Constrained Ordering

Walter Guttmann Markus Maucher
Fakultät für Informatik, Universität Ulm, 2005.12.01

Abstract

We investigate the problem of finding a total order of a finite set that satisfies various local ordering constraints. Depending on the admitted constraints, we provide an efficient algorithm or prove NP-completeness. To this end, we define a reduction technique and discuss its properties.

Key words: total ordering, NP-completeness, computational complexity, betweenness, cyclic ordering, topological sorting.

1 Introduction

An instance of the betweenness problem is given by a finite set A and a collection C of triples from A, and one has to decide if there is a total order $<$ of A such that for each $(a, b, c) \in C$, either $a<b<c$ or $c<b<a$ [GJ79, problem MS1]. The betweenness problem is NP-complete [Opa79]. Applications arise, for example, in the design of circuits and in computational biology [Opa79, CS98].

Similarly, the cyclic ordering problem asks for a total order $<$ of A such that for each $(a, b, c) \in C$, either $a<b<c$ or $b<c<a$ or $c<a<b$ [GJ79, problem MS2]. The cyclic ordering problem, too, is NP-complete [GM77]. Applications arise, for example, in qualitative spatial reasoning [IC00].

On the other hand, if $a<b<c$ or $a<c<b$ is allowed, the problem can be solved with linear time complexity by topological sorting [Knu97, Section 2.2.3].

Yet another choice, namely $c<a$ or $c<b$, is needed to model an objectrelational mapping problem described in Section 2. The reader is invited to think about the time complexity of this problem before reading the solution.

Starting with Section 3, several kinds of generalisations to these problems are explored with respect to their time complexity and interdependence. The main instrument, a reduction technique, and its properties are presented in Section 4. Applications of this method-manual and automatic-are discussed in Section 5. The conclusion discusses related work, generalisations, and open problems. Some of the proofs are presented in the appendix.

2 Motivation

We consider the part of an object-oriented model of a system specified by the UML class diagram shown in Figure 1. The classes L and M are related to

Figure 1: UML class diagram with association class
each other, and the association class K details this relationship. Note that the association from L to M is directed which means that objects of the class M cannot access those of K and L [Obj05].

From time to time, a software that implements this model needs to make the instances that have been accumulated in memory persistent to a database. The representations in memory using pointers and in a relational database clash, however, resulting in object-relational mapping problems [Fow02]. For our special problem, the following approach is appropriate.

There should be one database table for each of the classes K, L, and M, into which objects of the respective classes save themselves, with unique identifiers being generated upon storage. To hold the instances of the associations, the socalled links, another table is devised that keeps the identifiers of related objects. For efficiency reasons, one of the three objects that participate in a link should make the entry into the association table. Since all three identifiers are needed for this, only the last of the three objects of each link is in the right position to do this. Moreover, because of the restricted visibility in the model, this must not be the object of class M for it cannot access the other identifiers.

To summarise, for each triple (a, b, c) of objects from classes (K, L, M) that constitute such a link, a or b must be stored after c. This is the reason for the requirement $c<a$ or $c<b$ given above for the total order.

In practice, an UML class diagram may also have directed associations without a detailing association class. Such a pair (d, e) of objects would have the requirement $d<e$ modelling that d must be stored before e. We therefore state the decision problem of this, more general version.

- INSTANCE: Finite set A, collection B of pairs from A, collection C of triples from A.
- QUESTION: Is there a bijection $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that $f\left(a_{1}\right)<$ $f\left(a_{2}\right)$ for each $\left(a_{1}, a_{2}\right) \in B$, and $f\left(a_{3}\right)<f\left(a_{1}\right)$ or $f\left(a_{3}\right)<f\left(a_{2}\right)$ for each $\left(a_{1}, a_{2}, a_{3}\right) \in C$?

We prove it is efficiently decidable by the algorithm shown in Figure 2, an extension of topological sorting [Knu97, Section 2.2.3]. Algorithm T maintains working sets $E \subseteq A, F \subseteq B$, and $G \subseteq C$.

Assume algorithm T proposes an order. That order is a permutation of A since during every iteration one element e is removed from E and prepended to the order. To see that the constraints specified by B are satisfied note that each $\left(a_{1}, a_{2}\right) \in B$ remains in F until the iteration where $a_{2}=e$, thus a_{2} is prepended

```
input finite set \(A\), collection of pairs \(B\), collection of triples \(C\)
output total order of \(A\) such that the first element of each pair
    in \(B\) precedes the second, and the third element of
    each triple in \(C\) precedes the first or the second
method \(\quad(E, F, G) \leftarrow(A, B, C)\)
Order \(\leftarrow\) empty sequence
while \(E \neq \emptyset\) do
    find \(e \in E\) such that \(\forall x, y \in E:(e, y) \notin F \wedge(x, y, e) \notin G\)
    if such an \(e\) exists then
            \(G \leftarrow\{(x, y, z) \in G \mid x \neq e \wedge y \neq e\}\)
            \(F \leftarrow\{(x, y) \in F \mid y \neq e\}\)
            \(E \leftarrow E \backslash\{e\}\)
            prepend \(e\) to Order
        else
            output "there is no order"
            halt
        end
    end
    output Order
```

Figure 2: Algorithm T
to the order. While $\left(a_{1}, a_{2}\right) \in F$, however, the chosen element e cannot be a_{1}, hence a_{1} precedes a_{2} in the order.

Similarly, to see that the constraints specified by C are satisfied note that each $\left(a_{1}, a_{2}, a_{3}\right) \in C$ remains in G until the iteration where $a_{1}=e \vee a_{2}=e$, thus a_{1} or a_{2} is prepended to the order. While $\left(a_{1}, a_{2}, a_{3}\right) \in G$, however, the chosen element e cannot be a_{3}, hence a_{3} precedes a_{1} or a_{2} in the order.

Assume algorithm T fails to find an order. In this case, there is a non-empty subset $E \subseteq A$ such that no $e \in E$ satisfies the required property. Thus, for each $e \in E$ either $(e, y) \in F$ for some $y \in E$ or $(x, y, e) \in G$ for some $x, y \in E$. Since $F \subseteq B$ and $G \subseteq C$ each $e \in E$ must precede some $e^{\prime} \in E$ in a total order. There is no such order of finite sets.

The time complexity of algorithm T is polynomial in the size of the input. Implemented very carefully one can even achieve a linear time complexity.

Taking $C=\emptyset$ and requiring B to be a (strict) partial order over A demonstrates that algorithm T is indeed a generalisation of topological sorting. Since we do not assume that the elements of a triple in C are distinct, one may even entirely dispose of B by adding a triple $\left(a_{2}, a_{2}, a_{1}\right)$ to C for each pair $\left(a_{1}, a_{2}\right) \in B$. While this procedure works for the problem at hand, it might fail for other types of problems discussed in Section 3.

3 Generalisation

We explore different kinds of generalising the betweenness, cyclic ordering, and topological sorting problems introduced above. By \mathfrak{S}_{k} we denote the symmetric group of size k.

3.1 Constraints over three elements

The first generalisation still assumes that a collection C of triples is given but abstracts from the constraint $P \subseteq \mathfrak{S}_{3}$ specifying the relative order of the elements of each triple. We therefore have a family of problems, one for each P.

- INSTANCE: Finite set A, collection C of triples $\left(a_{1}, a_{2}, a_{3}\right)$ of distinct elements from A.
- QUESTION: Is there a bijection $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that for each $\left(a_{1}, a_{2}, a_{3}\right) \in C$ there is a $p \in P$ with $f\left(a_{p(1)}\right)<f\left(a_{p(2)}\right)<f\left(a_{p(3)}\right)$?

Choose $P=\{(123),(321)\}$ for betweenness, $P=\{(123),(231),(312)\}$ for cyclic ordering, and $P=\mathfrak{S}_{3} \backslash\{(123),(213)\}$ to get the problem discussed in Section 2. The distinctness condition $a_{1} \neq a_{2} \neq a_{3} \neq a_{1}$ is obviously easy to check and further elaborated in Appendix A.

The total number of problems in this family is $2^{\left|\mathfrak{G}_{3}\right|}=2^{3!}=2^{6}=64$. Already from the small sample just presented it is clear that some of these problems are tractable while others are NP-complete. Thus the task arises to classify the remaining problems. All of them are in NP, since a nondeterministic algorithm can guess the order and check in polynomial time that the constraints specified by C are satisfied with respect to the chosen P. This remark applies to all problems discussed in this paper.

To reduce the number of problems that must be investigated, the following symmetry consideration applies. Intuitively, a systematic permutation of the elements of each triple can be compensated by adjusting the constraints to access the triples at the permuted positions. Precisely, symmetry is exploited by permuting the elements of each triple and applying the inverse permutation to all constraints. It follows that two problems P_{1} and P_{2} that differ just by consistently renaming the elements of their permutations, that is $P_{1}=\pi \circ P_{2}$ for some $\pi \in \mathfrak{S}_{3}$, have the same time complexity. For example, $\{(123),(213)\}$ and $\{(321),(231)\}$ are two such problems.

The problems can be classified as shown in Figure 3. It displays the reduction graph for our family of problems with its strongly connected components collapsed, and symmetrical problems pooled. The reduction graph, in turn, has the problems as its vertices and an edge from P_{1} to P_{2} if, by the method described in Section 4, P_{1} is many-one reducible in polynomial time to P_{2}. The problems surrounded by double boxes are NP-complete, and the others are tractable. The latter can be solved trivially, by topological sorting, or by algorithm T from Section 2.

Figure 3: Reducibility among the problems $\subseteq \mathfrak{S}_{3}$

Let us mention another kind of symmetry that is not captured by the method presented in Section 4. Intuitively, reversing each constraint can be compensated by transposing the resulting total order. Precisely, a partial order can be extended to a total order if and only if its transpose can be extended-just take the transpose of the total order. It follows that two problems P_{1} and P_{2} that differ just by reversing their permutations, that is $P_{1}=P_{2} \circ(321)$, have the same time complexity. For example, $\mathfrak{S}_{3} \backslash\{(123),(213)\}$ and $\mathfrak{S}_{3} \backslash\{(321),(312)\}$ are two such problems.

3.2 Constraints over additional pairs

The second generalisation has already been touched in Section 2, where the collection of triples was joined by a collection of pairs. For that special instance, the additional constraint pairs have no impact on the complexity of algorithm T since they could also be replaced by triples. In general, however, this is not the case. For example, whatever additional betweenness triples are devised to replace a pair $\left(a_{1}, a_{2}\right)$ that requires a_{1} to precede a_{2}, they are also satisfied by transposing the resulting total order. There simply is no way to express absolute direction in the betweenness problem. We therefore have another family of 64 problems, again indexed by $P \subseteq \mathfrak{S}_{3}$.

- INSTANCE: Finite set A, collection B of pairs from A, collection C of triples $\left(a_{1}, a_{2}, a_{3}\right)$ of distinct elements from A.
- QUESTION: Is there a bijection $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that $f\left(a_{1}\right)<$ $f\left(a_{2}\right)$ for each $\left(a_{1}, a_{2}\right) \in B$, and for each $\left(a_{1}, a_{2}, a_{3}\right) \in C$ there is a $p \in P$ with $f\left(a_{p(1)}\right)<f\left(a_{p(2)}\right)<f\left(a_{p(3)}\right)$?

With the results of Section 3.1 in place, the complexity of each problem in the new family can easily be derived. Taking $B=\emptyset$ demonstrates that the new problems are indeed generalisations. All NP-complete problems of Section 3.1 thus remain NP-complete. On the other hand, all tractable problems aredirectly or by reduction-solvable using algorithm T that already accepts an
additional collection of constraining pairs. The classification therefore remains unchanged.

Symmetry by reversing each constraint can be extended to this, more general case by transposing the relation B to accommodate the reversed order.

3.3 Constraints over disjoint triples

The third variation takes advantage of the expressivity gained by the pairs introduced in Section 3.2. It is rather a specialisation of those problems where one assumes that any two triples in the collection C are pairwise disjoint when viewed as sets. This family of problems is also indexed by $P \subseteq \mathfrak{S}_{3}$.

- INSTANCE: Finite set A, collection B of pairs from A, collection C of pairwise disjoint triples $\left(a_{1}, a_{2}, a_{3}\right)$ of distinct elements from A.
- QUESTION: Is there a bijection $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that $f\left(a_{1}\right)<$ $f\left(a_{2}\right)$ for each $\left(a_{1}, a_{2}\right) \in B$, and for each $\left(a_{1}, a_{2}, a_{3}\right) \in C$ there is a $p \in P$ with $f\left(a_{p(1)}\right)<f\left(a_{p(2)}\right)<f\left(a_{p(3)}\right)$?

Since the new problems are restrictions of those of Section 3.2, algorithm T can still be applied to solve the tractable problems. The question remains whether some of the NP-complete problems become more easy. The negative answer to this question is given in Appendix B. Here, we only provide a summary of that proof.

By symmetry, the eight NP-complete problems shown in Figure 3 remain. One of them can be eliminated by the reverse symmetry mentioned in Sections 3.1 and 3.2. The problem $P=\{(123),(231)\}$, called intermezzo, is singled out and its NP-completeness is proved by reduction from 3SAT in Appendix B.1. It is then further reduced to the betweenness problem $\{(123),(321)\}$ in Appendix B.2. Finally, intermezzo is reduced to each of the remaining five problems by an easier construction described in Appendix B.3. Note that the existing NPcompleteness proofs for betweenness and cyclic ordering do not apply because both use non-disjoint triples [GM77, Opa79].

Our first three generalisations can be summarised as shown in Figure 4. These variants have the same class structure. The picture is completed by the variant that requires disjoint triples but does not permit pairs-this variant is trivially solvable.

3.4 Constraints over tuples

Our final generalisation abstracts from the number of elements of the constraints. We have started with triples in Section 3.1, added pairs in Section 3.2, and now assume the number of elements is given by the positive integer k-to be held constant for a single problem. For each value of k we have a family of problems indexed by $P \subseteq \mathfrak{S}_{k}$.

- INSTANCE: Finite set A, collection C of k-tuples $\left(a_{1}, \ldots, a_{k}\right)$ of distinct elements from A.

Figure 4: Variants of problems with triples

- QUESTION: Is there a bijection $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that for each $\left(a_{1}, \ldots, a_{k}\right) \in C$ there is a $p \in P$ with $f\left(a_{p(i)}\right)<f\left(a_{p(j)}\right)$ for all $1 \leq i<j \leq k$?

The total number of problems for a fixed k is $2^{\left|\mathfrak{S}_{k}\right|}=2^{k!}$. A concrete problem will be referred to as the constrained ordering problem (k, P).

This is the wording of the problem that will be used in Section 4. We will introduce a method there by which the constrained ordering problems (k_{1}, P_{1}) and $\left(k_{2}, P_{2}\right)$ may be compared, and investigate its properties. This method has been, among other things, fully applied to the case $k=4$ which we describe here.

Just as with triples, all 16777216 problems with quadruples as constraints are either tractable or NP-complete. They can be classified as shown by the simplified reduction graph in Figure 5. See Section 3.1 for its interpretation. For want of space, only one or two problems from each class are provided. The classes correspond to those of Figure 3, only the dihedral class is new.

A few remarks on the classes are appropriate. The swap class contains the problems $P=P \circ(4321)$ that are closed under reversion - except for those in the dihedral class and the trivial ones. The cyclic class contains, with the same exceptions, the problems $P=P \circ(2341)$ that are closed under rotation. The dihedral class contains the problems $P=P \circ(4321)=P \circ(2341)$ that are closed under both kinds of symmetries, except for \mathfrak{S}_{4} and \emptyset again. This class is new with the quadruples since for the triples there are no problems besides \mathfrak{S}_{3} and \emptyset sharing both symmetries. In Section 5.2 we will further discuss the canonical problem from the dihedral class shown in Figure 5, called 4-separation.

The partial order class contains all problems where the constraints exactly specify a partial order that must be satisfied, except for \mathfrak{S}_{4} that specifies the discrete order. They are solved by topological sorting. The problems in the classes labelled with algorithm T-they are symmetric under reversion of each other - can be reduced to problems solvable by that algorithm. Finally, the exclusion class contains the remaining problems and is by far the largest.

Figure 5: Reducibility among the problems $\subseteq \mathfrak{S}_{4}$

Table 1 compares the number of problems in each class for different values of k. We do not know the general values for the exclusion and algorithm T classes. We also do not know if the exclusion class splits for larger values of k. No closed formula is known for the size of the partial order class [Slo05].

Let us conclude this section by remarking that two further kinds of generalisations are discussed in Section A.

4 Reduction

In this section we explore a method that can be used for reductions between different constrained ordering problems. Let k be a positive integer and $P \subseteq \mathfrak{S}_{k}$. Recall the problem statement for the constrained ordering problem (k, P) from Section 3.4.

- INSTANCE: Finite set A, collection C of k-tuples $\left(a_{1}, \ldots, a_{k}\right)$ of distinct elements from A.
- QUESTION: Is there a bijection $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that for each $\left(a_{1}, \ldots, a_{k}\right) \in C$ there is a $p \in P$ with $f\left(a_{p(i)}\right)<f\left(a_{p(j)}\right)$ for all $1 \leq i<j \leq k$?

We need some general definitions concerning finite sequences. For $k \in \mathbf{N}$ the set $\mathbf{N}_{k}=\{1, \ldots, k\}$ denotes the first k positive integers. A k-tuple from a set S, or a (finite) sequence of length k in S, is a function with type $\mathbf{N}_{k} \rightarrow S$. The k tuples from S without repetition are the injective functions with type $\mathbf{N}_{k} \rightarrow S$, denoted by $\binom{S}{k}$. In particular, a permutation $\pi \in \mathfrak{S}_{k}$ is such a k-tuple.

class	$k=1$	$k=2$	$k=3$	$k=4$	$k \geq 3$
discrete	1	1	1	1	1
empty	1	1	1	1	1
partial order	-	2	18	218	A001035(k) - 1
algorithm T	-	-	3	266	$?$
algorithm T reverse	-	-	3	266	$?$
dihedral	-	-	-	6	$2^{k!/ 2 k}-2$
cyclic	-	-	2	56	$2^{k!/ k}-2^{k!/ 2 k}$
swap	-	-	6	4088	$2^{k!/ 2}-2^{k!/ 2 k}$
exclusion	-	-	30	16772314	$?$
total	2	4	64	16777216	$2^{k!}$

Table 1: Class sizes for $k=1,2,3,4$, and the general case

The k-tuple $s: \mathbf{N}_{k} \rightarrow S$ is a subsequence of the l-tuple $t: \mathbf{N}_{l} \rightarrow S$, in symbols $s \sqsubseteq t$, if and only if there is a strictly increasing $u: \mathbf{N}_{k} \rightarrow \mathbf{N}_{l}$ such that $s=t \circ u$. In that case t is called a supersequence of s. The relation \sqsubseteq partially orders the finite sequences in S.

Given these definitions, we can transform the problem statement as follows. Let $c=\left(a_{1}, \ldots, a_{k}\right)$, then $a_{x}=c(x)$ for $1 \leq x \leq k$, hence $f\left(a_{p(i)}\right)<f\left(a_{p(j)}\right)$ is equivalent to $(f \circ c \circ p)(i)<(f \circ c \circ p)(j)$. This holds for all $1 \leq i<j \leq k$ if and only if $u=f \circ c \circ p: \mathbf{N}_{k} \rightarrow \mathbf{N}_{|A|}$ is strictly increasing. Since f is a bijection and $c \circ p=f^{-1} \circ u$, this is equivalent to $c \circ p \sqsubseteq f^{-1}$. Instead of looking for a bijection f we therefore might as well seek the corresponding sequence $w=f^{-1}: \mathbf{N}_{|A|} \rightarrow A$. The instance (A, C) of the constrained ordering problem (k, P) can thus be restated as

$$
\exists w \in\binom{A}{|A|}: \forall c \in C: \exists p \in P: c \circ p \sqsubseteq w .
$$

This form will be used for the proof in Section 4.2.

4.1 CO-reduction

The reduction technique introduces fresh elements on a per-clause basis. Let $k_{1}, k_{2} \in \mathbf{N}$ and $P_{1} \subseteq \mathfrak{S}_{k_{1}}, P_{2} \subseteq \mathfrak{S}_{k_{2}}$. The constrained ordering problem $\left(k_{1}, P_{1}\right)$ is $C O$-reducible to the constrained ordering problem $\left(k_{2}, P_{2}\right)$ if and only if there are $b \in \mathbf{N}$ and $R \subseteq\binom{\mathbf{N}_{k_{1}+b}}{k_{2}}$ such that

$$
\forall t_{1} \in \mathfrak{S}_{k_{1}}: t_{1} \in P_{1} \Longleftrightarrow \exists t_{2} \in \mathfrak{S}_{k_{1}+b}: t_{1} \sqsubseteq t_{2} \wedge \forall r \in R: \exists p \in P_{2}: r \circ p \sqsubseteq t_{2} .
$$

We then write $\left(k_{1}, P_{1}\right) \leq_{\mathrm{CO}}\left(k_{2}, P_{2}\right)$. Furthermore we abbreviate $\leq_{\mathrm{CO}} \cap \leq_{\mathrm{CO}}^{\smile}$ as $=_{\mathrm{CO}}$ where $\leq_{\mathrm{CO}}^{\smile}$ is the converse of \leq_{CO}.

The intuition is that b new elements are introduced for each tuple in an instance of $\left(k_{1}, P_{1}\right)$. That tuple is simulated according to R by several k_{2}-tuples that may use the new elements in addition to the k_{1} elements already available.

The new elements are needed to express the constraints in P_{1} with the new means given by P_{2}.

In the sequel we will prove that this local criterion can be lifted to the global requirement that the constructed set can be totally ordered. Section 4.3 then proves transitivity that is of assistance in the application of our reduction. A few specialisations of the method are investigated in Section 4.4.

4.2 CO-reducibility implies polynomial reducibility

Let $\leq_{\mathrm{m}}^{\mathrm{P}}$ denote many-one reducibility in polynomial time. We will now prove the main result $\leq_{\mathrm{CO}} \subseteq \leq_{\mathrm{m}}^{\mathrm{P}}$.

To this end, let $\left(k_{1}, P_{1}\right) \leq_{\mathrm{CO}}\left(k_{2}, P_{2}\right)$ be witnessed by b and R according to the definition. Let $\left(A_{1}, C_{1}\right)$ specify an instance of $\left(k_{1}, P_{1}\right)$, where we assume that $C_{1} \subseteq \mathbf{N}_{k_{1}} \rightarrow A_{1}$ is ordered arbitrarily as per $C_{1}=\left\{c_{1}^{(i)}\left|1 \leq i \leq\left|C_{1}\right|\right\}\right.$. For $1 \leq i \leq\left|C_{1}\right|$ the sets $B^{(i)}=\left\{b_{j}^{(i)} \mid 1 \leq j \leq b\right\}$ contain, respectively, b new elements (distinct among each other and those in A_{1}). For $c_{1}^{(i)}=\left(a_{1}, \ldots, a_{k_{1}}\right)$ let

- $c_{2}^{(i)}=\left(a_{1}, \ldots, a_{k_{1}}, b_{1}^{(i)}, \ldots, b_{b}^{(i)}\right)$,
- $A_{1}^{(i)}=\left\{a_{1}, \ldots, a_{k_{1}}\right\}$, and
- $A_{2}^{(i)}=\left\{a_{1}, \ldots, a_{k_{1}}, b_{1}^{(i)}, \ldots, b_{b}^{(i)}\right\}=A_{1}^{(i)} \cup B^{(i)}$.

Note that $A_{1}^{(i)}$ does not depend on i, but is defined for notational convenience. Finally, let

$$
A_{2}^{(\leq l)}=A_{1} \cup \bigcup_{1 \leq i \leq l} B^{(i)} \quad \text { and } \quad C_{2}^{(\leq l)}=\bigcup_{1 \leq i \leq l}\left\{c_{2}^{(i)} \circ r \mid r \in R\right\}
$$

Construct the instance $\left(A_{2}, C_{2}\right)$ of $\left(k_{2}, P_{2}\right)$ such that $A_{2}=A_{2}^{\left(\leq\left|C_{1}\right|\right)}$ and $C_{2}=$ $C_{2}^{\left(\leq\left|C_{1}\right|\right)}$. This is possible in polynomial time since b and R are constants. We will now show that $\left(A_{1}, C_{1}\right)$ is solvable if and only if $\left(A_{2}, C_{2}\right)$ is.

For the backward direction let the ordering w_{2} be a solution of $\left(A_{2}, C_{2}\right)$, and let w_{1} be the subsequence of A_{1}-elements of w_{2}. Let $v_{1 / 2}^{(i)}$ denote the subsequence of $A_{1 / 2}^{(i)}$-elements of $w_{1 / 2}$; it follows that $v_{1}^{(i)} \sqsubseteq v_{2}^{(i)}$. Let $t_{1 / 2}^{(i)}$ be the arrangement of $c_{1 / 2}^{(i)}$ in $v_{1 / 2}^{(i)}$, that is, $c_{1 / 2}^{(i)} \circ t_{1 / 2}^{(i)}=v_{1 / 2}^{(i)}$; it follows that $t_{1}^{(i)} \sqsubseteq t_{2}^{(i)}$. For $r \in R$ we have $c_{2}^{(i)} \circ r \in C_{2}$, so, given that w_{2} is a solution, there is $p_{2} \in P_{2}$ such that $c_{2}^{(i)} \circ r \circ p_{2} \sqsubseteq w_{2}$. Since $c_{2}^{(i)} \circ r \circ p_{2}$ contains but $A_{2}^{(i)}$-elements, actually $c_{2}^{(i)} \circ r \circ p_{2} \sqsubseteq v_{2}^{(i)}=c_{2}^{(i)} \circ t_{2}^{(i)}$; it follows that $r \circ p_{2} \sqsubseteq t_{2}^{(i)}$. Given CO-reducibility we have $t_{1}^{(i)} \in P_{1}$ and w_{1} solves $\left(A_{1}, C_{1}\right)$ since $c_{1}^{(i)} \circ t_{1}^{(i)}=v_{1}^{(i)} \sqsubseteq w_{1}$.

For the forward direction let the ordering w_{1} be a solution of $\left(A_{1}, C_{1}\right)$. Let $v_{1}^{(i)}$ denote the subsequence of $A_{1}^{(i)}$-elements of w_{1}, and let $t_{1}^{(i)}$ be the arrangement of $c_{1}^{(i)}$ in $v_{1}^{(i)}$, that is, $c_{1}^{(i)} \circ t_{1}^{(i)}=v_{1}^{(i)}$. Given that w_{1} is a solution,
there are $p_{1}^{(i)} \in P_{1}$ such that $c_{1}^{(i)} \circ p_{1}^{(i)} \sqsubseteq w_{1}$. Since $c_{1}^{(i)} \circ p_{1}^{(i)}$ contains exactly the $A_{1}^{(i)}$-elements, actually $c_{1}^{(i)} \circ p_{1}^{(i)}=v_{1}^{(i)}=c_{1}^{(i)} \circ t_{1}^{(i)}$; it follows that $t_{1}^{(i)}=p_{1}^{(i)} \in P_{1}$. Given CO-reducibility we have $t_{2}^{(i)}$ such that $t_{1}^{(i)} \sqsubseteq t_{2}^{(i)}$ and $\forall r \in R: \exists p \in P_{2}: r \circ p \sqsubseteq t_{2}^{(i)}$. Let $v_{2}^{(i)}=c_{2}^{(i)} \circ t_{2}^{(i)}$; it follows that $v_{1}^{(i)} \sqsubseteq v_{2}^{(i)}$.

We complete the proof by inductively defining solutions $w_{2}^{(l)}$ of the instances $\left(A_{2}^{(\leq l)}, C_{2}^{(\leq l)}\right)$ of $\left(k_{2}, P_{2}\right)$ that also satisfy $w_{1} \sqsubseteq w_{2}^{(l)}$. It follows that $w_{2}^{\left(\left|C_{1}\right|\right)}$ solves $\left(A_{2}, C_{2}\right)$. For the base case $l=0$ we define $w_{2}^{(0)}=w_{1}$, a supersequence of w_{1} solving $\left(A_{2}^{(\leq 0)}, C_{2}^{(\leq 0)}\right)=\left(A_{1}, \emptyset\right)$. For the inductive case l assume that $w_{2}^{(l-1)}$ is already defined and choose $w_{2}^{(l)}$ as some supersequence of $w_{2}^{(l-1)}$ and $v_{2}^{(l)}$, that is, $w_{2}^{(l-1)} \sqsubseteq w_{2}^{(l)}$ and $v_{2}^{(l)} \sqsubseteq w_{2}^{(l)}$. This is possible because

- the $A_{1}^{(l)}$-elements of $v_{2}^{(l)}$ are arranged as $v_{1}^{(l)} \sqsubseteq v_{2}^{(l)}$ and $v_{1}^{(l)} \sqsubseteq w_{1} \sqsubseteq w_{2}^{(l-1)}$ by the induction hypothesis, and
- all other elements of $v_{2}^{(l)}$ are in $B^{(l)}$, hence not in $A_{2}^{(\leq l-1)}$ and not in $w_{2}^{(l-1)}$.
We have $w_{1} \sqsubseteq w_{2}^{(l-1)} \sqsubseteq w_{2}^{(l)}$. To see that $w_{2}^{(l)}$ solves the instance $\left(A_{2}^{(\leq l)}, C_{2}^{(\leq l)}\right)$, note that the tuples from $C_{2}^{(\leq l-1)}$ are already solved by its subsequence $w_{2}^{(l-1)}$. For $r \in R$ there is, given CO-reducibility, $p \in P_{2}$ such that $r \circ p \sqsubseteq t_{2}^{(l)}$; it follows

4.3 CO-reducibility is transitive

Let \leq_{CO}^{*} denote the reflexive and transitive closure of \leq_{CO}. We will now prove that $\leq_{\mathrm{CO}}=\leq_{\mathrm{CO}}^{*}$.

Reflexivity is easily seen by choosing $b=0$ and $R=\left\{1_{\mathfrak{S}_{k}}\right\}$ where $1_{\mathfrak{S}_{k}}$ is the identity permutation of the group \mathfrak{S}_{k}.

For transitivity, let $\left(k_{1}, P_{1}\right),\left(k_{2}, P_{2}\right)$ and $\left(k_{3}, P_{3}\right)$ be three constrained ordering problems such that

- $\left(k_{1}, P_{1}\right) \leq \mathrm{CO}\left(k_{2}, P_{2}\right)$ by b_{1} and $R_{1} \subseteq\binom{\mathbf{N}_{k_{1}+b_{1}}}{k_{2}}$, and
- $\left(k_{2}, P_{2}\right) \leq \mathrm{CO}\left(k_{3}, P_{3}\right)$ by b_{2} and $R_{2} \subseteq\binom{\mathbf{N}_{k_{2}+b_{2}}}{k_{3}}$
according to the definition of CO-reducibility. We assume that R_{1} is ordered arbitrarily as per $R_{1}=\left\{r_{1}^{(i)}\left|0 \leq i \leq\left|R_{1}\right|-1\right\}\right.$. Let $b_{3}=b_{1}+\left|R_{1}\right| \cdot b_{2}$.

For $r_{1}^{(i)} \in R_{1}$ define $\tilde{r}_{1}^{(i)} \in\binom{\mathbf{N}_{k_{1}+b_{1}+b_{2}}}{k_{2}+b_{2}}$ as

$$
\tilde{r}_{1}^{(i)}(x)= \begin{cases}r_{1}^{(i)}(x), & \text { if } 1 \leq x \leq k_{2} \\ k_{1}+b_{1}+x-k_{2}, & \text { if } k_{2}+1 \leq x \leq k_{2}+b_{2}\end{cases}
$$

Again for $r_{1}^{(i)} \in R_{1}$ define $q^{(i)} \in\binom{\mathbf{N}_{k_{1}+b_{3}}}{k_{1}+b_{1}+b_{2}}$ as

$$
q^{(i)}(x)= \begin{cases}x, & \text { if } 1 \leq x \leq k_{1}+b_{1} \\ x+i \cdot b_{2}, & \text { if } k_{1}+b_{1}+1 \leq x \leq k_{1}+b_{1}+b_{2}\end{cases}
$$

Let $R_{3}=\left\{q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ r_{2}\left|0 \leq i \leq\left|R_{1}\right|-1 \wedge r_{2} \in R_{2}\right\} \subseteq\binom{\mathbf{N}_{k_{1}+b_{3}}}{k_{3}}\right.$. We will now show that for all $t_{1} \in \mathfrak{S}_{k_{1}}$,

$$
t_{1} \in P_{1} \Longleftrightarrow \exists t_{3} \in \mathfrak{S}_{k_{1}+b_{3}}: t_{1} \sqsubseteq t_{3} \wedge \forall r_{3} \in R_{3}: \exists p_{3} \in P_{3}: r_{3} \circ p_{3} \sqsubseteq t_{3} .
$$

For the forward direction, let $t_{1} \in P_{1}$. By definition of CO-reducibility,

$$
\exists t_{2} \in \mathfrak{S}_{k_{1}+b_{1}}: t_{1} \sqsubseteq t_{2} \wedge \forall r_{1}^{(i)} \in R_{1}: \exists p_{2}^{(i)} \in P_{2}: r_{1}^{(i)} \circ p_{2}^{(i)} \sqsubseteq t_{2} .
$$

We fix that supersequence t_{2} of t_{1}. For each $p_{2}^{(i)}$, again by definition of COreducibility,

$$
\exists t_{3}^{(i)} \in \mathfrak{S}_{k_{2}+b_{2}}: p_{2}^{(i)} \sqsubseteq t_{3}^{(i)} \wedge \forall r_{2} \in R_{2}: \exists p_{3} \in P_{3}: r_{2} \circ p_{3} \sqsubseteq t_{3}^{(i)}
$$

Since composition from the left is monotonic with respect to \sqsubseteq it follows that

$$
\tilde{r}_{1}^{(i)} \circ p_{2}^{(i)} \sqsubseteq \tilde{r}_{1}^{(i)} \circ t_{3}^{(i)} \wedge \forall r_{2} \in R_{2}: \exists p_{3} \in P_{3}: \tilde{r}_{1}^{(i)} \circ r_{2} \circ p_{3} \sqsubseteq \tilde{r}_{1}^{(i)} \circ t_{3}^{(i)},
$$

or, abbreviating $\tilde{t}_{3}^{(i)}=\tilde{r}_{1}^{(i)} \circ t_{3}^{(i)} \in\binom{\mathbf{N}_{k_{1}+b_{1}+b_{2}}}{k_{2}+b_{2}}$,

$$
r_{1}^{(i)} \circ p_{2}^{(i)} \sqsubseteq \tilde{r}_{1}^{(i)} \circ p_{2}^{(i)} \sqsubseteq \tilde{t}_{3}^{(i)} \wedge \forall r_{2} \in R_{2}: \exists p_{3} \in P_{3}: \tilde{r}_{1}^{(i)} \circ r_{2} \circ p_{3} \sqsubseteq \tilde{t}_{3}^{(i)}
$$

Next, we combine the $\tilde{t}_{3}^{(i)}$ by using different new elements for each i. Technically, this is achieved by composing the helper functions $q^{(i)}$ from the left. Note that $q^{(i)} \circ r_{1}^{(i)} \circ p_{2}^{(i)}=r_{1}^{(i)} \circ p_{2}^{(i)}$, hence

$$
r_{1}^{(i)} \circ p_{2}^{(i)} \sqsubseteq q^{(i)} \circ \tilde{t}_{3}^{(i)} \wedge \forall r_{2} \in R_{2}: \exists p_{3} \in P_{3}: q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ r_{2} \circ p_{3} \sqsubseteq q^{(i)} \circ \tilde{t}_{3}^{(i)}
$$

Choose some $t_{3} \in \mathfrak{S}_{k_{1}+b_{3}}$ such that $t_{2} \sqsubseteq t_{3}$ and $q^{(i)} \circ \tilde{t}_{3}^{(i)} \sqsubseteq t_{3}$ for all i. This is possible for the following reasons.

- We have already shown that $r_{1}^{(i)} \circ p_{2}^{(i)}$ is a subsequence of both t_{2} and $q^{(i)} \circ \tilde{t}_{3}^{(i)}$ for each $r_{1}^{(i)} \in R_{1}$. The sequence $\tilde{t}_{3}^{(i)}$ contains $k_{2}+b_{2}$ elements, exactly b_{2} of which are in $\left\{k_{1}+b_{1}+1, \ldots, k_{1}+b_{1}+b_{2}\right\}$. They are mapped by $q^{(i)}$ to values greater than $k_{1}+b_{1}$ which do neither occur in t_{2} nor in $r_{1}^{(i)} \circ p_{2}^{(i)}$. Therefore, the remaining k_{2} elements of $q^{(i)} \circ \tilde{t}_{3}^{(i)}$ must be exactly those in $r_{1}^{(i)} \circ p_{2}^{(i)}$ that contains just k_{2} elements. Hence, the only common elements of t_{2} and $q^{(i)} \circ \tilde{t}_{3}^{(i)}$ are those in their common subsequence $r_{1}^{(i)} \circ p_{2}^{(i)}$.
- Of the $k_{2}+b_{2}$ elements of $q^{(i)} \circ \tilde{t}_{3}^{(i)}$, exactly k_{2} are in $\left\{1, \ldots, k_{1}+b_{1}\right\}$, the other b_{2} elements being mapped to disjoint ranges for different values of i. Again, these k_{2} elements are those in $r_{1}^{(i)} \circ p_{2}^{(i)}$ that is a subsequence of t_{2} for each $r_{1}^{(i)} \in R_{1}$. Hence, all $q^{(i)} \circ \tilde{t}_{3}^{(i)}$ can be merged.

Let $r_{3} \in R_{3}$, that is, $r_{3}=q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ r_{2}$ for some i and $r_{2} \in R_{2}$. Hence, there exists $p_{3} \in P_{3}$ such that $r_{3} \circ p_{3}=q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ r_{2} \circ p_{3} \sqsubseteq q^{(i)} \circ \tilde{t}_{3}^{(i)} \sqsubseteq t_{3}$. The forward direction is complete by remarking that $t_{1} \sqsubseteq t_{2} \sqsubseteq t_{3}$.

For the backward direction, let $t_{3} \in \mathfrak{S}_{k_{1}+b_{3}}$ such that $t_{1} \sqsubseteq t_{3}$ and $\forall r_{3} \in R_{3}$: $\exists p_{3} \in P_{3}: r_{3} \circ p_{3} \sqsubseteq t_{3}$. Let $\tilde{s}^{(i)} \in \mathfrak{S}_{k_{2}+b_{2}}$ be the unique permutation such that $q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ \tilde{s}^{(i)} \sqsubseteq t_{3}$ and let $s^{(i)}$ be its unique subsequence in $\mathfrak{S}_{k_{2}}$.

Let $r_{1}^{(i)} \in R_{1}$ and $r_{2} \in R_{2}$, then for $r_{3}=q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ r_{2}$ there is a $p_{3} \in P_{3}$ such that $r_{3} \circ p_{3} \sqsubseteq t_{3}$. Hence, $q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ r_{2} \circ p_{3} \sqsubseteq t_{3}$, from which $r_{2} \circ p_{3} \sqsubseteq \tilde{s}^{(i)}$ follows since $\tilde{s}^{(i)}$ describes the ordering of all elements of $q^{(i)} \circ \tilde{r}_{1}^{(i)}$ in t_{3}. We thus have

$$
\exists \tilde{s}^{(i)} \in \mathfrak{S}_{k_{2}+b_{2}}: s^{(i)} \sqsubseteq \tilde{s}^{(i)} \wedge \forall r_{2} \in R_{2}: \exists p_{3} \in P_{3}: r_{2} \circ p_{3} \sqsubseteq \tilde{s}^{(i)},
$$

and conclude by CO-reducibility that $s^{(i)} \in P_{2}$.
Choose some $t_{2} \in \mathfrak{S}_{k_{1}+b_{1}}$ such that $t_{1} \sqsubseteq t_{2}$ and $r_{1}^{(i)} \circ s^{(i)} \sqsubseteq t_{2}$ for all i. This is possible since $t_{1} \sqsubseteq t_{3}$ and

$$
r_{1}^{(i)} \circ s^{(i)}=\tilde{r}_{1}^{(i)} \circ s^{(i)}=q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ s^{(i)} \sqsubseteq q^{(i)} \circ \tilde{r}_{1}^{(i)} \circ \tilde{s}^{(i)} \sqsubseteq t_{3},
$$

and thus t_{3} is a common supersequence. By CO-reducibility, $t_{1} \in P_{1}$.

4.4 Special cases of CO-reduction

The symmetry argument carried out in Section 3.1 is a special instance of COreducibility. We show that $(k, P)={ }_{\mathrm{CO}}(k, \pi \circ P)$ for any $\pi \in \mathfrak{S}_{k}$.

To this end, verify the instance of CO-reducibility where $k_{1}=k_{2}=k$, $P_{1}=P, P_{2}=\pi \circ P_{1}, b=0$, and $R=\left\{\pi^{-1}\right\}$. The reverse direction follows too, since π is chosen arbitrarily. As the special case where π is the identity, we again obtain reflexivity.

A slightly more general argument is useful, for example, to reduce betweenness to the "non-betweenness" problem $\left(3, \mathfrak{S}_{3} \backslash\{(123),(321)\}\right)$. By choosing $b=0$ and $R=\{(213),(231)\}$ we represent each betweenness triple (a_{1}, a_{2}, a_{3}) by the two non-betweenness triples $\left(a_{2}, a_{1}, a_{3}\right)$ and (a_{2}, a_{3}, a_{1}). Intuitively, if neither the first nor the third element of a triple must be arranged between the other two, only the second element remains for that position.

We therefore discuss when $\left(k, P_{1}\right) \leq_{\mathrm{CO}}\left(k, P_{2}\right)$ using $b=0$ and some $R \subseteq \mathfrak{S}_{k}$. Then CO-reducibility simplifies to

$$
\forall t \in \mathfrak{S}_{k}: t \in P_{1} \Longleftrightarrow \forall r \in R: \exists p \in P_{2}: r \circ p=t
$$

and further, denoting $P_{2}^{-1}=\left\{p^{-1} \mid p \in P_{2}\right\}$, to

$$
\forall t \in \mathfrak{S}_{k}: t \in P_{1} \Longleftrightarrow R \subseteq t \circ P_{2}^{-1}
$$

The forward direction requires $R \subseteq t \circ P_{2}^{-1}$ for all $t \in P_{1}$ which is equivalent to

$$
R \subseteq \bigcap_{t \in P_{1}} t \circ P_{2}^{-1}
$$

On the other hand if $t \notin P_{1}$ we should have $R \nsubseteq t \circ P_{2}^{-1}$ which is the more easy to satisfy the larger R is. If we therefore choose

$$
R=\bigcap_{t \in P_{1}} t \circ P_{2}^{-1}
$$

CO-reducibility is available if and only if $\forall t \in \mathfrak{S}_{k} \backslash P_{1}: R \nsubseteq t \circ P_{2}^{-1}$.

5 Application

The reduction method introduced in Section 4 is now applied to interesting classes of problems. In the first three parts, we take a look at several problems (k, P) that differ in their values of k but have resembling constraints P. Section 5.4 then thoroughly discusses the special case $(4, P)$ in the context of automatic calculation.

5.1 The exclusion problems

By k-exclusion, we identify the constrained ordering problem $\left(k, \mathfrak{S}_{k} \backslash\left\{1_{\mathfrak{S}_{k}}\right\}\right)$. For fixed k, it is at least as difficult as every other problem with the same value of k. Indeed, for $P \subseteq \mathfrak{S}_{k},(k, P) \leq_{\mathrm{CO}} k$-exclusion by choosing $b=0$ and $R=\mathfrak{S}_{k} \backslash P$. Intuitively, one simulates every other problem by prohibiting all unwanted tuples one by one. We will now prove that the exclusion problems are equally hard among each other, that is, 3 -exclusion $=_{\mathrm{CO}} k$-exclusion for all $k \geq 3$.

We will firstly show that 3 -exclusion $\leq_{\mathrm{CO}} k$-exclusion for all $k \geq 3$. To this end, define $b=k-3$ and $R=\left\{t^{\prime} \in \mathfrak{S}_{k} \mid(1,2,3) \sqsubseteq t^{\prime}\right\}$. In this special case, CO-reducibility simplifies to

$$
\forall t \in \mathfrak{S}_{3}: t \neq(1,2,3) \Longleftrightarrow \exists t^{\prime} \in \mathfrak{S}_{k}: t \sqsubseteq t^{\prime} \wedge t^{\prime} \notin R .
$$

If $t \neq(1,2,3)$ choose as t^{\prime} any supersequence of t, and it will not be in R. On the other hand, if $t=(1,2,3)$ all supersequences of t are in R by definition.

We will secondly show that k-exclusion $\leq_{\mathrm{CO}} 3$-exclusion for all $k \geq 3$. The case $k=3$ follows by reflexivity. For $k \geq 4$ we will define appropriate b and R for CO-reduction. Since in the special case of 3-exclusion $\exists p \in \mathfrak{S}_{3} \backslash\left\{1_{\mathfrak{S}_{3}}\right\}: r \circ p \sqsubseteq t^{\prime}$ is equivalent to $r \nsubseteq t^{\prime}$, it then remains to show

$$
\forall t \in \mathfrak{S}_{k}: t \in \mathfrak{S}_{k} \backslash\left\{1_{\mathfrak{S}_{k}}\right\} \Leftrightarrow \exists t^{\prime} \in \mathfrak{S}_{3 k-6}: t \sqsubseteq t^{\prime} \wedge \forall r \in R: r \nsubseteq t^{\prime}
$$

For $k=4$ define $b=2$ and $R=\{(1,2,6),(2,3,5),(5,6,4),(6,5,4)\}$. For the forward direction let $t \neq(1,2,3,4)$.

- If $(2,1) \sqsubseteq t$ define $t^{\prime}=\left(5, t_{1}, \ldots, t_{4}, 6\right)$, otherwise
- if $(3,2) \sqsubseteq t$ define $t^{\prime}=\left(6, t_{1}, \ldots, t_{4}, 5\right)$, otherwise
- $(4,3) \sqsubseteq t$, define $t^{\prime}=\left(6, \tilde{t}_{1}, \ldots, \tilde{t}_{5}\right)$ where $t \sqsubseteq \tilde{t} \in \mathfrak{S}_{5}$ with $(4,5,3) \sqsubseteq \tilde{t}$.

In all cases $t \sqsubseteq t^{\prime} \wedge \forall r \in R: r \nsubseteq t^{\prime}$.
For the backward direction let $t=(1,2,3,4) \sqsubseteq t^{\prime} \in \mathfrak{S}_{6}$. Assume that $r \nsubseteq t^{\prime}$ for all $r \in R$.

- From $(1,2,6) \nsubseteq t^{\prime}$ it follows that $(6,2) \sqsubseteq t^{\prime}$, hence $(6,4) \sqsubseteq t^{\prime}$.
- From $(2,3,5) \nsubseteq t^{\prime}$ it follows that $(5,3) \sqsubseteq t^{\prime}$, hence $(5,4) \sqsubseteq t^{\prime}$.

Therefore, either $(5,6,4) \sqsubseteq t^{\prime}$ or $(6,5,4) \sqsubseteq t^{\prime}$, a contradiction.
For $k \geq 5$ define $b=2 k-6$ and $R=W \cup X \cup Y \cup Z$, where

$$
\begin{aligned}
W & =\{(i, i+1,2 k-1-i) \mid 1 \leq i \leq k-2\} \\
X & =\{(2 k-1-i, 2 k-4+i, 2 k-3+i) \mid 2 \leq i \leq k-3\} \\
Y & =\{(2 k-4+i, 2 k-1-i, 2 k-3+i) \mid 2 \leq i \leq k-3\} \\
Z & =\{(k+1,3 k-6, k),(3 k-6, k+1, k)\}
\end{aligned}
$$

For the forward direction let $t \neq(1, \ldots, k)$, then $i_{0}+1$ precedes i_{0} in t for some $i_{0} \in\{1, \ldots, k-1\}$. We distinguish three cases, in which we will define t^{\prime} such that $t \sqsubseteq t^{\prime} \wedge \forall r \in R: r \nsubseteq t^{\prime}$.

- If $1<i_{0}<k-1$, define $t^{\prime}=\left(2 k-4+i_{0}, \ldots, 2 k-i_{0}, 2 k-2-i_{0}, \ldots, k+\right.$ $\left.1, t_{1}, \ldots, t_{k}, 3 k-6, \ldots, 2 k-3+i_{0}, 2 k-1-i_{0}\right)$.
- For $r \in W$ note that $2 k-1-i$ precedes i in t^{\prime} if $i \neq i_{0}$, and $i+1$ precedes i if $i=i_{0}$.
- For $r \in X$ and $r \in Y$ note that $2 k-3+i$ precedes $2 k-4+i$ in t^{\prime} if $i \neq i_{0}$, and $2 k-1-i$ is the last element of t^{\prime} if $i=i_{0}$.
- For $r \in Z$ note that k precedes $3 k-6$.
- If $i_{0}=1$, define $t^{\prime}=\left(2 k-3, \ldots, k+1, t_{1}, \ldots, t_{k}, 3 k-6, \ldots, 2 k-2\right)$. The argument runs similar to the previous case.
- If $i_{0}=k-1$, define $t^{\prime}=\left(3 k-6, \ldots, k+2, \tilde{t}_{1}, \ldots, \tilde{t}_{k+1}\right)$, where $t \sqsubseteq \tilde{t} \in \mathfrak{S}_{k+1}$ with $(k, k+1, k-1) \sqsubseteq \tilde{t}$.
- For $r \in W$ note that $2 k-1-i$ precedes $i+1$ in t^{\prime}.
- For $r \in X$ and $r \in Y$ note that $2 k-3+i$ precedes $2 k-4+i$ in t^{\prime}.
- For $r \in Z$ note that k precedes $k+1$ in t^{\prime}.

For the backward direction let $t=(1, \ldots, k) \sqsubseteq t^{\prime} \in \mathfrak{S}_{3 k-6}$. Assume that $r \nsubseteq t^{\prime}$ for all $r \in R$. According to W, all values $k+1, \ldots, 2 k-2$ precede k in t^{\prime}. Combining X and Y, we show by induction that $2 k-1, \ldots, 3 k-6$ precede k in t^{\prime}, too. The induction starts with $i=2$ where $2 k-3+i$ precedes $2 k-1-i$ or $2 k-4+i$, which both precede k. For $3 \leq i \leq k-3$ we assume inductively that $2 k-4+i$ precedes k and conclude that $2 k-3+i$ precedes k since $2 k-1-i$ precedes k again. It follows that both $k+1$ and $3 k+6$ precede k in t^{\prime}. This is

5.2 The symmetric problems

Given a positive integer k and tuple $t: \mathbf{N}_{k} \rightarrow S$, we will use the following notations.

$$
\begin{array}{rlrl}
\bar{k} & =(k, \ldots, 1) & \bar{t} & =t \circ \bar{k} \\
\overleftarrow{k} & =(2, \ldots, k, 1) & & \overleftarrow{t} \\
\vec{k} & =t \circ \overleftarrow{k} \\
\stackrel{\rightharpoonup}{t} & =t \circ \vec{k}
\end{array}
$$

Generalising betweenness, cyclic ordering, and their combination, we identify the following constrained ordering problems.

$$
\begin{aligned}
k \text {-betweenness } & =\left(k,\left\{1_{\mathfrak{S}_{k}}, \bar{k}\right\}\right) \\
k \text {-cyclic ordering } & =\left(k,\left\{\overleftarrow{k}^{i} \mid i \in \mathbf{N}\right\}\right) \\
k \text {-separation } & =\left(k,\left\{\overleftarrow{k}^{i} \circ \bar{k}^{j} \mid i, j \in \mathbf{N}\right\}\right)
\end{aligned}
$$

Appendix C shows that problems with different kinds of symmetries are not mutually CO-reducible. Precisely, from $\left(k_{1}, P_{1}\right) \leq_{\mathrm{CO}}\left(k_{2}, P_{2}\right)$ one can infer that

$$
\begin{array}{lll}
P_{2}=P_{2} \circ \overline{k_{2}} \quad \Rightarrow \quad P_{1}=P_{1} \circ \overline{k_{1}}, \\
P_{2}=P_{2} \circ \overleftarrow{k_{2}} \quad \Rightarrow \quad P_{1}=P_{1} \circ \overleftarrow{k_{1}} .
\end{array}
$$

Just as we did with the exclusion problems in Section 5.1, however, we will prove that the problems in each of the three families are mutually CO-reducible.

Assuming $k \geq 3$, the instance of CO-reduction for $k_{1}=3, k_{2}=k, b=k-3$, and $R=\left\{1_{\mathfrak{S}_{k}}\right\}$ simplifies to

$$
\forall t_{1} \in \mathfrak{S}_{3}: t_{1} \in P_{1} \Longleftrightarrow \exists t_{2} \in P_{2}: t_{1} \sqsubseteq t_{2}
$$

This is readily verified for betweenness and cyclic ordering. Assuming $k \geq 4$, the similar instance for $k_{1}=4, k_{2}=k, b=k-4$, and $R=\left\{1_{\mathfrak{S}_{k}}\right\}$ can be checked for separation. Altogether,

3 -betweenness	\leq_{CO}	k-betweenness,
3-cyclic ordering	\leq_{CO}	k-cyclic ordering, and
4-separation	\leq_{CO}	k-separation $(k \geq 4)$.

Assuming $k \geq 3$, the instance of CO-reduction for $k_{1}=k, k_{2}=3$, and $b=0$ simplifies to

$$
\forall t_{1} \in \mathfrak{S}_{k}: t_{1} \in P_{1} \Longleftrightarrow \forall r \in R: \exists p \in P_{2}: r \circ p \sqsubseteq t_{1}
$$

Choose $R=\left\{\left.r \in\binom{\mathbf{N}_{k}}{3} \right\rvert\, r \sqsubseteq 1_{\mathfrak{S}_{k}}\right\}$ for both betweenness and cyclic ordering. Assuming $k \geq 4$, check the similar instance for $k_{1}=k, k_{2}=4, b=0$, and $R=\left\{\left.r \in\binom{\mathbf{N}_{k}}{4} \right\rvert\, r \sqsubseteq 1_{\mathfrak{S}_{k}}\right\}$ for separation.

There is a related definition of k-element clauses for the cyclic order in terms of 3 -element clauses, and k-element clauses for separation in terms of 4 -element ones [JZ05].

5.3 Reductions for partial ordering problems

In this section, we prove some necessary conditions for CO-reductions involving partial ordering problems.

Assuming $(k, P) \leq_{\mathrm{CO}}\left(2,\left\{1_{\mathfrak{S}_{2}}\right\}\right)$ leads to

$$
\forall t_{1} \in \mathfrak{S}_{k}: t_{1} \in P \Longleftrightarrow \exists t_{2} \in \mathfrak{S}_{k+b}: t_{1} \sqsubseteq t_{2} \wedge \forall r \in R: r \sqsubseteq t_{2}
$$

In this case, R is a relation of type $\mathbf{N}_{k+b} \leftrightarrow \mathbf{N}_{k+b}$. We may replace R by its transitive closure R^{+}in the above formula without affecting its validity since

$$
\left(a_{1}, a_{2}\right) \sqsubseteq t_{2} \wedge\left(a_{2}, a_{3}\right) \sqsubseteq t_{2} \quad \Rightarrow \quad\left(a_{1}, a_{3}\right) \sqsubseteq t_{2} .
$$

If R contains a cycle - in other words, R^{+}is not irreflexive - the left hand side is false and we obtain the special case $(k, \emptyset) \leq_{\mathrm{CO}}\left(2,\left\{1_{\mathfrak{S}_{2}}\right\}\right)$. Otherwise, R^{+}is a strict partial order, and exactly the arrangements t_{2} obtained by topological sorting satisfy $\forall r \in R^{+}: r \sqsubseteq t_{2}$. One of them has to be a supersequence of t_{1}, and this is the case if and only if t_{1} is a total ordering of the restriction of R^{+} to $\mathbf{N}_{k} \leftrightarrow \mathbf{N}_{k}$. Therefore, P must contain precisely all such total orderings for CO-reducibility to hold.

Moreover, we see that it is unnecessary for R to refer to elements other than in \mathbf{N}_{k}, hence $b=0$ can be assumed without loss of generality. By the construction in the proof that \leq_{CO} implies polynomial reducibility, an instance of (k, P) can thus be solved with topological sorting. This is the reason why we call (k, P) a partial ordering problem, if P consists of all total orderings that extend some partial order. In this case, $(k, P) \leq_{\mathrm{CO}}\left(2,\left\{1_{\mathfrak{S}_{2}}\right\}\right)$ by the above argument.

Let us now investigate the converse, to see when $\left(2,\left\{1_{\mathfrak{S}_{2}}\right\}\right) \leq_{\mathrm{CO}}(k, P)$ holds for a partial ordering problem (k, P). Choosing $b=k-2$ and $R=\left\{1_{\mathfrak{S}_{k}}\right\}$ this simplifies to

$$
\left(\exists t_{2} \in P:(1,2) \sqsubseteq t_{2}\right) \wedge\left(\neg \exists t_{2} \in P:(2,1) \sqsubseteq t_{2}\right) .
$$

By definition there is some partial order that P extends. If this is the discrete order, $P=\mathfrak{S}_{k}$ and CO-reducibility fails. Otherwise, the partial order contains $\left(a_{1}, a_{2}\right)$ for some a_{1} and a_{2}, hence $\forall t_{2} \in P:\left(a_{1}, a_{2}\right) \sqsubseteq t_{2}$. Using the symmetry by renaming introduced in Section 3.1, we assume $a_{1}=1$ and $a_{2}=2$ without loss of generality. Therefore, $\forall t_{2} \in P:(1,2) \sqsubseteq t_{2}$, which implies both conjuncts of the above formula.

Altogether, we obtain $(k, P)==_{\mathrm{CO}}\left(2,\left\{1_{\mathfrak{S}_{2}}\right\}\right)$ for all partial ordering problems (k, P) such that $P \neq \mathfrak{S}_{k}$.

5.4 Calculating the quadruples

The definition of CO-reducibility qualifies for automatic evaluation. Once the values of b and R are fixed, the corresponding equivalence can be verified by expanding the \forall quantifier to finite conjunction and the \exists quantifier to finite disjunction. A rough estimate on the number of elementary operations to be
then performed is $k_{1}!\cdot\left(k_{1}+b\right)!\cdot\binom{k_{1}+b}{k_{2}} \cdot k_{2} \cdot\left(k_{1}+b\right)$, which is feasible for small values of k_{1}, k_{2}, and b.

If only b is fixed, additionally the $2^{\binom{k_{1}+b}{k_{2}}}$ possible values of R have to be tried-this is a very time consuming task even for small values involved. It becomes entirely impossible in the most general case where all possible values of b, namely the non-negative integers, must be considered.

The approach actually implemented to completely resolve the case $k=4$ is to fix $b=1$, use an optimised backtracking search for R, and employ transitivity of CO-reduction. We will now describe the procedure in more detail.

1. In the first step, symmetrical problems as described in Section 3.1 are identified. It turns out that the 2^{24} problems of the form $(4, P)$ can be grouped into 700688 classes this way.
2. We have observed in Section 5.1 that the exclusion problems are among the most difficult. By proving 4 -exclusion $\leq_{\mathrm{CO}}(4, P)$ we thus know that both problems belong to the same class. Using transitivity, a series of such reductions is performed, where it is possible to choose even $b=1$ for each reduction. The longest reduction chain contains 18 transitive steps. It turns out that of the remaining 700688 classes all but 285 belong to the same as 4 -exclusion, leaving us with 286 classes - one of which is quite large.
3. In the third step, further reductions are applied to the remaining classes. Successively, two classes are considered and merged if they contain problems $\left(4, P_{1}\right)$ and $\left(4, P_{2}\right)$, respectively, such that $\left(4, P_{1}\right)=\mathrm{CO}\left(4, P_{2}\right)$. This leaves us with those 9 classes shown in Figure 5. Appendix D describes why they are tractable or NP-complete, respectively.

The classes are held in a disjoint-set forest [CLR90]. Backtracking is used to search for a suitable value of R, the necessary calculations being optimised by a large amount of pre-calculation. The total calculation is performed in less than $5 \cdot 10^{14}$ CPU cycles using less than $5 \cdot 10^{9}$ bits of memory. To ensure correctness, the reductions are made explicit and can thus be verified independently [CO05].

We have thus identified a conservative approximation to CO-reducibility among $(4, P)$. Let us now state the conditions under which this approximation may be strengthened, that is, the possibility of further CO-reductions. The following discussion applies not only to the quadruples but to all $k \geq 3$.

- By definition of CO-reducibility, the only problem reducible to $\left(k, \mathfrak{S}_{k}\right)$ is $\left(k, \mathfrak{S}_{k}\right)$ itself. It follows that it is unique in its class.
- Again by definition of CO-reducibility, there are exactly two problems reducible to (k, \emptyset). By choosing $R=\emptyset$ we can take $\left(k, \mathfrak{S}_{k}\right)$ as the source of the reduction. By choosing $R \neq \emptyset$ we obtain the reflexive case. It follows that (k, \emptyset) is unique in its class, too.
- In Section 5.3 we have proved that the partial ordering problems form their own class.
- By the reasoning in Appendix C, those classes that exhibit symmetry are not mutually reducible.
- Finally, if $\mathrm{P} \neq \mathrm{NP}$, no NP-complete problem is CO-reducible to some tractable problem.

For the cases $k=3$ and $k=4$ only the question of CO-reducibility between the two, mutually reverse algorithm T classes is open. Finally, some classes could split for larger values of k.

6 Conclusion

Let us summarise the contributions of this paper. In Section 2 we have presented an efficient algorithm - a generalisation of topological sorting-that solves an object-relational mapping problem. Several generalisations of this and other known tractable and NP-complete ordering problems have been explored in Section 3. We have introduced and investigated a reduction method for such problems in Section 4. It was then applied to prove NP-completeness and tractability results for large classes of these problems in Section 5, both manually and by machine.

6.1 Related work

The problems discussed in this paper also arise in the context of qualitative spatial reasoning [IC00]. The algebraic treatment in that area originates in qualitative temporal reasoning, notably with Allen's interval algebra [All83]. All subclasses of Allen's interval algebra have been classified as being either NP-complete or tractable [NB95, KJJ03]. We conjecture that the problems described in this paper enjoy the same dichotomy.

Note that a simple translation from Allen's interval algebra to our formalism fails for two reasons. First, the relative positions of intervals use not only $<$ but also the $\leq,=$, and \neq relations - see also the discussion in Appendix A. Second, there may be different disjunctions in effect between different pairs of intervals. This could be simulated with the exclusion problem, but that is already NPcomplete.

Conversely, a simple translation from our formalism to Allen's interval algebra fails also for two reasons. First, the start and end points of intervals are correlated, whereas no such restrictions apply for constrained ordering problems. Second, there is only one clause for each pair of intervals, but our set C models arbitrary conjunctions.

6.2 Open problems

The most important open question is about the decidability of CO-reduction. This would be answered in the affirmative if, for example, one could give an upper bound for the number of new elements b such that no expressiveness is gained by introducing more new elements. Another way to attack this problem is to try to prove that if $\left(k_{1}, P_{1}\right) \leq_{\mathrm{CO}}\left(k_{3}, P_{3}\right)$ using $b \geq 2$ new elements, there is always an intermediate $\left(k_{2}, P_{2}\right)$ such that the reductions from $\left(k_{1}, P_{1}\right)$ to $\left(k_{2}, P_{2}\right)$ and from $\left(k_{2}, P_{2}\right)$ to (k_{3}, P_{3}) need $\leq b-1$ new elements, respectively. So far, we have no counterexample where $b=1$ and transitivity is not enough.

Another important open question concerns the class structure induced by \leq_{CO} for $k>4$. The discussion at the end of Section 5.4 goes some way but, for example, we do not know if all problems that exhibit the same kind of symmetries remain in the same class. Yet more obscure is the situation of the algorithm T classes and the exclusion class, where we have no exact characterisation. Making the class structure transparent is a prerequisite for engaging with the dichotomy conjecture, or could even provide its solution. Further classes of constraints that exhibit special forms could also be investigated separately.

References

[All83] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832-843, November 1983.
[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, 1990.
[CO05] Constrained ordering home page, 2005. http://www.informatik.uniulm.de/pm/fileadmin/pm/home/walter/data/co/.
[CS98] B. Chor and M. Sudan. A geometric approach to betweenness. SIAM Journal on Discrete Mathematics, 11(4):511-523, November 1998.
[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. AddisonWesley, 2002.
[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and Company, 1979.
[GM77] Z. Galil and N. Megiddo. Cyclic ordering is NP-complete. Theoretical Computer Science, 5(2):179-182, October 1977.
[IC00] A. Isli and A.G. Cohn. A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artificial Intelligence, 122(1-2):137-187, September 2000.
[JZ05] M. Junker and M. Ziegler. The 116 reducts of $(\mathbb{Q},<, a)$. Preprint, from http://home.mathematik.uni-freiburg.de/junker/preprints.html, October 2005.
[KJJ03] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra. Journal of the ACM, 50(5):591-640, September 2003.
[Knu97] D.E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-Wesley, third edition, 1997.
[NB95] B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal tractable subclass of Allen's interval algebra. Journal of the ACM, 42(1):43-66, January 1995.
[Obj05] Object Management Group, http://www.omg.org/. UML 2.0 Superstructure Specification, August 2005.
[Opa79] J. Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111-114, February 1979.
[Slo05] N.J.A. Sloane. The on-line encyclopedia of integer sequences, 2005. http://www.research.att.com/projects/OEIS?Anum=A001035.

A Further generalisations

We augment Section 3 by addressing two further kinds of generalisations.
In contrast to Section 3.2, where the constraint triples were extended by pairs, we entirely replaced them by k-tuples in Section 3.4. There is no reason, however, why one should not consider, for example, constraint quadruples extended by pairs or by both triples and pairs. In general, one could allow arbitrary tuples with up to k elements. This family of problems is indexed by k constraints $P_{l} \subseteq \mathfrak{S}_{l}$ for $1 \leq l \leq k$.

- INSTANCE: Finite set A, collections C_{l} for $1 \leq l \leq k$ such that each C_{l} contains l-tuples $\left(a_{1}, \ldots, a_{l}\right)$ of distinct elements from A.
- QUESTION: Is there a bijection $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that for each C_{l} and each $\left(a_{1}, \ldots, a_{l}\right) \in C_{l}$ there is a $p \in P_{l}$ with $f\left(a_{p(i)}\right)<f\left(a_{p(j)}\right)$ for all $1 \leq i<j \leq l$?

The number of problems for each k is $\prod_{l=1}^{k} 2^{l!}=2^{\sum_{l=1}^{k} l!}$.
We have seen in Section 2 that it sometimes makes sense to have the same element occur more than once in a tuple. The problem statement of Section 3.4, however, is not suited for that since the same elements cannot be arranged in a strict order. The difference is illustrated by the fact that

$$
(c<a) \vee(c<b) \Longleftrightarrow(a<c<b) \vee(b<c<a) \vee(c<a<b) \vee(c<b<a)
$$

holds only if the distinctness condition $a \neq b \neq c \neq a$ is true. We therefore need to allow for a weak order. Thus,

$$
(c<a) \vee(c<b) \Longleftrightarrow(a \leq c<b) \vee(b \leq c<a) \vee(c<a \leq b) \vee(c<b \leq a)
$$

holds without further restriction. More basic building blocks are reached by replacing \leq with a disjunction of $<$ and $=$, as in

$$
(a \leq c<b) \Longleftrightarrow(a<c<b) \vee(a=c<b)
$$

One way to model this is to require that a constraint in P is no longer just a permutation of k elements, but an ordered partition of $\{1,2, \ldots, k\}$. This way, $(c<a) \vee(c<b)$ could be expressed by the triple (a, b, c) and the constraint

$$
\begin{aligned}
P=\{ & (\{1\},\{3\},\{2\}),(\{2\},\{3\},\{1\}),(\{3\},\{1\},\{2\}),(\{3\},\{2\},\{1\}), \\
& (\{1,3\},\{2\}),(\{2,3\},\{1\}),(\{3\},\{1,2\})\} .
\end{aligned}
$$

The number of problems for each k is $2^{\sum_{0 \leq i<l \leq k}(-1)^{i}\binom{l}{i}(l-i)^{k}}=2^{\sum_{l=1}^{k} l!\cdot S_{2}(k, l)}$ where $S_{2}(k, l)=\frac{1}{l!} \cdot \sum_{i=0}^{l-1}(-1)^{i}\binom{l}{i}(l-i)^{k}$ are the Stirling numbers of the second kind.

Both generalisations just discussed may of course be combined. The ultimate generalisation would allow to annotate each tuple with its own constraint.

B Reductions for disjoint triples

We prove the NP-completeness of some of the problems from the following family indexed by $P \subseteq \mathfrak{S}_{3}$ introduced in Section 3.3.

- INSTANCE: Finite set A, collection B of pairs from A, collection C of pairwise disjoint triples $\left(a_{1}, a_{2}, a_{3}\right)$ of distinct elements from A.
- QUESTION: Is there a bijection $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that $f\left(a_{1}\right)<$ $f\left(a_{2}\right)$ for each $\left(a_{1}, a_{2}\right) \in B$, and for each $\left(a_{1}, a_{2}, a_{3}\right) \in C$ there is a $p \in P$ with $f\left(a_{p(1)}\right)<f\left(a_{p(2)}\right)<f\left(a_{p(3)}\right)$?

B. 1 Intermezzo

We call the problem $P=\{(123),(231)\}$ the intermezzo problem. The requirement for the triples in $\left(a_{1}, a_{2}, a_{3}\right) \in C$ therefore reads $f\left(a_{1}\right)<f\left(a_{2}\right)<f\left(a_{3}\right)$ or $f\left(a_{2}\right)<f\left(a_{3}\right)<f\left(a_{1}\right)$. We prove its NP-completeness by reduction from 3SAT. The component design technique is described in [GJ79, Section 3.2.3].

Let an instance of 3SAT be characterised by the set of variables $U=$ $\left\{u_{1}, \ldots, u_{n}\right\}$ and the set of clauses $C^{\prime}=\left\{\left(c_{1,1} \vee c_{1,2} \vee c_{1,3}\right), \ldots,\left(c_{m, 1} \vee c_{m, 2} \vee\right.\right.$ $\left.\left.c_{m, 3}\right)\right\}$, where $c_{i, j}=u_{k}$ or $c_{i, j}=\bar{u}_{k}$ for some k. Let $\overline{\bar{u}}_{k}=u_{k}$, and let $a \oplus b$ denote the number $c \in\{1,2,3\}$ such that $a+b \equiv c(\bmod 3)$. Construct the instance of intermezzo where

$$
\begin{aligned}
A= & \left\{u_{k, l}, \bar{u}_{k, l} \mid 1 \leq k \leq n \wedge 1 \leq l \leq 3\right\} \cup \\
& \left\{c_{i, j} \mid 1 \leq i \leq m \wedge 1 \leq j \leq 3 \wedge 1 \leq l \leq 3\right\} \\
B= & \left\{\left(u_{k, 1}, \bar{u}_{k, 3}\right),\left(\bar{u}_{k, 1}, u_{k, 3}\right) \mid 1 \leq k \leq n\right\} \cup \\
& \left\{\left(c_{i, j, 2}, c_{i, j}^{1}\right),\left(c_{i, j}^{2}, c_{i, j, 1}\right) \mid 1 \leq i \leq m \wedge 1 \leq j \leq 3\right\} \cup \\
& \left\{\left(c_{i, j \oplus 1}^{1}, c_{i, j}^{3}\right) \mid 1 \leq i \leq m \wedge 1 \leq j \leq 3\right\} \\
C= & \left\{\left(u_{k, 1}, u_{k, 2}, u_{k, 3}\right),\left(\bar{u}_{k, 1}, \bar{u}_{k, 2}, \bar{u}_{k, 3}\right) \mid 1 \leq k \leq n\right\} \cup \\
& \left\{\left(c_{i, j}^{1}, c_{i, j}^{2}, c_{i, j}^{3}\right) \mid 1 \leq i \leq m \wedge 1 \leq j \leq 3\right\}
\end{aligned}
$$

The notation $c_{i, j, l}$ is an abbreviation of $u_{k, l}$ where $u_{k}=c_{i, j}$. We will now describe the construction that is illustrated in Figure 6 in more detail.

For each literal u_{k} we construct three elements $u_{k, l}$ that are grouped in the triple ($u_{k, 1}, u_{k, 2}, u_{k, 3}$) as shown in Figure 6(a). The same construction is applied for each literal \bar{u}_{k}. For each variable u_{k} we thus have two such triples, and we connect them by two edges $\left(u_{k, 1}, \bar{u}_{k, 3}\right)$ and $\left(\bar{u}_{k, 1}, u_{k, 3}\right)$ as shown in Figure 6(b). The subgraph for each variable therefore consists of 6 nodes, 2 edges, and 2 triples.

For each occurrence of a literal $c_{i, j}$ in a clause c_{i} we construct three elements $c_{i, j}^{l}$ that are grouped in the triple $\left(c_{i, j}^{1}, c_{i, j}^{2}, c_{i, j}^{3}\right)$ as shown in Figure 6(c). For each clause c_{i} we thus have three such triples, and we connect them pairwise by edges $\left(c_{i, j \oplus 1}^{1}, c_{i, j}^{3}\right)$ as shown in Figure $6(\mathrm{~d})$. The subgraph for each clause therefore consists of 9 nodes, 3 edges, and 3 triples.

Figure 6: Graph constructed for the reduction to intermezzo

The connection between the subgraphs for the variables and those for the clauses is obtained by constructing two edges $\left(c_{i, j, 2}, c_{i, j}^{1}\right)$ and $\left(c_{i, j}^{2}, c_{i, j, 1}\right)$ for each occurrence of a literal $c_{i, j}$ in a clause. Note that $c_{i, j, l}=u_{k, l}$ for positive literals $c_{i, j}=u_{k}$, and $c_{i, j, l}=\bar{u}_{k, l}$ for negative literals $c_{i, j}=\bar{u}_{k}$. Figure 6(e) shows this construction for the occurrences of the positive literal $c_{i, 1}=u_{k}$ and the negative literal $c_{h, 1}=\bar{u}_{k}$ in two different clauses c_{i} and c_{h}. Further connections are suggested by arrows attached to one node only.

The complete graph consists of $|A|=6 n+9 m$ nodes, $|B|=2 n+9 m$ edges, and $|C|=2 n+3 m$ triples. We will now prove that this instance of intermezzo is solvable if and only if the corresponding instance of 3SAT is satisfiable.

Let f be an ordering function as required by the specification of intermezzo. Define the truth assignment $t\left(u_{k}\right)=f\left(u_{k, 3}\right)<f\left(\bar{u}_{k, 3}\right)$. Assume that t does not satisfy C^{\prime} and let $\left(c_{i, 1} \vee c_{i, 2} \vee c_{i, 3}\right)$ be a clause such that $\neg t\left(c_{i, j}\right)$ for $1 \leq j \leq 3$.

1. By definition of t we have $f\left(\bar{c}_{i, j, 3}\right)<f\left(c_{i, j, 3}\right)$.
2. Since $\left(c_{i, j, 1}, \bar{c}_{i, j, 3}\right) \in B$ we have $f\left(c_{i, j, 1}\right)<f\left(c_{i, j, 3}\right)$.
3. Since $\left(c_{i, j, 1}, c_{i, j, 2}, c_{i, j, 3}\right) \in C$ we have $f\left(c_{i, j, 1}\right)<f\left(c_{i, j, 2}\right)$.
4. Since $\left(c_{i, j}^{2}, c_{i, j, 1}\right),\left(c_{i, j, 2}, c_{i, j}^{1}\right) \in B$ we have $f\left(c_{i, j}^{2}\right)<f\left(c_{i, j}^{1}\right)$.
5. Since $\left(c_{i, j}^{1}, c_{i, j}^{2}, c_{i, j}^{3}\right) \in C$ we have $f\left(c_{i, j}^{3}\right)<f\left(c_{i, j}^{1}\right)$.
6. Since $\left(c_{i, j \oplus 1}^{1}, c_{i, j}^{3}\right) \in B$ we have $f\left(c_{i, j \oplus 1}^{1}\right)<f\left(c_{i, j}^{1}\right)$.
7. Therefore we have $f\left(c_{i, j}^{1}\right)=f\left(c_{i, j \oplus 3}^{1}\right)<f\left(c_{i, j \oplus 2}^{1}\right)<f\left(c_{i, j \oplus 1}^{1}\right)<f\left(c_{i, j}^{1}\right)$, a contradiction.

Let t be a truth assignment that satisfies C^{\prime}. For $1 \leq k \leq n$ let $t_{k}=u_{k}$ if $t\left(u_{k}\right)$ and $t_{k}=\bar{u}_{k}$ if $\neg t\left(u_{k}\right)$. For $1 \leq i \leq m$ let l_{i} be such that $t\left(c_{i, l_{i}}\right)$. Define the mapping $g: A \rightarrow \mathbf{N}$ such that

$$
\begin{aligned}
& g\left(c_{i, j}^{2}\right)=3 i+j \quad \text { for } 1 \leq i \leq m \wedge 1 \leq j \leq 3 \wedge \neg t\left(c_{i, j}\right) \\
& g\left(\bar{t}_{k, 1}\right)=D+k \quad \text { for } 1 \leq k \leq n \\
& g\left(\bar{t}_{k, 2}\right)=2 D+k \quad \text { for } 1 \leq k \leq n \\
& g\left(t_{k, 2}\right)=3 D+k \quad \text { for } 1 \leq k \leq n \\
& g\left(c_{i, j}^{1}\right)=4 D+3 i+j \quad \text { for } 1 \leq i \leq m \wedge 1 \leq j \leq 3 \wedge t\left(c_{i, j}\right) \\
& g\left(c_{i, j}^{2}\right)=5 D+3 i+j \quad \text { for } 1 \leq i \leq m \wedge 1 \leq j \leq 3 \wedge t\left(c_{i, j}\right) \\
& g\left(c_{i, j}^{3}\right)=6 D+3 i+j \quad \text { for } 1 \leq i \leq m \wedge j=l_{i} \oplus 2 \wedge \neg t\left(c_{i, j}\right) \\
& g\left(c_{i, j}^{1}\right)=7 D+3 i+j \quad \text { for } 1 \leq i \leq m \wedge j=l_{i} \oplus 2 \wedge \neg t\left(c_{i, j}\right) \\
& g\left(c_{i, j}^{3}\right)=8 D+3 i+j \quad \text { for } 1 \leq i \leq m \wedge j=l_{i} \oplus 1 \wedge \neg t\left(c_{i, j}\right) \\
& g\left(c_{i, j}^{1}\right)=9 D+3 i+j \quad \text { for } 1 \leq i \leq m \wedge j=l_{i} \oplus 1 \wedge \neg t\left(c_{i, j}\right) \\
& g\left(c_{i, j}^{3}\right)=10 D+3 i+j \quad \text { for } 1 \leq i \leq m \wedge 1 \leq j \leq 3 \wedge t\left(c_{i, j}\right) \\
& g\left(t_{k, 3}\right)=11 D+k \quad \text { for } 1 \leq k \leq n \\
& g\left(t_{k, 1}\right)=12 D+k \quad \text { for } 1 \leq k \leq n \\
& g\left(\bar{t}_{k, 3}\right)=13 D+k \quad \text { for } 1 \leq k \leq n
\end{aligned}
$$

where D is large enough to keep the definitions separate, for instance choose $D=2 n+4 m+4 . g$ satisfies the constraints specified by B since

1. $g\left(t_{k, 1}\right)<13 D<g\left(\bar{t}_{k, 3}\right)$ and $g\left(\bar{t}_{k, 1}\right)<2 D<11 D<g\left(t_{k, 3}\right)$.
2. $g\left(c_{i, j, 2}\right)<4 D<g\left(c_{i, j}^{1}\right)$ and $g\left(c_{i, j}^{2}\right)<6 D<12 D<g\left(c_{i, j, 1}\right)$ if $t\left(c_{i, j}\right)$, and $g\left(c_{i, j, 2}\right)<3 D<4 D<g\left(c_{i, j}^{1}\right)$ and $g\left(c_{i, j}^{2}\right)<D<g\left(c_{i, j, 1}\right)$ if $\neg t\left(c_{i, j}\right)$.
3. $g\left(c_{i, l_{i}}^{1}\right)<5 D<6 D<g\left(c_{i, l_{i} \oplus 2}^{3}\right)$ and $g\left(c_{i, l_{i} \oplus 2}^{1}\right)<8 D<g\left(c_{i, l_{i} \oplus 1}^{3}\right)$ and $g\left(c_{i, l_{i} \oplus 1}^{1}\right)<10 D<g\left(c_{i, l_{i}}^{3}\right)$.
g satisfies the constraints specified by C since
4. $g\left(\bar{t}_{k, 1}\right)<2 D<g\left(\bar{t}_{k, 2}\right)<3 D<13 D<g\left(\bar{t}_{k, 3}\right)$.
5. $g\left(t_{k, 2}\right)<4 D<11 D<g\left(t_{k, 3}\right)<12 D<g\left(t_{k, 1}\right)$.
6. $g\left(c_{i, l_{i} \oplus 2}^{2}\right)<D<6 D<g\left(c_{i, l_{i} \oplus 2}^{3}\right)<7 D<g\left(c_{i, l_{i} \oplus 2}^{1}\right)$ if $\neg t\left(c_{i, l_{i} \oplus 2}\right)$, and $g\left(c_{i, l_{i} \oplus 1}^{2}\right)<D<8 D<g\left(c_{i, l_{i} \oplus 1}^{3}\right)<9 D<g\left(c_{i, l_{i} \oplus 1}^{1}\right)$ if $\neg t\left(c_{i, l_{i} \oplus 1}\right)$, and $g\left(c_{i, j}^{1}\right)<5 D<g\left(c_{i, j}^{2}\right)<6 D<10 D<g\left(c_{i, j}^{3}\right)$ if $t\left(c_{i, j}\right)$.
The function $f(e)=|\{a \in A \mid g(a) \leq g(e)\}|$ is one-to-one, and satisfies the constraints specified by B and C.

B. 2 Betweenness

The requirement for the triples in $\left(a_{1}, a_{2}, a_{3}\right) \in C$ reads $f\left(a_{1}\right)<f\left(a_{2}\right)<f\left(a_{3}\right)$ or $f\left(a_{3}\right)<f\left(a_{2}\right)<f\left(a_{1}\right)$ for the betweenness problem. We prove it is NPcomplete by reduction from intermezzo.

Let A^{\prime}, B^{\prime}, and C^{\prime} characterise an instance of intermezzo. Construct the instance of betweenness where A extends A^{\prime} by three new elements $a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}$ for each $\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}$. Note that there are $3\left|C^{\prime}\right|$ distinct new elements since the triples in C^{\prime} are pairwise disjoint. Moreover, C consists of two triples $\left(a_{1}, a_{3}^{\prime}, a_{3}\right)$, $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{2}\right)$ for each $\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}$. Finally, for each $\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}, B$ extends B^{\prime} by inserting three new pairs $\left(a_{1}^{\prime}, a_{1}\right),\left(a_{3}^{\prime}, a_{2}^{\prime}\right),\left(a_{2}, a_{3}\right)$ and, for each pair $\left(a, a_{1}\right)$, one new pair $\left(a, a_{1}^{\prime}\right)$. Intuitively, an element a_{1} is split into two elements a_{1} and a_{1}^{\prime} such that a_{1}^{\prime} immediately precedes a_{1}.

Assume there is a total order \prec^{\prime} of the instance of intermezzo. The order \prec modifies \prec^{\prime} by replacing, for each $\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}$, the occurrence of a_{1} in \prec^{\prime} with

- either $a_{1}^{\prime} \prec a_{1} \prec a_{3}^{\prime} \prec a_{2}^{\prime}$ if $a_{1} \prec^{\prime} a_{2} \prec^{\prime} a_{3}$,
- or $a_{3}^{\prime} \prec a_{2}^{\prime} \prec a_{1}^{\prime} \prec a_{1}$ if $a_{2} \prec^{\prime} a_{3} \prec^{\prime} a_{1}$,
such that these four elements succeed without a gap. By definition of intermezzo exactly one of the two cases applies for each triple, thus \prec is a total order of A.

The order \prec satisfies each triple $\left(a_{1}, a_{3}^{\prime}, a_{3}\right)$ since $a_{1} \prec a_{3}^{\prime} \prec a_{3}$ in the first case and $a_{3} \prec a_{3}^{\prime} \prec a_{1}$ in the second case. The order \prec satisfies each triple $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{2}\right)$ since $a_{1}^{\prime} \prec a_{2}^{\prime} \prec a_{2}$ in the first case and $a_{2} \prec a_{2}^{\prime} \prec a_{1}^{\prime}$ in the second case. The order \prec, being an extension of \prec^{\prime}, satisfies B^{\prime}. In both cases $a_{1}^{\prime} \prec a_{1}$, $a_{3}^{\prime} \prec a_{2}^{\prime}$, and $a_{2} \prec a_{3}$ for each triple $\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}$, and, since a_{1}^{\prime} and a_{1}
succeed without a gap, $a \prec a_{1}^{\prime}$ whenever $a \prec^{\prime} a_{1}$. Hence, \prec is a total order of the constructed instance.

Assume there is a total order \prec of the constructed instance. The order \prec^{\prime} is the restriction of \prec to A. For each triple $\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}, a_{2} \prec^{\prime} a_{3}$ since $\left(a_{2}, a_{3}\right) \in B$. Assume that $a_{2} \prec^{\prime} a_{1} \prec^{\prime} a_{3}$ for some such triple.

1. By definition of \prec^{\prime} we also have $a_{2} \prec a_{1} \prec a_{3}$.
2. Since $\left(a_{1}, a_{3}^{\prime}, a_{3}\right) \in C$ we have $a_{1} \prec a_{3}^{\prime} \prec a_{3}$.
3. Since $\left(a_{1}^{\prime}, a_{1}\right) \in B$ and $\left(a_{3}^{\prime}, a_{2}^{\prime}\right) \in B$ we have $a_{1}^{\prime} \prec a_{1} \prec a_{3}^{\prime} \prec a_{2}^{\prime}$.
4. Since $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{2}\right) \in C$ we have $a_{1}^{\prime} \prec a_{1} \prec a_{3}^{\prime} \prec a_{2}^{\prime} \prec a_{2}$.
5. Therefore $a_{1} \prec a_{2}$ and $a_{2} \prec a_{1}$, a contradiction.

Thus, $a_{1} \prec^{\prime} a_{2} \prec^{\prime} a_{3}$ or $a_{2} \prec^{\prime} a_{3} \prec^{\prime} a_{1}$, so \prec^{\prime} satisfies all triples in C^{\prime}. Finally, $\left(a_{1}, a_{2}\right) \in B^{\prime} \Rightarrow\left(a_{1}, a_{2}\right) \in B \Rightarrow a_{1} \prec a_{2} \Rightarrow a_{1} \prec^{\prime} a_{2}$, so \prec^{\prime} satisfies

B. 3 The remaining NP-complete problems

Five classes of problems are left, each class containing several problems that are symmetric as described in Section 3.1. Choose one specific problem from each class, namely $\{(123),(231),(312)\},\{(123),(231),(321)\}, \mathfrak{S}_{3} \backslash\{(213),(312)\}, \mathfrak{S}_{3} \backslash$ $\{(213),(132)\}$, and $\mathfrak{S}_{3} \backslash\{(213)\}$. The following argument shows that each of these problems is NP-complete by reduction from intermezzo.

Let A^{\prime}, B^{\prime}, and C^{\prime} characterise an instance of intermezzo. Construct the instance for any of the five problems where $A=A^{\prime}, C=C^{\prime}$, and $B=B^{\prime} \cup$ $\left\{\left(a_{2}, a_{3}\right) \mid\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}\right\}$. If the instance of intermezzo has a solution, it also solves the constructed instance since each of the five problems are supersets of $\{(123),(231)\}$. If the constructed instance has a solution, it also solves the instance of intermezzo since by the extension of the pairs a_{2} must precede a_{3} for each triple $\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}$ and none of the five problems contains (213). Hence, the constructed instance has a solution if and only if the corresponding instance of intermezzo has one.

C Reductions between symmetric problems

In this section, we prove some necessary conditions for CO-reductions involving symmetric problems. We use the notations introduced in Section 5.2.

C. 1 Betweenness

Let $s: \mathbf{N}_{k} \rightarrow S$ and $t: \mathbf{N}_{l} \rightarrow S$. We prove that $s \sqsubseteq t \Rightarrow \bar{s} \sqsubseteq \bar{t}$. By definition of \sqsubseteq, let $u: \mathbf{N}_{k} \rightarrow \mathbf{N}_{l}$ be strictly increasing such that $s=t \circ u$. Define $v=\bar{l} \circ u \circ \bar{k}$,
that is strictly increasing since both \bar{k} and \bar{l} are strictly decreasing. Thus, $\bar{s} \sqsubseteq \bar{t}$, since

$$
\bar{s}=s \circ \bar{k}=t \circ u \circ \bar{k}=t \circ \bar{l} \circ \bar{l} \circ u \circ \bar{k}=t \circ \bar{l} \circ v=\bar{t} \circ v .
$$

Let $\left(k_{1}, P_{1}\right) \leq_{\mathrm{CO}}\left(k_{2}, P_{2}\right)$. We prove that $P_{2}=P_{2} \circ \overline{k_{2}} \Rightarrow P_{1}=P_{1} \circ \overline{k_{1}}$. Let $t_{1} \in P_{1}$, then by definition of \leq_{CO} there are b, R, and $t_{2} \in \mathfrak{S}_{k_{1}+b}$ such that

$$
t_{1} \sqsubseteq t_{2} \wedge \forall r \in R: \exists p \in P_{2}: r \circ p \sqsubseteq t_{2} .
$$

By the above lemma, $\overline{t_{1}} \sqsubseteq \overline{t_{2}}$ and $\forall r \in R: \exists p \in P_{2}: r \circ \bar{p}=\overline{r \circ p} \sqsubseteq \overline{t_{2}}$. By the assumption, $p \in P_{2} \Rightarrow \bar{p} \in P_{2}$, hence also $\forall r \in R: \exists p \in P_{2}: r \circ p \sqsubseteq \overline{t_{2}}$. By CO-reduction, $\overline{t_{1}} \in P_{1}$.

C. 2 Cyclic ordering

Let $s: \mathbf{N}_{k} \rightarrow S$ and $t: \mathbf{N}_{l} \rightarrow S$ such that $s \sqsubseteq t$. We prove that

$$
\forall i \in \mathbf{N}: \exists j \in \mathbf{N}: s \circ \overleftarrow{k}^{i} \sqsubseteq t \circ \overleftarrow{l}^{j} \wedge \quad \forall i \in \mathbf{N}: \exists j \in \mathbf{N}: s \circ \overleftarrow{k}^{j} \sqsubseteq t \circ \overleftarrow{l}^{i}
$$

It suffices to deal with the case $i=1$ because for larger values, the process may be applied repeatedly since rotations are closed under composition. It further suffices to deal with the case $k+1=l$, since the case $k=l$ is clear by choosing $j=i$, while for larger differences of k and l, one chooses for $i \in\{k+1, \ldots, l-1\}$ tuples $t_{i}: \mathbf{N}_{i} \rightarrow S$ such that $s \sqsubseteq t_{k+1} \sqsubseteq \ldots \sqsubseteq t_{l-1} \sqsubseteq t$ and reasons step by step.

Therefore, without loss of generality, $s=t \circ(1, \ldots, h-1, h+1, \ldots, l)$ for some $h \in \mathbf{N}_{l}$. If $h=1$,

$$
\begin{gathered}
s=t \circ(2, \ldots, l)=\overleftarrow{t} \circ \vec{l} \circ(2, \ldots, l)=\overleftarrow{t} \circ(1, \ldots, l-1), \\
\overleftarrow{s}=\overleftarrow{t} \circ \vec{l} \circ \overleftarrow{(2, \ldots, l)}=\overleftarrow{t} \circ \vec{l} \circ(3, \ldots, l, 2)=\overleftarrow{t} \circ(1, \ldots, l-2, l),
\end{gathered}
$$

so that $\overleftarrow{s} \sqsubseteq \overleftarrow{t}$ and $s \sqsubseteq \overleftarrow{t}$. If $h>1$,

$$
\overleftarrow{s}=\overleftarrow{t} \circ \vec{l} \circ \overleftarrow{(1, \ldots, h-1, h+1, \ldots, l)}=\overleftarrow{t} \circ(1, \ldots, h-2, h, \ldots, l)
$$

so that $\overleftarrow{s} \sqsubseteq \overleftarrow{t}$.
Let $\left(k_{1}, P_{1}\right) \leq_{\mathrm{CO}}\left(k_{2}, P_{2}\right)$. We prove that $P_{2}=P_{2} \circ \overleftarrow{k_{2}} \Rightarrow P_{1}=P_{1} \circ \overleftarrow{k_{1}}$. Let $t_{1} \in P_{1}$, then by definition of \leq_{CO} there are b, R, and $t_{2} \in \mathfrak{S}_{k_{1}+b}$ such that

$$
t_{1} \sqsubseteq t_{2} \wedge \forall r \in R: \exists p \in P_{2}: r \circ p \sqsubseteq t_{2} .
$$

By the first part of the above lemma, $\overleftarrow{t_{1}} \sqsubseteq t_{2} \circ{\overleftarrow{k_{1}+b}}^{i}$ for some i. By its second part, $\forall r \in R: \exists p \in P_{2}: r \circ p \circ{\overleftarrow{k_{2}}}^{j} \sqsubseteq t_{2} \circ{\overleftarrow{k_{1}+b}}^{i}$ for some j. By the assumption, $p \in P_{2} \Rightarrow p \circ{\overleftarrow{k_{2}}}^{j} \in P_{2}$, hence also $\forall r \in R: \exists p \in P_{2}: r \circ p \sqsubseteq t_{2} \circ{\overleftarrow{k_{1}+b}}^{i}$. By CO-reduction, $\overleftarrow{t_{1}} \in P_{1}$.

D Reductions between triples and quadruples

After performing several reductions between constrained ordering problems with $k=4$, we are left with 9 classes. Let us discuss why the remaining 9 classes are tractable or NP-complete, respectively, as shown in Figure 5.

Let A^{\prime} and C^{\prime} characterise an instance of betweenness. Construct the instance of the 4 -separation problem-see Section 5.2 -where $A=A^{\prime} \cup\{n\}$ for some $n \notin A^{\prime}$ and $C=\left\{\left(n, a_{1}, a_{2}, a_{3}\right) \mid\left(a_{1}, a_{2}, a_{3}\right) \in C^{\prime}\right\}$. We prove that this instance has a solution if and only if the corresponding instance of betweenness has one.

If there is an ordering of A^{\prime} that satisfies C^{\prime}, prepend the element n to get an ordering of A that satisfies C, since $(1,2,3,4)$ and $(1,4,3,2)$ are valid permutations.

If there is an ordering of A that satisfies C, rotate it until the element n is on the first position. The result still satisfies C but uses only the permutations $(1,2,3,4)$ and $(1,4,3,2)$ since n is the first element of each quadruple in C. Removing the element n yields an ordering of A^{\prime} that satisfies C^{\prime}.

By transitivity, all problems surrounded by double boxes are NP-complete. Moreover, $(4,\{(1324),(2314),(3124),(3214)\}) \leq_{\mathrm{CO}}\left(3, \mathfrak{S}_{3} \backslash\{(123),(213)\}\right)$ using $b=0$ and $R=\{(1,2,3),(1,4,2),(2,4,1)\}$. Intuitively, the last two tuples of R force the fourth element of the quadruple to follow the first and the second. By transitivity and reverse symmetry, all problems surrounded by simple boxes indeed are tractable.
тéخos

