Variations on an Ordering Theme with Constraints

Walter Guttmann and Markus Maucher

Universität Ulm

4th IFIP International Conference on Theoretical Computer Science August 23, 2006 INSTANCE: Finite set A, collection C of ordered triples from A^3 . QUESTION: Is there a total order < of A, such that for all $(a, b, c) \in C$,

- a < b < c or c < b < a (Betweenness)
- neither a < b < c nor c < b < a (Nonbetweenness)
- a < b < c or b < c < a or c < a < b (Cyclic Ordering)
- *b* < *a* or *c* < *a*

Extended topological sorting

input output	finite set A, partial order \leq , collection of disjoint triples C ordering of A that extends \leq such that the first element of each triple in C comes after the second or the third
method	$(S, P, T) \leftarrow (A, \lessdot, C)$
	Ordering ← empty sequence
	while $S \neq \emptyset$ do
	find $e \in S$ such that $orall y, z \in S : (y, e) \notin P \land (e, y, z) \notin T$
	if such an e exists then
	$T \leftarrow \{(x, y, z) \in T \mid y \neq e \land z \neq e\}$
	$P \leftarrow \{(x, y) \in P \mid x \neq e\}$
	$S \leftarrow S \setminus \{e\}$
	append <i>e</i> to Ordering
	else
	output "there is no ordering"; halt
	end
	output Ordering

Correctness and completeness

An output is correct, because

- (x, y) stays in P until x is appended.
- if $(x, y) \in P$, then x is appended to the ordering before y.
- (x, y, z) stays in T until y or z is appended.
- if (x, y, z) ∈ T, then y or z is appended to the ordering before x.

Correctness and completeness

An output is correct, because

- (x, y) stays in P until x is appended.
- if $(x, y) \in P$, then x is appended to the ordering before y.
- (x, y, z) stays in T until y or z is appended.
- if (x, y, z) ∈ T, then y or z is appended to the ordering before x.

If a solution exists, it is found.

Assume there is no output. Then

find $e \in S$ such that $\forall y, z \in S : (y, e) \notin P \land (e, y, z) \notin T$

fails to find an *e*. \Rightarrow A subset $S \subseteq A$ exists where no minimum can be identified. INSTANCE: Finite set *A*, collection *C* of ordered triples from A^3 , constraint $P \subseteq S_3$. QUESTION: Is there a one-to-one function $f : A \rightarrow \{1, ..., |A|\}$, such that for all $(t_1, t_2, t_3) \in C$, there exists a $p \in P$ with $f(t_{p(1)}) < f(t_{p(2)}) < f(t_{p(3)})$. INSTANCE: Finite set *A*, collection *C* of ordered triples from A^3 , constraint $P \subseteq S_3$. QUESTION: Is there a one-to-one function $f : A \rightarrow \{1, ..., |A|\}$, such that for all $(t_1, t_2, t_3) \in C$, there exists a $p \in P$ with $f(t_{p(1)}) < f(t_{p(2)}) < f(t_{p(3)})$.

Example 1

 $P = \{123, 321\}$ specifies the problem Betweenness.

INSTANCE: Finite set *A*, collection *C* of ordered triples from A^3 , constraint $P \subseteq S_3$. QUESTION: Is there a one-to-one function $f : A \rightarrow \{1, ..., |A|\}$, such that for all $(t_1, t_2, t_3) \in C$, there exists a $p \in P$ with $f(t_{p(1)}) < f(t_{p(2)}) < f(t_{p(3)})$.

Example 1

 $P = \{123, 321\}$ specifies the problem Betweenness.

Example 2

 $P = \{213, 231, 132, 312\}$ specifies the problem Nonbetweenness.

Variations

• allow/disallow pairs

Variations

- allow/disallow pairs
- only use disjoint triples.

Variations

- allow/disallow pairs
- only use disjoint triples.

From triples to *k*-tuples

For $k \in \mathbb{N}^+$ and $P \subseteq \mathcal{S}_k$ the problem (k, P)-*CO* is:

- INSTANCE: Finite set *A*, collection *C* of *k*-tuples (*t*₁,..., *t_k*) of distinct elements from *A*.
- QUESTION: Is there a one-to-one function
 f: A → {1,2,..., |A|} such that for each (t₁,..., t_k) ∈ C,
 there is a p ∈ P with f(t_{p(i)}) < f(t_{p(j)}) for all 1 ≤ i < j ≤ k?

From triples to *k*-tuples

For $k \in \mathbb{N}^+$ and $P \subseteq \mathcal{S}_k$ the problem (k, P)-*CO* is:

- INSTANCE: Finite set A, collection C of k-tuples (t_1, \ldots, t_k) of distinct elements from A.
- QUESTION: Is there a one-to-one function
 f: A → {1,2,..., |A|} such that for each (t₁,..., t_k) ∈ C,
 there is a p ∈ P with f(t_{p(i)}) < f(t_{p(i)}) for all 1 ≤ i < j ≤ k?

Example 3

 $P = \{1234, 4321\}$ specifies the generalisation of the problem Betweenness to quadruples.

From triples to *k*-tuples

For $k \in \mathbb{N}^+$ and $P \subseteq \mathcal{S}_k$ the problem (k, P)-*CO* is:

- INSTANCE: Finite set A, collection C of k-tuples (t_1, \ldots, t_k) of distinct elements from A.
- QUESTION: Is there a one-to-one function
 f: A → {1,2,..., |A|} such that for each (t₁,..., t_k) ∈ C,
 there is a p ∈ P with f(t_{p(i)}) < f(t_{p(i)}) for all 1 ≤ i < j ≤ k?

Example 3

 $P = \{1234, 4321\}$ specifies the generalisation of the problem Betweenness to quadruples.

Example 4

 $P = \{1234, 2341, 3412, 4123\}$ specifies the problem Cyclic Ordering generalised to quadruples.

Class structure among $(3, \cdot)$ -CO

Class structure among $(4, \cdot)$ -CO

Conclusion

- for k ≤ 4, clear "NP-complete" vs. "linear time solvable" dichotomy
- similar class structures for k = 3 and k = 4
- one new class for k = 4

Open problems:

- Can we decide if a given problem A can be expressed in terms of another problem B?
- class structure for (k, \cdot) -CO with $k \ge 5$
- weak order instead of strict order