
GENESIS: Genome Evolution Scenarios
Simon Gog, Martin Bader, and Enno Ohlebusch
Institute of Theoretical Computer Science, University of Ulm, D-89069 Ulm, Germany

ABSTRACT
Summary: We implemented a software tool called GENESIS for

three different genome rearrangement problems: Sorting a unichro-
mosomal genome by weighted reversals and transpositions (SwRT),
sorting a multichromosomal genome by reversals, translocations,
fusions, and ssio ns (SRTl), and sorting a multichromosomal genome
by weighted reversals, translocations, fusions, ssio ns, and transpo-
sitions (SwRTTl).
Availability: Source code can be obtained by the authors, or use the
web interface http://www.uni-ulm.de/in/theo/research/genesis.html.
Contact: {martin.bader, simon.gog, enno.ohlebusch}@uni-ulm.de

1 INTRODUCTION
During evolution, DNA molecules are subject to local and global
mutations. Local mutations (point mutations) consist of the sub-
stitution, insertion, or deletion of single nucleotides, while global
mutations (genome rearrangements) change the DNA molecules on
a large scale. In unichromosomal genomes, the most common rear-
rangements are inversions (also called reversals in bioinformatics),
where - from a mathematical point of view - a section of the genome
is excised, reversed in orientation, and re-inserted. Biologically,
inversions can be caused by replication errors.But also large-scale
duplications, deletions (gene loss), insertions (e.g. horizontal gene
transfer), and transpositions play a role. In a transposition, a sec-
tion of the genome is excised and inserted at a new position in the
genome; this may or may not also involve an inversion. In geno-
mes with multiple chromosomes further genome rearrangements are
translocations (in a reciprocal translocation, two non-homologous
chromosomes break and exchange fragments), fusions (where two
chromosomes fuse), and fissions (where a chromosome breaks into
two parts).

Since the 1980s, computer scientists have developed several
algorithms for reconstructing genome rearrangement scenarios that
transform one genome into another genome (or equivalently, to sort
a signed permutation into the identity permutation). These algo-
rithms can be categorized according to the genome rearrangement
operations they can deal with, and as to whether they take multi-
ple chromosomes into account. For unichromosomal genomes, the
following results are known. If only reversals are allowed, Han-
nenhalli and Pevzner’s [7] algorithm yields an exact solution to
the problem. The currently best algorithm for transpositions is a
1.375-approximation [4]. For equally weighted reversals and trans-
positions, Hartman and Sharan [8] devised a 1.5-approximation
algorithm. Bader and Ohlebusch [1] extended their algorithm to a
1.5-approximation algorithm for any weight ratio between 1:1 and

1:2 (reversals:transpositions). Another program for the weighted
case is DERANGE [3], but the authors of [3] did not provide a
guaranteed approximation ratio.

For multichromosomal genomes, less results have been obtained
so far. The most realistic solution to the problem was given by
Hannenhalli and Pevzner [6]. Their algorithm takes reversals, trans-
locations, fusions, and fissions into account and returns an exact
solution. To the best of our knowlegde, the new algorithm presented
below is the first that augments their algorithm with transpositions.

We have implemented the following three algorithms:

1.The algorithm for SwRT by Bader and Ohlebusch [1] with qua-
dratic running time. Moreover, the combination of this algorithm
with a greedy strategy resulted in a practicable method. The price
to be paid for this improvement is a cubic running time.

2.The algorithm for SRTl by Hannenhalli and Pevzner [6] with the
improvements of Tesler [11] and of Ozery-Flato and Shamir [10].
The running time is quadratic.

3.An algorithm for SwRTTl, which is a combination of the two
algorithms above. The running time of the algorithm is cubic.
Our experiments show that it produces good results for biologi-
cally reasonable weights.To guarantee an approximation ratio
of 2, we further combined the new algorithm with the strategy
presented by Yancopoulus et al. [12], albeit for a different set of
rearrangement operations.

GENESIS consists of two parts: The programs themselves and
the web interface. The web interface is a simple front-end: One can
choose the algorithm, set source and target genome, and gets the
resulting rearrangement scenario. For the sake of readability, the
web interface limits the size of permutations to80, whereas the main
programs can handle permutations of several thousands elements.

2 METHODS
All our algorithms work with thereality-desire diagram (also called
breakpoint graph) as described in [2]. Letc(π) denote the num-
ber of cycles in the reality-desire diagram,codd(π) the number of
cycles with an odd number of reality-edges (calledodd cycles), and
ceven(π) the number of cycles with an even number of reality-edges
(called even cycles). For the weighted algorithms, letwr be the
weight of reversals, translocations, fusions, and fissions, and let
wt be the weight of transpositions.We make the assumption that
wr ≤ wt ≤ 2wr.

The algorithm for SwRT is an implementation of the algorithm
devised in [1]. Thescore of a permutation is defined byσ(π) =
codd(π) + (2 − 2 · wr/wt)ceven(π). In each step, the algorithm

1© The Author (2008). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

Associate Editor: Dr. Chris Stoeckert

 Bioinformatics Advance Access published January 19, 2008

http://www.uni-ulm.de/in/theo/research/genesis.html

Gog, Bader, and Ohlebusch

Fig. 1. Rearrangement scenario between the mitochondrial genomes ofDrosophila melanogaster [5] andAnopheles quadrimaculatus [9]. The SwRT/SwRTTl-
algorithm has found a scenario consisting of one reversal and one transpositions, whereas the SRTl algorithm calculates a scenario consisting of four reversals.

searches fora small starting sequenceop1, . . . , opk with k ≤ 4 and
weightw and an increment∆σ = σ(opk(. . . (op1(π) . . .)))−σ(π)
of the score such that∆σ/w ≥ 4/(3wt), and applies this starting
sequence. This step is repeated until the permutation is sorted. As
the score is maximized for the identity permutation and the maxi-
mum possible gain in score per weight is2/wt, this yields a1.5
approximation. We combined the algorithm with a greedy strategy
that generates different starting sequences, out of which the one with
the best gain in score per weight is applied. A further improvement
of the output can be obtained if the greedy strategy is providedwith a
lookahead, which additionally considers the gain in score per weight
of following starting sequences.Our experiments showed that the
resulting method with limited lookahead is practicable.

The algorithm for SRTL is an efficient implementation of the
algorithm proposed in [6]. First, the reality-desire diagram is built.
Elements corresponding to chromosome boundaries are connected
such that the distance between the genomes remains the same. Then,
in each step the algorithm applies a reversal or translocation that
reduces the distanced(Π, Γ) = n + m − c + r + ⌈ s′+gr′

+fr′

2
⌉

by one. In the formula,n is the number of genes,m the number of
chromosomes, and the remaining parameters as well as details are
explained in [10].

The algorithm for SwRTTl is a mixture of both algorithms. First,
it creates the reality-desire diagram. Elements corresponding to
chromosome boundaries are connected such thatσ(π) is maximi-
zed. Then, the algorithm generates possible starting sequences as
in the greedy strategy of the SwRT-algorithm. However, some of
these sequences may contain forbidden transpositions because chro-
mosome boundaries are not allowed in transposed segments. These
starting sequences are ignored, and out of the remaining sequences
the one with the best increment of score per weight is applied. If all
the starting sequences are forbidden, then there must be a transloca-
tion that increases the number of cycles by one, and the algorithm
applies this translocation. Again, these steps are repeated until the
permutation is sorted.

Figure 1 exemplifies the application of our programs to two
mitochondrial genomes. A more complex example consists of the
whole genomes of man and mouse (data is available on our web-
site). In this case SRTl produces a scenario with 35 operations, while
our new algorithm SwRTTl finds a scenario with only 33 operations.

REFERENCES
[1]M. Bader and E. Ohlebusch. Sorting by weighted reversals, transpositions, and

inverted transpositions.Journal of Computational Biology, 14(5):615–636, 2007.
[2]V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals.

SIAM Journal on Computing, 25(2):272–289, 1996.
[3]M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement.

Gene, 172:GC11–17, 1996.
[4]I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by

transpositions.IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 3(4):369–379, 2006.

[5]R. Garesse. Drosophila melanogaster mitochondrial DNA: Gene organization
and evolutionary considerations.Genetics, 118(4):649–663, 1988.

[6]S. Hannenhalli and P.A. Pevzner. Transforming men into mice (polynomial
algorithm for genetic distance problem). InProc. 36th Annual IEEE Symposium
on Foundations of Computer Science, pages 581–592, 1995.

[7]S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals.Journal of the ACM,
46(1):1–27, 1999.

[8]T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by
transpositions and transreversals.Journal of Computer and System Sciences,
70(3):300–320, 2005.

[9]S. Michell, A. Cockburn, and J. Seawright. The mitochondrial genome of
Anopheles quadrimaculatus species: A complete nucleotide sequence and gene
organization.Genome, 36:1058–1073, 1993.

[10]M. Ozery-Flato and R. Shamir. Two notes on genome rearrangement.Journal of
Bioinformatics and Computational Biology, 1(1):71–94, 2003.

[11]Glenn Tesler. Efficient algorithms for multichromosomal genome
rearrangements.Journal of Computer and System Sciences, 65(3):587–609,
2002.

[12]S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic
permutations by translocation, inversion and block interchange.Bioinformatics,
21(16):3340–3346, 2005.

2

