Efficient mapping of large cDNA/EST databases to
genomes: A comparison of two different strategies

C. Wawrd M.l. Abouelhodd E. Ohlebusch

Abstract: This paper presents a comparison of two strategies for cBESA/map-
ping: The seed-and-extend strategy and the fragmentiobastrategy. We derive
theoretical results on the statistics of fragments of typaimal exact match. More-
over, we present efficient fragment-chaining algorithnet tire simpler than previ-
ous ones. In experiments, we compared our implementatitmedfagment-chaining
strategy with the seed-and-extend strategy implementtueinoftware tool BLAT.

1 Introduction

The first step in gene expression is transcription of the ieirdormation contained in
DNA into RNA. In this process, the RNA polymerase generatesraary RNA transcript
that extends from the initiation site to the terminatiore sit a perfect complementary
match to the DNA sequence used as a template. In eukaryate®yvhr, not all tran-
scribed RNA is destined to arrive in the cytoplasm as mRNAhB& by an incompletely
understood process, sequences complementary to intrerexeised from the primary
transcript, and the ends of exon sequences are joined grgath process termed “splic-
ing.” The exons are short segments ranging from tens to leaischf base pairs, while the
introns are normally several orders of magnitude longermé&dke a cDNA library, one
isolates all the mRNA from a cell or tissue. Then, using thRNA as a template, reverse
transcriptase makes cDNA copies of each mRNA molecule imrtixéure. A completely
sequenced cDNA is termed “full-length” cDNA. For econontigasons, however, cDNA
is often only partially sequenced, yielding expressed seqge tags (ESTs). As mentioned
above, cDNA consists only of the exons of the transcribeadmtause the introns have
been spliced out. The problem of cDNA mapping is to find theegand its exon/intron
structure on the genome from which the cDNA originated; sger€ 1. In this way, cDNA
libraries can be used to identify previously unknown gerret® @nnotate a genomic se-
guence.

The software tool BLAT (the BLAST-Like Alignment Tool) [K&2] allows a fast mapping
of a cDNA/EST sequence to a genomic sequence as follows, fiesgenomic sequence
(the database) is divided into consecutive non-overlaphirmers (subsequences &f
contiguous bases). Then, the position of each occurreneadfi -mer is stored in a

*Computer Science Faculty, Theoretical Bioinformaticsjversity of Ulm, 89069 Ulm, Germany. Email:
eo@nf or mati k. uni -ul m de

Genome exon 1 exon 2 exon 3

— I — N — ——— . ———

intron intron

cDNA 1 7]

exonl exon2 exon 3

Figure 1: An example of cDNA mapped to a genomic sequence.

hash table. Searching for a cDNA/EST sequence (the quenegeq) in the genome is
done by obtaining from the hash table the “hits” for e&ctmer in the query sequence. In
other words, in the “search stage” one looks forfdHmers that are shared by the query
sequence and the database. Other software tools like eAddSENCMO1] use the same
strategy. Because extensions of these shared regiongelsett be homologous, BLAT
examines these regions in more detail and in an “alignmewgestproduces alignments
for the regions that are indeed homologous according to switegia. Thus, BLAT uses

a seed-and-extend strategy: The exAemer matches are the seeds that are extended
in the alignment stage. BLAT also supports alternativedearethods, in which a seed
consists of either aear perfect match (with at most one mismatch) or multiple exact
K-mer matches that are constrained to be near each other.

Our method is not a seed-and-extend method; it rather rdssitiile anchor-based multiple
alignment methods. To be precise, we first build a suffix tremfthe genomic sequence.
Then, maximal exact matche@VEMs)—exceeding a length threshald—between the
genomic sequence and the query sequence are determineddhjimgahe query against
the suffix tree. In fact, instead of a suffix tree, we use a datectsire that requires less
memory. This data structure, called enhanced suffix arr&Cjdd], requires only 5 bytes
per character in the database. Finally, the MEMs computtttisearch stage are clustered
by a suitable chaining algorithm.

2 Searching with single exact matches

BesidesK (the K-mer size) and (the length threshold on MEMSs), we will use the fol-
lowing parameters:

H: The size of a homologous region. For a human exon this is&)lpi50-200 bp.

M: The probability that two corresponding nucleotides in tvaamologous regions coin-
cide. Roughly speakingdy/ is the match ratio between homologous regions.

G: Length of the genomic sequence. For example, the humamgeoontains - 10° bp.
Q: Length of the query sequence. For cDNA/EST mapping thiggically 500 bp.

1A maximal exact match is an exact match that is bounded by atigras.

A: The alphabet size. Heré = 4 because we solely consider nucleotide sequences.
P: Probability that homologous regions of lengthwill be found.

F: Expected number of (random) matches, based on the asamipétG and @ are
random sequences (i.e., at each position each nucleotidesowith probability% = i).

For the singleK-mer match strategy described above, the value® @nd F' can be
computed by the equations [Ken02p = 1 — (1 — MK)L%J andF = (Q — K +
1)(G/K)(1/A)X. For example, ifM = 97% and H = 100, then the probability that
two homologous regions contain an exact match of ledgts 16 exceed99%. In other
words, if one searches for all-mers of lengthl6 and extends these seeds appropriately,
then two homologous regions will be found with probabili®y > 99%. To put it dif-
ferently, givenM and H we can asked for the large&t such thatP > 99%. Table 1
shows the values oK for varying M. Furthermore, it shows the respective valueg-of
for G = 3-10° and@Q = 500. The value ofF gives a hint of how many false positive
seeds are to be expected by chance. A large valdémkans that one can expect that a
lot of work in the alignment stage will be wasted, becauseyradignments of extended
seeds will be “thrown away” because of poor quality.

single exact near perfect | near perfect | two exact K-

K-mer match | single MEM | K-mer match MEM mer matches| two MEMs
M K | F k F K | F k F K | F k F
81% | 6 6.0e+7 | 8 1.7e+7| 10 | 4.4e+6| 13 | 59e+5| 5 48e+6| 7 2.4e+5
83% | 6 6.0e+7 | 9 42e+6| 11 | 1.1et6| 14 | 1.6et5| 5 48e+6| 7 2,4e+5
85% | 7 1.3e+7 | 10 | 1.1e+6| 12 | 2.7e+5| 15| 42773 | 6 2.0e+5| 8 1.5e+4
87% | 8 28e+6 | 11 | 2.6e+5| 12 | 2.7e+5| 17 | 3043 6 2.0e+5| 9 905
89% | 9 6.3e+5 | 12 | 65625 | 13 | 67124 | 18 | 807 7 9233 10 | 55
91% | 10 | 1.4e+5| 13 | 16373 | 16 | 1037 21| 15 8 427 11| 3.3
93% | 11 | 31861 | 15 | 1019 19 | 16 241 0.3 9 21 12 | 0.2
95% | 14 | 389 18 | 16 22| 0.2 29 | 0.0 11 | 0.1 14 | 0.0
97% | 16 | 21 23 | 0.0 29 | 0.0 36 | 0.0 14 | 0.0 18 | 0.0

Table 1: GivenM, the table shows the large&f (k, respectively) for which? > 99%, where
H =100, G = 3-10° and@ = 500. The F' columns show the corresponding numbers of matches
that are expected by chance.

In order to compare the singlE-mer match strategy with the single MEM strategy, we
will show how P and F' can be computed for the latter. The probability that two ho-
mologous regions of lengtl contain an exact match of length k is the same as the
probability thatH coin flips (where the probability of the event head)is and that of
tail is 1 — M) produce a sequence of k£ consecutive heads. The probability of such a
headrun can be obtained by thHeorder Markov model depicted in Figure 2.

The Markov model starts in stateand the transition probabilities ;1 from statei to

statei + 1 are M for 0 < ¢ < k. Moreover, we have, o = 1 — M for0 < i < k
andpg . = 1, while all other transition probabilities afe Thus the transition matrix

LD
TG,

Figure 2: Markov model for the probability of a headrun ofdén> k.

P = (pi,j) is:
P0,0 Po,1 .. Dok 1- M M 0 0 .. 0 O
P1,0 P11 D1,k 1- M 0 M O 0 0
P = = .
Pk-1,0 Pk—1,1 - Pk—1,k 1-M 0 0 0 0 M
Pk,0 Pk,1 we Dkk 0 0 0 O 0 1

After H time steps, the Markov model is in stateif and only if a headrun of length
> k occurred. LetP = p(()i) denote the probability of this event. It is a consequence
of the Chapman-Kolmogorov equations [Pap84] that the entries in th€th power of the
transition matrix give thé{ step transition probabilities. Henpéi) = (PH)o . Again,
for H = 100 and varyingM, Table 1 shows the largebtsuch thatP > 99%.2 It is not
difficult to verify that if two homologous regions daf0bp contain exactlyy mismatches,
then they contain at least one MEM of length|100/(3 + 1)] = 25; see [KCO 01].
Thus the reader may wonder why, according to Table 1Moe 97% the largesk such
that P > 99% is 23 and not25. The explanation for this discrepancy is thdt = 97%
(recall that)M is the probability that two corresponding nucleotides i tsomologous
regions coincide) does not mean that any two homologousmediave3% mismatches.

In order to compute for the single MEM-strategy, lef; ; ; be the following random
variable:

I = 1, ifthere is a MEM of length ending at positiori in @ and at positiory in G
bisg 0, otherwise

The expected value di ; ; is

E(L;)=Pl;=1)= <1 B %) (%)l (1 - %>

because this is the probability bfnatching characters bounded by mismatches. Thus,

2If a headrun is a rare event, then the probability that headfuength > % occurs can be obtained by
the Chen-Stein method; see [Wat95]. However, these evemtsad rare in our context, because we deal with
homologous regions.

can be calculated as follows.

=k i=l j=I =k i=l j=l =k i=k j=k

Q 1 2 1 1
= ;a k+1) Q—k+1)<1—z) <Z)

oo (EEE) - REE e EEEC-DG)

1*16_“ forc#£1 yie|dSZzQ:k(%)l =

5B - (5852 - (-)")

Slnce(A)QJr is really small GQ (5)QJrl 3.5-1072% for Q = 500, G = 3-10°, A =
4), we can computé’ apprOX|mater by

~(G—k+1)(Q—k+1) <1_%) (%)k

Table 1 shows the values &ffor varying M.

Using the formuld_"" ¢! =

Kent [Ken02] also derived formulas for the computatiorfodnd F' for the cases in which

a seed consists of either a near perfect match (with at mesnismatch) or two exadt -
mer matches that are constrained to be near each other. Wesdidme for MEMs instead
of K-mer matches. For space reasons, the derivations of thespamding formulas are
omitted, but the respective values Bfand F' can be found in Table 1. The strategy
of using MEMs instead of{-mers has the advantage that less matches are expected by
chance. For example, ¥ = 93%, thenK = 11 andk = 15 guarantee that homologous
regions are found with probabiliti? > 99% by the single match strategy. In this case
31861 randon¥ -mer matches are expected, but only 1019 random MEMs. If ees u
a seed-and-extend method, then this implies that 30 time&e raadom seeds have to be
examined in the singl& -mer match strategy than in the single MEM strategy.

By default BLAT uses a twd<-mer matches strategy withih = 11. Our chaining algo-
rithm that will be explained in the next section can be viewsd single MEM strategy.

3 Chaining instead of seed-and-extend

In contrast to BLAT, we do not use a seed-and-extend methdedd we search for the
highest scoring chain of colinear matches (MEMs) betweencibNA and the genomic
sequence. To make this precise, we need some preliminaries.

genome genome

CDNA/EST "\ GGACACAE CDNA/EST

(a) (b)

Figure 3: Overlapping MEMs.

3.1 Preliminaries

Definition 3.1 An exact match between two sequencésand(is a triple(l, p, ¢) such
thatGp..p + 1 — 1] = Q[q..q + | — 1], i.e., thel-character-long substring @ starting
at positionp coincides with thé-character-long substring 6§ starting at positiorg. An
exact match iseft maximal if G[p—1] # Q[¢— 1] andright maximal if G[p+1] # Qlg+1].
A maximal exact match (MEM) is a left and right maximal exact match.

A maximal unique match (MUM) is a MEM (I, p, ¢) such that the substring[p..p + 1 —
1] = Qlg..q¢ + 1 — 1] occurs exactly once i¥ and exactly once if).

Definition 3.2 Let (I1, p1,¢q1) and(lz, p2, ¢2) be two MEMs withp; < ps andg; < ¢o.
We say thatly, p1, q1) overlapswith (I3, p2, ¢2)

e inGifandonlyifps <p;+l1 —1<py+is—1

einQifandonlyifge < g1+l —1<qg+13—1

Figure 3 (a) shows two MEMs that overlap @ but not inG, while Figure 3 (b) shows
two MEMSs that overlap in botli’ and@.

A MEM (I,p,q) can be represented by a rectangleRih with the two extreme corner
points(p,q) and(p +1 — 1,q + 1 — 1); see Figure 4. Such a rectangle is also called
fragment. In the following, we will identify a MEM (I, p, q) with its fragmentf in R?
and denote the two extreme corner pointsbby(f) = (beg(f).z,beg(f).y) = (p,q)
andend(f) = (end(f).z,end(f).y) = (p +1—1,q+ 1 — 1). Furthermore, we define
f.length = [. That s, f.length denotes the length of the MEM corresponding'to

Definition 3.3 The relation< on the set of fragments is defined as follows. <« f if
and only if the following two conditions hold:

1. beg(f').x < beg(f).z andbeg(f’).y < beg(f).y.
2. end(f").x < end(f).z andend(f").y < end(f).y.

If f/ < f,then we say that’ precedes f. The fragmentg” and f arecolinear if either
/! preceded or f precedey’.

Q Q
3 D
D :
e ol e O,
A B A B
o p G o p G
@ (b)

Figure 4: (a) The four cases that have to be considered irughidnd Kurochkin’s approach.
(b) The two casest U B andC U D that have to be considered in our approach.

Thus, two fragments are colinear if they appear in the samberan both sequences. Note
that if we further havend(f’).x < beg(f).x andend(f’).y < beg(f).y, thenf” and f
are colinear and non-overlapping.

3.2 A new chaining algorithm for cDNA mapping

In cDNA mapping, the scorecore(C) of a chainC' of colinear and non-overlapping
MEMs is the sum of the lengths of the MEMs @\. That is, gaps between the matches
are not penalized because large gaps correspond to infrbas, a highest-scoring chain
contains MEMs that best “cover” the cDNA and hence the laratiof these matches in
the genomic sequence are the most promising exon candidatisswell-known that a
highest-scoring chain can be computedifm log m) time using the technique sparse
dynamic programming [EGGI92], wherem denotes the number of matches. We have
shown in [AOO05] that highest-scoring chains for more thao sequences can also be
computed in subquadratic time usingnge maximum queries (RMQs) based on range
trees ork D-trees. Contemporaneously, Shibuya and Kurochkin [SKB8\w&d that the
chaining problem for two sequences can be solved with dyo&MQs based on AVL
trees. To take overlaps into account, they definedwedap length of two MEMs to be the
maximum of the amount of overlap i¥ and in@Q. In their paper, the scorgore(C) of a
chainC of colinear MEMs is the sum of the lengths of the MEM<Inminus their overlap
lengths. As a consequence of their definition of the oveeagth, in the computation of

a highest-scoring chai@’y of colinear MEMs ending with MEMf, one has to consider
four different regions, namelyt, BUC4, Cs, andD; see Figure 4 (a). Each of these cases
yields a candidate MEM; and a highest-scoring chai;, of colinear MEMs ending
with f;, 1 < i < 4. Then,score(C}y) is computed bycore(Cy) = max;{score(Cy,) +
f.length — overlap length(f, f;)}; see [SKO3] for details. Shibuya and Kurochkin’s
algorithm runs inD(m log m) time, but it is rather complicated because it is a mixture of
RMQs and the candidate list paradigm.

We argue that for cDONA mapping Shibuya and Kurochkin’s psnfdr overlaps is not
suitable. In our opinion, the overlap length of two MEMSs shibbie defined solely as
the amount of their overlap in the cDNA because in the prokdérhand one wants to
maximize the coverage of the cDNA. In other words, we sugesit penalize an overlap

in the genomic sequencg. The consequences of our approach are illustrated in Figure
4 (b). Thez-axis corresponds to the genomic sequeficevhile they-axis corresponds

to the cDNA sequenc€. Each MEM that can precede the ME}Min a chain must start

in region A. Those that do not overlap wighin ¢ must end in region A or B. Those that
do overlap withf in Q must end in region C or D. We will show next that this means that
the cDNA mapping problem can be solved by two two-dimendiBMQs in the regions
AUBandC U D.

Definition 3.4 For any two fragmentg’ < f, the amount of overlap in the cDNA se-
quenceis

overlapy (', f) = { STLd(f)-y —beg(f)y+1, gtﬁZ?v(v{sly > beg(f)y

In our opinion, the cDNA mapping problem should be formuds follows.

Definition 3.5 Given a set ofm fragments, find a chairC' of colinear fragments
fisforooos fo (b€, fi <€ fo < ... < fi) such thatscore(C) = S'_, filength —

S overlapy (fi, fir1) is maximal.

Thus, we want to maximize the amount of cDNA sequence mappéuetgenomic se-
quence. Itis easy to see that a perfect mapping has a scoegtreds the cDNA length.

In the following, f.score denotes the maximum score of all chains ending with the frag-
mentf. When we speak about the score of the pobatg f) = (beg(f).z, beg(f).y) and
end(f) = (end(f).x,end(f).y) we implicity mean the score of. Clearly, f.score can

be computed by the recurrence

f.score = f.length + max{f’.score — overlap,(f', f)|f < f}

Algorithm 3.6 is a geometric solution to this recurrence.uses a line sweep proce-
dure w.r.t. the genomic sequence and range maximum queri@sdt the fragment that
maximizes the score. There are two data structdPesand D, to efficiently answer
2-dimensional range maximum queries with activation. lis tidgorithm, the function
RMQp,([x1..x2], [y1--y2]), 7 € {1,2}, is a range maximum query that retrieves the point
of maximum score in the set of active points stored in the datectureD; and within
the rectangular region defined by the interals.z-] in G and[y;..y2] in Q. For greater
details, we recommend the reader to consult our paper [AO05]

Algorithm 3.6
Sort all start points of the m fragmentsin ascending order w.r.t. their 2 coordinate

and store themin the array points.
Sore all the end points asinactive in the data structures D, and Ds.
fori<i<m
determine the fragment f with beg(f).x = points[i]
q1 := RMQp, ([0..end(f).x — 1],]0..beg(f).y — 1])
42 = RV ([0-end(f) - — 1. [beg(f)-y-end(f).y — 1)
determine the fragment f; with end(f1) = ¢1
if f1 = L thenscore; =0
elsescore; = fi.score
determine the fragment f> with end(f2) = g2
if fo = L thenscores =0
else
if beg(f2).y < beg(f).y) then
scoreg = fa.score — (end(f2).y — beg(f).y)
elsefo = 1, and scores =0
f.score = f.length + max{scorey, scores}
if score; > scorea > 0 then connect f; to f else ifscores > 0 then connect f to f
activate (end(f).x, end(f).y) in Dy with score f.score
activate (end(f).z, end(f).y) in Do with score f.score — end(f).y

Before proving the correctness of this algorithm, we woiltd to explain it. When the
start point of a fragmenf is scanned, we search for a fragmeghthat precedeg and
maximizesf’.score — overlap,(f’', f). To take overlaps into account, we have to divide
the search region into two subregions. The first subregitireisectanglé[0..end(f).x —
1],[0..beg(f).y — 1]); this is the regiom U B in Figure 4 (b). In the following this region
will be denoted byA B(f) to emphasize its dependence firAny fragment in this region
that precedeg does not overlap withf in the cDNA sequencé®. The second subregion
is the rectangl€[0..end(f).z — 1], [beg(f).y..end(f).y — 1]), denoted byCD(f); see
regionC U D in Figure 4 (b). Any fragment in this region that precedesverlaps with

f in the cDNA sequencé). In order to penalize this overlap, we activate each endtpoin
in Do with f.score — end(f).y instead off.score. This guarantees, as we shall see in the
correctness proof, that a fragmefatwill be found such thafs.score — overlapy(fa, f)

is maximal inCD(f). However, it may happen thatg(f2).y > beg(f).y. Thatis,
beg(f2) ¢ A(f), whereA(f) denotes the rectangl)..beg(f).x — 1], [0..beg(f).y — 1]).

In this case, we simply ignoré. This does not affect the correctness of the algorithm,
because then there is a fragmentA®(f) whose score is at least as high as thaf:nf
Finally, if f1.score > fa.score — overlapy(f, f2), thenf; is connected tgf. Otherwise,

f2 is connected tg'.

For a formal correctness proof, we need the following définiand lemmata.

Definition 3.7 The priority of a fragmentf’, denoted byf’.priority, is defined as
fl.priority = f'.score — end(f').y.

Lemma 3.8 Let f' and f” befragmentswith end(f’) € CD(f) andend(f") € CD(f).

We have f”.priority < f'.priority if and only if f”.score — overlap,(f”,f) <
f'.score — overlapy (f', f).

Proof
f"priority < f'.priority
& f".score —end(f")y < fl.score —end(f").y
& f".score — (end(f").y — beg(f).y) < f'.score — (end(f’).y — beg(f).y)
& [" .score — overlapy (", f) < f'.score — overlapy(f’, f)
Note that in the lemma can be replaced witk.]

Thus, if f” is a fragment with highest priority i6'D(f), thenf’.score — overlap,(f’, f)

is maximal inC'D(f). The priority of a fragment’ is independent of . Hence, it can be
computed in constant time whefi is scanned. This has the advantage that the overlaps
between all fragments need not be computed in advance (hatehis would yield a
guadratic time algorithm).

Lemma 3.9 Let C be a chain composed of the fragments f1, ..., f;. For every index i,
1<i<t—1,wehave f;11.priority < f;.priority.

Proof
fix1.priority = fiy1.score — end(fit1).y
= fi.score + fiy1.length — overlapy(fi, fix1) — end(fix1).y
= fi.score —beg(fit1).y — overlapy(fi, fit1) +1
< fi.score —end(f;).y
< fi.priority
Not that if overlap, (fi, fi+1) = 0, thenf, 1 .priority < f;.priority. a

Theorem 3.10 Algorithm 3.6 correctly computes an optimal chain.

Proof When the sweep-Iline reaches the start pbigt /) of fragmentf, the end points

of all fragments that started befobeg(f).z are already activated in the data structures
D; and D,. The end points of the remaining fragments are still in&cti¥his guaran-
tees that each fragment whose end point liesti(f) or CD(f) but whose start point
occurs afterbeg(f).x will not be considered in what follows. Because each fragmen
with end point in regiomB(f) does not overlap witlf in the cDNA sequence, the two-
dimensionaRMQp,, retrieves the fragmenf; of maximum score in the regioAB(f)

by searching in the set of active end pointslin. Analogously, because a fragmefit
with end point in regiorC'D(f) overlaps withf in the cDNA sequence, it is activated in
D, with priority f’.score — end(f").y. The two-dimensionaRMQp,, yields the fragment
f2 of the highest priority inC'D(f), by searching in the set of active end pointslip.

By Lemma 3.8, f5.score — overlapy(f2, f) is maximal inCD(f). Suppose first that
beg(f2).y < beg(f).y, i.e., the start point of> lies in A(f). In this case we conne¢t to
f.if fa.score—overlapy(fa2, f) > fi.score. Otherwise, we conneg to f provided that
f1 # L, and we are done. Now suppose thej(f2).y > beg(f).y, i.e., the start point
of fy lies in CD(f). This impliesoverlapy(fa, f) > f2.length. According to Lemma
3.9, if there is a fragment’ connected tg; (i.e., f’ is the predecessor ¢f in a highest-
scoring chain ending witlfz), then the end pointnd(f’) of /' must lie in A(f). Hence,
overlap,(f’, f2) = 0 and we have

[/.score = f'.score — overlap,(f’, f2)

fa.length + f'.score — overlapy(f', f2) — f2.length
= fa.score — fa.length

> fa.score — overlapy(fa, f)

Recall from Lemma 3.8 thaf,.score — overlapy(f2, f) is maximal inCD(f). Now it
follows from f’.score > fa.score — overlapy(fo, f) In conjunction with f’.score <
f1.score that fy can safely be ignored.

There is one remaining casé has no predecessor. Agaifs, can be ignored by Lemma
3.8 becausey.score — overlapy(f2, f) = fa.length — overlap,(fz2, f) < 0. a

The complexity of Algorithm 3.6 depends on the complexitytef RMXs with activation
supported by the data structurBs andD-. If D; andD- are implemented as range trees
supported by the technique of fractional cascading andrergthwith priority queues as
shown in [AOO05], then the complexity of the algorithm(§m log m log log m) time and
O(mlog m) space. If thekd-tree is used instead of the range tree, then the algoritkesta
O(m!-%) time in the worst case and(m) space. Interestingly, the query timelaf-tree
can be improved in practice using a set of programming tfiBks90]. If the gaps between
successive fragments in a chain are constrained to be atiinestaracters long (e.g\y’
could be set to the estimated maximum intron length), ReQ,, andRMQp, have to be
limited to the regiong[end(f).x — W..end(f).x — 1], [beg(f).y — W..beg(f).y —1]), and
([end(f).x — W..end(f).x — 1], [beg(f).y..end(f).y — 1]), respectively. This restriction
increases the complexity of the algorithm using the range toO(m log® m) time and
O(mlogm) space (because the priority queues can no longer be used)conplexity
using thekd-tree remains the same.

3.3 Special cases

In Algorithm 3.6, the range maximum queries are two-dimensi to guarantee that
beg(f’) € A(f) andend(f’) € {AU B UC U D}. However, one-dimension&VQs
suffice ifbeg(f’) € A(f) impliesend(f’) € {AU BUC U D} and vice versa. There are
two interesting special cases that meet this requiremem. fifst is the usage MUMs

or rare-MEMs instead ofMEMs and the second is the restriction to a certain amount of
overlapping.

° G

Figure 5: Fragmenf; is embedded in fragmerjtin @, while f is embedded irf; in Q and in f3
in G. Such embeddings cannot occuMfJMs are used instead MIEMs.

3.3.1 MUMsor rareeMEMs

Suppose one usédUMs instead ofMEMs. When the sweep-line reaches the start point
beg(f) of fragmentf, then it is sufficient to use the one-dimensional range marim
queriesRMQp, ([0..beg(f).y — 1]) andRMQp, ([beg(f).y..end(f).y — 1]) instead of the
two-dimensionaRM of Algorithm 3.6. This is becaud®Qp, ([0..beg(f).y — 1]) con-
siders only the end points that where activated beforejghtte corresponding start point
must occur beforéeg(f).z. In summary, theRMQ yields a fragmeny”’ with beg(f’) in
A(f). If end(f") were not contained in the regiohB(f), then f would be embedded in
f'; cf. fragmentfs in Figure 5. However, 81UM cannot be embedded in anoth¢UM.

(If suchMUMSs would exist, then the substring of the embedti#dM would occur more
than once iz or @, which contradicts with the definition dlUMs). Analogously, one
can show thaRMQp, ([beg(f).y..end(f).y — 1]) retrieves the end point of a fragmefit
such thabeg(f”) € A(f) andend(f") € CD(f). Clearly, this implies that the algorithm
sketched above requiréXm log m) time andO(m) space. (For a one-dimensiofiRNQ
the range tree ankld-tree are equivalent.) The algorithm can be modified to detd w
rare-MEMs inO(rm log m) time andO(m) space.

3.3.2 Restricting the amount of overlapping

Suppose that the minimum fragment length.isf we tolerate overlappings of at madst-1
characters between any two successive fragmgrasd f in a chain, (i.e.end(f’).z <
beg(f).x + kandend(f").y < beg(f).y + k), then it follows thabeg(f') € AB(f) (i.e.,
beg(f').x < beg(f).x andbeg(f').y < beg(f).y). This property can be used to reduce
the dimension of th&MXs to one. To this end, we attach to each fragnyetite virtual
pointv(f) = (beg(f).x+k, beg(f).y+k). When the sweep-line reaches), we launch
RMQp, ([0, beg(f).y — 1]) and RMQp, (beg(f).y,v(f).y — 1]) to find the fragments of
highest score. Algorithm 3.11 shows how to compute a chamaxXimum score allowing
only overlaps of at mogt — 1 characters. (For ease of presentation, we ignore the case in
which the fragments retrieved 8MQp, or RMQp, are_L.)

Algorithm 3.11
Sort all virtual and all end points of the m fragmentsin ascending order wir.t. their x;
coordinate and store themin the array points.
Soreall the end points (ignoring their 21 coordinate) asinactivein Dy and Ds.
for 1 <i<2m
if points[¢] isthe point v(f) then
a1 := RMQp, (0,beg(f).y — 1)
q2 := RMQp, (beg(f).y, beg(f).y + k — 1)
determine the fragment f; with end(f1) = ¢1
determine the fragment f5 with end(f2) = ¢2
score; = f.length + f1.score
scoreg = f.length + fa.score — (end(f2).y — beg(f).y)
f-score = max{scorey, scores}
if f.score = score; then connect f to f; elseconnect f to f
else/x points|[i] is the end point of a fragment f x/
activate end(f).y in D, with score f.score
activate end(f).y in Do with score f.score — end(f).y

4 Experimental results

We mapped the Fantom database [GfR] (version 2.1.1, 60770 full cDNA sequences
of total length 120 Mbp) to the mouse chromosome 19 (UCSC @GenBrowser) using
BLAT and our method. More precisely, we used Wmatch package developed by Ste-
fan Kurtz tt p: // www. vimat ch. de) to generate alMEMs of minimum length 20
(approx. 1.4 million) and the program CHAINER [AO04] to coute the highest-scoring
chains of MEMs. (Although Table 1 suggests to kse 23 for the experiments, we found
thatk = 20 results in a better coverage of the chains.) We tested BLATgube default
options (in particulax = 11) with and without the option that excludés-mers that
occur too often. BLAT took 442 minutes without this optiordal? minutes with this op-
tion. The running time o¥match and CHAINER was 18 minutes: 16 minutes to obtain the
MEMs and 2 minutes to build the chains. Using the unmasked chromesBLAT took
39 hours even when over-repeatgdmers were excluded, whimatch and CHAINER
took 2 hours when over-repeated MEMs were excluded. Theriempets were performed
on a Sun Fire 280 computer equipped with 6 GB RAM and two prsmsyUltraSPARC
Il Cu 1.015 GHz).

We compared our results on two levels with those obtainedl®iBtaking the annotation
as a reference. The first level measures whether the cDNA ppetbor not. The second
level measures the amount of correctly mapped exons in dailiAcTable 2 shows the
results of this comparison. These results are w.r.t. th@ip@strand only. From the
table, one can see that BLAT and CHAINER have the same satsiih the gene level.
However, the specificity of BLAT on that level is lower thamatlof CHAINER. Although
we removed BLAT hits whose percentage identity is less Hiéh, there are still 113 false
positives. There are 41 genes that are contained solelgiarthotation; this is due to the

Gene Level Exon Level
aAbAclanblarc]bAc] a] b Jc|aAbAclanb]aAc]bAc]a]b]c
[985 [1 [1 [123 [41J113J0] 5056 [8 [9 | 53 [43]20][11]

Table 2: Accuracy of the cDNA mapping on the gene and exor.l&ge symbola stands for the
annotationp refers to BLAT results, and denotes CHAINER results. The tem b A ¢ stands for
the set of genes/exons containedirb, andc.

[0— [50— [60—] 70—] 80— [90— [100 | 0— [50— [60— | 70— | 80— [90— [100 |
[0] 42 [63 | 89 [147 [616 [29 | 0 [17 [23 [20 | 34 [29 [0 |

Table 3: Coverage w.r.t. CHAINER. Left: Coverage of the akahat are in the annotation. Right:
Coverage of the chains that are not in the annotation.

fact that their regions were masked in the chromosomal seguesed.

On the exon level, we considered only the exons of the gem¢®dtur in the annotation
and that were found by both BLAT and CHAINER. On this level, ALalso has less
specificity than CHAINER. We examined the 20 hits found onhBLAT and found that
all of them are false positives. Usually these hits corradptm the boundaries of the
mapped cDNA and the hits lie far away from the correspondimgptated position in the
genomic sequence. Interestingly, some of the 11 exons fonlydoy CHAINER seem to
be missing from the annotation. All 53 exons found by BLAT &tdAINER that are not
in the annotation seem to be true positives.

Table 3 shows the coverage (percentage identity) of thenshaitained by CHAINER.
We measured the coverage to estimate the amount of work di¢edeost-process the
chains by means of a standard dynamic programming algorithrthe character level
that takes splice site signals into account. From the tabie, can see that abo®®%
of the annotated cDNAs have chains whose coverage is higher70%. This shows
that dynamic programming has to be applied only to shorbregyi The cDNA sequences
not occurring in the annotation that were mapped by BLAT arthINER have varying
coverage levels. Table 3 (right) shows the coverage of thetentially false positives.
Note that some of them have a rather high coverage, so onetara out the possibility
that these are in fact genes.

Finally, Table 4 quantifies the number and the amount of apstl It is interesting to
note that most of the overlaps occur in the cDNA sequencesensize of the overlap is
usually two, due to the splice site signals.

References

[AKOO4] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. ReplacSuffix Trees with Enhanced
Suffix Arrays. Journal of Discrete Algorithms, 2:53—-86, 2004.

In the Annotation
0 [1] 2 [3J4]5]6]7[8]of1wo]11]12[13]14—19
Q3071796 [1187 [857 [465 [169 [84 [27[13[8 [16[17] 3 [6 28
G 6472 | 69 73 29 9 4 |12 5 131111 8| 7] 4 20
Not in the Annotation
0 J1[2]3J4]5]6[7]8]9]10[11]12]13[14—19
Q184425291352 7[o[7[o]J oo OO 2
G|1892| 6 | 3 |13]5|0f10[3]1|0] 0001 0

Table 4: Amount of overlapping between tM&Msin the chains. The row title@ contains overlaps

in the cDNA sequence, while that title@d contains overlaps in the genomic sequence. The total
number of overlaps occurring in both the cDNA and the gen@&64 (226 occur in the annotation
and 38 do not occur in the annotation).

[A004]

[AOO5]
[Ben90]

[EGGI92]

[KCOT01]

[Ken02]
[NCMO01]

[OFK*+02]

[Pap84]

[SKO3]

[Wat95]

M.l. Abouelhoda and E. Ohlebusch. CHAINER: Softwéoe Comparing Genomes.
In 12th International Conference on Intelligent Systems for Molecular Biology/3rd
European Conference on Computational Biology, 2004. Short paper available at
http://ww.iscb.org/isnbeccb2004/short %20paper s/ 19. pdf .

M.l. Abouelhoda and E. Ohlebusch. Chaining Algomiih for Multiple Genome Com-
parison.Journal of Discrete Algorithms, 3:321-341, 2005.

J.L. Bentley. K-d trees for Semidynamic Point SétsProc. 6th Annual ACM Sympo-
sium on Computational Geometry, pages 187-197, 1990.

D. Eppstein, Z. Galil, R. Giancarlo, and G.F. l&0. Sparse dynamic programming.
I: Linear cost functions; II: Convex and concave cost fumsi. Journal of the ACM,
39:519-567, 1992.

S. Kurtz, J.V. Choudhuri, E. Ohlebusch, C. Schleierreach Stoye, and R. Giegerich.
REPuter: The Manifold Applications of Repeat Analysis onen@mic ScaleNucleic
Acids Research, 29(22):4633—-4642, 2001.

W.J. Kent. BLAT—The BLAST-Like Alignment ToolGenome Research, 12:656—664,
2002.

Z. Ning, A.J. Cox, and J.C. Mullikin. SSAHA: A Fast 8&eh Method for Large DNA
DatabasesGenome Research, 11(10):1725-1729, 2001.

Y. Okazaki, M. Furuno, T. Kasukawa, J. Adachi, H. BonoK8ndo, I. Nikaido, N. Os-
ato, R. Saito, and H. Suzuki et al. Analysis of the mouse t@pt®me based on func-
tional annotation of 60770 full-length cDNASlature, 420(6951):563-573, 2002.

A. PapoulisProbability, Random Variables, and Sochastic Processes. McGraw-Hill,
New York, 1984.

S. Shibuya and I. Kurochkin. Match Chaining Algorith for cDNA Mapping. IrProc.
3rd International Workshop on Algorithms in Bioinformatics, volume 2812 of_ecture
Notes in Bioinformatics, pages 462-475, Berlin, 2003. Springer-Verlag.

M.S. Waterman. Introduction to Computational Biology: Maps, Sequences and
Genomes. Chapman Hall, 1995.

