Variations on an Ordering Theme with Constraints

Walter Guttmann and Markus Maucher

Universität Ulm

$4^{\text {th }}$ IFIP International Conference on Theoretical Computer Science

August 23, 2006

INSTANCE: Finite set A, collection C of ordered triples from A^{3}. QUESTION: Is there a total order $<$ of A, such that for all $(a, b, c) \in C$,

- $a<b<c$ or $c<b<a$
(Betweenness)
- neither $a<b<c$ nor $c<b<a$
(Nonbetweenness)
- $a<b<c$ or $b<c<a$ or $c<a<b$
(Cyclic Ordering)
- $b<a$ or $c<a$
input finite set A, partial order \lessdot, collection of disjoint triples C output ordering of A that extends \lessdot such that the first element of each triple in C comes after the second or the third
method $(S, P, T) \leftarrow(A, \lessdot, C)$
Ordering \leftarrow empty sequence
while $S \neq \emptyset$ do
find $e \in S$ such that $\forall y, z \in S:(y, e) \notin P \wedge(e, y, z) \notin T$
if such an e exists then
$T \leftarrow\{(x, y, z) \in T \mid y \neq e \wedge z \neq e\}$
$P \leftarrow\{(x, y) \in P \mid x \neq e\}$
$S \leftarrow S \backslash\{e\}$
append e to Ordering
else
output "there is no ordering"; halt
end
output Ordering

Correctness and completeness

An output is correct, because

- (x, y) stays in P until x is appended.
- if $(x, y) \in P$, then x is appended to the ordering before y.
- (x, y, z) stays in T until y or z is appended.
- if $(x, y, z) \in T$, then y or z is appended to the ordering before x.

Correctness and completeness

An output is correct, because

- (x, y) stays in P until x is appended.
- if $(x, y) \in P$, then x is appended to the ordering before y.
- (x, y, z) stays in T until y or z is appended.
- if $(x, y, z) \in T$, then y or z is appended to the ordering before x.

If a solution exists, it is found.

Assume there is no output. Then
find $e \in S$ such that $\forall y, z \in S:(y, e) \notin P \wedge(e, y, z) \notin T$
fails to find an e.
$\Rightarrow A$ subset $S \subseteq A$ exists where no minimum can be identified.

Generalisation

INSTANCE: Finite set A, collection C of ordered triples from A^{3}, constraint $P \subseteq \mathcal{S}_{3}$. QUESTION: Is there a one-to-one function $f: A \rightarrow\{1, \ldots,|A|\}$, such that for all $\left(t_{1}, t_{2}, t_{3}\right) \in C$, there exists a $p \in P$ with $f\left(t_{p(1)}\right)<f\left(t_{p(2)}\right)<f\left(t_{p(3)}\right)$.

Generalisation

INSTANCE: Finite set A, collection C of ordered triples from A^{3}, constraint $P \subseteq \mathcal{S}_{3}$.
QUESTION: Is there a one-to-one function $f: A \rightarrow\{1, \ldots,|A|\}$, such that for all $\left(t_{1}, t_{2}, t_{3}\right) \in C$, there exists a $p \in P$ with $f\left(t_{p(1)}\right)<f\left(t_{p(2)}\right)<f\left(t_{p(3)}\right)$.

Example 1

$P=\{123,321\}$ specifies the problem Betweenness.

Generalisation

INSTANCE: Finite set A, collection C of ordered triples from A^{3}, constraint $P \subseteq \mathcal{S}_{3}$.
QUESTION: Is there a one-to-one function $f: A \rightarrow\{1, \ldots,|A|\}$, such that for all $\left(t_{1}, t_{2}, t_{3}\right) \in C$, there exists a $p \in P$ with $f\left(t_{p(1)}\right)<f\left(t_{p(2)}\right)<f\left(t_{p(3)}\right)$.

Example 1

$P=\{123,321\}$ specifies the problem Betweenness.

Example 2

$P=\{213,231,132,312\}$ specifies the problem Nonbetweenness.

Variations

- allow/disallow pairs

Variations

- allow/disallow pairs
- only use disjoint triples.
- allow/disallow pairs
- only use disjoint triples.

For $k \in \mathbb{N}^{+}$and $P \subseteq \mathcal{S}_{k}$ the problem (k, P) - $C O$ is:

- INSTANCE: Finite set A, collection C of k-tuples $\left(t_{1}, \ldots, t_{k}\right)$ of distinct elements from A.
- QUESTION: Is there a one-to-one function $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that for each $\left(t_{1}, \ldots, t_{k}\right) \in C$, there is a $p \in P$ with $f\left(t_{p(i)}\right)<f\left(t_{p(j)}\right)$ for all $1 \leq i<j \leq k$?

From triples to k-tuples

For $k \in \mathbb{N}^{+}$and $P \subseteq \mathcal{S}_{k}$ the problem (k, P) - $C O$ is:

- INSTANCE: Finite set A, collection C of k-tuples $\left(t_{1}, \ldots, t_{k}\right)$ of distinct elements from A.
- QUESTION: Is there a one-to-one function $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that for each $\left(t_{1}, \ldots, t_{k}\right) \in C$, there is a $p \in P$ with $f\left(t_{p(i)}\right)<f\left(t_{p(j)}\right)$ for all $1 \leq i<j \leq k$?

Example 3

$P=\{1234,4321\}$ specifies the generalisation of the problem Betweenness to quadruples.

From triples to k-tuples

For $k \in \mathbb{N}^{+}$and $P \subseteq \mathcal{S}_{k}$ the problem (k, P) - $C O$ is:

- INSTANCE: Finite set A, collection C of k-tuples $\left(t_{1}, \ldots, t_{k}\right)$ of distinct elements from A.
- QUESTION: Is there a one-to-one function $f: A \rightarrow\{1,2, \ldots,|A|\}$ such that for each $\left(t_{1}, \ldots, t_{k}\right) \in C$, there is a $p \in P$ with $f\left(t_{p(i)}\right)<f\left(t_{p(j)}\right)$ for all $1 \leq i<j \leq k$?

Example 3

$P=\{1234,4321\}$ specifies the generalisation of the problem Betweenness to quadruples.

Example 4

$P=\{1234,2341,3412,4123\}$ specifies the problem Cyclic Ordering generalised to quadruples.

Class structure among (3, •)-CO

Class structure among (4, •)-CO

Conclusion

- for $k \leq 4$, clear "NP-complete" vs. "linear time solvable" dichotomy
- similar class structures for $k=3$ and $k=4$
- one new class for $k=4$

Open problems:

- Can we decide if a given problem A can be expressed in terms of another problem B?
- class structure for (k, \cdot) - $C O$ with $k \geq 5$
- weak order instead of strict order

