
Constrained Ordering

Walter Guttmann Markus Maucher

Fakultät für Informatik, Universität Ulm, 2005.12.01

Abstract
We investigate the problem of finding a total order of a finite set that

satisfies various local ordering constraints. Depending on the admitted
constraints, we provide an efficient algorithm or prove NP-completeness.
To this end, we define a reduction technique and discuss its properties.

Key words: total ordering, NP-completeness, computational complex-
ity, betweenness, cyclic ordering, topological sorting.

1 Introduction

An instance of the betweenness problem is given by a finite set A and a collection
C of triples from A, and one has to decide if there is a total order < of A such that
for each (a, b, c) ∈ C, either a < b < c or c < b < a [GJ79, problem MS1]. The
betweenness problem is NP-complete [Opa79]. Applications arise, for example,
in the design of circuits and in computational biology [Opa79, CS98].

Similarly, the cyclic ordering problem asks for a total order < of A such
that for each (a, b, c) ∈ C, either a < b < c or b < c < a or c < a < b [GJ79,
problem MS2]. The cyclic ordering problem, too, is NP-complete [GM77]. Ap-
plications arise, for example, in qualitative spatial reasoning [IC00].

On the other hand, if a < b < c or a < c < b is allowed, the problem can be
solved with linear time complexity by topological sorting [Knu97, Section 2.2.3].

Yet another choice, namely c < a or c < b, is needed to model an object-
relational mapping problem described in Section 2. The reader is invited to
think about the time complexity of this problem before reading the solution.

Starting with Section 3, several kinds of generalisations to these problems
are explored with respect to their time complexity and interdependence. The
main instrument, a reduction technique, and its properties are presented in
Section 4. Applications of this method—manual and automatic—are discussed
in Section 5. The conclusion discusses related work, generalisations, and open
problems. Some of the proofs are presented in the appendix.

2 Motivation

We consider the part of an object-oriented model of a system specified by the
UML class diagram shown in Figure 1. The classes L and M are related to

1

L

K

M× >

Figure 1: UML class diagram with association class

each other, and the association class K details this relationship. Note that the
association from L to M is directed which means that objects of the class M
cannot access those of K and L [Obj05].

From time to time, a software that implements this model needs to make the
instances that have been accumulated in memory persistent to a database. The
representations in memory using pointers and in a relational database clash,
however, resulting in object-relational mapping problems [Fow02]. For our spe-
cial problem, the following approach is appropriate.

There should be one database table for each of the classes K, L, and M , into
which objects of the respective classes save themselves, with unique identifiers
being generated upon storage. To hold the instances of the associations, the so-
called links, another table is devised that keeps the identifiers of related objects.
For efficiency reasons, one of the three objects that participate in a link should
make the entry into the association table. Since all three identifiers are needed
for this, only the last of the three objects of each link is in the right position to
do this. Moreover, because of the restricted visibility in the model, this must
not be the object of class M for it cannot access the other identifiers.

To summarise, for each triple (a, b, c) of objects from classes (K, L, M) that
constitute such a link, a or b must be stored after c. This is the reason for the
requirement c < a or c < b given above for the total order.

In practice, an UML class diagram may also have directed associations with-
out a detailing association class. Such a pair (d, e) of objects would have the
requirement d < e modelling that d must be stored before e. We therefore state
the decision problem of this, more general version.

• INSTANCE: Finite set A, collection B of pairs from A, collection C of
triples from A.

• QUESTION: Is there a bijection f : A→ {1, 2, . . . , |A|} such that f(a1) <
f(a2) for each (a1, a2) ∈ B, and f(a3) < f(a1) or f(a3) < f(a2) for each
(a1, a2, a3) ∈ C?

We prove it is efficiently decidable by the algorithm shown in Figure 2, an
extension of topological sorting [Knu97, Section 2.2.3]. Algorithm T maintains
working sets E ⊆ A, F ⊆ B, and G ⊆ C.

Assume algorithm T proposes an order. That order is a permutation of A
since during every iteration one element e is removed from E and prepended to
the order. To see that the constraints specified by B are satisfied note that each
(a1, a2) ∈ B remains in F until the iteration where a2 = e, thus a2 is prepended

2

input finite set A, collection of pairs B, collection of triples C
output total order of A such that the first element of each pair

in B precedes the second, and the third element of
each triple in C precedes the first or the second

method (E,F, G)← (A,B, C)
Order ← empty sequence
while E 6= ∅ do

find e ∈ E such that ∀x, y ∈ E : (e, y) /∈ F ∧ (x, y, e) /∈ G
if such an e exists then

G← {(x, y, z) ∈ G | x 6= e ∧ y 6= e}
F ← {(x, y) ∈ F | y 6= e}
E ← E \ {e}
prepend e to Order

else
output “there is no order”
halt

end
end
output Order

Figure 2: Algorithm T

to the order. While (a1, a2) ∈ F , however, the chosen element e cannot be a1,
hence a1 precedes a2 in the order.

Similarly, to see that the constraints specified by C are satisfied note that
each (a1, a2, a3) ∈ C remains in G until the iteration where a1 = e ∨ a2 = e,
thus a1 or a2 is prepended to the order. While (a1, a2, a3) ∈ G, however, the
chosen element e cannot be a3, hence a3 precedes a1 or a2 in the order.

Assume algorithm T fails to find an order. In this case, there is a non-empty
subset E ⊆ A such that no e ∈ E satisfies the required property. Thus, for each
e ∈ E either (e, y) ∈ F for some y ∈ E or (x, y, e) ∈ G for some x, y ∈ E. Since
F ⊆ B and G ⊆ C each e ∈ E must precede some e′ ∈ E in a total order. There
is no such order of finite sets.

The time complexity of algorithm T is polynomial in the size of the input.
Implemented very carefully one can even achieve a linear time complexity.

Taking C = ∅ and requiring B to be a (strict) partial order over A demon-
strates that algorithm T is indeed a generalisation of topological sorting. Since
we do not assume that the elements of a triple in C are distinct, one may
even entirely dispose of B by adding a triple (a2, a2, a1) to C for each pair
(a1, a2) ∈ B. While this procedure works for the problem at hand, it might fail
for other types of problems discussed in Section 3.

3

3 Generalisation

We explore different kinds of generalising the betweenness, cyclic ordering, and
topological sorting problems introduced above. By Sk we denote the symmetric
group of size k.

3.1 Constraints over three elements

The first generalisation still assumes that a collection C of triples is given but
abstracts from the constraint P ⊆ S3 specifying the relative order of the el-
ements of each triple. We therefore have a family of problems, one for each
P .

• INSTANCE: Finite set A, collection C of triples (a1, a2, a3) of distinct
elements from A.

• QUESTION: Is there a bijection f : A→ {1, 2, . . . , |A|} such that for each
(a1, a2, a3) ∈ C there is a p ∈ P with f(ap(1)) < f(ap(2)) < f(ap(3))?

Choose P = {(123), (321)} for betweenness, P = {(123), (231), (312)} for
cyclic ordering, and P = S3 \ {(123), (213)} to get the problem discussed in
Section 2. The distinctness condition a1 6= a2 6= a3 6= a1 is obviously easy to
check and further elaborated in Appendix A.

The total number of problems in this family is 2|S3| = 23! = 26 = 64.
Already from the small sample just presented it is clear that some of these
problems are tractable while others are NP-complete. Thus the task arises to
classify the remaining problems. All of them are in NP, since a nondeterministic
algorithm can guess the order and check in polynomial time that the constraints
specified by C are satisfied with respect to the chosen P . This remark applies
to all problems discussed in this paper.

To reduce the number of problems that must be investigated, the following
symmetry consideration applies. Intuitively, a systematic permutation of the
elements of each triple can be compensated by adjusting the constraints to
access the triples at the permuted positions. Precisely, symmetry is exploited
by permuting the elements of each triple and applying the inverse permutation
to all constraints. It follows that two problems P1 and P2 that differ just by
consistently renaming the elements of their permutations, that is P1 = π ◦ P2

for some π ∈ S3, have the same time complexity. For example, {(123), (213)}
and {(321), (231)} are two such problems.

The problems can be classified as shown in Figure 3. It displays the reduc-
tion graph for our family of problems with its strongly connected components
collapsed, and symmetrical problems pooled. The reduction graph, in turn,
has the problems as its vertices and an edge from P1 to P2 if, by the method
described in Section 4, P1 is many-one reducible in polynomial time to P2.
The problems surrounded by double boxes are NP-complete, and the others
are tractable. The latter can be solved trivially, by topological sorting, or by
algorithm T from Section 2.

4

S3 ∅

{(123)}
{(123), (132)}
{(123), (213)}
{(123), (213), (231)}

S3 \ {(123), (213)}

S3 \ {(321), (312)}

{(123), (321)}
S3 \ {(123), (321)}

{(123), (231), (312)}

{(123), (231)}
{(123), (132), (231)}
{(213), (312), (321)}
S3 \ {(123), (231)}
S3 \ {(123)}

-
�
��

����1
PPPPPPPPPPPPq

���
@@R

A
AAU

@@R

���

�
���

Figure 3: Reducibility among the problems ⊆ S3

Let us mention another kind of symmetry that is not captured by the method
presented in Section 4. Intuitively, reversing each constraint can be compen-
sated by transposing the resulting total order. Precisely, a partial order can be
extended to a total order if and only if its transpose can be extended—just take
the transpose of the total order. It follows that two problems P1 and P2 that
differ just by reversing their permutations, that is P1 = P2 ◦ (321), have the
same time complexity. For example, S3 \ {(123), (213)} and S3 \ {(321), (312)}
are two such problems.

3.2 Constraints over additional pairs

The second generalisation has already been touched in Section 2, where the
collection of triples was joined by a collection of pairs. For that special instance,
the additional constraint pairs have no impact on the complexity of algorithm T
since they could also be replaced by triples. In general, however, this is not
the case. For example, whatever additional betweenness triples are devised to
replace a pair (a1, a2) that requires a1 to precede a2, they are also satisfied by
transposing the resulting total order. There simply is no way to express absolute
direction in the betweenness problem. We therefore have another family of 64
problems, again indexed by P ⊆ S3.

• INSTANCE: Finite set A, collection B of pairs from A, collection C of
triples (a1, a2, a3) of distinct elements from A.

• QUESTION: Is there a bijection f : A→ {1, 2, . . . , |A|} such that f(a1) <
f(a2) for each (a1, a2) ∈ B, and for each (a1, a2, a3) ∈ C there is a p ∈ P
with f(ap(1)) < f(ap(2)) < f(ap(3))?

With the results of Section 3.1 in place, the complexity of each problem in
the new family can easily be derived. Taking B = ∅ demonstrates that the new
problems are indeed generalisations. All NP-complete problems of Section 3.1
thus remain NP-complete. On the other hand, all tractable problems are—
directly or by reduction—solvable using algorithm T that already accepts an

5

additional collection of constraining pairs. The classification therefore remains
unchanged.

Symmetry by reversing each constraint can be extended to this, more general
case by transposing the relation B to accommodate the reversed order.

3.3 Constraints over disjoint triples

The third variation takes advantage of the expressivity gained by the pairs
introduced in Section 3.2. It is rather a specialisation of those problems where
one assumes that any two triples in the collection C are pairwise disjoint when
viewed as sets. This family of problems is also indexed by P ⊆ S3.

• INSTANCE: Finite set A, collection B of pairs from A, collection C of
pairwise disjoint triples (a1, a2, a3) of distinct elements from A.

• QUESTION: Is there a bijection f : A→ {1, 2, . . . , |A|} such that f(a1) <
f(a2) for each (a1, a2) ∈ B, and for each (a1, a2, a3) ∈ C there is a p ∈ P
with f(ap(1)) < f(ap(2)) < f(ap(3))?

Since the new problems are restrictions of those of Section 3.2, algorithm T
can still be applied to solve the tractable problems. The question remains
whether some of the NP-complete problems become more easy. The negative
answer to this question is given in Appendix B. Here, we only provide a sum-
mary of that proof.

By symmetry, the eight NP-complete problems shown in Figure 3 remain.
One of them can be eliminated by the reverse symmetry mentioned in Sec-
tions 3.1 and 3.2. The problem P = {(123), (231)}, called intermezzo, is singled
out and its NP-completeness is proved by reduction from 3SAT in Appendix B.1.
It is then further reduced to the betweenness problem {(123), (321)} in Ap-
pendix B.2. Finally, intermezzo is reduced to each of the remaining five problems
by an easier construction described in Appendix B.3. Note that the existing NP-
completeness proofs for betweenness and cyclic ordering do not apply because
both use non-disjoint triples [GM77, Opa79].

Our first three generalisations can be summarised as shown in Figure 4.
These variants have the same class structure. The picture is completed by the
variant that requires disjoint triples but does not permit pairs—this variant is
trivially solvable.

3.4 Constraints over tuples

Our final generalisation abstracts from the number of elements of the con-
straints. We have started with triples in Section 3.1, added pairs in Section 3.2,
and now assume the number of elements is given by the positive integer k—to
be held constant for a single problem. For each value of k we have a family of
problems indexed by P ⊆ Sk.

• INSTANCE: Finite set A, collection C of k-tuples (a1, . . . , ak) of distinct
elements from A.

6

no pairs,
disjoint triples

Section 3.1: no pairs,
overlapping triples

Section 3.2: pairs,
disjoint triples

Section 3.3: pairs,
overlapping triples

@@I ���

��� @@I

Figure 4: Variants of problems with triples

• QUESTION: Is there a bijection f : A → {1, 2, . . . , |A|} such that for
each (a1, . . . , ak) ∈ C there is a p ∈ P with f(ap(i)) < f(ap(j)) for all
1 ≤ i < j ≤ k?

The total number of problems for a fixed k is 2|Sk| = 2k!. A concrete problem
will be referred to as the constrained ordering problem (k, P).

This is the wording of the problem that will be used in Section 4. We will
introduce a method there by which the constrained ordering problems (k1, P1)
and (k2, P2) may be compared, and investigate its properties. This method has
been, among other things, fully applied to the case k = 4 which we describe
here.

Just as with triples, all 16777216 problems with quadruples as constraints
are either tractable or NP-complete. They can be classified as shown by the
simplified reduction graph in Figure 5. See Section 3.1 for its interpretation.
For want of space, only one or two problems from each class are provided. The
classes correspond to those of Figure 3, only the dihedral class is new.

A few remarks on the classes are appropriate. The swap class contains the
problems P = P ◦ (4321) that are closed under reversion—except for those in
the dihedral class and the trivial ones. The cyclic class contains, with the same
exceptions, the problems P = P ◦ (2341) that are closed under rotation. The
dihedral class contains the problems P = P ◦(4321) = P ◦(2341) that are closed
under both kinds of symmetries, except for S4 and ∅ again. This class is new
with the quadruples since for the triples there are no problems besides S3 and
∅ sharing both symmetries. In Section 5.2 we will further discuss the canonical
problem from the dihedral class shown in Figure 5, called 4-separation.

The partial order class contains all problems where the constraints exactly
specify a partial order that must be satisfied, except for S4 that specifies the
discrete order. They are solved by topological sorting. The problems in the
classes labelled with algorithm T—they are symmetric under reversion of each
other—can be reduced to problems solvable by that algorithm. Finally, the
exclusion class contains the remaining problems and is by far the largest.

7

S4 ∅

partial order class
{(1234)}

dihedral class
{(1234), (4321),
(2341), (1432),
(3412), (2143),
(4123), (3214)}

algorithm T class
{(1324), (2314),
(3124), (3214)}

algorithm T class
{(1234), (1324),
(2134), (2314)}

swap class
{(1234), (4321)}

cyclic class
{(1234), (2341),
(3412), (4123)}

exclusion class
{(1234), (2341)}
S4 \ {(1234)}

-
�
�
���

A
A
AAU

�
��

@
@R

�
��

@
@R

A
A
AAU

@
@R

�
��

�
�
���

Figure 5: Reducibility among the problems ⊆ S4

Table 1 compares the number of problems in each class for different values
of k. We do not know the general values for the exclusion and algorithm T
classes. We also do not know if the exclusion class splits for larger values of k.
No closed formula is known for the size of the partial order class [Slo05].

Let us conclude this section by remarking that two further kinds of general-
isations are discussed in Section A.

4 Reduction

In this section we explore a method that can be used for reductions between
different constrained ordering problems. Let k be a positive integer and P ⊆ Sk.
Recall the problem statement for the constrained ordering problem (k, P) from
Section 3.4.

• INSTANCE: Finite set A, collection C of k-tuples (a1, . . . , ak) of distinct
elements from A.

• QUESTION: Is there a bijection f : A → {1, 2, . . . , |A|} such that for
each (a1, . . . , ak) ∈ C there is a p ∈ P with f(ap(i)) < f(ap(j)) for all
1 ≤ i < j ≤ k?

We need some general definitions concerning finite sequences. For k ∈ N the
set Nk = {1, . . . , k} denotes the first k positive integers. A k-tuple from a set S,
or a (finite) sequence of length k in S, is a function with type Nk → S. The k-
tuples from S without repetition are the injective functions with type Nk → S,
denoted by

(
S
k

)
. In particular, a permutation π ∈ Sk is such a k-tuple.

8

class k = 1 k = 2 k = 3 k = 4 k ≥ 3
discrete 1 1 1 1 1
empty 1 1 1 1 1
partial order − 2 18 218 A001035(k)− 1
algorithm T − − 3 266 ?
algorithm T reverse − − 3 266 ?
dihedral − − − 6 2k!/2k − 2
cyclic − − 2 56 2k!/k − 2k!/2k

swap − − 6 4088 2k!/2 − 2k!/2k

exclusion − − 30 16772314 ?
total 2 4 64 16777216 2k!

Table 1: Class sizes for k = 1, 2, 3, 4, and the general case

The k-tuple s : Nk → S is a subsequence of the l-tuple t : Nl → S, in
symbols s v t, if and only if there is a strictly increasing u : Nk → Nl such that
s = t ◦ u. In that case t is called a supersequence of s. The relation v partially
orders the finite sequences in S.

Given these definitions, we can transform the problem statement as follows.
Let c = (a1, . . . , ak), then ax = c(x) for 1 ≤ x ≤ k, hence f(ap(i)) < f(ap(j))
is equivalent to (f ◦ c ◦ p)(i) < (f ◦ c ◦ p)(j). This holds for all 1 ≤ i < j ≤ k
if and only if u = f ◦ c ◦ p : Nk → N|A| is strictly increasing. Since f is a
bijection and c◦p = f−1 ◦u, this is equivalent to c◦p v f−1. Instead of looking
for a bijection f we therefore might as well seek the corresponding sequence
w = f−1 : N|A| → A. The instance (A,C) of the constrained ordering problem
(k, P) can thus be restated as

∃w ∈
(

A
|A|

)
: ∀c ∈ C : ∃p ∈ P : c ◦ p v w.

This form will be used for the proof in Section 4.2.

4.1 CO-reduction

The reduction technique introduces fresh elements on a per-clause basis. Let
k1, k2 ∈ N and P1 ⊆ Sk1 , P2 ⊆ Sk2 . The constrained ordering problem (k1, P1)
is CO-reducible to the constrained ordering problem (k2, P2) if and only if there
are b ∈ N and R ⊆

(Nk1+b

k2

)
such that

∀t1 ∈ Sk1 : t1 ∈ P1 ⇐⇒ ∃t2 ∈ Sk1+b : t1 v t2 ∧ ∀r ∈ R : ∃p ∈ P2 : r ◦ p v t2.

We then write (k1, P1) ≤CO (k2, P2). Furthermore we abbreviate ≤CO ∩ ≤`
CO

as =CO where ≤`
CO is the converse of ≤CO.

The intuition is that b new elements are introduced for each tuple in an
instance of (k1, P1). That tuple is simulated according to R by several k2-tuples
that may use the new elements in addition to the k1 elements already available.

9

The new elements are needed to express the constraints in P1 with the new
means given by P2.

In the sequel we will prove that this local criterion can be lifted to the global
requirement that the constructed set can be totally ordered. Section 4.3 then
proves transitivity that is of assistance in the application of our reduction. A
few specialisations of the method are investigated in Section 4.4.

4.2 CO-reducibility implies polynomial reducibility

Let ≤P
m denote many-one reducibility in polynomial time. We will now prove

the main result ≤CO ⊆ ≤P
m.

To this end, let (k1, P1) ≤CO (k2, P2) be witnessed by b and R according to
the definition. Let (A1, C1) specify an instance of (k1, P1), where we assume
that C1 ⊆ Nk1 → A1 is ordered arbitrarily as per C1 = {c(i)

1 | 1 ≤ i ≤ |C1|}.
For 1 ≤ i ≤ |C1| the sets B(i) = {b(i)

j | 1 ≤ j ≤ b} contain, respectively, b new

elements (distinct among each other and those in A1). For c
(i)
1 = (a1, . . . , ak1)

let

• c
(i)
2 = (a1, . . . , ak1 , b

(i)
1 , . . . , b

(i)
b),

• A
(i)
1 = {a1, . . . , ak1}, and

• A
(i)
2 = {a1, . . . , ak1 , b

(i)
1 , . . . , b

(i)
b } = A

(i)
1 ∪B(i).

Note that A
(i)
1 does not depend on i, but is defined for notational convenience.

Finally, let

A
(≤l)
2 = A1 ∪

⋃
1≤i≤l

B(i) and C
(≤l)
2 =

⋃
1≤i≤l

{c(i)
2 ◦ r | r ∈ R}.

Construct the instance (A2, C2) of (k2, P2) such that A2 = A
(≤|C1|)
2 and C2 =

C
(≤|C1|)
2 . This is possible in polynomial time since b and R are constants. We

will now show that (A1, C1) is solvable if and only if (A2, C2) is.
For the backward direction let the ordering w2 be a solution of (A2, C2), and

let w1 be the subsequence of A1-elements of w2. Let v
(i)
1/2 denote the subsequence

of A
(i)
1/2-elements of w1/2; it follows that v

(i)
1 v v

(i)
2 . Let t

(i)
1/2 be the arrangement

of c
(i)
1/2 in v

(i)
1/2, that is, c

(i)
1/2 ◦ t

(i)
1/2 = v

(i)
1/2; it follows that t

(i)
1 v t

(i)
2 . For r ∈ R

we have c
(i)
2 ◦ r ∈ C2, so, given that w2 is a solution, there is p2 ∈ P2 such

that c
(i)
2 ◦ r ◦ p2 v w2. Since c

(i)
2 ◦ r ◦ p2 contains but A

(i)
2 -elements, actually

c
(i)
2 ◦ r ◦ p2 v v

(i)
2 = c

(i)
2 ◦ t

(i)
2 ; it follows that r ◦ p2 v t

(i)
2 . Given CO-reducibility

we have t
(i)
1 ∈ P1 and w1 solves (A1, C1) since c

(i)
1 ◦ t

(i)
1 = v

(i)
1 v w1.

For the forward direction let the ordering w1 be a solution of (A1, C1). Let
v
(i)
1 denote the subsequence of A

(i)
1 -elements of w1, and let t

(i)
1 be the arrange-

ment of c
(i)
1 in v

(i)
1 , that is, c

(i)
1 ◦ t

(i)
1 = v

(i)
1 . Given that w1 is a solution,

10

there are p
(i)
1 ∈ P1 such that c

(i)
1 ◦ p

(i)
1 v w1. Since c

(i)
1 ◦ p

(i)
1 contains ex-

actly the A
(i)
1 -elements, actually c

(i)
1 ◦ p

(i)
1 = v

(i)
1 = c

(i)
1 ◦ t

(i)
1 ; it follows that

t
(i)
1 = p

(i)
1 ∈ P1. Given CO-reducibility we have t

(i)
2 such that t

(i)
1 v t

(i)
2 and

∀r ∈ R : ∃p ∈ P2 : r ◦ p v t
(i)
2 . Let v

(i)
2 = c

(i)
2 ◦ t

(i)
2 ; it follows that v

(i)
1 v v

(i)
2 .

We complete the proof by inductively defining solutions w
(l)
2 of the instances

(A(≤l)
2 , C

(≤l)
2) of (k2, P2) that also satisfy w1 v w

(l)
2 . It follows that w

(|C1|)
2 solves

(A2, C2). For the base case l = 0 we define w
(0)
2 = w1, a supersequence of w1

solving (A(≤0)
2 , C

(≤0)
2) = (A1, ∅). For the inductive case l assume that w

(l−1)
2 is

already defined and choose w
(l)
2 as some supersequence of w

(l−1)
2 and v

(l)
2 , that

is, w
(l−1)
2 v w

(l)
2 and v

(l)
2 v w

(l)
2 . This is possible because

• the A
(l)
1 -elements of v

(l)
2 are arranged as v

(l)
1 v v

(l)
2 and v

(l)
1 v w1 v w

(l−1)
2

by the induction hypothesis, and

• all other elements of v
(l)
2 are in B(l), hence not in A

(≤l−1)
2 and not in

w
(l−1)
2 .

We have w1 v w
(l−1)
2 v w

(l)
2 . To see that w

(l)
2 solves the instance (A(≤l)

2 , C
(≤l)
2),

note that the tuples from C
(≤l−1)
2 are already solved by its subsequence w

(l−1)
2 .

For r ∈ R there is, given CO-reducibility, p ∈ P2 such that r ◦p v t
(l)
2 ; it follows

that c
(l)
2 ◦ r ◦ p v c

(l)
2 ◦ t

(l)
2 = v

(l)
2 v w

(l)
2 . ὅπερ ἔδει δε̃ιξαι

4.3 CO-reducibility is transitive

Let ≤∗CO denote the reflexive and transitive closure of ≤CO. We will now prove
that ≤CO = ≤∗CO.

Reflexivity is easily seen by choosing b = 0 and R = {1Sk
} where 1Sk

is the
identity permutation of the group Sk.

For transitivity, let (k1, P1), (k2, P2) and (k3, P3) be three constrained or-
dering problems such that

• (k1, P1) ≤CO (k2, P2) by b1 and R1 ⊆
(Nk1+b1

k2

)
, and

• (k2, P2) ≤CO (k3, P3) by b2 and R2 ⊆
(Nk2+b2

k3

)
according to the definition of CO-reducibility. We assume that R1 is ordered
arbitrarily as per R1 = {r(i)

1 | 0 ≤ i ≤ |R1| − 1}. Let b3 = b1 + |R1| · b2.
For r

(i)
1 ∈ R1 define r̃

(i)
1 ∈

(Nk1+b1+b2
k2+b2

)
as

r̃
(i)
1 (x) =

{
r
(i)
1 (x), if 1 ≤ x ≤ k2,

k1 + b1 + x− k2, if k2 + 1 ≤ x ≤ k2 + b2.

Again for r
(i)
1 ∈ R1 define q(i) ∈

(Nk1+b3
k1+b1+b2

)
as

q(i)(x) =
{

x, if 1 ≤ x ≤ k1 + b1,
x + i · b2, if k1 + b1 + 1 ≤ x ≤ k1 + b1 + b2.

11

Let R3 = {q(i) ◦ r̃
(i)
1 ◦ r2 | 0 ≤ i ≤ |R1| − 1 ∧ r2 ∈ R2} ⊆

(Nk1+b3
k3

)
. We will now

show that for all t1 ∈ Sk1 ,

t1 ∈ P1 ⇐⇒ ∃t3 ∈ Sk1+b3 : t1 v t3 ∧ ∀r3 ∈ R3 : ∃p3 ∈ P3 : r3 ◦ p3 v t3.

For the forward direction, let t1 ∈ P1. By definition of CO-reducibility,

∃t2 ∈ Sk1+b1 : t1 v t2 ∧ ∀r(i)
1 ∈ R1 : ∃p(i)

2 ∈ P2 : r
(i)
1 ◦ p

(i)
2 v t2.

We fix that supersequence t2 of t1. For each p
(i)
2 , again by definition of CO-

reducibility,

∃t(i)3 ∈ Sk2+b2 : p
(i)
2 v t

(i)
3 ∧ ∀r2 ∈ R2 : ∃p3 ∈ P3 : r2 ◦ p3 v t

(i)
3 .

Since composition from the left is monotonic with respect to v it follows that

r̃
(i)
1 ◦ p

(i)
2 v r̃

(i)
1 ◦ t

(i)
3 ∧ ∀r2 ∈ R2 : ∃p3 ∈ P3 : r̃

(i)
1 ◦ r2 ◦ p3 v r̃

(i)
1 ◦ t

(i)
3 ,

or, abbreviating t̃
(i)
3 = r̃

(i)
1 ◦ t

(i)
3 ∈

(Nk1+b1+b2
k2+b2

)
,

r
(i)
1 ◦ p

(i)
2 v r̃

(i)
1 ◦ p

(i)
2 v t̃

(i)
3 ∧ ∀r2 ∈ R2 : ∃p3 ∈ P3 : r̃

(i)
1 ◦ r2 ◦ p3 v t̃

(i)
3 .

Next, we combine the t̃
(i)
3 by using different new elements for each i. Techni-

cally, this is achieved by composing the helper functions q(i) from the left. Note
that q(i) ◦ r

(i)
1 ◦ p

(i)
2 = r

(i)
1 ◦ p

(i)
2 , hence

r
(i)
1 ◦ p

(i)
2 v q(i) ◦ t̃

(i)
3 ∧ ∀r2 ∈ R2 : ∃p3 ∈ P3 : q(i) ◦ r̃

(i)
1 ◦ r2 ◦ p3 v q(i) ◦ t̃

(i)
3 .

Choose some t3 ∈ Sk1+b3 such that t2 v t3 and q(i) ◦ t̃
(i)
3 v t3 for all i. This

is possible for the following reasons.

• We have already shown that r
(i)
1 ◦ p

(i)
2 is a subsequence of both t2 and

q(i) ◦ t̃
(i)
3 for each r

(i)
1 ∈ R1. The sequence t̃

(i)
3 contains k2 + b2 elements,

exactly b2 of which are in {k1 + b1 +1, . . . , k1 + b1 + b2}. They are mapped
by q(i) to values greater than k1 + b1 which do neither occur in t2 nor
in r

(i)
1 ◦ p

(i)
2 . Therefore, the remaining k2 elements of q(i) ◦ t̃

(i)
3 must be

exactly those in r
(i)
1 ◦ p

(i)
2 that contains just k2 elements. Hence, the only

common elements of t2 and q(i)◦t̃(i)3 are those in their common subsequence
r
(i)
1 ◦ p

(i)
2 .

• Of the k2 + b2 elements of q(i) ◦ t̃
(i)
3 , exactly k2 are in {1, . . . , k1 + b1}, the

other b2 elements being mapped to disjoint ranges for different values of
i. Again, these k2 elements are those in r

(i)
1 ◦ p

(i)
2 that is a subsequence of

t2 for each r
(i)
1 ∈ R1. Hence, all q(i) ◦ t̃

(i)
3 can be merged.

12

Let r3 ∈ R3, that is, r3 = q(i) ◦ r̃
(i)
1 ◦ r2 for some i and r2 ∈ R2. Hence, there

exists p3 ∈ P3 such that r3 ◦p3 = q(i) ◦ r̃(i)
1 ◦r2 ◦p3 v q(i) ◦ t̃(i)3 v t3. The forward

direction is complete by remarking that t1 v t2 v t3.
For the backward direction, let t3 ∈ Sk1+b3 such that t1 v t3 and ∀r3 ∈ R3 :

∃p3 ∈ P3 : r3 ◦ p3 v t3. Let s̃(i) ∈ Sk2+b2 be the unique permutation such that
q(i) ◦ r̃

(i)
1 ◦ s̃(i) v t3 and let s(i) be its unique subsequence in Sk2 .

Let r
(i)
1 ∈ R1 and r2 ∈ R2, then for r3 = q(i) ◦ r̃(i)

1 ◦r2 there is a p3 ∈ P3 such
that r3 ◦p3 v t3. Hence, q(i) ◦ r̃(i)

1 ◦ r2 ◦p3 v t3, from which r2 ◦p3 v s̃(i) follows
since s̃(i) describes the ordering of all elements of q(i) ◦ r̃

(i)
1 in t3. We thus have

∃s̃(i) ∈ Sk2+b2 : s(i) v s̃(i) ∧ ∀r2 ∈ R2 : ∃p3 ∈ P3 : r2 ◦ p3 v s̃(i),

and conclude by CO-reducibility that s(i) ∈ P2.
Choose some t2 ∈ Sk1+b1 such that t1 v t2 and r

(i)
1 ◦ s(i) v t2 for all i. This

is possible since t1 v t3 and

r
(i)
1 ◦ s(i) = r̃

(i)
1 ◦ s(i) = q(i) ◦ r̃

(i)
1 ◦ s(i) v q(i) ◦ r̃

(i)
1 ◦ s̃(i) v t3,

and thus t3 is a common supersequence. By CO-reducibility, t1 ∈ P1.
ὅπερ ἔδει δε̃ιξαι

4.4 Special cases of CO-reduction

The symmetry argument carried out in Section 3.1 is a special instance of CO-
reducibility. We show that (k, P) =CO (k, π ◦ P) for any π ∈ Sk.

To this end, verify the instance of CO-reducibility where k1 = k2 = k,
P1 = P , P2 = π ◦ P1, b = 0, and R = {π−1}. The reverse direction follows
too, since π is chosen arbitrarily. As the special case where π is the identity, we
again obtain reflexivity.

A slightly more general argument is useful, for example, to reduce between-
ness to the “non-betweenness” problem (3,S3 \ {(123), (321)}). By choosing
b = 0 and R = {(213), (231)} we represent each betweenness triple (a1, a2, a3)
by the two non-betweenness triples (a2, a1, a3) and (a2, a3, a1). Intuitively, if
neither the first nor the third element of a triple must be arranged between the
other two, only the second element remains for that position.

We therefore discuss when (k, P1) ≤CO (k, P2) using b = 0 and some R ⊆ Sk.
Then CO-reducibility simplifies to

∀t ∈ Sk : t ∈ P1 ⇐⇒ ∀r ∈ R : ∃p ∈ P2 : r ◦ p = t,

and further, denoting P−1
2 = {p−1 | p ∈ P2}, to

∀t ∈ Sk : t ∈ P1 ⇐⇒ R ⊆ t ◦ P−1
2 .

The forward direction requires R ⊆ t ◦ P−1
2 for all t ∈ P1 which is equivalent to

R ⊆
⋂

t∈P1

t ◦ P−1
2 .

13

On the other hand if t /∈ P1 we should have R 6⊆ t ◦P−1
2 which is the more easy

to satisfy the larger R is. If we therefore choose

R =
⋂

t∈P1

t ◦ P−1
2 ,

CO-reducibility is available if and only if ∀t ∈ Sk \ P1 : R 6⊆ t ◦ P−1
2 .

5 Application

The reduction method introduced in Section 4 is now applied to interesting
classes of problems. In the first three parts, we take a look at several prob-
lems (k, P) that differ in their values of k but have resembling constraints P .
Section 5.4 then thoroughly discusses the special case (4, P) in the context of
automatic calculation.

5.1 The exclusion problems

By k-exclusion, we identify the constrained ordering problem (k, Sk \ {1Sk
}).

For fixed k, it is at least as difficult as every other problem with the same
value of k. Indeed, for P ⊆ Sk, (k, P) ≤CO k-exclusion by choosing b = 0 and
R = Sk \ P . Intuitively, one simulates every other problem by prohibiting all
unwanted tuples one by one. We will now prove that the exclusion problems
are equally hard among each other, that is, 3-exclusion =CO k-exclusion for all
k ≥ 3.

We will firstly show that 3-exclusion ≤CO k-exclusion for all k ≥ 3. To this
end, define b = k − 3 and R = {t′ ∈ Sk | (1, 2, 3) v t′}. In this special case,
CO-reducibility simplifies to

∀t ∈ S3 : t 6= (1, 2, 3) ⇐⇒ ∃t′ ∈ Sk : t v t′ ∧ t′ /∈ R.

If t 6= (1, 2, 3) choose as t′ any supersequence of t, and it will not be in R. On
the other hand, if t = (1, 2, 3) all supersequences of t are in R by definition.

We will secondly show that k-exclusion ≤CO 3-exclusion for all k ≥ 3. The
case k = 3 follows by reflexivity. For k ≥ 4 we will define appropriate b and R for
CO-reduction. Since in the special case of 3-exclusion ∃p ∈ S3\{1S3} : r◦p v t′

is equivalent to r 6v t′, it then remains to show

∀t ∈ Sk : t ∈ Sk \ {1Sk
} ⇔ ∃t′ ∈ S3k−6 : t v t′ ∧ ∀r ∈ R : r 6v t′.

For k = 4 define b = 2 and R = {(1, 2, 6), (2, 3, 5), (5, 6, 4), (6, 5, 4)}. For the
forward direction let t 6= (1, 2, 3, 4).

• If (2, 1) v t define t′ = (5, t1, . . . , t4, 6), otherwise

• if (3, 2) v t define t′ = (6, t1, . . . , t4, 5), otherwise

• (4, 3) v t, define t′ = (6, t̃1, . . . , t̃5) where t v t̃ ∈ S5 with (4, 5, 3) v t̃.

14

In all cases t v t′ ∧ ∀r ∈ R : r 6v t′.
For the backward direction let t = (1, 2, 3, 4) v t′ ∈ S6. Assume that r 6v t′

for all r ∈ R.

• From (1, 2, 6) 6v t′ it follows that (6, 2) v t′, hence (6, 4) v t′.

• From (2, 3, 5) 6v t′ it follows that (5, 3) v t′, hence (5, 4) v t′.

Therefore, either (5, 6, 4) v t′ or (6, 5, 4) v t′, a contradiction.
For k ≥ 5 define b = 2k − 6 and R = W ∪X ∪ Y ∪ Z, where

W = {(i, i + 1, 2k − 1− i) | 1 ≤ i ≤ k − 2}
X = {(2k − 1− i, 2k − 4 + i, 2k − 3 + i) | 2 ≤ i ≤ k − 3}
Y = {(2k − 4 + i, 2k − 1− i, 2k − 3 + i) | 2 ≤ i ≤ k − 3}
Z = {(k + 1, 3k − 6, k), (3k − 6, k + 1, k)}

For the forward direction let t 6= (1, . . . , k), then i0 + 1 precedes i0 in t for
some i0 ∈ {1, . . . , k − 1}. We distinguish three cases, in which we will define t′

such that t v t′ ∧ ∀r ∈ R : r 6v t′.

• If 1 < i0 < k − 1, define t′ = (2k − 4 + i0, . . . , 2k − i0, 2k − 2− i0, . . . , k +
1, t1, . . . , tk, 3k − 6, . . . , 2k − 3 + i0, 2k − 1− i0).

– For r ∈ W note that 2k − 1 − i precedes i in t′ if i 6= i0, and i + 1
precedes i if i = i0.

– For r ∈ X and r ∈ Y note that 2k − 3 + i precedes 2k − 4 + i in t′ if
i 6= i0, and 2k − 1− i is the last element of t′ if i = i0.

– For r ∈ Z note that k precedes 3k − 6.

• If i0 = 1, define t′ = (2k − 3, . . . , k + 1, t1, . . . , tk, 3k − 6, . . . , 2k − 2). The
argument runs similar to the previous case.

• If i0 = k−1, define t′ = (3k−6, . . . , k+2, t̃1, . . . , t̃k+1), where t v t̃ ∈ Sk+1

with (k, k + 1, k − 1) v t̃.

– For r ∈W note that 2k − 1− i precedes i + 1 in t′.

– For r ∈ X and r ∈ Y note that 2k − 3 + i precedes 2k − 4 + i in t′.

– For r ∈ Z note that k precedes k + 1 in t′.

For the backward direction let t = (1, . . . , k) v t′ ∈ S3k−6. Assume that
r 6v t′ for all r ∈ R. According to W , all values k +1, . . . , 2k− 2 precede k in t′.
Combining X and Y , we show by induction that 2k− 1, . . . , 3k− 6 precede k in
t′, too. The induction starts with i = 2 where 2k − 3 + i precedes 2k − 1− i or
2k− 4 + i, which both precede k. For 3 ≤ i ≤ k− 3 we assume inductively that
2k − 4 + i precedes k and conclude that 2k − 3 + i precedes k since 2k − 1 − i
precedes k again. It follows that both k + 1 and 3k + 6 precede k in t′. This is
a contradiction to the assumption that r 6v t′ for both r ∈ Z. ὅπερ ἔδει δε̃ιξαι

15

5.2 The symmetric problems

Given a positive integer k and tuple t : Nk → S, we will use the following
notations.

k = (k, . . . , 1) t = t ◦ k
←−
k = (2, . . . , k, 1) ←−

t = t ◦←−k
−→
k = (k, 1, . . . , k − 1) −→

t = t ◦ −→k

Generalising betweenness, cyclic ordering, and their combination, we identify
the following constrained ordering problems.

k-betweenness = (k, {1Sk
, k})

k-cyclic ordering = (k, {←−k
i
| i ∈ N})

k-separation = (k, {←−k
i
◦ k

j | i, j ∈ N})

Appendix C shows that problems with different kinds of symmetries are not
mutually CO-reducible. Precisely, from (k1, P1) ≤CO (k2, P2) one can infer that

P2 = P2 ◦ k2 ⇒ P1 = P1 ◦ k1,

P2 = P2 ◦
←−
k2 ⇒ P1 = P1 ◦

←−
k1.

Just as we did with the exclusion problems in Section 5.1, however, we will prove
that the problems in each of the three families are mutually CO-reducible.

Assuming k ≥ 3, the instance of CO-reduction for k1 = 3, k2 = k, b = k− 3,
and R = {1Sk

} simplifies to

∀t1 ∈ S3 : t1 ∈ P1 ⇐⇒ ∃t2 ∈ P2 : t1 v t2.

This is readily verified for betweenness and cyclic ordering. Assuming k ≥ 4,
the similar instance for k1 = 4, k2 = k, b = k − 4, and R = {1Sk

} can be
checked for separation. Altogether,

3-betweenness ≤CO k-betweenness,
3-cyclic ordering ≤CO k-cyclic ordering, and
4-separation ≤CO k-separation (k ≥ 4).

Assuming k ≥ 3, the instance of CO-reduction for k1 = k, k2 = 3, and b = 0
simplifies to

∀t1 ∈ Sk : t1 ∈ P1 ⇐⇒ ∀r ∈ R : ∃p ∈ P2 : r ◦ p v t1.

Choose R = {r ∈
(
Nk

3

)
| r v 1Sk

} for both betweenness and cyclic ordering.
Assuming k ≥ 4, check the similar instance for k1 = k, k2 = 4, b = 0, and
R = {r ∈

(
Nk

4

)
| r v 1Sk

} for separation.
There is a related definition of k-element clauses for the cyclic order in terms

of 3-element clauses, and k-element clauses for separation in terms of 4-element
ones [JZ05].

16

5.3 Reductions for partial ordering problems

In this section, we prove some necessary conditions for CO-reductions involving
partial ordering problems.

Assuming (k, P) ≤CO (2, {1S2}) leads to

∀t1 ∈ Sk : t1 ∈ P ⇐⇒ ∃t2 ∈ Sk+b : t1 v t2 ∧ ∀r ∈ R : r v t2.

In this case, R is a relation of type Nk+b ↔ Nk+b. We may replace R by its
transitive closure R+ in the above formula without affecting its validity since

(a1, a2) v t2 ∧ (a2, a3) v t2 ⇒ (a1, a3) v t2.

If R contains a cycle—in other words, R+ is not irreflexive—the left hand side
is false and we obtain the special case (k, ∅) ≤CO (2, {1S2}). Otherwise, R+ is
a strict partial order, and exactly the arrangements t2 obtained by topological
sorting satisfy ∀r ∈ R+ : r v t2. One of them has to be a supersequence of t1,
and this is the case if and only if t1 is a total ordering of the restriction of R+

to Nk ↔ Nk. Therefore, P must contain precisely all such total orderings for
CO-reducibility to hold.

Moreover, we see that it is unnecessary for R to refer to elements other
than in Nk, hence b = 0 can be assumed without loss of generality. By the
construction in the proof that ≤CO implies polynomial reducibility, an instance
of (k, P) can thus be solved with topological sorting. This is the reason why we
call (k, P) a partial ordering problem, if P consists of all total orderings that
extend some partial order. In this case, (k, P) ≤CO (2, {1S2}) by the above
argument.

Let us now investigate the converse, to see when (2, {1S2}) ≤CO (k, P) holds
for a partial ordering problem (k, P). Choosing b = k − 2 and R = {1Sk

} this
simplifies to

(∃t2 ∈ P : (1, 2) v t2) ∧ (¬∃t2 ∈ P : (2, 1) v t2).

By definition there is some partial order that P extends. If this is the discrete
order, P = Sk and CO-reducibility fails. Otherwise, the partial order contains
(a1, a2) for some a1 and a2, hence ∀t2 ∈ P : (a1, a2) v t2. Using the symmetry
by renaming introduced in Section 3.1, we assume a1 = 1 and a2 = 2 without
loss of generality. Therefore, ∀t2 ∈ P : (1, 2) v t2, which implies both conjuncts
of the above formula.

Altogether, we obtain (k, P) =CO (2, {1S2}) for all partial ordering problems
(k, P) such that P 6= Sk.

5.4 Calculating the quadruples

The definition of CO-reducibility qualifies for automatic evaluation. Once the
values of b and R are fixed, the corresponding equivalence can be verified by
expanding the ∀ quantifier to finite conjunction and the ∃ quantifier to finite
disjunction. A rough estimate on the number of elementary operations to be

17

then performed is k1! · (k1 + b)! ·
(
k1+b

k2

)
· k2 · (k1 + b), which is feasible for small

values of k1, k2, and b.
If only b is fixed, additionally the 2(k1+b

k2
) possible values of R have to be

tried—this is a very time consuming task even for small values involved. It
becomes entirely impossible in the most general case where all possible values
of b, namely the non-negative integers, must be considered.

The approach actually implemented to completely resolve the case k = 4 is
to fix b = 1, use an optimised backtracking search for R, and employ transitivity
of CO-reduction. We will now describe the procedure in more detail.

1. In the first step, symmetrical problems as described in Section 3.1 are
identified. It turns out that the 224 problems of the form (4, P) can be
grouped into 700688 classes this way.

2. We have observed in Section 5.1 that the exclusion problems are among
the most difficult. By proving 4-exclusion ≤CO (4, P) we thus know that
both problems belong to the same class. Using transitivity, a series of
such reductions is performed, where it is possible to choose even b = 1 for
each reduction. The longest reduction chain contains 18 transitive steps.
It turns out that of the remaining 700688 classes all but 285 belong to
the same as 4-exclusion, leaving us with 286 classes—one of which is quite
large.

3. In the third step, further reductions are applied to the remaining classes.
Successively, two classes are considered and merged if they contain prob-
lems (4, P1) and (4, P2), respectively, such that (4, P1) =CO (4, P2). This
leaves us with those 9 classes shown in Figure 5. Appendix D describes
why they are tractable or NP-complete, respectively.

The classes are held in a disjoint-set forest [CLR90]. Backtracking is used to
search for a suitable value of R, the necessary calculations being optimised by a
large amount of pre-calculation. The total calculation is performed in less than
5 ·1014 CPU cycles using less than 5 ·109 bits of memory. To ensure correctness,
the reductions are made explicit and can thus be verified independently [CO05].

We have thus identified a conservative approximation to CO-reducibility
among (4, P). Let us now state the conditions under which this approximation
may be strengthened, that is, the possibility of further CO-reductions. The
following discussion applies not only to the quadruples but to all k ≥ 3.

• By definition of CO-reducibility, the only problem reducible to (k, Sk) is
(k, Sk) itself. It follows that it is unique in its class.

• Again by definition of CO-reducibility, there are exactly two problems
reducible to (k, ∅). By choosing R = ∅ we can take (k, Sk) as the source
of the reduction. By choosing R 6= ∅ we obtain the reflexive case. It
follows that (k, ∅) is unique in its class, too.

18

• In Section 5.3 we have proved that the partial ordering problems form
their own class.

• By the reasoning in Appendix C, those classes that exhibit symmetry are
not mutually reducible.

• Finally, if P 6= NP, no NP-complete problem is CO-reducible to some
tractable problem.

For the cases k = 3 and k = 4 only the question of CO-reducibility between
the two, mutually reverse algorithm T classes is open. Finally, some classes
could split for larger values of k.

6 Conclusion

Let us summarise the contributions of this paper. In Section 2 we have presented
an efficient algorithm—a generalisation of topological sorting—that solves an
object-relational mapping problem. Several generalisations of this and other
known tractable and NP-complete ordering problems have been explored in Sec-
tion 3. We have introduced and investigated a reduction method for such prob-
lems in Section 4. It was then applied to prove NP-completeness and tractability
results for large classes of these problems in Section 5, both manually and by
machine.

6.1 Related work

The problems discussed in this paper also arise in the context of qualitative
spatial reasoning [IC00]. The algebraic treatment in that area originates in
qualitative temporal reasoning, notably with Allen’s interval algebra [All83].
All subclasses of Allen’s interval algebra have been classified as being either
NP-complete or tractable [NB95, KJJ03]. We conjecture that the problems
described in this paper enjoy the same dichotomy.

Note that a simple translation from Allen’s interval algebra to our formalism
fails for two reasons. First, the relative positions of intervals use not only < but
also the ≤, =, and 6= relations—see also the discussion in Appendix A. Second,
there may be different disjunctions in effect between different pairs of intervals.
This could be simulated with the exclusion problem, but that is already NP-
complete.

Conversely, a simple translation from our formalism to Allen’s interval al-
gebra fails also for two reasons. First, the start and end points of intervals are
correlated, whereas no such restrictions apply for constrained ordering prob-
lems. Second, there is only one clause for each pair of intervals, but our set C
models arbitrary conjunctions.

19

6.2 Open problems

The most important open question is about the decidability of CO-reduction.
This would be answered in the affirmative if, for example, one could give an
upper bound for the number of new elements b such that no expressiveness is
gained by introducing more new elements. Another way to attack this problem
is to try to prove that if (k1, P1) ≤CO (k3, P3) using b ≥ 2 new elements, there is
always an intermediate (k2, P2) such that the reductions from (k1, P1) to (k2, P2)
and from (k2, P2) to (k3, P3) need ≤ b − 1 new elements, respectively. So far,
we have no counterexample where b = 1 and transitivity is not enough.

Another important open question concerns the class structure induced by
≤CO for k > 4. The discussion at the end of Section 5.4 goes some way but,
for example, we do not know if all problems that exhibit the same kind of
symmetries remain in the same class. Yet more obscure is the situation of the
algorithm T classes and the exclusion class, where we have no exact characterisa-
tion. Making the class structure transparent is a prerequisite for engaging with
the dichotomy conjecture, or could even provide its solution. Further classes of
constraints that exhibit special forms could also be investigated separately.

20

References

[All83] J.F. Allen. Maintaining knowledge about temporal intervals. Commu-
nications of the ACM, 26(11):832–843, November 1983.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

[CO05] Constrained ordering home page, 2005. http://www.informatik.uni-
ulm.de/pm/fileadmin/pm/home/walter/data/co/.

[CS98] B. Chor and M. Sudan. A geometric approach to betweenness. SIAM
Journal on Discrete Mathematics, 11(4):511–523, November 1998.

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Addison–
Wesley, 2002.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H.
Freeman and Company, 1979.

[GM77] Z. Galil and N. Megiddo. Cyclic ordering is NP-complete. Theoretical
Computer Science, 5(2):179–182, October 1977.

[IC00] A. Isli and A.G. Cohn. A new approach to cyclic ordering of 2D
orientations using ternary relation algebras. Artificial Intelligence,
122(1–2):137–187, September 2000.

[JZ05] M. Junker and M. Ziegler. The 116 reducts of (Q, <, a). Preprint,
from http://home.mathematik.uni-freiburg.de/junker/preprints.html,
October 2005.

[KJJ03] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal re-
lations: The tractable subalgebras of Allen’s interval algebra. Journal
of the ACM, 50(5):591–640, September 2003.

[Knu97] D.E. Knuth. Fundamental Algorithms, volume 1 of The Art of Com-
puter Programming. Addison–Wesley, third edition, 1997.

[NB95] B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A
maximal tractable subclass of Allen’s interval algebra. Journal of the
ACM, 42(1):43–66, January 1995.

[Obj05] Object Management Group, http://www.omg.org/. UML 2.0 Super-
structure Specification, August 2005.

[Opa79] J. Opatrny. Total ordering problem. SIAM Journal on Computing,
8(1):111–114, February 1979.

[Slo05] N.J.A. Sloane. The on-line encyclopedia of integer sequences, 2005.
http://www.research.att.com/projects/OEIS?Anum=A001035.

21

A Further generalisations

We augment Section 3 by addressing two further kinds of generalisations.
In contrast to Section 3.2, where the constraint triples were extended by

pairs, we entirely replaced them by k-tuples in Section 3.4. There is no rea-
son, however, why one should not consider, for example, constraint quadruples
extended by pairs or by both triples and pairs. In general, one could allow
arbitrary tuples with up to k elements. This family of problems is indexed by
k constraints Pl ⊆ Sl for 1 ≤ l ≤ k.

• INSTANCE: Finite set A, collections Cl for 1 ≤ l ≤ k such that each Cl

contains l-tuples (a1, . . . , al) of distinct elements from A.

• QUESTION: Is there a bijection f : A→ {1, 2, . . . , |A|} such that for each
Cl and each (a1, . . . , al) ∈ Cl there is a p ∈ Pl with f(ap(i)) < f(ap(j)) for
all 1 ≤ i < j ≤ l?

The number of problems for each k is
∏k

l=1 2l! = 2
Pk

l=1 l!.
We have seen in Section 2 that it sometimes makes sense to have the same

element occur more than once in a tuple. The problem statement of Section 3.4,
however, is not suited for that since the same elements cannot be arranged in a
strict order. The difference is illustrated by the fact that

(c < a) ∨ (c < b) ⇐⇒ (a < c < b) ∨ (b < c < a) ∨ (c < a < b) ∨ (c < b < a)

holds only if the distinctness condition a 6= b 6= c 6= a is true. We therefore need
to allow for a weak order. Thus,

(c < a) ∨ (c < b) ⇐⇒ (a ≤ c < b) ∨ (b ≤ c < a) ∨ (c < a ≤ b) ∨ (c < b ≤ a)

holds without further restriction. More basic building blocks are reached by
replacing ≤ with a disjunction of < and =, as in

(a ≤ c < b) ⇐⇒ (a < c < b) ∨ (a = c < b).

One way to model this is to require that a constraint in P is no longer just a
permutation of k elements, but an ordered partition of {1, 2, . . . , k}. This way,
(c < a) ∨ (c < b) could be expressed by the triple (a, b, c) and the constraint

P = {({1}, {3}, {2}), ({2}, {3}, {1}), ({3}, {1}, {2}), ({3}, {2}, {1}),
({1, 3}, {2}), ({2, 3}, {1}), ({3}, {1, 2})}.

The number of problems for each k is 2
P

0≤i<l≤k(−1)i(l
i)(l−i)k

= 2
Pk

l=1 l!·S2(k,l)

where S2(k, l) = 1
l! ·

∑l−1
i=0(−1)i

(
l
i

)
(l− i)k are the Stirling numbers of the second

kind.
Both generalisations just discussed may of course be combined. The ultimate

generalisation would allow to annotate each tuple with its own constraint.

22

B Reductions for disjoint triples

We prove the NP-completeness of some of the problems from the following family
indexed by P ⊆ S3 introduced in Section 3.3.

• INSTANCE: Finite set A, collection B of pairs from A, collection C of
pairwise disjoint triples (a1, a2, a3) of distinct elements from A.

• QUESTION: Is there a bijection f : A→ {1, 2, . . . , |A|} such that f(a1) <
f(a2) for each (a1, a2) ∈ B, and for each (a1, a2, a3) ∈ C there is a p ∈ P
with f(ap(1)) < f(ap(2)) < f(ap(3))?

B.1 Intermezzo

We call the problem P = {(123), (231)} the intermezzo problem. The require-
ment for the triples in (a1, a2, a3) ∈ C therefore reads f(a1) < f(a2) < f(a3)
or f(a2) < f(a3) < f(a1). We prove its NP-completeness by reduction from
3SAT. The component design technique is described in [GJ79, Section 3.2.3].

Let an instance of 3SAT be characterised by the set of variables U =
{u1, . . . , un} and the set of clauses C ′ = {(c1,1 ∨ c1,2 ∨ c1,3), . . . , (cm,1 ∨ cm,2 ∨
cm,3)}, where ci,j = uk or ci,j = ūk for some k. Let ¯̄uk = uk, and let a ⊕ b
denote the number c ∈ {1, 2, 3} such that a + b ≡ c (mod 3). Construct the
instance of intermezzo where

A = {uk,l, ūk,l | 1 ≤ k ≤ n ∧ 1 ≤ l ≤ 3} ∪
{cl

i,j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ 1 ≤ l ≤ 3}
B = {(uk,1, ūk,3), (ūk,1, uk,3) | 1 ≤ k ≤ n} ∪

{(ci,j,2, c
1
i,j), (c

2
i,j , ci,j,1) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3} ∪

{(c1
i,j⊕1, c

3
i,j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3}

C = {(uk,1, uk,2, uk,3), (ūk,1, ūk,2, ūk,3) | 1 ≤ k ≤ n} ∪
{(c1

i,j , c
2
i,j , c

3
i,j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3}

The notation ci,j,l is an abbreviation of uk,l where uk = ci,j . We will now
describe the construction that is illustrated in Figure 6 in more detail.

For each literal uk we construct three elements uk,l that are grouped in the
triple (uk,1, uk,2, uk,3) as shown in Figure 6(a). The same construction is applied
for each literal ūk. For each variable uk we thus have two such triples, and we
connect them by two edges (uk,1, ūk,3) and (ūk,1, uk,3) as shown in Figure 6(b).
The subgraph for each variable therefore consists of 6 nodes, 2 edges, and 2
triples.

For each occurrence of a literal ci,j in a clause ci we construct three elements
cl
i,j that are grouped in the triple (c1

i,j , c
2
i,j , c

3
i,j) as shown in Figure 6(c). For

each clause ci we thus have three such triples, and we connect them pairwise
by edges (c1

i,j⊕1, c
3
i,j) as shown in Figure 6(d). The subgraph for each clause

therefore consists of 9 nodes, 3 edges, and 3 triples.

23

•
uk,2

•
uk,1

•
uk,3

-A
A
A
A
A�

�
�
�
�

(a) Triple for each literal uk

•
uk,2

•
uk,1

•
uk,3

-A
A
A
A
A�

�
�
�
�

•
ūk,3

•

ūk,1

•
ūk,2

�
�
�
�
�
�A

A
A
A
A

-

�

(b) Two triples for each variable uk

•
c3
i,j

•
c1
i,j

•
c2
i,j

�
�
�
�
�
�A

A
A
A
A

(c) Triple for each occurrence
of a literal ci,j in a clause

•c1
i,3

• c2
i,3

• c3
i,3

A
A
AU

�
�
�
�
�A

A
A
A
A

•
c2
i,2

•c3
i,2

•
c1
i,2

�
�
��

�
�
�
�
�A

A
A
A
A •

c3
i,1

•
c1
i,1

•
c2
i,1

�
�
�
�
�
�A

A
A
A
A

�
�

��

-

A
A

AK

(d) Three triples for each clause ci

•c1
i,3

• c2
i,3

• c3
i,3

A
A
AU

A
AK

A
AU

�
�
�
�
�A

A
A
A
A

•
c2
i,2

•c3
i,2

•
c1
i,2

�
�
��

�
�� �

���
�
�
�
�A

A
A
A
A •

c3
i,1

•
c1
i,1

•
c2
i,1

�
�
�
�
�
�A

A
A
A
A

•
uk,2

•
uk,1

•
uk,3

-A
A
A
A
A�

�
�
�
�

•
ūk,3

•

ūk,1

•
ūk,2

�
�
�
�
�
�A

A
A
A
A

•
c2
h,1

•
c1
h,1

•
c3
h,1

-A
A
A
A
A�

�
�
�
� •

c1
h,2

• c3
h,2

•
c2
h,2

�
�

��

�
���

��A
A
A
A
A�

�
�
�
�

•c3
h,3

•c2
h,3

• c1
h,3

A
A

AK

A
AU

A
AK

A
A
A
A
A�

�
�
�
�

�
�

��

-

A
A

AK

���9��+

��� ��9��+

�

-
��:
��3

�

- -��:��3

�

A
A
AU �

�
��

�	

+

ci,1 = uk

ūk
↖↘uk −

ch,1 = ūk

	

(e) Construction for two clauses and one variable

Figure 6: Graph constructed for the reduction to intermezzo

24

The connection between the subgraphs for the variables and those for the
clauses is obtained by constructing two edges (ci,j,2, c

1
i,j) and (c2

i,j , ci,j,1) for each
occurrence of a literal ci,j in a clause. Note that ci,j,l = uk,l for positive literals
ci,j = uk, and ci,j,l = ūk,l for negative literals ci,j = ūk. Figure 6(e) shows
this construction for the occurrences of the positive literal ci,1 = uk and the
negative literal ch,1 = ūk in two different clauses ci and ch. Further connections
are suggested by arrows attached to one node only.

The complete graph consists of |A| = 6n + 9m nodes, |B| = 2n + 9m edges,
and |C| = 2n + 3m triples. We will now prove that this instance of intermezzo
is solvable if and only if the corresponding instance of 3SAT is satisfiable.

Let f be an ordering function as required by the specification of intermezzo.
Define the truth assignment t(uk) = f(uk,3) < f(ūk,3). Assume that t does not
satisfy C ′ and let (ci,1 ∨ ci,2 ∨ ci,3) be a clause such that ¬t(ci,j) for 1 ≤ j ≤ 3.

1. By definition of t we have f(c̄i,j,3) < f(ci,j,3).

2. Since (ci,j,1, c̄i,j,3) ∈ B we have f(ci,j,1) < f(ci,j,3).

3. Since (ci,j,1, ci,j,2, ci,j,3) ∈ C we have f(ci,j,1) < f(ci,j,2).

4. Since (c2
i,j , ci,j,1), (ci,j,2, c

1
i,j) ∈ B we have f(c2

i,j) < f(c1
i,j).

5. Since (c1
i,j , c

2
i,j , c

3
i,j) ∈ C we have f(c3

i,j) < f(c1
i,j).

6. Since (c1
i,j⊕1, c

3
i,j) ∈ B we have f(c1

i,j⊕1) < f(c1
i,j).

7. Therefore we have f(c1
i,j) = f(c1

i,j⊕3) < f(c1
i,j⊕2) < f(c1

i,j⊕1) < f(c1
i,j), a

contradiction.

Let t be a truth assignment that satisfies C ′. For 1 ≤ k ≤ n let tk = uk if
t(uk) and tk = ūk if ¬t(uk). For 1 ≤ i ≤ m let li be such that t(ci,li). Define
the mapping g : A→ N such that

g(c2
i,j) = 3i + j for 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ ¬t(ci,j)

g(t̄k,1) = D + k for 1 ≤ k ≤ n
g(t̄k,2) = 2D + k for 1 ≤ k ≤ n
g(tk,2) = 3D + k for 1 ≤ k ≤ n
g(c1

i,j) = 4D + 3i + j for 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ t(ci,j)
g(c2

i,j) = 5D + 3i + j for 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ t(ci,j)
g(c3

i,j) = 6D + 3i + j for 1 ≤ i ≤ m ∧ j = li ⊕ 2 ∧ ¬t(ci,j)
g(c1

i,j) = 7D + 3i + j for 1 ≤ i ≤ m ∧ j = li ⊕ 2 ∧ ¬t(ci,j)
g(c3

i,j) = 8D + 3i + j for 1 ≤ i ≤ m ∧ j = li ⊕ 1 ∧ ¬t(ci,j)
g(c1

i,j) = 9D + 3i + j for 1 ≤ i ≤ m ∧ j = li ⊕ 1 ∧ ¬t(ci,j)
g(c3

i,j) = 10D + 3i + j for 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ t(ci,j)
g(tk,3) = 11D + k for 1 ≤ k ≤ n
g(tk,1) = 12D + k for 1 ≤ k ≤ n
g(t̄k,3) = 13D + k for 1 ≤ k ≤ n

where D is large enough to keep the definitions separate, for instance choose
D = 2n + 4m + 4. g satisfies the constraints specified by B since

25

1. g(tk,1) < 13D < g(t̄k,3) and g(t̄k,1) < 2D < 11D < g(tk,3).

2. g(ci,j,2) < 4D < g(c1
i,j) and g(c2

i,j) < 6D < 12D < g(ci,j,1) if t(ci,j), and
g(ci,j,2) < 3D < 4D < g(c1

i,j) and g(c2
i,j) < D < g(ci,j,1) if ¬t(ci,j).

3. g(c1
i,li

) < 5D < 6D < g(c3
i,li⊕2) and g(c1

i,li⊕2) < 8D < g(c3
i,li⊕1) and

g(c1
i,li⊕1) < 10D < g(c3

i,li
).

g satisfies the constraints specified by C since

4. g(t̄k,1) < 2D < g(t̄k,2) < 3D < 13D < g(t̄k,3).

5. g(tk,2) < 4D < 11D < g(tk,3) < 12D < g(tk,1).

6. g(c2
i,li⊕2) < D < 6D < g(c3

i,li⊕2) < 7D < g(c1
i,li⊕2) if ¬t(ci,li⊕2), and

g(c2
i,li⊕1) < D < 8D < g(c3

i,li⊕1) < 9D < g(c1
i,li⊕1) if ¬t(ci,li⊕1), and

g(c1
i,j) < 5D < g(c2

i,j) < 6D < 10D < g(c3
i,j) if t(ci,j).

The function f(e) = |{a ∈ A | g(a) ≤ g(e)}| is one-to-one, and satisfies the
constraints specified by B and C. ὅπερ ἔδει δε̃ιξαι

B.2 Betweenness

The requirement for the triples in (a1, a2, a3) ∈ C reads f(a1) < f(a2) < f(a3)
or f(a3) < f(a2) < f(a1) for the betweenness problem. We prove it is NP-
complete by reduction from intermezzo.

Let A′, B′, and C ′ characterise an instance of intermezzo. Construct the
instance of betweenness where A extends A′ by three new elements a′1, a′2, a′3 for
each (a1, a2, a3) ∈ C ′. Note that there are 3|C ′| distinct new elements since the
triples in C ′ are pairwise disjoint. Moreover, C consists of two triples (a1, a

′
3, a3),

(a′1, a
′
2, a2) for each (a1, a2, a3) ∈ C ′. Finally, for each (a1, a2, a3) ∈ C ′, B

extends B′ by inserting three new pairs (a′1, a1), (a′3, a
′
2), (a2, a3) and, for each

pair (a, a1), one new pair (a, a′1). Intuitively, an element a1 is split into two
elements a1 and a′1 such that a′1 immediately precedes a1.

Assume there is a total order ≺′ of the instance of intermezzo. The order ≺
modifies ≺′ by replacing, for each (a1, a2, a3) ∈ C ′, the occurrence of a1 in ≺′
with

• either a′1 ≺ a1 ≺ a′3 ≺ a′2 if a1 ≺′ a2 ≺′ a3,

• or a′3 ≺ a′2 ≺ a′1 ≺ a1 if a2 ≺′ a3 ≺′ a1,

such that these four elements succeed without a gap. By definition of intermezzo
exactly one of the two cases applies for each triple, thus ≺ is a total order of A.

The order ≺ satisfies each triple (a1, a
′
3, a3) since a1 ≺ a′3 ≺ a3 in the first

case and a3 ≺ a′3 ≺ a1 in the second case. The order ≺ satisfies each triple
(a′1, a

′
2, a2) since a′1 ≺ a′2 ≺ a2 in the first case and a2 ≺ a′2 ≺ a′1 in the second

case. The order ≺, being an extension of ≺′, satisfies B′. In both cases a′1 ≺ a1,
a′3 ≺ a′2, and a2 ≺ a3 for each triple (a1, a2, a3) ∈ C ′, and, since a′1 and a1

26

succeed without a gap, a ≺ a′1 whenever a ≺′ a1. Hence, ≺ is a total order of
the constructed instance.

Assume there is a total order ≺ of the constructed instance. The order ≺′
is the restriction of ≺ to A. For each triple (a1, a2, a3) ∈ C ′, a2 ≺′ a3 since
(a2, a3) ∈ B. Assume that a2 ≺′ a1 ≺′ a3 for some such triple.

1. By definition of ≺′ we also have a2 ≺ a1 ≺ a3.

2. Since (a1, a
′
3, a3) ∈ C we have a1 ≺ a′3 ≺ a3.

3. Since (a′1, a1) ∈ B and (a′3, a
′
2) ∈ B we have a′1 ≺ a1 ≺ a′3 ≺ a′2.

4. Since (a′1, a
′
2, a2) ∈ C we have a′1 ≺ a1 ≺ a′3 ≺ a′2 ≺ a2.

5. Therefore a1 ≺ a2 and a2 ≺ a1, a contradiction.

Thus, a1 ≺′ a2 ≺′ a3 or a2 ≺′ a3 ≺′ a1, so ≺′ satisfies all triples in C ′.
Finally, (a1, a2) ∈ B′ ⇒ (a1, a2) ∈ B ⇒ a1 ≺ a2 ⇒ a1 ≺′ a2, so ≺′ satisfies
B′. Hence, ≺′ is a total order of the instance of intermezzo. ὅπερ ἔδει δε̃ιξαι

B.3 The remaining NP-complete problems

Five classes of problems are left, each class containing several problems that are
symmetric as described in Section 3.1. Choose one specific problem from each
class, namely {(123), (231), (312)}, {(123), (231), (321)}, S3\{(213), (312)}, S3\
{(213), (132)}, and S3 \ {(213)}. The following argument shows that each of
these problems is NP-complete by reduction from intermezzo.

Let A′, B′, and C ′ characterise an instance of intermezzo. Construct the
instance for any of the five problems where A = A′, C = C ′, and B = B′ ∪
{(a2, a3) | (a1, a2, a3) ∈ C ′}. If the instance of intermezzo has a solution, it also
solves the constructed instance since each of the five problems are supersets
of {(123), (231)}. If the constructed instance has a solution, it also solves the
instance of intermezzo since by the extension of the pairs a2 must precede a3

for each triple (a1, a2, a3) ∈ C ′ and none of the five problems contains (213).
Hence, the constructed instance has a solution if and only if the corresponding
instance of intermezzo has one.

C Reductions between symmetric problems

In this section, we prove some necessary conditions for CO-reductions involving
symmetric problems. We use the notations introduced in Section 5.2.

C.1 Betweenness

Let s : Nk → S and t : Nl → S. We prove that s v t ⇒ s v t. By definition of
v, let u : Nk → Nl be strictly increasing such that s = t◦u. Define v = l◦u◦k,

27

that is strictly increasing since both k and l are strictly decreasing. Thus, s v t,
since

s = s ◦ k = t ◦ u ◦ k = t ◦ l ◦ l ◦ u ◦ k = t ◦ l ◦ v = t ◦ v.

Let (k1, P1) ≤CO (k2, P2). We prove that P2 = P2 ◦ k2 ⇒ P1 = P1 ◦ k1. Let
t1 ∈ P1, then by definition of ≤CO there are b, R, and t2 ∈ Sk1+b such that

t1 v t2 ∧ ∀r ∈ R : ∃p ∈ P2 : r ◦ p v t2.

By the above lemma, t1 v t2 and ∀r ∈ R : ∃p ∈ P2 : r ◦ p = r ◦ p v t2. By the
assumption, p ∈ P2 ⇒ p ∈ P2, hence also ∀r ∈ R : ∃p ∈ P2 : r ◦ p v t2. By
CO-reduction, t1 ∈ P1.

C.2 Cyclic ordering

Let s : Nk → S and t : Nl → S such that s v t. We prove that

∀i ∈ N : ∃j ∈ N : s ◦←−k
i
v t ◦←−l

j
∧ ∀i ∈ N : ∃j ∈ N : s ◦←−k

j
v t ◦←−l

i
.

It suffices to deal with the case i = 1 because for larger values, the process may
be applied repeatedly since rotations are closed under composition. It further
suffices to deal with the case k + 1 = l, since the case k = l is clear by choosing
j = i, while for larger differences of k and l, one chooses for i ∈ {k+1, . . . , l−1}
tuples ti : Ni → S such that s v tk+1 v . . . v tl−1 v t and reasons step by step.

Therefore, without loss of generality, s = t ◦ (1, . . . , h − 1, h + 1, . . . , l) for
some h ∈ Nl. If h = 1,

s = t ◦ (2, . . . , l) =←−t ◦ −→l ◦ (2, . . . , l) =←−t ◦ (1, . . . , l − 1),

←−s =
←−←−
t ◦
−→−→
l ◦←−−−−−−(2, . . . , l) =

←−←−
t ◦
−→−→
l ◦ (3, . . . , l, 2) =

←−←−
t ◦ (1, . . . , l − 2, l),

so that ←−s v
←−←−
t and s v ←−t . If h > 1,

←−s =←−t ◦ −→l ◦←−−−−−−−−−−−−−−−−−−−(1, . . . , h− 1, h + 1, . . . , l) =←−t ◦ (1, . . . , h− 2, h, . . . , l),

so that ←−s v ←−t .
Let (k1, P1) ≤CO (k2, P2). We prove that P2 = P2 ◦

←−
k2 ⇒ P1 = P1 ◦

←−
k1. Let

t1 ∈ P1, then by definition of ≤CO there are b, R, and t2 ∈ Sk1+b such that

t1 v t2 ∧ ∀r ∈ R : ∃p ∈ P2 : r ◦ p v t2.

By the first part of the above lemma, ←−t1 v t2 ◦
←−−−
k1 + b

i
for some i. By its second

part, ∀r ∈ R : ∃p ∈ P2 : r ◦ p ◦←−k2
j
v t2 ◦

←−−−
k1 + b

i
for some j. By the assumption,

p ∈ P2 ⇒ p ◦ ←−k2
j
∈ P2, hence also ∀r ∈ R : ∃p ∈ P2 : r ◦ p v t2 ◦

←−−−
k1 + b

i
. By

CO-reduction, ←−t1 ∈ P1.

28

D Reductions between triples and quadruples

After performing several reductions between constrained ordering problems with
k = 4, we are left with 9 classes. Let us discuss why the remaining 9 classes are
tractable or NP-complete, respectively, as shown in Figure 5.

Let A′ and C ′ characterise an instance of betweenness. Construct the in-
stance of the 4-separation problem—see Section 5.2—where A = A′ ∪ {n} for
some n /∈ A′ and C = {(n, a1, a2, a3) | (a1, a2, a3) ∈ C ′}. We prove that this
instance has a solution if and only if the corresponding instance of betweenness
has one.

If there is an ordering of A′ that satisfies C ′, prepend the element n to
get an ordering of A that satisfies C, since (1, 2, 3, 4) and (1, 4, 3, 2) are valid
permutations.

If there is an ordering of A that satisfies C, rotate it until the element n is
on the first position. The result still satisfies C but uses only the permutations
(1, 2, 3, 4) and (1, 4, 3, 2) since n is the first element of each quadruple in C.
Removing the element n yields an ordering of A′ that satisfies C ′.

By transitivity, all problems surrounded by double boxes are NP-complete.
Moreover, (4, {(1324), (2314), (3124), (3214)}) ≤CO (3,S3\{(123), (213)}) using
b = 0 and R = {(1, 2, 3), (1, 4, 2), (2, 4, 1)}. Intuitively, the last two tuples of R
force the fourth element of the quadruple to follow the first and the second.
By transitivity and reverse symmetry, all problems surrounded by simple boxes
indeed are tractable.

τέλος

29

