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Abstract. Given n fragments from k > 2 genomes, we will show how
to find an optimal chain of colinear non-overlapping fragments in time
O(nlog"~2 nloglogn) and space O(nlog®~2 n). Our result solves an open
problem posed by Myers and Miller because it reduces the time complex-
ity of their algorithm by a factor lgzglzg"n and the space complexity by
a factor logn. For k = 2 genomes, our algorithm takes O(nlogn) time

and O(n) space.

1 Introduction

Given the continuing improvements in high-throughput genomic sequencing and
the ever-expanding sequence databases, new advances in software tools for post-
sequencing functional analysis are being demanded by the biological scientific
community. Whole genome comparisons have been heralded as the next logical
step toward solving genomic puzzles, such as determining coding regions, discov-
ering regulatory signals, and deducing the mechanisms and history of genome
evolution. However, before any such detailed analyses can be addressed, methods
are required for comparing such large sequences. If the organisms under consid-
eration are closely related, then global alignments are the strategy of choice.
Although there is an immediate need for “reliable and automatic software for
aligning three or more genomic sequences” [12], currently only the software tool
MGA [10] solves the problem of aligning multiple complete genomes. This is
because all previous multiple alignment algorithms were designed for comparing
single protein sequences or DNA sequences containing a single gene, and are
incapable of producing long alignments. In order to cope with the shear volume
of data, MGA uses an anchor-based method that is divided into three phases:
(1) computation of fragments (regions in the genomes that are similar—in MGA
these are multiple maximal exact matches), (2) computation of an optimal chain
of colinear non-overlapping fragments: these are the anchors that form the basis
of the alignment, (3) alignment of the regions between the anchors.

This paper is concerned with algorithms for solving the combinatorial chain-
ing problem of the second phase; see Fig.[Il. Note that every genome alignment
tool has to solve the chaining problem somehow, but the algorithms differ from

R. Baeza-Yates et al. (Eds.): CPM 2003, LNCS 2676, pp. 1-{16] 2003.
© Springer-Verlag Berlin Heidelberg 2003


Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 594.962 841.96 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Error
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile (Ø©M)
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice


2 M.I. Abouelhoda and E. Ohlebusch

t
1 4
5 L S
S, 2 3 6
4

s, 1 5

2 3 7
I I / |

(a)

(®) '

o
©“

Fig. 1. Given a set of fragments (upper left figure), an optimal chain of colinear non-
overlapping fragments (lower left figure) can be computed, e.g., by computing an op-
timal path in the graph in (b) (in which not all edges are shown).

tool to tool; see, e.g., [3l ]. Chaining algorithms are also useful in other
bioinformatics applications such as comparing restriction maps [9] or solving the
exon assembly problem which is part of eucaryotic gene prediction [6].

A well-known solution to the chaining problem consists of finding a maxi-
mum weight path in a weighted directed acyclic graph; see, e.g., [10]. However,
the running time of this chaining algorithm is quadratic in the number n of frag-
ments. This can be a serious drawback if n is large. To overcome this obstacle,
MGA currently uses a variant of an algorithm devised by Zhang et al. [20], but
without taking gap costs into account. This algorithm takes advantage of the
geometric nature of the chaining problem. It constructs an optimal chain using
orthogonal range search based on kd-trees, a data structure known from com-
putational geometry. As is typical with kd-tree methods, however, no rigorous
analysis of the running time of the algorithm is known; cf. [15].

Another chaining algorithm, devised by Myers and Miller [15], falls into the
category of sparse dynamic programming [5]. Their algorithm is based on the
line-sweep paradigm, and uses orthogonal range search supported by range trees
instead of kd-trees. It is the only chaining algorithm for & > 2 sequences that
runs in sub-quadratic time O(n log” n), “but the result is a time bound higher
by a logarithmic factor than what one would expect” [4]. In particular, for k = 2
sequences it is one log-factor slower than previous chaining algorithms [5[14],
which require only O(nlogn) time. In the epilog of their paper [I5], Myers and
Miller wrote: “We thought hard about trying to reduce this discrepancy but
have been unable to do so, and the reasons appear to be fundamental” and
“To improve upon our result appears to be a difficult open problem.” In this
paper, we solve this problem. Surprisingly, we can not only reduce the time and

space complexities by a log-factor but actually improve the time complexity by a
log2 n
loglogmn*

factor In essence, this improvement is achieved by (1) a combination of
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fractional cascading [19] with the efficient priority queues of [18/], which yields a
more efficient search than on ordinary range trees, and (2) by incorporating gap
costs into the weight of fragments, so that it is enough to determine a maximum
function value over a semi-dynamic set (instead of a dynamic set). In related
work, Baker and Giancarlo [1I] have shown how to efficiently compute a longest
common subsequence from fragments, which is a variant of our problem, but
their algorithm is restricted to two sequences.

2 Basic Concepts and Definitions

For any point p € R¥, let p.z1, p.zs, ..., p.x; denote its coordinates. If k = 2, the
coordinates of p will also be written as p.z and p.y. A hyper-rectangle (called
hyperrectangular domain in [I6]) is the Cartesian product of intervals on distinct
coordinate axes. A hyper-rectangle [l1 ... hi]x[la ... ho]x... X[k ... hg] (with[; <
h; for all 1 < ¢ < k) will also be denoted by R(p,q), where p = (I1,...,l;) and
q = (hi1,...,hg) are its two extreme corner points. In the problem we consider,
all points are given in advance (off-line). Therefore, it is possible to map the
points into N¥, called the rank space; see, e.g., [2]. Every point (x1,z2,. .., )
is mapped to point (rq,r2,...,7%), where r;, 1 < i < k, is the index (or rank)
of point p in a list which is sorted in ascending order w.r.t. dimension z;. This
transformation takes O(knlogn) time and O(n) space because one has to sort
the points & times. Thus, we can assume that the points are already transformed
to the rank space.

For 1 <14 <k, S; denotes a string of length |S;|. In our application, S; is the
DNA sequence of a genome. S;[l;...h;] is the substring of S; starting at posi-
tion I; and ending at position h;. An exact fragment (or multiple exact match)
f consists of two k-tuples beg(f)= (I1,l2,...,lx) and end(f)= (hi,ho,..., hy)
such that Sy[ly...h1] = Sa[la...ho] = ... = Sk[lg ... hi], i.e., the substrings are
identical. It is maximal, if the substrings cannot be simultaneously extended to
the left and to the right in every S;. If mismatches are allowed in the substrings,
then we speak of a gap-free fragment. If one further allows insertions and dele-
tions (so that the substrings may be of unequal length), we will use the general
term fragment. Many algorithms have been developed to efficiently compute all
kinds of fragments (e.g., [LO/IT]), and the algorithms presented here work for
arbitrary fragments.

A fragment f of k genomes can be represented by a hyper-rectangle in R”
with the two extreme corner points beg(f) and end(f), where each coordinate of
the points is non-negative. In the following, the words number of genomes and
dimension will thus be used synonymously. With every fragment f, we associate
a weight f.weight € R. This weight can, for example, be the length of the
fragment (in case of gap-free fragments) or its statistical significance.

In what follows, we will often identify the point beg(f) or end(f) with the
fragment f. For example, if we speak about the score of a point beg(f) or end(f),
we mean the score of the fragment f. For ease of presentation, we consider the
points 0 = (0,...,0) (the origin) and t = (|S1],...,|Sk|) (the terminus) as
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fragments with weight 0. For these fragments, we define beg(0) = L, end(0) = 0,
0.score =0, beg(t) = t, and end(t) = L.

Definition 1. We define the relation < on the set of fragments by f < f' if
and only if end(f).x; < beg(f').x; for all1 <i < k. If f < f', then we say that
f precedes f’. We further define 0 < f < t for every fragment f with f # 0
and f #t.

Definition 2. A chain of colinear non-overlapping fragments (or chain for
short) is a sequence of fragments f1, fa,..., fe such that f; < fiy1 for all
1 <i < L. The score of C is Score(C) = Zf;ll(fi.weight —g(fiz+1, fi)), where
9(fi+1, [i) is the cost of connecting fragment f; to fi11 in the chain. We will call
this cost gap cost.

Given a set of n fragments and a gap cost function g, the fragment-chaining
problem is to determine a chain of maximum score (called optimal chain in the
following) starting at the origin 0 and ending at terminus t. A direct solution
to this problem is to construct a weighted directed acyclic graph G = (V, E),
where the set V' of vertices consists of all fragments (including 0 and t) and the
set of edges F is characterized as follows: There is an edge f — f’ with weight
flaweight — g(f', f) if f < f’; see Fig. [[(b). An optimal chain of fragments,
starting at the origin 0 and ending at terminus t, corresponds to a path with
maximum score from vertex 0 to vertex t in the graph. Because the graph is
acyclic, such a path can be computed as follows. Let f’.score be defined as the
maximum score of all chains that start at 0 and end at f’. f’.score can be
expressed by the recurrence: 0.score = 0 and

f'.score = f'.weight + max{f.score — g(f', f): f < f'} (1)

A dynamic programming algorithm based on this recurrence takes O(|V| + |E|)
time provided that computing gap costs takes constant time. Because |V |+|E| €
O(n?), computing an optimal chain takes quadratic time and linear space. This
graph-based solution works for any number of genomes and for any kind of gap
cost. As explained in Section [l however, the time bound can be improved by
considering the geometric nature of the problem. In order to present our result
systematically, we first give a chaining algorithm that neglects gap costs. Then
we will modify this algorithm in two steps, so that it can deal with certain gap
costs.

3 The Chaining Algorithm without Gap Cost

3.1 The Chaining Algorithm

Because our algorithm is based on orthogonal range search for maximum, we
have to recall two notions. Given a set S of points in R* with associated score, a
range query (RQ) asks for all the points of S that lie in a hyper-rectangle R(p, q),
while a range mazimum query (RMQ) asks for a point of maximum score in R(p, q).
In the following, RMQ will also denote a procedure that takes two points p and ¢
as input and returns a point of maximum score in the hyper-rectangle R(p, q).
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Lemma 3. Suppose that the gap cost function g is the constant function 0. If
RMQ(0, beg(f")) returns the end point of fragment f, then f’.score = f'.weight +
f.score.

Proof. This follows immediately from recurrence ().

We will further use the line-sweep paradigm to construct an optimal chain.
Suppose that the start and end points of the fragments are sorted w.r.t. their a;
coordinate. Then, processing the points in ascending order of their z; coordinate
simulates a line (plane or hyper-plane in higher dimensions) that sweeps the
points w.r.t. their z; coordinate. If a point has already been scanned by the
sweeping line, it is said to be active; otherwise it is said to be inactive. During
the sweeping process, the x1 coordinates of the active points are smaller than the
21 coordinate of the currently scanned point s. According to Lemmal[3], if s is the
start point of fragment f’, then an optimal chain ending at f’ can be found by
a RMQ over the set of active end points of fragments. Since p.z; < s.xy for every
active end point p, the RMQ need not take the first coordinate into account. In
other words, the RMQ is confined to the range R(0, (s.z2,...,s.zx)), so that the
dimension of the problem is reduced by one. To manipulate the point set during
the sweeping process, we need a semi-dynamic data structure D that stores the
end points of fragments and efficiently supports the following two operations:
(1) activation and (2) RMQ over the set of active points. The following algorithm
is based on such a data structure D, which will be defined later.

Algorithm 4 k-dimensional chaining of n fragments

Sort all start and end points of the n fragments in ascending order w.r.t. their
x1 coordinate and store them in the array points; because we include the end
point of the origin and the start point of the terminus, there are 2n + 2 points.
Store all end points of the fragments (ignoring their x1 coordinate) as inactive
in the (k — 1)-dimensional data structure D.
for i:=1to 2n+2
if points[i] is the start point of fragment [’ then
q := RMQ(0, (points[i].z, . . ., points[i].xy))
determine the fragment f with end(f) = q
[ .prec:=f
f'.score := f'weight + f.score
else \x points[i] is end point of a fragment %\
activate (points[i].xa, ..., points[i].zx) in D

In the algorithm, f’.prec denotes a field that stores the preceding fragment
of f’ in a chain. It is an immediate consequence of Lemma [ that Algorithm
Bl finds an optimal chain. The complexity of the algorithm depends of course
on how the data structure D is implemented. In the following subsection, we
will outline an implementation of D that supports RMQ with activation in time
O(nlog® ' nloglogn) and space O(nlog? ' n), where d is the dimension and n
is the number of points. Because in our chaining problem d = k—1, finding an op-
timal chain by Algorithm @l takes O(n log"~? nloglog n) time and O(nlogk*2 n)
space.



6 M.I. Abouelhoda and E. Ohlebusch
3.2 Answering RMQ with Activation Efficiently

In the following, we assume the reader to be familiar with range trees. An
introduction to this well-known data structure can, for example, be found in
[16, pp. 83-88]. Given a set S of n d-dimensional points, its range tree can be
built in O(n log?1 n) time and space and it supports range queries RQ(p, q) in
O(logd n+z) time, where z is the number of points in the hyper-rectangle R(p, q).
The technique of fractional cascading [19] saves one log-factor in answering range
queriesEI We briefly describe this technique because we want to modify it to an-
swer RMQ(0, ¢) with activation efficiently. For ease of presentation, we consider
the case d = 2. In this case, the range tree is a binary search tree (called x-tree)
of binary search trees (called y-trees). In fractional cascading, the y-trees are
replaced with arrays (called y-arrays) as follows. Let v.L and v.R be the left
and right child nodes of a node v € z-tree and let A, denote the y-array of v.
That is, A, contains all the points in the leaf list of v sorted in ascending order
w.r.t. their y coordinate. Every element p € A, has two downstream pointers:
The left pointer Lptr and the right pointer Rptr. The left pointer Lptr points
to an element g; of A, 1, where g; is either p itself or the rightmost element
in A, that precedes p and also occurs in A, ;. In an implementation, Lptr is
the index with A, ,[Lptr] = ¢1. Analogously, the right pointer Rptr points to an
element ¢o of A, g, where g5 is either p itself or the rightmost element in A, that
precedes p and also occurs in A, g. Fig. 2] shows an example of this structure.
Locating all the points in a rectangle R(0, (h1, h2)) is done in two stages. In
the first stage, a binary search is performed over the y-array of the root node of
the z-tree to locate the rightmost point pp,, such that pp,.y € [0...he]. Then, in
the second stage, the z-tree is traversed (while keeping track of the downstream
pointers) to locate the rightmost leave pp, such that pp,.z € [0...h;]. During
the traversal of the z-tree, we identify a set of nodes which we call mazimum
splitting nodes. A maximum splitting node is either a node on the path from
the root to pp, such that the points in its leaf list are within [0...hs] or it
is a left child of a node on the path satisfying the same condition. The set
of maximum splitting nodes is the smallest set of nodes vy,...,v, € a-tree
such that trJg:lAvj = RQ(O, (hl,oo)) In other words, P := ErJ;:lAvj contains
every point p € S such that p.xz € [0...h;]. However, not every point p € P
satisfies p.y € [0... ho]. Here, the downstream pointers come into play. As already
mentioned, the downstream pointers are followed while traversing the xz-tree, and
to follow one pointer takes constant time. If we encounter a maximum splitting
node v;, then the element e;, to which the last downstream pointer points,
partitions the list A,; as follows: Every e that is strictly to the right of e; is not
in R(0, (h1, h2)), whereas all other elements of A,; lie in R(0, (h1, hz)). For this
reason, we will call the element e; the splitting element. It is easy to see that
the number of maximum splitting nodes is O(logn). Moreover, we can find all
of them and the splitting elements of their y-arrays in O(logn) time; cf. [19].

! In the same construction time and using the same space as the original range tree.
2 0 denotes disjoint union.
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Fig. 2. Fractional cascading: colored nodes are the visited ones. Hatched nodes are the
maximum splitting nodes. The small circles refer to NULL pointers. In this example,
ph, = ps and pr, = ps. The colored elements of the y-arrays of the maximum splitting
nodes are the points in the query rectangle, which is shown in Fig. Bl The numerical
value in every internal node is the x coordinate that separates the points in its left
subtree from those occurring in its right subtree.

Therefore, the range tree with fractional cascading supports 2-dimensional range
queries in O(logn + z) time. For dimension d > 2, it takes time O(log?~ ' n+ z).

In order to answer RMQ(0, q) with activation efficiently, we will further en-
hance every y-array that occurs in the fractional cascading data structure with
a priority queue as described in [18I8]. Each of these queues is (implicitly) con-
structed over the rank space of the points in the y-array (note that the y-arrays
are sorted w.r.t. the y dimension). The rank space of the points in the y-array
consists of points in the range [0...m], where m is the size of the y-array.
The priority queue supports the operations insert(r), delete(r), predecessor(r)

1 p3
P (3,29) ) 633
)
p5e®
ot (17,27) °
p8
o 19)° p6 (31,23)
(21,15 @
°
p2 p7
° (25,5)
(7, 1)

query rectangle [0 .. 22]x[0 .. 28]

Fig. 3. Query rectangle for the example of Fig.
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(gives the largest element < r), and successor(r) (gives the smallest element
> r) in time O(loglogm), where r is an integer in the range [0...m]. Algorithm
shows how to activate a point in the range tree and Algorithm [6] answers a
RMQ.

Algorithm 5 Activation of a point q in the data structure D

v := root node of the x-tree
find the rank (index) r of ¢ in A, by a binary search
while (v # 1)
if (Ay[r].score > A,[predecessor(r)].score) then
insert(r) into the priority queue attached to A,
while(A,[r].score > A, [successor(r)].score)
delete(successor(r)) from the priority queue attached to A,
if (A,[r] = A, L[Ay[r].Lptr]) then

r = A,[r].Lptr
v:=0v.L

else
r:= A,[r].Rptr
v:=0v.R

Note that in the outer while-loop of Algorithm [, the following invariant is
maintained: If 0 < i1 < iy < ... < iy < m are the entries in the priority queue
attached to A,, then A,[i1].score < A,lis].score < ... < A,lig].score.

Algorithm 6 RMR(0,q) in the data structure D

v := root node of the x-tree
mazx_score ;= —00
maz_point := L
find the rank (index) r of the rightmost point p with p.y € [0...q.y] in A,
while (v # 1)
if (v.emaz < ¢.x) then \x v is a mazimum splitting node x\
tmp = predecessor(r) in the priority queue of A,
mazx_score := max{maz_score, A, [tmp)].score}
if (max_score = tmp.score) then max_point := A, [tmp]
else if (v.zkey < q.x) then \x v.L is a mazimum splitting node x\
tmp := predecessor(A,[r].Lptr) in the priority queue of A, L
mazx_score := max{max_score, A, [tmp].score}
if (max_score = tmp.score) then max_point .= A, [tmp]

r:= A,[r].Rptr
v:=0v.R

else
r:= Ay[r].Lptr
v:=0v.L

In Algorithm Bl we assume that every node v has a field v.zmax such that
v.aemaxr = max{p.x | p € A,}. Furthermore, v.xkey is an z-coordinate (com-
puted during the construction of D) that separates the points occurring in A, 1,
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(or equivalently, in the leaf list of v.L) from those occurring in A, g (or equiv-
alently, in the leaf list of v.R). Algorithm [ gives pseudocode for answering
RMQ(0, q), but we would also like to describe the algorithm on a higher level.
In essence, Algorithm [0] locates all maximal splitting nodes vy,...,v, in D for
the hyper-rectangle R(0,q). For any v;, 1 < j < £, let the rjth element be
the splitting element in A,,. We have seen that LﬂgzlAvj contains every point
p € S such that p.z € [0...¢g.z]. Now if r; is the index of the splitting element
of A,;, then all points A, [i] with i < r; are in R(0,q), whereas all other el-
ements A, [i] with i > r; are not in R(0,q). Since Algorithm H maintains the
above-mentioned invariant, the element with highest score in the priority queue
of A,, that lies in R(0,q) is q; = predecessor(r;) (if r; is in the priority queue
of A,;, then ¢; = r; because predecessor(r;) gives the largest element < r;).
Algorithm [ then computes max_score := max{A4,,[q;].score | 1 < j < £} and
returns maz_point = A, [q;], where A,,[g;].score = max_score.

Because the number of maximum splitting nodes is O(logn) and any of the
priority queue operations takes O(loglogn) time, answering a 2-dimensional
RMQ takes O(lognloglogn) time. The total complexity of activating n points
is O(nlognloglogn) because every point occurs in at most logn priority queues
and hence there are at most nlogn delete operations.

Theorem 7. Given k > 2 genomes and n fragments, an optimal chain (without
gap costs) can be found in O(n log" 2 nloglog n) time and O(n logh—2 n) space.

Proof. In Algorithm [l the points are first sorted w.r.t. their first dimension
and the RMQ with activation is required only for d = k£ — 1 dimensions. For
d > 2 dimensions, the preceding data structure is implemented for the last two
dimensions of the range tree, which yields a data structure D that requires
O(n log?~! n) space and O(n log? ! nloglog n) time for n RMQ and n activation
operations. Consequently, one can find an optimal chain in O(n logk_2 nloglogn)
time and O(nlog" 2 n) space.

In case k = 2, the data structure D is simply a priority queue over the rank
space of all points. But the transformation to the rank space and the sorting
procedure in Algorithm [ require O(nlogn) time, and thus dominate the overall
time complexity of Algorithm @] To sum up, Algorithm [ takes O(nlogn) time
and O(n) space for k = 2.

4 Incorporating Gap Costs

In the previous section, fragments were chained without penalizing the gaps in
between them. In this section we modify the algorithm, so that it can take gap
costs into account.

4.1 Gap Costs in the L; Metric

We first handle the case in which the cost for the gap between two fragments
is the distance between the end and start point of the two fragments in the L,
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ACCXXXX__ AGG ACCXXXXAGG
ACC YYYAGG ACCYYY_AGG

Fig. 4. Alignments based on the fragments ACC and AGG w.r.t. gap cost g1 (left) and
Joo (right), where X and Y are anonymous characters.

metric. For two points p, ¢ € R¥, this distance is defined by

k
di(p.q) = ) |p-wi — q.i]
i=1

and for two fragments f < f’ we define g1 (f’, f) = di(beg(f’),end(f)). If an
alignment of two sequences S; and Sy shall be based on fragments and one uses
this gap cost, then the characters between the two fragments are deleted /inserted;
see left side of Fig. [

The problem with gap costs in our approach is that a RMQ does not take
the cost g(f’, f) from recurrence (@) into account, and if we would explicitly
compute g(f’, f) for every pair of fragments with f < f/, then this would yield a
quadratic time algorithm. Thus, it is necessary to express the gap costs implicitly
in terms of weight information attached to the points. We achieve this by using
the geometric cost of a fragment f, which we define in terms of the terminus

point t as ge(f) = di(t, end(f)).

Lemma 8. Let f, 1, and_f' be fragments such that f < f' and f < f'. Then
we have f.score — gi(f', f) > f.score — gi(f', f) if and only if the inequality
f.score — ge(f) > f.score — ge(f) holds.

Proof.

f.score — gi(f', f) > f.score — g1 (f', f)
& f.score — Zle (beg(f').x; — end(f).xz;) > f.score
~ N — Sy (beg( ).z — end(f).a;)
& f.score — Zle (tz; —end(f).x;) > f.score — Zle (t.x;—end(f).x;)
& f.score — ge(f) > f.score — ge(f)

The second equivalence follows from adding Zle beg(f’).x; to and subtracting
Zle t.z; from both sides of the inequality. Fig. Blillustrates the lemma for k = 2.

Because t is fixed, the value ge(f) is known in advance for every fragment
f. Therefore, Algorithm Bl needs only two slight modifications to take gap costs

into account. In order to apply Lemma Bl we set 0.score = —g;(t, 0). Moreover,
in Algorithm [ we replace the statement f’.score := f’.weight + f.score with

f'.score .= flaweight — ge(f') + f.score + ge(f) — a1 (f', f)

We subtract ge(f’) in view of Lemma 8. Furthermore, we have to add ge(f) to
compensate for the subtraction of this value when the score of fragment f was
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sweep—line

Fig. 5. Points p and ¢ are active end points of the fragments f and f . The start point
s of fragment f’ is currently scanned by the sweeping line and t is the terminus point.

computed. This modified algorithm maintains the following invariant: If the end
point of a fragment f is active, then f.score stores the maximum score of all
chains (with g1 gap costs taken into account) that start at 0 and end at f minus
the geometric cost of f.

4.2 The Sum-of-Pair Gap Cost

For clarity of presentation, we first treat the case k = 2 because the general case
k > 2 is rather involved.

The case k = 2: For two points p,q € R?, we write A,,(p,q) = |p-z; — q.24,
where ¢ € {1,2}. We will sometimes simply write A,, and A,, if their arguments
can be inferred from the context. The sum-of-pair distance of two points p, ¢ € R?
depends on the parameters € and A and was defined by Myers and Miller [15] as

follows:
€Ap, + MAy, — Ay,) if Ay, > A,

d(pv q) = {GAml + A(sz — Awl) if Amz > Aa:l

However, we rearrange these terms and derive the following equivalent definition:

d( ) _ >\Azl + (E — )\)Am2 lf A11 Z Az2
PO = (e = N Ay, + NA,, if Ay, > Ay,

For two fragments f and f’ with f < f/, we define g(f’, f) = d(beg(f"), end(f)).
Intuitively, A > 0 is the cost of aligning an anonymous character with a gap
position in the other sequence, while € > 0 is the cost of aligning two anonymous
characters. For A = 1 and € = 2, this gap cost coincides with the ¢g; gap cost,
whereas for A = 1 and € = 1, this gap cost corresponds to the L., metric. (The
gap cost of connecting two fragments f < f’ in the L., metric is defined by

9o (f's f) = doo(beg(f'),end(f)), where do(p,q) = max;c(r k) [p-2; — g.xi| for
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p,q € R*.) Following [15]20], we demand that A > 1€ because otherwise it would
always be best to connect fragments entirely by gaps as in the L; metric. So
if an alignment of two sequences S; and Sy shall be based on fragments and
one uses the sum-of-pair gap cost with A > %e, then the characters between the
two fragments are replaced as long as possible and the remaining characters are
deleted or inserted; see right side of Fig.

In order to compute the score of a fragment f’ with beg(f’) = s, the following
definitions are useful. The first quadrant of a point s € R? consists of all points
p € R? with p.z; < s.z; and p.zy < s.29. We divide the first quadrant of s
into regions O and Oz by the straight line 9 = 1 + (s.x2 — s.z1). O1, called
the first octant of s, consists of all points p in the first quadrant of s satisfying
Ay > A, (e, s.xqp — p.xy > 8.29 — p.22), these are the points lying below or
on the straight line 9 = x1 + (s.22 — s.21); see Fig. [l The second octant O
consists of all points ¢ satisfying A,, > A,, (i.e., s.xa — q.x2 > s.21 — q.21),
these are the points lying above or on the straight line xo = 1 + (s.x2 — s.21).
Then f’.score = f'.weight + max{vy, v}, where v; = max{ f.score — g(f’, f) :
f < f" and end(f) lies in octant O;}, for i € {1,2}.

However, our chaining algorithms rely on RMQ, and these work only for or-
thogonal regions, not for octants. For this reason, we will make use of the
octant-to-quadrant transformations of Guibas and Stolfi [7]. The transformation
T : (x1,22) — (21 — 22, 22) maps the first octant to a quadrant. More precisely,
point p is in the first octant of point s if and only if T3 (p) is in the first quadrant
of Tl(s)E Similarly, for the transformation T5 : (z1,22) — (21,22 — 21), point
q is in the second octant of point s if and only if T5(qg) is in the first quadrant
of Ty (s). By means of these transformations, we can apply the same techniques
as in the previous sections. We just have to define the geometric cost properly.
The following lemma shows how one has to choose the geometric cost gc; for
points in the first octant O;. An analogous lemma holds for points in the second
octant.

Lemma 9. Let f, f, and f' be fragments such that f < f" and f< froIf

end(f) and end(f) lie in the first octant of beg(f'), then f.score —g(f', f) >
f.scoAre —g(f", f) if and only if f.score — gei(f) > f.score — gclA(f), where

ge1(f) = Mg, (t,end(f)) + (e = M)Ay, (t,end(f)) for any fragment f.
Proof. Similar to the proof of Lemma

In Section F], we dealt with the geometric cost ge by modifying the field
f.score. This is not possible here because we have to take two different geometric
costs gc; and geo into account. To cope with this problem, we need two data
structures Dy and D5, where D; stores the set of points

{T;(end(f).xa,...,end(f).zx) | f is a fragment}

3 Observe that the transformation may yield points with negative coordinates, but it
is easy to overcome this obstacle by an additional transformation (a translation).
Hence we will skip this minor problem.
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If we encounter the end point of fragment f’ in Algorithm M then we activate
point T4 (end(f").xz2,...,end(f").xx) in Dy with priority f’.score — gci(f’) and
point Th(end(f’).xa,...,end(f").xz) in Dy with priority f’.score — gea(f'). It
we encounter the start point of fragment f’, then we launch two RMQ, namely
RMQ(O, 71 (beg(f').xa, ..., beg(f').xx)) in the data structure Dy and analogously
RMQ(0, T (beg(f').xa, ..., beg(f').xx)) in Dy. If the first RMQ returns T3 (end(f1))
and the second returns Th(end(f2)), then f; is a fragment of highest priority
in D; such that T;(end(f;).xa, ... ,end(f;).xr) < Ti(beg(f').za,...,beg(f).zk),
where 1 < i < 2. Because a point p is in the octant O; of point beg(f’) if and only
if T;(p) is in the first quadrant of T;(beg(f’)), it follows that f; is a fragment such
that its priority f;.score — gc;(f;) is maximal in octant O;. Therefore, according
to Lemma[@, the value v; = f;.score — g(f’, f;) is maximal in octant O;. Hence,
if v1 > vy, then we set f'.prec = f1 and f’.score := f'.weight + v1. Otherwise,
we set f/.prec = fo and f’.score := f'.weight + vs.
The case k > 2: In this case, the sum-of-pair gap cost is defined for fragments
f< [ by

gsop(flaf) = Z g(fz/,j7fl,j)

0<i<j<k

where f]; and f; ; are the two-dimensional fragments consisting of the ith and
jth component of f’ and f, respectively. For example, in case of k = 3, let s =
beg(f') and p = end(f) and assume that Ay, (s,p) > Ag,(s,p) > Azy(s,p). In
this case, we have gsop(f', f) = 2AAz, +€Ay, +(e—A)24,, because g(f1 o, f1,2) =
)\Am + (6 - )‘)Aww g(f{,S’ f173) = )‘Aan + (6 - )‘)Aa:37 and g(fé,?)? f2,3) = /\Aasz +
(e — \)Ag,. By contrast, if A, > A, > A,,, then the equality gsop(f', f) =
2AA,, + (e = N)2A4,, + €A, holds.

In general, each of the k! permutations 7 of 1,...,k yields a hyper-region
R, defined by Azm) > Amﬂ(2> > ... > Azﬂ(k) in which a specific formula for
9sop(f’, ) holds. That is, in order to obtain the score of a fragment f’, we must
compute f’.score = f'.weight+max{v, | 7 is a permutation of 1,...,k}, where

vr = max{ f.score — gsop(f', ) : f < f’ and end(f) lies in hyper-region R}

Because our RMQ-based approach requires orthogonal regions, each of these hyper-
regions R, of s must be transformed into the first hyper-corner of some point §.
The first hyper-corner of a point § € R* is the k-dimensional analogue to the first
quadrant of a point in R2. It consists of all points p € R* with p.x; < 3.z, for all
1 <i <k (note that there are 2F hyper-corners). We describe the generalization
of the octant-to-quadrant transformations for the case k = 3. The extension to
the case k > 3 is obvious. There are 3! hyper-regions, hence 6 transformations:

Ay, > Ayy > Ayy T (21,22, 23) = (X1 — Ta, T2 — T3, 23)
Ay 2 Agy 2 Ay, o T
Ay, > Ay, > Ay i T3
Ay, > Apy > Ay Ty
Ts
Ts

a( ) = (21 — 73, T2, T3 — T2)
(1 3) = (1 — o3, 72 — T1,73)
(x y L2, T 3) = ($1,$2*$3, 3*581)
( ) (331 — T2, T2, T 3—5131)
( )= ( )

T1,T2 —X1,T3 — T2

Apy > Ay, > Ay,
wQZAa:l:

b L
I\/I
l>

3
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In what follows, we will focus on the particular case where 7 is the identity
permutation. The hyper-region corresponding to the identity permutation will
be denoted by R; and its transformation by 77. The other permutations are
numbered in an arbitrary order and are handled similarly.

Lemma 10. Point p € R¥ is in hyper-region Ry of point s if and only if T1(p)
is in the first hyper-corner of T1(s), where Ty(x1,za, ..., x) = (1 — X2, T2 — T3,
ey L1 — xk,xk).

Proof. Ti(p) is in the first hyper-corner of T} (s)

& Ty (s).x; > T1(p).a; foralll1 <i <k
S 5. — S.Tiy1 > P&y — pxipy and s.xp > pay  forall 1 <i<k
& (s.xp —px1) > (s.x2 —paa) > ... > (s.xp — pxy)

& A (s,p) > Agy(s,p) > .. = Ay, (s,p)
The last statement holds if and only if p is in hyper-region R; of s.

For each hyper-region R;, we compute the corresponding geometric cost
gc;(f) of every fragment f. Note that for every index j a k-dimensional ana-
logue to Lemma [] holds. Furthermore, for each transformation 7}, we keep
a data structure D; that stores the transformed end points Tj(end(f)) of all
fragments f. Algorithm [T generalizes the 2-dimensional chaining algorithm de-
scribed above to k dimensions.

Algorithm 11 k-dim. chaining of n fragments w.r.t. the sum-of-pair gap cost

Sort all start and end points of the n fragments in ascending order w.r.t. their
x1 coordinate and store them in the array points; because we include the end
point of the origin and the start point of the terminus, there are 2n + 2 points.
for j:=1 to k!
apply transformation T} to the end points of the fragments and store the
resulting points (ignoring their x1 coordinate) as inactive in the (k — 1)-
dimensional data structure D;
for i:=1to2n+2
if points[i] is the start point of fragment f’ then
maxRMQ := —oc0
for j:=1 to k!
q := RMQ(0, T;(points[i].z2, . . ., points[i].zy)) in D;
determine the fragment f, with T;(end(fy)) = ¢
maxRMQ = max{mazRMQ, fq.score — gsop(f', fq)}
if f,.score — gsop(f', fy) = mazRMQ then f := f,
florec:=f
f.score := fweight + max RMQ
else \x points[i] is end point of a fragment [’ x\
for j:=1 to k!
activate Tj(points[i].xa, . .., points[i].zy)) in D; with
priority f'.score — gc;(f')
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For every start point beg(f’) of a fragment f’, Algorithm [[1] searches for a
fragment f in the first hyper-corner of beg(f’) such that f.score — gsop(f’, f)
is maximal. This entails k! RMQ because the first hyper-corner is divided into
k! hyper-regions. Analogously, for every end point end(f’) of a fragment f,
Algorithm [[1] performs k! activation operations. Therefore, the total time com-
plexity of Algorithm [T1]is O(k! nlog" % nloglog n) and its space requirement is
O(k! nlog®~2n). This result improves the running time of Myers and Miller’s

log? n

algorithm [15] by a factor Tog log 1

and the space requirement by one log-factor.

5 Conclusions

In this paper, we have presented a line-sweep algorithm that solves the fragment
chaining problem of multiple genomes. For k > 2 genomes, our algorithm takes

- O(n log" % nloglog n) time and O(n log"

— O(nlogk*2 nloglogn) time and O(nlogk
metric,

— O(k! nlog" % nloglogn) time and O(k! nlog® 2 n) space for the sum-of-pair
gap cost.

n) space without gap costs,

-2
-2 n) space for gap costs in the L,

For k = 2, it takes O(n logn) time and O(n) space for any of the above-mentioned
gap costs.
This solves the open problem of reducing the time complexity of Myers and

Miller’s [15] chaining algorithm. Specifically, our algorithm reduces the time

complexity of their algorithm by a factor O(logﬁzgn) and the space complexity

by a log factor. Myers and Miller did not provide an implementation of their
chaining algorithm, but we are currently implementing ours. To find the chaining
algorithm that performs best in practice, we are planning to conduct experiments
that compare the running times of various chaining algorithms, including the
algorithms that are based on kd-trees.

It is worth-mentioning that the longest common subsequence (LCS) from
fragments problem can also be solved within our framework. This generalizes
the algorithm of [I] to more than two sequences.
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