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Abstract. In the median problem, we are given a distance or dissim-
ilarity measure d, three genomes G1, G2, and G3, and we want to find
a genome G (a median) such that the sum

∑3
i=1 d(G, Gi) is minimized.

The median problem is a special case of the multiple genome rearrange-
ment problem, where one wants to find a phylogenetic tree describing
the most “plausible” rearrangement scenario for multiple species. The
median problem is NP-hard for both the breakpoint and the reversal
distance [5, 14]. To the best of our knowledge, there is no approach yet
that takes biological constraints on genome rearrangements into account.
In this paper, we make use of the fact that in circular bacterial genomes
the predominant mechanism of rearrangement are inversions that are
centered around the origin or the terminus of replication [8, 10, 18]. This
constraint simplifies the median problem significantly. More precisely, we
show that the median problem for the reversal distance can be solved in
linear time for circular bacterial genomes.

1 Introduction

During evolution, the genomic DNA sequences of organisms are subject to
genome rearrangements such as transpositions (where a section of the genome
is excised and inserted at a new position in the genome, without changing ori-
entation) and inversions (where a section of the genome is excised, reversed in
orientation, and re-inserted). In unichromosomal genomes, the most common re-
arrangements are inversions, which are usually called reversals in bioinformatics.
In the following, we will focus on unichromosomal genomes and use the terms
“inversion” and “reversal” synonymously. The study of genome rearrangements
started more than 65 years ago [7], but interest on the subject has flourished in
the last decade because of the progress in large-scale sequencing. In the context
of genome rearrangement, a genome G is typically viewed as a signed permuta-
tion, where each integer corresponds to a unique gene and the sign corresponds
to its orientation. A + (−) sign means that the gene lies on the leading (lagging)
DNA strand.

Consider two genomes G1 = (π1, . . . , πn) and G2 = (γ1, . . . , γn) on the same
set of genes {1, . . . , n}. Two adjacent genes πi and πi+1 in G1 determine a
breakpoint in G1 w.r.t. G2 if and only if neither πi precedes πi+1 in G2 nor
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Fig. 1. Genome (+1,−2, +3, +4,−5, +6,−7,−8) before and after the inversion ρ(3, 6).

−πi+1 precedes −πi in G2. The breakpoint distance bd(G1, G2) between G1 and
G2 is defined as the number of breakpoints in G1 w.r.t. G2 [13, 19]. This is
clearly equal to the number of breakpoints in G2 w.r.t. G1. In other words, the
breakpoint distance between G1 and G2 is the smallest number of places where
one genome must be broken so that the pieces can be rearranged to form the
other genome.

Given a genome G = (π1, . . . , πi−1, πi . . . , πj , πj+1, . . . , πn), a reversal ρ(i, j)
applied to G reverses the segment πi, . . . , πj and produces the permutation
Gρ(i, j) = (π1, . . . , πi−1,−πj ,−πj−1, . . . ,−πi+1,−πi, πj , πj+1, . . . , πn) (see Fig-
ure 1 for an illustration). Given two genomes G1 and G2, the reversal distance
rd(G1, G2) between them is defined as the minimum number of reversals required
to convert one genome into the other. (The phrase sorting by reversals refers to
the equivalent problem of finding the minimum number of reversals required to
convert a permutation π into the identity permutation.) The study of the rever-
sal distance was pioneered by Sankoff [15] and has received increasing attention
in recent years. There are dozens of papers on the subject; see e.g. [1, 2, 9, 11]
and the references therein.

As already mentioned, the median problem is NP-hard for both the break-
point and the reversal distance [5, 14]. That is the reason why researchers de-
veloped heuristics to solve the median and the multiple genome rearrangement
problem. For the breakpoint-based multiple genome rearrangement problems
very good heuristics exist [3, 16]. These rely on the ability to solve the breakpoint
median problem by reducing it to the Traveling Salesman Problem. Solutions to
the reversal median problem can be found in [4, 6, 12, 17]. There is a dispute
about the “right” distance in multiple genome rearrangement problems. While
[3, 16] argue that the breakpoint distance is the better choice, [12] conjecture that
the usage of the reversal distance yields better phylogenetic reconstructions. Fur-
thermore, [4] discusses some advantages of the reversal distance approach over
the breakpoint distance approach.

2 Inversions Around the Origin of Replication

In this paper, we study the median problem (unless stated otherwise, the term
median problem refers to the reversal median problem) for circular bacterial
genomes. As mentioned earlier, it has been observed [8, 10, 18] that inversions
within circular bacterial genomes are centered around the origin or the terminus
of replication. That is, the genes keep their distance to the origin O and the
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Fig. 2. Left: A cartoon representation of a circular bacterial genome. Of course, bacteria
have hundreds, or even thousands, of genes. Moreover, a bacterial genome does not have
long stretches of DNA without genes. Right: The same genome after the inversion ρ(4).

terminus T of replication under a reversal, but they are translocated to the
opposite DNA strand and thus change their orientation.

As usual in the comparison of genomes on the gene level, we assume that
the genomes have the same set {1, . . . , n} of unique genes and that inversions
do not cut genes. As a consequence, genes may neither overlap on the same
DNA strand nor on different DNA strands. In our model, in which inversions
around the origin/terminus of replication are the predominant mechanism of
rearrangement, it is further assumed that in each genome, these n genes occur
in the same order w.r.t. the distance to the origin of replication.

Because the genes keep their distance to O, we enumerate them in increas-
ing distance to the origin. That is, starting with the origin of replication, we
simultaneously traverse both DNA strands of the circular genome in clockwise
and counterclockwise order. This process ends when the terminus of replication
is reached and it divides the circular genome into two halves. The clockwise
traversal yields the right half and the counterclockwise traversal yields the left
half. A gene encountered gets the next number (the first gene gets number 1).
If this gene is lying on the leading strand, it is labeled with a + sign, otherwise
it gets a − sign. If it was encountered in the clockwise (resp. counterclockwise)
direction, its labeled number is put to the right (resp. left) of the origin O and a
0 to the left (resp. right) of O, which for better readability will be denoted by the
symbol |. For example, if the first gene is encountered in the counterclockwise
direction and is lying on the leading strand, then this yields (+1 | 0).

(+10, 0, 0, 0, +6,−5, 0, 0,+2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, +9, 0) is a more
complex example, which is shown in Figure 2.

In what follows, ρ(i) denotes an inversion centered around the origin of repli-
cation that acts on the ith nearest genes of O. Furthermore, we will use postfix
notation to denote the application of a reversal to a genome. For example,
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(+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8,+9, 0) ρ(4)
= (+10, 0, 0, 0, +6,−5, +4, +3, 0,−1 | 0,−2, 0, 0, 0, 0,−7,−8, +9, 0)

Similarly, ρ(i) denotes an inversion centered around the terminus of replication
that acts on the ith nearest genes of T . As an example consider

(+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8,+9, 0) ρ(2)
= (0,−9, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, 0,−10)

Next, we will simplify the above representation without loosing any informa-
tion. (+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8,+9, 0), for exam-
ple, will be represented by the bit vector (1, 0, 1, 1, 0, 0, 1, 1, 1, 0) and the orien-
tation vector (+,−,−,−, +,−,−,−, +,−). In the bit vector, a 1 (resp. 0) at
position p means that the gene with number p is located in the right (resp. left)
half of the circular bacterial genome. Furthermore, a + (resp. −) sign in the
orientation vector at position p means that the gene lies on the leading (resp.
legging) strand if it is in the right half (i.e., if there is a 1 at position p in the
bit vector). Otherwise, if the gene is in the left half (i.e., there is a 0 at position
p in the bit vector), a + (resp. −) sign at position p means that the gene lies on
the legging (resp. leading) strand. With this definition, the orientation vector is
invariant (i.e., it does not change) under inversions around O and T . In the fol-
lowing, the orientation vector will hence not be mentioned explicitly. Therefore,
the preceding inversions are modeled by

(1, 0, 1, 1, 0, 0, 1, 1, 1, 0) ρ(4) = (0, 1, 0, 0, 0, 0, 1, 1, 1, 0)

(1, 0, 1, 1, 0, 0, 1, 1, 1, 0) ρ(2) = (1, 0, 1, 1, 0, 0, 1, 1, 0, 1)

Lemma 1. The composition of inversions is commutative and associative.

Proof. Let ρ1, ρ2, and ρ3 be inversions. We have ρ1 ·ρ2 = ρ2 ·ρ1 (commutativity)
and (ρ1 · ρ2) · ρ3 = ρ1 · (ρ2 · ρ3) (associativity) because every gene is inverted the
same amount of times on either side of the respective equation.

An important consequence of the preceding lemma is that reordering any
sequence of inversions does not change the result.

Note that every reversal ρ has an inverse, viz. ρ itself because ρ · ρ = id.

Lemma 2. Let ρ1, ρ2, . . . , ρk be reversals. Then Gρ1 · ρ2 · · · ρk = G′ if and only
if G′ρ1 · ρ2 · · · ρk = G.

Proof. For k = 1, this follows from Gρ1 = G′ ⇔ Gρ1 · ρ1 = G′ρ1 ⇔ G = G′ρ1.
Now the claim follows by induction on k in conjunction with Lemma 1.

The inverse inv(G) of a genome G is defined by inv(G) := Gρ(n), where
ρ(n) := ρ(n) = ρ(n). Given reversal ρ, a reversal σ satisfying ρ(n) · ρ = σ is
called the complementary reversal of ρ.

Lemma 3. Every reversal ρ has a (unique) complementary reversal σ.

Proof. If ρ = ρ(i), then σ = ρ(n − i) because ρ(n) · ρ(i) = ρ(n − i). Otherwise,
if ρ = ρ(i), then σ = ρ(n − i) because ρ(n) · ρ(i) = ρ(n − i).
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Fig. 3. Breakpoints between two genomes, here depicted by colons.

3 The Reversal Distance

Let (b1, b2, b3, . . . , bn) be the bit vector representation of a circular bacterial
genome G. In the rest of the paper, we will just speak of genome G, that is,
we omit the phrase “circular bacterial”. Furthermore, we will use the following
notations for 1 ≤ i ≤ j ≤ n: G[i] = bi and G[i..j] = (bi, . . . , bj).

Given two genomes G and G′, we fix one of the genomes, say G′, and try to
transform G into G′ by as few inversions as possible.

Definition 4. Let G = (b1, b2, b3, . . . , bn) and G′ = (b′1, b
′
2, b

′
3, . . . , b

′
n) be two

circular genomes.

1. An interval [i..j] of indices (where 1 ≤ i ≤ j ≤ n) is called a strip if bk = b′k
for all i ≤ k ≤ j, bi−1 �= b′i−1 if i �= 1, and bj+1 �= b′j+1 if j �= n.

2. If [i..j] is a strip, then (i − 1, i) (if i �= 1) and (j, j + 1) (if j �= n) are
breakpoints between G and G′.

Figure 3 shows two genomes G and G′ with three breakpoints. Note that if
G = inv(G′), then there is no strip, hence no breakpoint between them. Thus,
if there is no breakpoint between G and G′, then either G = G′ or G = inv(G′).

Lemma 5. Let G, G′ and ρ(i) with 1 ≤ i ≤ n − 1 be given.

1. For all (j, j + 1) with either 1 ≤ j < i or i < j < n we have: (j, j + 1) is a
breakpoint between G and G′ if and only if (j, j + 1) is a breakpoint between
Gρ(i) and G′.

2. (i, i + 1) is a breakpoint between G and G′ if and only if (i, i + 1) is not a
breakpoint between Gρ(i) and G′.

Proof. (1) If i < j < n, then there is nothing to show because ρ(i) has no effect
on the genes j and j + 1. Suppose 1 ≤ j < i. The following equivalences hold:

(j, j + 1) is a breakpoint between G and G′

⇔ either (bj = b′j and bj+1 �= b′j+1) or (bj �= b′j and bj+1 = b′j+1)
⇔ either (inv(bj) �= b′j and inv(bj+1) = b′j+1)

or (inv(bj) = b′j and inv(bj+1) �= b′j+1)
⇔ (j, j + 1) is a breakpoint between Gρ(i) and G′

(2) This case follows by a similar reasoning as in (1).

Of course, a similar statement holds when ρ(i) is replaced with ρ(i). This is
also true for the following corollary, which follows from the preceding lemma.
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Corollary 6. Let G, G′ and ρ(i) with 1 ≤ i ≤ n − 1 be given.

1. If (i, i+1) is a breakpoint between G and G′, then the number of breakpoints
between Gρ(i) and G′ is one less than the number of breakpoints between G
and G′.

2. If (i, i + 1) is not a breakpoint between G and G′, then the number of break-
points between Gρ(i) and G′ is one more than the number of breakpoints
between G and G′.

First, we consider the case in which only inversions around the origin of
replication are allowed. The following simple procedure rd O(G, G′) returns the
reversal distance between two genomes G and G′, using inversions around O
only. (The procedure rd T (G, G′) that returns the reversal distance between G
and G′ using inversions around T only is defined similarly.)

procedure rd O(G, G′)
determine the breakpoints (i1, i1 + 1), . . . , (ik, ik + 1) between G and G′

if Gρ(i1) · · · ρ(ik) = G′ then return k else return k + 1

The correctness of procedure rd O(G, G′) is a direct consequence of Corollary
6. Each reversal ρ(i1), . . . , ρ(ik) removes one breakpoint, so that there is no
breakpoint between Gρ(i1) · · · ρ(ik) and G′. Hence, we have Gρ(i1) · · · ρ(ik) = G′

or Gρ(i1) · · · ρ(ik) = inv(G′). In the latter case, k must be incremented by 1
because ρ(n) has to be applied to make the genomes equal. It is easy to see that
in both cases the algorithm returns the minimum number of inversions needed
to transform G into G′.

Since the breakpoints (i1, i1 + 1), . . . , (ik, ik + 1) between G and G′ can be
determined in O(n) time and also the test as to whether two genomes are equal
requires O(n) time, the worst case running time of the procedure is O(n).

Next, we consider the general case in which both inversions around the origin
and the terminus of replication are allowed.

procedure rd(G, G′)
if G and G′ do not have a breakpoint then

if G = G′ then return 0 else return 1
else

choose a strip [i..j]
kl := rd O(G[1..i − 1], G′[1..i − 1])
kr := rd T (G[j + 1..n], G′[j + 1..n])
return (kl + kr)

Procedure rd(G, G′) returns the minimum number of inversions needed to
transform G into G′ because each inversion removes one breakpoint. The trans-
formed genome must be equal to G′ (i.e., it cannot be inv(G′)) because the
chosen strip is not changed by the inversions. Furthermore, procedure rd(G, G′)
runs in linear time because the procedures rd O and rd T do so.
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4 The Median Problem for the Reversal Distance

Recall that in the median problem we want to find a genome G (a median)
such that

∑3
i=1 rd(G, Gi) is minimized. In the following, let dm(G1, G2, G3) =

min{∑3
i=1 rd(G, Gi) | G is a genome}. Furthermore, for b1, b2, b3 ∈ {0, 1} let

majority(b1, b2, b3) =
{

1 if
∑3

j=1 bj ≥ 2
0 otherwise

Again, we first consider the case in which only inversions around the origin of
replication are allowed. In this case, the following procedure median O returns
a median, as shown in Theorem 7. (The procedure median T that returns a
median using inversions around T only is defined analogously.)

procedure median O(G1, G2, G3) / � where Gj = (bj
1, b

j
2, b

j
3, . . . , b

j
n) � /

d := 0
for i := n downto 1 do

b := majority(b1
i , b

2
i , b

3
i )

if there is a j, 1 ≤ j ≤ 3, such that bj
i �= b then

Gj := Gjρ(i)
d := d + 1

return (G1, d)

If we would really apply the reversals to the genomes (in line 5 of the proce-
dure), then median O(G1, G2, G3) would take quadratic time. However, a linear
time implementation is possible by simply counting the number of times a gene
i was inverted in genome Gj . If it was flipped an even number of times giving
G′

j , then G′
j [1..i] = Gj [1..i]. Otherwise, if it was flipped an odd number of times,

then G′
j [1..i] = inv(Gj [1..i]).

Theorem 7. If procedure median O(G1, G2, G3) returns the pair (G, d), then
G is a median of the three genomes Gj = (bj

1, b
j
2, b

j
3, . . . , b

j
n), 1 ≤ j ≤ 3, using

inversions around O only, and d is the number of required reversals.

Proof. We proceed by induction on the length n of the genomes. The case
n = 1 is trivial. According to the inductive hypothesis, procedure median O
returns a median of three genomes of size n − 1. For 1 ≤ j ≤ 3, let G′

j =
(bj

1, b
j
2, b

j
3, . . . , b

j
n−1). If b1

n = b2
n = b3

n, then an application of the inductive hy-
pothesis to G′

1, G
′
2, and G′

3 proves the theorem. Otherwise, there is a bit, say
b3
n, such that b1

n = b2
n �= b3

n. Hence procedure median O first applies ρ(n) to
G3, i.e., it inverts G3, and then computes a median G′ = (b̂j

1, b̂
j
2, b̂

j
3, . . . , b̂

j
n−1)

of G′
1, G

′
2, and inv(G′

3). Let d′ = rd(G′, G′
1) + rd(G′, G′

2) + rd(G′, inv(G′
3)) and

G = (b̂j
1, b̂

j
2, b̂

j
3, . . . , b̂

j
n−1, b

1
n). Clearly,

∑3
j=1 rd(G, Gj) = d′ + 1.

In order to prove that G is a median of G1, G2, and G3, it suffices to show
that the bit representation of nth gene of a median cannot be b3

n. For an indirect
proof, suppose the contrary. Then, in an optimal sequence of inversions that
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transforms G1 (G2) into a median, there must be one that inverts the whole
genome. According to Lemma 1, we may assume that this inversion is the first
in the sequence. Procedure median O applied to inv(G′

1), inv(G′
2), and G′

3 gives
a median G̃′ = (b̃j

1, b̃
j
2, b̃

j
3, . . . , b̃

j
n−1) of these. It is not difficult to see that

rd(G̃′, inv(G′
1)) + rd(G̃′, inv(G′

1)) + rd(G̃′, G′
3) = d′

because the two problems under consideration are equivalent (inverting all genes
in one problem yields the other problem). G̃ = (b̃j

1, b̃
j
2, b̃

j
3, . . . , b̃

j
n−1, b

3
n) cannot

be a median of G1, G2, and G3 because
∑3

j=1 rd(G̃, Gj) = d′ + 2 > d′ + 1 =
∑3

j=1 rd(G, Gj). This contradiction shows that the bit representation of the nth
gene of a median cannot be b3

n.

Next, we consider the median problem in which both inversions around the origin
and the terminus of replication are allowed. We distinguish between two cases:
(a) G1, G2, and G3 have a common bit and (b) G1, G2, and G3 do not have a
common bit.

Definition 8. We say that i is a common bit of the genomes G1, G2, and G3

if G1[i] = G2[i] = G3[i].

Lemma 9. Suppose G′ρ1 ·ρ2 · · · ρk = G and G′[i] = G[i], that is, i is a common
bit of G and G′. Then there are inversions ρ′1 ·ρ′2 · · · ρ′k such that G′ρ′1 ·ρ′2 · · · ρ′k =
G and each ρ′j does not invert the ith gene.

Proof. If there is an inversion that inverts the ith gene, then there must be
an inversion that inverts it back. If both are inversions around O (a similar
statement holds if both act around T ), say ρ(p) and ρ(q), then they can be
replaced by the inversions ρ(n − p) and ρ(n− q) around T . These do not invert
the ith gene; see Figure 4.

If one is an inversion around O, say ρ(q), and the other is an inversion
around T , say ρ(p), then they can be replaced with the inversions ρ(n − p) and
ρ(n− q). These do not invert the ith gene; see Figure 4. Now the lemma follows
by induction on the number of inversions in ρ1 ·ρ2 · · · ρk that invert the ith gene.

If G1, G2, and G3 have a common bit, the following procedure computes a
median; see Theorem 10.

procedure median cb(G1, G2, G3)
determine a common bit i of G1, G2, and G3

(Gl, dl) := median O(G1[1..i − 1], G2[1..i − 1], G3[1..i − 1])
(Gr, dr) := median T (G1[i + 1..n], G2[i + 1..n], G3[i + 1..n])
return (GlG1[i]Gr, dl + dr)

Procedure median cb(G1, G2, G3) runs in linear time because the procedures
median O and median T do so.
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Fig. 4. Left: Two inversions around the origin of replication inverting the same gene
i can be replaced by two inversions around the terminus, both not changing gene i.
Right: Two inversions (one around the origin and the other around the terminus) that
both invert the same gene i can be replaced by two different inversions (again one
around the origin and the other around the terminus) that both do not invert gene i.

Theorem 10. If G1, G2, and G3 have a common bit, then median cb(G1, G2,
G3) returns a pair (G, d) such that G is a median of the three genomes and
d = dm(G1, G2, G3).

Proof. We claim that if there is a median G′ of G1, G2, and G3, such that
G′[i] �= G1[i] = G2[i] = G3[i], then there is another median G such that G[i] =
G1[i] = G2[i] = G3[i].

Let G′ be such a median of G1, G2, and G3. Then, for 1 ≤ j ≤ 3, there are
inversions such that Gjρ

j
1 · ρj

2 · · · ρj
�j

= G′ and �1 + �2 + �2 is minimal. Because

G′[i] �= G1[i] = G2[i] = G3[i], in each Gjρ
j
1 · ρj

2 · · · ρj
�j

= G′, 1 ≤ j ≤ 3, the ith

gene must have been inverted. By Lemma 1, we may assume that ρj
�j

inverts
the ith gene. Moreover, according to Lemma 9, we may assume that none of the
other inversions inverts the ith gene.

(a) Suppose that ρ1
�1

, ρ2
�2

, and ρ3
�3

all act around O, say ρj
�j

= ρ(lj) (for T ,
the reasoning is verbatim the same). Then inverting the complementary regions
yields a median G with G[i] = G1[i] = G2[i] = G3[i]; see Figure 5. To be precise,
G = Gjρ

j
1 · ρj

2 · · · ρj
�j−1 · ρ(n − lj) for every j with 1 ≤ j ≤ 3.

(b) Suppose that ρ1
�1

, ρ2
�2

, and ρ3
�3

do not act around the same spot, say
ρ1

�1
= ρ(l1) and ρ2

�2
= ρ(l2) act around O, but ρ3

�3
= ρ(r3) acts around T . Again,

inverting the complementary regions yields a median G with G[i] = G1[i] =
G2[i] = G3[i]; see Figure 5. More precisely, G = Gjρ

j
1 · ρj

2 · · · ρj
�j−1 · ρ(n − lj) for

1 ≤ j ≤ 2 and G = G3ρ
3
1 · ρ3

2 · · · ρ3
�3−1 · ρ(n − r3).

Thus, there is also a median G of G1, G2, and G3 such that G[i] = G1[i] =
G2[i] = G3[i]. Then, according to Lemma 9, Gj can be converted to G by (the
same number of) inversions that do not invert the ith gene. That is, some of
the inversions act only on the genes left to index i, while the others act only
on the genes right to index i. In other words, G = GlG1[i]Gr, where Gl (Gr)
is a median of G1[1..i − 1], G2[1..i − 1], and G3[1..i − 1] obtained by inversions
around O (G1[i + 1..n], G2[i + 1..n], and G3[i + 1..n] obtained by inversions
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Fig. 5. Left: Case (a) of the proof of Theorem 10. Right: Case (b) of that proof.

around T ). Therefore, the correctness of procedure median cb is a consequence
of the correctness of the procedures median O and median T .

Now we consider the last case, in which G1, G2, and G3 do not have a common
bit. It can be shown (see Theorem 13) that in this case the following procedure
median ncb(G1, G2, G3) returns a median of the three genomes. Moreover, the
procedure runs in linear time because the procedures median cb and rd do so.

procedure median ncb(G1, G2, G3)
if two genomes coincide, say Gi = Gj with i �= j then return (Gi, 1)
else if one of the genomes is the inverse of another, say Gi = inv(Gj) with i �= j

then return (Gi, 1 + rd(Gi, Gk)) where k ∈ {1, 2, 3} \ {i, j}
else / � Gi �= Gj and Gi �= inv(Gj) for all i �= j � /

(G′, d′) := median cb(inv(G1), G2, G3)
d′
1 := rd(inv(G1), G2) + rd(inv(G1), G3)

if d′
1 = d′ then return (G1, d

′)
else return (G′, d′)

Due to space limitations, the proofs of the following lemmata are omitted.

Lemma 11. If G and G′ are two genomes such that neither G = G′ nor
inv(G) = G′, then rd(G, G′) = rd(inv(G), G′).

Lemma 12. Let G1, G2, and G3 be genomes such that Gi �= Gj and Gi �=
inv(Gj) for all i �= j. Then the following statements are equivalent for {i, j, k} =
{1, 2, 3}:
1. dm(inv(Gi), Gj , Gk) = rd(inv(Gi), Gj) + rd(inv(Gi), Gk)
2. inv(Gi) is a median of inv(Gi), Gj, and Gk

3. Gi is a median of Gi, Gj , and Gk.

Theorem 13. If the three genomes G1, G2, G3 do not have a common bit, then
procedure median ncb(G1, G2, G3) returns a pair (G, d) such that G is a median
of the three genomes and d = dm(G1, G2, G3).

Proof. As in the procedure, we proceed by case analysis.
if-statement: If two genomes coincide, say Gi = Gj with i �= j, then it follows
Gi = inv(Gk) where k ∈ {1, 2, 3}\{i, j}. Clearly, inverting Gk yields the median
Gi.
else if-statement: Suppose G1, G2, and G3 are pairwise distinct but one of the
genomes is the inverse of another, say Gi = inv(Gj) with i �= j. Let k ∈ {1, 2, 3}\
{i, j}. Because Gi, Gj , and Gk are pairwise distinct and Gi = inv(Gj), Lemma 11
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implies that rd(Gi, Gk) = rd(Gj , Gk). Thus, for di := rd(Gi, Gi) + rd(Gi, Gj) +
rd(Gi, Gk), we have di = 1 + rd(Gj , Gk).

We must show that Gi is a median of the three genomes. For an indirect
proof, suppose that Gi is not a median. Let G be a median of Gi, Gj , and Gk,
i.e., there are reversals such that

Giρ
i
1 · ρi

2 · · · ρi
�i

= G, Gjρ
j
1 · ρj

2 · · · ρj
�j

= G, and Gkρk
1 · ρk

2 · · · ρk
�k

= G

It follows from the last two equations in combination with Lemma 2 that Gjρ
j
1 ·

ρj
2 · · · ρj

�j
· ρk

1 · ρk
2 · · · ρk

�k
= Gk. Consequently, rd(Gj , Gk) ≤ �j + �k. On the other

hand, since G is a median and Gi is not, we have �i+�j+�k < di = 1+rd(Gj , Gk)
and hence �i + �j + �k < 1 + �j + �k. We conclude that �i = 0, that is, G = Gi.
This contradiction proves that Gi is a median of the three genomes.

else-statement: We have Gi �= Gj and Gi �= inv(Gj) for all i �= j. This implies
that inv(G1), G2, G3 have a common bit, as can be seen as follows. If both
G1, G2, G3 and inv(G1), G2, G3 would not have a common bit, then it would
follow that G2[�] = G3[�] for all 1 ≤ � ≤ n. In other words, G2 = inv(G3). This
contradiction shows that inv(G1), G2, G3 must have a common bit. Therefore,
we can apply procedure median cb to compute a median G′ of inv(G1), G2, and
G3. Let d′1 = rd(inv(G1), G2)+ rd(inv(G1), G3). If d′1 = d′, then G1 is a median
of G1, G2, and G3 by Lemma 12. We will show that d′1 �= d′ (or, equivalently,
d′1 > d′) implies that G′ is also a median of G1, G2, and G3. According to Lemma
12, neither is G1 a median of G1, G2, and G3 nor is inv(G1) a median of inv(G1),
G2, and G3. Since G′ is a median of inv(G1), G2, and G3, there are reversals such
that inv(G1)ρ′11 · ρ′12 · · · ρ′1�′1 = G′, G2ρ

′2
1 · ρ′22 · · · ρ′2�′2 = G′, G3ρ

′3
1 · ρ′32 · · · ρ′3�′3 = G′,

and d′ = �′1 + �′2 + �′3. Moreover, �′1 > 0 because inv(G1) �= G′. It follows from
inv(G1)ρ′11 · ρ′12 · · · ρ′1�′1 = G1ρ(n)ρ′11 · ρ′12 · · · ρ′1�′1 in conjunction with Lemma 3 that
there is an inversion σ1 such that G1σ

1 · ρ′12 · · · ρ′1�′1 = G′. Therefore, d ≤ d′,
where d := dm(G1, G2, G3). We show that d < d′ is impossible. For an indirect
proof, suppose that d < d′ holds. Let G be a median of G1, G2, and G3, i.e.,
there are reversals such that G1ρ

1
1 · ρ1

2 · · · ρ1
�1

= G, G2ρ
2
1 · ρ2

2 · · · ρ2
�2

= G, G3ρ
3
1 ·

ρ3
2 · · · ρ3

�3
= G, and d = �1+�2+�3. Since G �= G1, we have �1 > 0. It follows from

inv(G1)ρ(n)·ρ1
1 ·ρ1

2 · · · ρ1
�1

= G1ρ
1
1 ·ρ1

2 · · · ρ1
�1

= G that there is an inversion σ such
that inv(G1)σ · ρ1

2 · · · ρ1
�1

= G. Thus, rd(G, inv(G1)) + rd(G, G2) + rd(G, G3) ≤
�1+�2+�3 = d < d′. This contradicts the definition of d′ = min{rd(G, inv(G1))+
rd(G, G2)+rd(G, G3) | G is a genome}. In conclusion, d′ = d, i.e., G′ is a median
of G1, G2, and G3.
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