As in Experiment 1, we used primes as period lengths to avoid moving in
cycles. For each run we measured the minimum function value f2(x) that was found
in the interval [−5.12,5.12]20. The results of this experiment can be seen in Figure 2.

Experiment 3

In Experiment 3, the Simulated Annealing heuristic was again used to solve an instance
of the Traveling Salesman Problem. The algorithm started at temperature 20, which
was then gradually decreased by the factor 0.97.

This time we used van der Corput sequences and Halton sequences of dimen-
sion 2 as sources of randomness. Each of the van der Corput and Halton sequences
was started at 50 different points, the Mersenne Twister was used with 50 different
seeds. Since the roulette wheel algorithm does not need tuples from the random
source, we used the Halton sequences in a simplified way and flattened them: Let
((x11,x12),(x21,x22),(x31,x32), . . .) be a Halton sequence of dimension 2. Then we
used the 1-dimensional sequence (x11,x12,x21,x22,x31,x32, . . .) instead. For the van
der Corput sequences in base 8, we additionally permuted the digits of n, i.e instead of
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Parameter Value
Heuristic Simulated Annealing
Input symmetric 50×50 distance matrix
Run time 100 temperature values,

3000 iterations per temperature
Generators van der Corput sequences of base 2 (vdc2)

van der Corput sequences of base 8 (vdc8-px)
2-dimensional Halton sequences (Hal-xy)
Mersenne Twister (MT)

Seeds per generator 50

Table 3: Parameters of Experiment 3.

φb in Definition 3, we used

φ̃b(n) =
∞

∑
j=0

p(ni)b−i−1 ,

where p was a permutation of {0, . . . ,7}. We used the permutations
p1 = (2 4 6 0 1 3 5 7),
p2 = (0 3 6 1 4 7 2 5),
p3 = (2 5 6 4 1 0 3 7) and
p4 = (3 6 4 5 1 7 2 0)
(meaning that p1 maps 0 to 2, 1 to 4, 2 to 6, . . . ).

The results of Experiment 3 can be seen in Figure 3. Here, “vdc” denotes the van
der Corput sequence in base 2, “vdc8p1” to “vdc8p4” denote van der Corput sequences
in base 8, with permutations 1 to 4, and “hal-xy” denote Halton sequences of bases x
and y.

MT vdc2 vdc8p1 vdc8p2 vdc8p3 vdc8p4 hal2−23 hal2−25 hal2−35 hal2−27 hal2−37
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Figure 3: Traveling Salesman Problem with Simulated Annealing and
quasirandom sequences (Experiment 3). Horizontal axis: Pseudoran-
dom number generator we used. Vertical axis: Length of the shortest
tour found with the help of that generator. For further parameters, see
Table 3.
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With the use of van der Corput sequences, the algorithm consistently found worse
solutions than with the Mersenne Twister, whereas the use of Mersenne Twister and
Halton sequences both led to good solutions that did not significantly differ from each
other.

Experiment 4

In Experiment 4, we tried to measure the influence of k-wise independence on the
quality of the Simulated Annealing heuristic. We fixed the range m of an explicit
polynomial generator at m = 10000 and varied its degree from k = 2 up to k = 10.

Parameter Value
Heuristic Simulated Annealing
Input symmetric 50×50 distance matrix
Run time 100 temperature values,

3000 iterations per temperature
Generators Polynomial generators with period length 10000

and degree k ∈ {2, . . . ,10} (denoted by p-k)
Mersenne Twister

Seeds per generator 60 (20 for each parameter set)

Table 4: Parameters of Experiment 4.
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Figure 4: Traveling Salesman Problem with Simulated Annealing and
polynomial generators (Experiment 4). Horizontal axis: Pseudoran-
dom number generator we used. Vertical axis: Length of the shortest
tour found with the help of that generator. For further parameters, see
Table 4.

To find good coefficient sets for that generator, we used the following approach:
For each degree k, we created 200 coefficient sets at random, i.e. we chose the co-
efficients a0, . . . ,ak. For each of these coefficient set, we then output 100000 num-
bers with a polynomial generator that used these coefficients. Each of these output
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sequences was then compressed individually with the bzip2 algorithm. For our exper-
iment, we only chose the three coefficient sets that lead to the three longest files after
compression. That way, we tried to avoid sequences with obvious regularities.

Most other parameters were chosen as for Experiment 1. For an overview of the
parameters, see Table 4.

The results of the experiment are shown in Figure 4. Increasing the degree of the
polynomial generator did not significantly increase the quality of the solution. Com-
paring with the results of Experiment 1, the solutions achieved with the polynomial
generators are comparable to those achived when using a linear congruential genera-
tor with period length of 8000 or 16 thousand. Since our polynomial generators had
a modulus m = 10000, and thus most likely a period length of 10000, period length
seems to have more influence on the result than k-wise independence of the pseudo-
random numbers.

5.2 Population based heuristics

Experiment 5

In Experiment 5 we ran a simple evolutionary algorithm on the same instance of the
TSP problem as in Experiment 1. In each step, the fitness values of the population
were calculated and the next population then chosen by a roulette wheel algorithm
(see Listing 3 in the appendix). Then every element of the population was mutated,
switching two permutation elements. From this new population, we then created 10
new elements by combining two random elements with the edge-3 crossover operator
[8]. These new elements replaced one of their parents each.

Parameter Value
Heuristic Evolutionary Algorithm
Input symmetric 50×50 distance matrix
Population size 100
Run time 3000 iterations
Generators linear congruential generators (l-x)

Mersenne Twister (MT)
Marsaglia’s Diehard sequence (D)

Seeds per generator 60 (20 for each of three parameter sets for lcg)

Table 5: Parameters of Experiment 5.

As source of randomness, we used linear congruential generators that had max-
imum period lengths from 1000 up to 512000. Their parameters were chosen such
that their output could not be well compressed by the bzip2 program. To this end, we
randomly chose parameters that could guarantee maximum period lengths, then com-
pressed sequences obtained from a linear congruential generator with these parameters
and compressed them. For each period length, we used the three parameter sets that
resulted in the 3 biggest files after compression. For each of these parameter sets,
we used 20 different seeds. For comparison, we also used the Mersenne Twister and
Marsaglia’s random sequence.

13



l−1000 l−2000 l−4000 l−8000 l−8192 l−16000 l−64000 l−256000 MT D

42
0

44
0

46
0

48
0

Generator

Le
ng

th
 o

f  
sh

or
te

st
 to

ur
 fo

un
d

l−32000 l−128000 l−512000

Figure 5: Solving the Traveling Salesman Problem wit a population
based approach (Experiment 5). Horizontal axis: Pseudorandom num-
ber generator we used. Vertical axis: Length of the shortest tour found
with the help of that generator. For further parameters, see Table 5.

Figure 5 shows the results of this experiment. The solution quality does not seem
to depend on the period length of the linear congruential generators.

Experiment 6

Experiment 6 was very similar to Experiment 5: We used the same input, the same
population size and the same mutation/crossover procedure. The fitness function for
the roulette wheel algorithm was normalized such that the object with the worst fitness
was chosen with probability 0. In this experiment, we used van der Corput sequences
and Halton sequences of dimension 2 as sources of randomness.

Parameter Value
Heuristic Evolutionary Algorithm
Input symmetric 50×50 distance matrix
Population size 100
Run time 10,000 iterations
Generators van der Corput sequences of base 2 (vdc2)

van der Corput sequences of base 8 (vdc8-px)
2-dimensional Halton sequences (hal-xy)
Mersenne Twister (MT)

Seeds per generator 50

Table 6: Parameters of Experiment 6.

Since the roulette wheel algorithm does not need tuples from the random source,
we flattened the Halton sequences as described in Experiment 3. The van der Corput
sequences in base 8 used permutations, see Experiment 3 for further details.

The results of Experiment 6 can be seen in Figure 6. With the use of van der
Corput sequences, the algorithm consistently found better solutions than with any other
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Figure 6: Solving the TSP with a population based approach, using
quasi-random sequences (Experiment 6). Horizontal axis: Pseudoran-
dom number generator we used. Vertical axis: Length of the shortest
tour found with the help of that generator. For further parameters, see
Table 6.

sources of randomness we used.

Experiment 7

In Experiment 7, we wanted to find an explanation why the use of van der Corput
sequences in Experiment 6 lead to better solutions. Especially, we wanted to know if
the crossover/mutation steps or the roulette wheel were improved by using quasiran-
dom sequences. To this end, we provided the roulette wheel algorithm and the muta-
tion/crossover steps with numbers from different generators. In a first test, the muta-
tion and crossover steps used a van der Corput sequence while the roulette wheel used
numbers from a Mersenne Twister. In a second test, mutation and crossover used num-
bers from a Mersenne Twister and the roulette wheel was run with a van der Corput
sequence.

Parameter Value
Heuristic Evolutionary Algorithm
Input symmetric 50×50 distance matrix
Population size 100
Run time 10,000 iterations
Generators Mersenne Twister (MT)

Combination of van der Corput sequences
and Mersenne Twister:

M-vdc... : van der Corput seq. for mutation/crossover
R-vdc... : van der Corput seq. for roulette wheel

Seeds per generator 50

Table 7: Parameters of Experiment 7.
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Figure 7: A population based approach, using different pseudoran-
dom generators (quasirandom sequences and a Mersenne Twister) for
mutation and selection (Experiment 7). Horizontal axis: Pseudoran-
dom number generator we used – “M-..” used quasiradnom sequences
for mutation and crossover, “R-..” used quasirandom sequences for
roulette wheel selection. Vertical axis: Length of the shortest tour
found with the help of that combination of generators. For further pa-
rameters, see Table 7.

The results of Experiment 7 can be seen in Figure 7. Cases where the mutation
and crossover steps used van der Corput sequences are denoted by “M-. . . ”, cases
where the roulette wheel used van der Corput sequences are denoted by “R-. . . ”, and
MT denotes the case where only the Mersenne Twister was used. The roulette wheel
seems not to be sensitive to the generator choice. Providing the mutation and crossover
steps with the quasirandom numbers lead to better results.

More experiments with DeJong’s test functions

We conducted some more experiments with the functions f1 to f4 from DeJong’s test
function suite.

Both Simulated Annealing and the evolutionary algorithm were run with two dif-
ferent neighbor resp. mutation heuristics: Adding a uniformly distributed value to
each component of a vector or adding a normally distributed value to each vector com-
ponent. Simulated Annealing was run with a Mersenne Twister with reduced period
lengths, while the evolutionary algorithm was run with linear congruential generators
with varying period lengths from 1000 to 512000. Functions 1 to 4 were solved for
dimension k = 20.

• For solving f1, the evolutionary algorithm had a population size of 20 and was
run for 1000 iterations. Simulated Annealing was run for 500 steps per temper-
ature and 100 different temperature values.

• When solving f2, the evolutionary algorithm had a population size of 40 and
was run for 2000 iterations. Simulated Annealing was run for 500 steps per
temperature and 100 different temperature values.
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Heuristic Test function Range of means Range of mean/sd
SA(unif.) 1 2.86 - 3.10 0.16 - 0.20
SA(norm.) 1 2.92 - 3.15 0.16 - 0.21
SA(unif.) 2 68 - 117 0.25 - 0.50
SA(norm.) 2 28.9 - 42.6 0.076 - 0.60
SA(unif.) 3 11.7 - 18.4 0.15 - 0.55
SA(norm.) 3 11.60 - 18.7 0.15 - 0.65
SA(unif.) 4 1.05 - 1.38 0.31 - 0.49
SA(norm.) 4 1.13 - 1.70 0.30 - 0.51
EA(unif.) 1 4.14 - 4.81 0.13 - 0.19
EA(norm.) 1 3.76 - 5.51 0.14 - 0.20
EA(unif.) 2 3.63 - 3.92 0.13 - 0.18
EA(norm.) 2 3.72 - 5.08 0.13 - 0.18
EA(unif.) 3 7.65 - 8.88 0.10 - 0.15
EA(norm.) 3 6.85 - 8.38 0.08 - 0.17
EA(unif.) 4 2.02 - 2.30 0.30 - 0.41
EA(norm.) 4 2.07 - 2.50 0.29 - 0.38

Table 8: Experiments with Dejong’s test suite. Values are rounded to
2 decimal digits. Heuristics include Simulated Annealing (SA) and an
evolutionary algorithm (EA) with uniformly resp. normally distributed
neigbor/mutation function. For each generator, the mean result and the
quotient mean result/standard deviation were calculated. In the table,
we list the minimum and maximum values of these characteristics.

• For f3, the evolutionary algorithm had a population size of 40 and was run for
2000 iterations. Simulated Annealing was run for 500 steps per temperature and
100 different temperature values.

• For f4, the evolutionary algorithm had a population size of 40 and was run for
2000 iterations. Simulated Annealing was run for 3000 steps per temperature
and 100 different temperature values.

The results are summarized in Table 8.

5.3 Discussion

For the Simulated Annealing heuristic, the quality of the solution for the traveling
salesman problem depended mainly on the period length of the pseudorandom gener-
ators we used. The results we received when using simple linear congruential gener-
ators were comparable with those we received when using “high end” generators like
the Mersenne Twister or Marsaglia’s diehard sequence, when we artificially reduced
the period lengths of those high-end generators to match those of the LCGs.

When using quasirandom numbers, Halton sequences of dimension 2 lead to re-
sults comparable to the results when using a Mersenne Twister. Van der Corput se-
quences however led to drastically inferior results and should thus not be used in con-
junction with Simulated Annealing and the Traveling Salesman Problem.
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The population-based heuristic seemed to be very robust with respect to the quality
of the pseudorandom generator we used (Fig. 5). It’s a common approach to restart
a search heuristic a fixed number of times and then take the best result achieved so
far. Therefore, it is always interesting to look at the best result achieved for a specific
pseudorandom generator. Considering only the minimum value over the 50 repetitions,
the renowned Mersenne Twister was outclassed (although not by much) by most linear
congruential generators, even by that with period length 1000.

An astonishing result has been achieved when running the evolutionary algorithm
with quasi-random sequences: When solving the traveling salesman problem, the use
of van der Corput sequences lead to much better results than the other generators we
used (Fig. 6). They were even better than Halton sequences, although Halton se-
quences are just a generalized version of van der Corput sequences. This result was
not expected, especially because the code for finding a neighboring state in the Simu-
lated Annealing heuristic in Experiment 3 and the code for mutating an individual in
Experiment 6 where identical.

When optimizing the TSP with an evolutionary strategy, the mutation and crossover
steps were identified in Experiment 6 as the parts that benefit from the use of quasiran-
dom sequences, whereas the roulette wheel selection part seemed not to be influenced
significantly by this choice of the generator. This gives rise to the assumption that for
the elements of a new generation, equidistribution is a very important property. Note
that in the case of evolutionary algorithms, this means equidistribution in the neigh-
borhood of the old generation, not equidistribution in the whole search space.

6 Outlook

So far, we investigated the effect of a pseudorandom number generator’s period length
on the quality of two different random search heuristics. However, there are still a few
things left that we aim to do in the near future.

Period length of the PRNG seems to influence the quality of the Simulated An-
nealing heuristic, at least for some optimization problems, while k-wise independence
seems to have no influence. On the other hand, evolutionary algorithms seem to be
susceptible to the use of quasi-random sequences, while period length seemed to have
no influence. We want to examine more criteria that can be used to measure the qual-
ity of a pseudorandom source, and investigate their effects, and we will also try to find
some theoretical foundations as to why these effects happen.

It appears that some functions need “better” random numbers for finding a good
solution, while other functions can also be optimized with low quality randomness.
We want to further investigate this topic and isolate some characteristics that make a
function easy or hard to optimize with somehow limited randomness.

Furthermore, we want to investigate the effects of bad random number quality on
other search heuristics, like swarm algorithms or ant colony optimization.
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A Implementation Details

Listing 1 shows the basic implementation of a class rng, along with a subclass reference.
The global object rng.reference is then created and a function reference.getNext
defined, which gives us one random number each time we call it. The last output is
stored in the global object, just in case we want to reuse it.

s e t C l a s s ( "rng" ,
r e p r e s e n t a t i o n (

seed ="numeric" , range="numeric" , s t a t e ="numeric"
)

) ;
s e t C l a s s ( "reference" , r e p r e s e n t a t i o n ( ) , c o n t a i n s ="rng" )

rng . r e f e r e n c e <− new ( "reference" ) ;

r e f e r e n c e . g e t N e x t <− f u n c t i o n ( ) {
rng . r e f e r e n c e @ s t a t e <<− r u n i f ( 1 , min =0 ,max = 1 ) ;
re turn ( rng . r e f e r e n c e @ s t a t e ) ;

}

Listing 1: The reference RNG, which uses R’s builtin Mersenne Twister.

In order to see if the heuristics depended on the PRNG’s period length, we arti-
ficially shortened the period lengths of some sophisticated PRNGs like the Mersenne
Twister or Marsaglia’s CD-ROM sequence. An example for the Mersenne Twister is
shown in listing 2. We simply count the number of output numbers and reset the seed
when the output has reached a given length.

s e t C l a s s ( "mrepeater" , r e p r e s e n t a t i o n ( l e n g t h ="numeric" ) , c o n t a i n s ="rng" ) ;

rng . m r e p e a t e r <− new ( "mrepeater" ) ;

m r e p e a t e r . g e t N e x t <− f u n c t i o n ( ) {
rng . m r e p e a t e r @ s t a t e <<− ( rng . m r e p e a t e r @ s t a t e%%rng . m r e p e a t e r @ l e n g t h ) + 1 ;
i f ( rng . m r e p e a t e r @ s t a t e == 1)

s e t . s e ed ( rng . mrepea te r@seed ) ;
re turn ( r u n i f ( 1 ) ) ;

}

Listing 2: A Mersenne random number repeater.

Listing 3 shows how we implemented the roulette wheel used in the evolutionary
algorithm. fitt is a vector of fitness values, number is the number of indexes we
need, and the optional argument getNext is a function that gives us pseudorandom
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numbers. roulette returns a vector of indexes, which we use to select objects from
our population.

r o u l e t t e <− f u n c t i o n ( f i t t , number , g e t N e x t = r e f e r e n c e . g e t N e x t ){
f i t <− f i t t / sum ( f i t t )
f i t <− cumsum ( f i t )
s e l e c t i o n <− double ( number )

f o r ( i i n 1 : number ){
s e l e c t i o n [ i ] <− which ( f i t >= g e t N e x t ( ) ) [ 1 ]

}

re turn ( s e l e c t i o n )
}

Listing 3: The roulette wheel selection procedure.
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