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Abstract. In the median problem, we are given a distance or dissim-
ilarity measure d, three genomes G1,G2, and G3, and we want to find
a genome G (a median) such that the sum Y7 d(G,G;) is minimized.
The median problem is a special case of the multiple genome rearrange-
ment problem, where one wants to find a phylogenetic tree describing
the most “plausible” rearrangement scenario for multiple species. The
median problem is NP-hard for both the breakpoint and the reversal
distance [5, 14]. To the best of our knowledge, there is no approach yet
that takes biological constraints on genome rearrangements into account.
In this paper, we make use of the fact that in circular bacterial genomes
the predominant mechanism of rearrangement are inversions that are
centered around the origin or the terminus of replication [8, 10, 18]. This
constraint simplifies the median problem significantly. More precisely, we
show that the median problem for the reversal distance can be solved in
linear time for circular bacterial genomes.

1 Introduction

During evolution, the genomic DNA sequences of organisms are subject to
genome rearrangements such as transpositions (where a section of the genome
is excised and inserted at a new position in the genome, without changing ori-
entation) and inversions (where a section of the genome is excised, reversed in
orientation, and re-inserted). In unichromosomal genomes, the most common re-
arrangements are inversions, which are usually called reversals in bioinformatics.
In the following, we will focus on unichromosomal genomes and use the terms
“inversion” and “reversal” synonymously. The study of genome rearrangements
started more than 65 years ago [7], but interest on the subject has flourished in
the last decade because of the progress in large-scale sequencing. In the context
of genome rearrangement, a genome G is typically viewed as a signed permuta-
tion, where each integer corresponds to a unique gene and the sign corresponds
to its orientation. A 4+ (—) sign means that the gene lies on the leading (lagging)
DNA strand.

Consider two genomes G1 = (71, ...,7,) and G3 = (71,...,7,) on the same
set of genes {1,...,n}. Two adjacent genes m; and m;; in Gy determine a
breakpoint in G1 w.r.t. Go if and only if neither 7; precedes m;41 in G2 nor
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A | |
% ———— - —-——
+1 -2 +3 +4 -5 +6 I -7 —8

B | |
—)—<—|—<—)— ——— —————
+1 -2 —6 45 —4 -3 1 -7 -8

Fig. 1. Genome (+1, —2, 43, +4, —5,+6, —7, —8) before and after the inversion p(3,6).

—mi+1 precedes —m; in Go. The breakpoint distance bd(G1,G2) between G and
Go is defined as the number of breakpoints in Gy w.r.t. Go [13, 19]. This is
clearly equal to the number of breakpoints in G2 w.r.t. G;1. In other words, the
breakpoint distance between G; and G5 is the smallest number of places where
one genome must be broken so that the pieces can be rearranged to form the
other genome.

Given a genome G = (M1, ..., M1, M-+, Tj, Tjt1,-- -5 Tn), & reversal p(i, j)
applied to G reverses the segment 7;,...,m; and produces the permutation
Gp(i,j) = (W1, oy Tim1, Mgy —Tj—1y e e vy —Tig1, —Tiy Tj, Tjt1,- - -, Tn) (see Fig-

ure 1 for an illustration). Given two genomes G; and G, the reversal distance
rd(G1, G2) between them is defined as the minimum number of reversals required
to convert one genome into the other. (The phrase sorting by reversals refers to
the equivalent problem of finding the minimum number of reversals required to
convert a permutation 7 into the identity permutation.) The study of the rever-
sal distance was pioneered by Sankoff [15] and has received increasing attention
in recent years. There are dozens of papers on the subject; see e.g. [1, 2, 9, 11]
and the references therein.

As already mentioned, the median problem is NP-hard for both the break-
point and the reversal distance [5, 14]. That is the reason why researchers de-
veloped heuristics to solve the median and the multiple genome rearrangement
problem. For the breakpoint-based multiple genome rearrangement problems
very good heuristics exist [3, 16]. These rely on the ability to solve the breakpoint
median problem by reducing it to the Traveling Salesman Problem. Solutions to
the reversal median problem can be found in [4, 6, 12, 17]. There is a dispute
about the “right” distance in multiple genome rearrangement problems. While
[3, 16] argue that the breakpoint distance is the better choice, [12] conjecture that
the usage of the reversal distance yields better phylogenetic reconstructions. Fur-
thermore, [4] discusses some advantages of the reversal distance approach over
the breakpoint distance approach.

2 Inversions Around the Origin of Replication

In this paper, we study the median problem (unless stated otherwise, the term
median problem refers to the reversal median problem) for circular bacterial
genomes. As mentioned earlier, it has been observed [8, 10, 18] that inversions
within circular bacterial genomes are centered around the origin or the terminus
of replication. That is, the genes keep their distance to the origin O and the
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Fig. 2. Left: A cartoon representation of a circular bacterial genome. Of course, bacteria
have hundreds, or even thousands, of genes. Moreover, a bacterial genome does not have
long stretches of DNA without genes. Right: The same genome after the inversion 5(4).

terminus 7' of replication under a reversal, but they are translocated to the
opposite DNA strand and thus change their orientation.

As usual in the comparison of genomes on the gene level, we assume that
the genomes have the same set {1,...,n} of unique genes and that inversions
do not cut genes. As a consequence, genes may neither overlap on the same
DNA strand nor on different DNA strands. In our model, in which inversions
around the origin/terminus of replication are the predominant mechanism of
rearrangement, it is further assumed that in each genome, these n genes occur
in the same order w.r.t. the distance to the origin of replication.

Because the genes keep their distance to O, we enumerate them in increas-
ing distance to the origin. That is, starting with the origin of replication, we
simultaneously traverse both DNA strands of the circular genome in clockwise
and counterclockwise order. This process ends when the terminus of replication
is reached and it divides the circular genome into two halves. The clockwise
traversal yields the right half and the counterclockwise traversal yields the left
half. A gene encountered gets the next number (the first gene gets number 1).
If this gene is lying on the leading strand, it is labeled with a + sign, otherwise
it gets a — sign. If it was encountered in the clockwise (resp. counterclockwise)
direction, its labeled number is put to the right (resp. left) of the origin O and a
0 to the left (resp. right) of O, which for better readability will be denoted by the
symbol |. For example, if the first gene is encountered in the counterclockwise
direction and is lying on the leading strand, then this yields (+1 | 0).

(+10,0,0,0,46,—5,0,0,+2,0 | +1,0,—3,—4,0,0,—7,—8,49,0) is a more
complex example, which is shown in Figure 2.

In what follows, p(7) denotes an inversion centered around the origin of repli-
cation that acts on the ¢th nearest genes of O. Furthermore, we will use postfix
notation to denote the application of a reversal to a genome. For example,
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(+10,0,0,0,46,—5,0,0,+2,0 | +1,0,—3,—4,0,0, =7, —8,+9,0) p(4)
= (+10,0,0,0, 46, —5,+4,+3,0,—1]0,-2,0,0,0,0, -7, —8, 49, 0)

Similarly, p(i) denotes an inversion centered around the terminus of replication

that acts on the ith nearest genes of 7. As an example consider

(+1Oa 07 Oa 07 +67 _57 Oa 07 +2a 0 | +1a 07 _37 _47 Oa 07 _77 _87 +9’ O) ﬁ(?)
= (0,-9,0,0,+6,—5,0,0,42,0| +1,0,—3, —4,0,0, —7, —8,0, —10)

Next, we will simplify the above representation without loosing any informa-
tion. (+10,0,0,0,+6,—5,0,0,+2,0| +1,0,—3,—4,0,0, -7, —8,+9,0), for exam-
ple, will be represented by the bit vector (1,0,1,1,0,0,1,1,1,0) and the orien-
tation vector (+,—,—,—,+,—,—,—,+,—). In the bit vector, a 1 (resp. 0) at
position p means that the gene with number p is located in the right (resp. left)
half of the circular bacterial genome. Furthermore, a + (resp. —) sign in the
orientation vector at position p means that the gene lies on the leading (resp.
legging) strand if it is in the right half (i.e., if there is a 1 at position p in the
bit vector). Otherwise, if the gene is in the left half (i.e., there is a 0 at position
p in the bit vector), a + (resp. —) sign at position p means that the gene lies on
the legging (resp. leading) strand. With this definition, the orientation vector is
invariant (i.e., it does not change) under inversions around O and T'. In the fol-
lowing, the orientation vector will hence not be mentioned explicitly. Therefore,
the preceding inversions are modeled by

(1,0,1,1,0,0,1,1,1,0) p(4) = (0,1,0,0,0,0,1,1,1,0)
(1,0,1,1,0,0,1,1,1,0) p(2) = (1,0,1,1,0,0,1,1,0,1)
Lemma 1. The composition of inversions is commutative and associative.

Proof. Let p1, p2, and p3 be inversions. We have py - p2 = p2-p1 (commutativity)
and (p1 - p2) - p3 = p1- (p2 - p3) (associativity) because every gene is inverted the
same amount of times on either side of the respective equation.

An important consequence of the preceding lemma is that reordering any
sequence of inversions does not change the result.
Note that every reversal p has an inverse, viz. p itself because p - p = id.

Lemma 2. Let p1, pa, ..., pr be reversals. Then Gpy - pa -+ pr = G’ if and only
Z'fG/pl.p2...pk :G.

Proof. For k = 1, this follows from Gp; = G’ < Gp1 - p1 = G'p1 & G = G'py.
Now the claim follows by induction on & in conjunction with Lemma 1.

The inverse inv(G) of a genome G is defined by inv(G) := Gp(n), where
p(n) := p(n) = p(n). Given reversal p, a reversal o satisfying p(n) - p = o is
called the complementary reversal of p.

Lemma 3. Every reversal p has a (unique) complementary reversal o.

Proof. 1f p = p(i), then o = p(n — i) because p(n) - p(i) = p(n — i). Otherwise,
if p = p(i), then o = p(n — i) because p(n) - p(i) = p(n — ).
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1:1110:110:1
1:0001:110:0

Fig. 3. Breakpoints between two genomes, here depicted by colons.

3 The Reversal Distance

Let (b1,bo2,bs,...,b,) be the bit vector representation of a circular bacterial
genome G. In the rest of the paper, we will just speak of genome G, that is,
we omit the phrase “circular bacterial”. Furthermore, we will use the following
notations for 1 <14 < j <n: G[i] = b; and G[i..j] = (b, ..., b;).

Given two genomes G and G’, we fix one of the genomes, say G’, and try to
transform G into G’ by as few inversions as possible.

Definition 4. Let G = (by,ba,bs,...,b,) and G' = (b}, b, by, ..., b.) be two

circular genomes.

1. An interval [i..j] of indices (where 1 < i < j <n)is called a strip if by, = b},
foralli <k <j, b1 #b_; ifi#1, and bj11 # b} if j #n.

2. If [i..j] is a strip, then (i — 1,i) (if i # 1) and (j,5 + 1) (if 5 # n) are
breakpoints between G and G'.

Figure 3 shows two genomes G and G’ with three breakpoints. Note that if
G = inv(G'), then there is no strip, hence no breakpoint between them. Thus,
if there is no breakpoint between G and G’, then either G = G’ or G = inv(G’).

Lemma 5. Let G, G' and p(i) with 1 <i <n —1 be given.

1. For all (j, 7+ 1) with either 1 < j < i ori < j <mn we have: (j,j+1) is a
breakpoint between G and G’ if and only if (j,j+ 1) is a breakpoint between
Gp(i) and G'.

2. (i,i+ 1) is a breakpoint between G and G’ if and only if (i,i+ 1) is not a
breakpoint between Gp(i) and G'.

Proof. (1) If i < j < n, then there is nothing to show because p(7) has no effect
on the genes 7 and j + 1. Suppose 1 < j < 4. The following equivalences hold:

(4,7 + 1) is a breakpoint between G and G’
& either (b; = b} and bjy1 # b}, ) or (bj # b and by = b, ;)
& either (inv(b;) # b and inv(bji1) = b, )

or (inv(b;) = b} and inv(bji1) # b, q)
< (j,j + 1) is a breakpoint between Gp(i) and G’

(2) This case follows by a similar reasoning as in (1).

Of course, a similar statement holds when 5(i) is replaced with p(7). This is
also true for the following corollary, which follows from the preceding lemma.
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Corollary 6. Let G, G' and p(i) with 1 <i <n—1 be given.

1. If (i,i+1) is a breakpoint between G and G', then the number of breakpoints
between Gp(i) and G’ is one less than the number of breakpoints between G
and G'.

2. If (i,i+4 1) is not a breakpoint between G and G', then the number of break-
points between Gp(i) and G’ is one more than the number of breakpoints
between G and G'.

First, we consider the case in which only inversions around the origin of
replication are allowed. The following simple procedure rd-O(G, G') returns the
reversal distance between two genomes G and G’, using inversions around O
only. (The procedure rd_T(G,G’) that returns the reversal distance between G
and G’ using inversions around T only is defined similarly.)

procedure rd_O(G,G’)
determine the breakpoints (i1,41 + 1),..., (ik, %k + 1) between G and G’
if Gp(i1)---p(ix) = G’ then return k else return k + 1

The correctness of procedure rd_O(G, G') is a direct consequence of Corollary
6. Each reversal p(i1),...,p(ix) removes one breakpoint, so that there is no
breakpoint between Gp(iy) - - - (i) and G'. Hence, we have Gp(iy) - - - p(i) = G’
or Gp(iy)---p(ix) = inv(G’). In the latter case, k must be incremented by 1
because p(n) has to be applied to make the genomes equal. Tt is easy to see that
in both cases the algorithm returns the minimum number of inversions needed
to transform G into G'.

Since the breakpoints (i1,41 + 1),..., (ix, 9% + 1) between G and G’ can be
determined in O(n) time and also the test as to whether two genomes are equal
requires O(n) time, the worst case running time of the procedure is O(n).

Next, we consider the general case in which both inversions around the origin
and the terminus of replication are allowed.

procedure rd(G,G")

if G and G’ do not have a breakpoint then
if G = G’ then return 0 else return 1

else
choose a strip [i..]]
ky == rd-O(G[L..i — 1],G’'[1..i — 1])
ky :=rd T(G|j+ 1..n],G'[j + 1..n])
return (k; + k)

Procedure rd(G,G’) returns the minimum number of inversions needed to
transform G into G’ because each inversion removes one breakpoint. The trans-
formed genome must be equal to G’ (i.e., it cannot be inv(G’)) because the
chosen strip is not changed by the inversions. Furthermore, procedure rd(G, G")
runs in linear time because the procedures rd_O and rd_ T do so.
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4 The Median Problem for the Reversal Distance

Recall that in the median problem we want to find a genome G (a median)
such that 2?21 rd(G, G;) is minimized. In the following, let d,,(G1, G2, G3) =
min{zg':l rd(G,G;) | G is a genome}. Furthermore, for b, % b3 € {0,1} let

. Lif 3% 67 > 2
majority(bt,b%,b%) = J=17 =

jority( ) 0 otherwise

Again, we first consider the case in which only inversions around the origin of
replication are allowed. In this case, the following procedure median_O returns
a median, as shown in Theorem 7. (The procedure median_ T that returns a
median using inversions around 7" only is defined analogously.)

procedure median_O(Gy, Gy, G3) | where G; = (b], b}, b}, ...,b3) * /
d:=0
for i :=n downto 1 do
b := majority(b},b?,b3)
if there is a j, 1 < 5 < 3, such that bg # b then
G, = Gipli)
d:=d+1
return (G1,d)

If we would really apply the reversals to the genomes (in line 5 of the proce-
dure), then median_O(G1, G2, G3) would take quadratic time. However, a linear
time implementation is possible by simply counting the number of times a gene
i was inverted in genome G;. If it was flipped an even number of times giving
G, then G'[1..i] = G;[1..4]. Otherwise, if it was flipped an odd number of times,
then G’[1..5] = inv(G;[1..1]).

Theorem 7. If procedure median_O(G1, G2, G3) returns the pair (G,d), then
G is a median of the three genomes G; = (b],b3,b%,...,b)), 1 < j < 3, using

inwversions around O only, and d is the number of required reversals.

Proof. We proceed by induction on the length n of the genomes. The case
n = 1 is trivial. According to the inductive hypothesis, procedure median_O
returns a median of three genomes of size n — 1. For 1 < j < 3, let G;- =

(02,63, b%, ..., b)), Tf b = b2 = b3, then an application of the inductive hy-

1 ¥n—1
pothesis to G, G5, and G% proves the theorem. Otherwise, there is a bit, say

b3, such that bl = b2 # b3. Hence procedure median_O first applies p(zz) to
G3, i.e., it inverts G, and then computes a median G’ = (b],b3,05,...,0)_,)

of G, G5, and inv(GY). Let d' = rd(G',G}) + rd(G', GS) + rd(G’, inv(G%)) and
G = (b],63,b5,...,b)_,,bL). Clearly, 30| 7d(G,G;) = d' + 1.

In order to prove that G is a median of G1,G4, and G3, it suffices to show
that the bit representation of nth gene of a median cannot be b?. For an indirect

proof, suppose the contrary. Then, in an optimal sequence of inversions that
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transforms G (G2) into a median, there must be one that inverts the whole
genome. According to Lemma 1, we may assume that this inversion is the first
in the sequence. Procedure median_O applied to inv(G), inv(G5), and GY gives
a median G’ = (b), b5, b}, ...,b% ) of these. It is not difficult to see that

rd(G’inv(GY)) + rd(G'inv(GY)) + rd(G', GY) = d’

because the two problems under consideration are equivalent (inverting all genes
in one problem yields the other problem). G = (b],b3,b%,...,b) |, b3) cannot
be a median of Gy, Gz, and G because 37 rd(G.G;) = d' +2 > d +1 =
Z?Zl rd(G, G;). This contradiction shows that the bit representation of the nth

gene of a median cannot be b3.

Next, we consider the median problem in which both inversions around the origin
and the terminus of replication are allowed. We distinguish between two cases:
(a) G1, G2, and G5 have a common bit and (b) Gy, G2, and G3 do not have a
common bit.

Definition 8. We say that i is a common bit of the genomes G1,G2, and G3
if G1i] = Ga[i] = Gli].

Lemma 9. Suppose G'p1-pa---pr = G and G'[i| = G[i], that is, i is a common
bit of G and G'. Then there are inversions p-ph - - - p}, such that G'pl-ph -+ - p). =
G and each p;- does not invert the ith gene.

Proof. If there is an inversion that inverts the ith gene, then there must be
an inversion that inverts it back. If both are inversions around O (a similar
statement holds if both act around T'), say p(p) and p(q), then they can be
replaced by the inversions p(n — p) and p(n — ¢) around T'. These do not invert
the ith gene; see Figure 4. B

If one is an inversion around O, say p(q), and the other is an inversion
around T, say p(p), then they can be replaced with the inversions p(n — p) and
p(n — q). These do not invert the ith gene; see Figure 4. Now the lemma follows
by induction on the number of inversions in p; - ps - - - pi, that invert the ith gene.

If Gy, G2, and G5 have a common bit, the following procedure computes a
median; see Theorem 10.

procedure median_cb(G1, G2, G3)
determine a common bit ¢ of G1, G2, and Gj
(G1,dy) :=median_O(G1[1..i — 1], G2[1..i — 1], G3[1..i — 1])
(Gy,dy) :=median T (G1[i + 1..n], Ga[i + 1..n], G3[i + 1..n])
return (G;G1[4|G., d; + d;)

Procedure median_cb(G1, G2, G3) runs in linear time because the procedures
median_O and median_T do so.
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Fig. 4. Left: Two inversions around the origin of replication inverting the same gene
i can be replaced by two inversions around the terminus, both not changing gene 1.
Right: Two inversions (one around the origin and the other around the terminus) that
both invert the same gene ¢ can be replaced by two different inversions (again one
around the origin and the other around the terminus) that both do not invert gene 1.

Theorem 10. If G1, G2, and G5 have a common bit, then median_cb(G1,Ga,
G3) returns a pair (G,d) such that G is a median of the three genomes and
= dm(G1, G2, G3).

Proof. We claim that if there is a median G’ of G1,G2, and G3, such that
G'[i] # G1[i] = Ga[i] = G3]i], then there is another median G such that G[i] =
G1li] = Geli] = G3]i].

Let G’ be such a median of G, G2, and G3. Then, for 1 < j < 3, there are
inversions such that G;p] - p} - - p@j = G and {1 + l5 + {5 is minimal. Because
G/[l] ;é Gl[l} = GQ[Z] = Gg[l], in each Gjpjl . p% N pzj = G/7 1 S j S 3, the ith
gene must have been inverted. By Lemma 1, we may assume that pa inverts
the ith gene. Moreover, according to Lemma 9, we may assume that none of the
other inversions inverts the ith gene

(a) Suppose that lea p£27 and pg all act around O, say pg = p(l;) (for T,
the reasoning is verbatim the same). Then inverting the Complementary regions
yields a median G with G[i] = G1[i] = G2[i] = G3li]; see Figure 5. To be precise,
G= G]p1 05 pl 1 p(n —1;) for everyj with 1 <5 < 3.

(b) Suppose that Pe , Pe , and Pe do not act around the same spot, say
pZl =p(l1) and Pz2 = p(lg) act around O but pg = p(r3) acts around T'. Again,
inverting the complementary regions yields a median G with G[i| = Gi[i] =
G2[i] = G3li]; see Figure 5. More premsely, G =Gipl - ph- ,oej_1 p(n —1;) for
1<j<2and G=Gsp}-p3---p},_; p(n—rs).

Thus, there is also a median G of Gy, Ga, and G5 such that G[i] = G4[i] =
Gsli] = Gsli]. Then, according to Lemma 9, G; can be converted to G by (the
same number of) inversions that do not invert the ith gene. That is, some of
the inversions act only on the genes left to index ¢, while the others act only
on the genes right to index 7. In other words, G = G;G1[i|G,, where G; (G,)
is a median of Gy[1..i — 1], G2[1..i — 1], and G3[1..i — 1] obtained by inversions
around O (G1[i + 1..n], Ga[i + 1..n], and G3[i + 1..n] obtained by inversions



The Median Problem for the Reversal Distance 125

1 A n—1 ] A n—1
O |57 A n—13 T O [Ior ] n_14 T
2 A n—1 n—r3 | o

2 2

Fig. 5. Left: Case (a) of the proof of Theorem 10. Right: Case (b) of that proof.

around T'). Therefore, the correctness of procedure median_cb is a consequence
of the correctness of the procedures median_O and median_T.

Now we consider the last case, in which G, G2, and GG3 do not have a common
bit. It can be shown (see Theorem 13) that in this case the following procedure
median_nchb(G1, G2, G3) returns a median of the three genomes. Moreover, the
procedure runs in linear time because the procedures median_cb and rd do so.

procedure median_ncb(G1,G2,G3)
if two genomes coincide, say G; = G; with ¢ # j then return (G, 1)
else if one of the genomes is the inverse of another, say G; = inv(G;) with ¢ # j
then return (G, 1+ rd(Gi, Gi)) where k € {1,2,3}\ {7, 5}
else /x G;#Gjand G; #inv(Gj) forall i #j */
(G",d") := median_cb(inv(G1), G2, G3)
t = rd(inv(G1), G2) 4+ rd(inv(G1), Gs)
if d} = d’ then return (G1,d’)
else return (G’,d")

Due to space limitations, the proofs of the following lemmata are omitted.

Lemma 11. If G and G’ are two genomes such that neither G = G’ nor
inv(G) = G, then rd(G,G") = rd(inv(G), G").

Lemma 12. Let G, G2, and G3 be genomes such that G; # G; and G; #
inv(Gj) for alli # j. Then the following statements are equivalent for {i, j, k} =
(1,2,3}:

1. dp(inv(G;), G4, Gi) = rd(inv(G;), G4) + rd(inv(G;), Gk)
2. inv(G;) is a median of inv(G;), G;, and Gy
3. G; is a median of Gy, G;, and G.

Theorem 13. If the three genomes G1, G2, G3 do not have a common bit, then
procedure median_ncb(G1, Ga, Gs) returns a pair (G, d) such that G is a median
of the three genomes and d = d,,(G1,G2,G3).

Proof. As in the procedure, we proceed by case analysis.

if-statement: If two genomes coincide, say G; = G; with ¢ # j, then it follows
G; = inv(Gy) where k € {1,2,3}\ {4, j}. Clearly, inverting G}, yields the median
Gi.

else if-statement: Suppose G1,Gs, and G5 are pairwise distinct but one of the
genomes is the inverse of another, say G; = inv(G;) with i # j. Let k € {1,2,3}\
{i,7}. Because G;, G;, and Gy, are pairwise distinct and G; = inv(G,), Lemma 11
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implies that rd(G;, G) = rd(Gj, Gy). Thus, for d; := rd(G;, G;) + rd(G;, G;) +
rd(G;, Gy), we have d; = 1 + rd(Gy, Gy,).

We must show that G; is a median of the three genomes. For an indirect
proof, suppose that G; is not a median. Let G' be a median of G;, G, and Gy,
i.e., there are reversals such that

Gipy-py---pp, =G, Gipl-ph---py =G, and Gypy - ps - pf, = G

It follows from the last two equations in combination with Lemma 2 that G ol -
pg = ~pij ph ok -p’gk = Gy. Consequently, rd(G;, Gi) < £; + {}. On the other
hand, since G is a median and G; is not, we have ¢;+0; 4+, < d; = 1+rd(G;, G)
and hence ¢; + ¢; + {;, < 1+ ¢; + £,. We conclude that ¢; = 0, that is, G = G;.
This contradiction proves that G; is a median of the three genomes.

else-statement: We have G; # G; and G; # inv(G;) for all i # j. This implies
that inv(G1), G2, G3 have a common bit, as can be seen as follows. If both
G1, Go, G3 and inv(G1), G2, Gs would not have a common bit, then it would
follow that Ga[f] = G3[{] for all 1 < ¢ < n. In other words, G2 = inv(G3). This
contradiction shows that inv(G1), G2, G must have a common bit. Therefore,
we can apply procedure median_cb to compute a median G’ of inv(G1), G, and
Gs. Let d} = rd(inv(G1),G2) +rd(inv(G1),Gs). If d) = d’, then G; is a median
of G1, Go, and G5 by Lemma 12. We will show that d} # d’' (or, equivalently,
dy > d') implies that G’ is also a median of G, G, and G3. According to Lemma
12, neither is G4 a median of G1, G2, and G5 nor is inv(G1) a median of inv(G1),
G2, and G3. Since G’ is a median of inv(G1), G2, and G5, there are reversals such
that inv(Gr)pi - p5 -+ ph = G, Gop? - pi -+, = G, Gapl? - - pj = G
and d' = ¢) + ¢, + {5. Moreover, ¢} > 0 because inv(G1) # G'. It follows from
inv(Gy)plt- pi - -p’;l = Gip(n)pit-pht - -p;l in conjunction with Lemma 3 that
there is an inversion o' such that Gio' - p4 - -~p2}1 = G'. Therefore, d < d’,
where d := d,,(G1, G2, G3). We show that d < d’ is impossible. For an indirect
proof, suppose that d < d’ holds. Let G be a median of G1, Gs, and Gs, i.e.,
there are reversals such that Gypi - pd- - p%l =G, Gop? - p3 - -pEQ =G, Gs3p3 -
05 -pi’s =G, and d = 1+ 5+ /5. Since G # G, we have 1 > 0. It follows from
inv(G1)p(n)-p1-py---py, = Gipi-py--- py, = G that there is an inversion o such
that inv(G1)o - pg--- py, = G. Thus, rd(G,inv(G1)) + rd(G,Gs) + rd(G,Gs) <
l14+Llo+03 = d < d'. This contradicts the definition of d’ = min{rd(G, inv(G1))+
rd(G,G2)+rd(G,G3) | G is a genome}. In conclusion, d’ = d, i.e., G’ is a median
of G17 GQ, and G3.
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