
Efficient mapping of large cDNA/EST databases to
genomes: A comparison of two different strategies

C. Wawra∗ M.I. Abouelhoda∗ E. Ohlebusch∗

Abstract: This paper presents a comparison of two strategies for cDNA/EST map-
ping: The seed-and-extend strategy and the fragment-chaining strategy. We derive
theoretical results on the statistics of fragments of type maximal exact match. More-
over, we present efficient fragment-chaining algorithms that are simpler than previ-
ous ones. In experiments, we compared our implementation ofthe fragment-chaining
strategy with the seed-and-extend strategy implemented inthe software tool BLAT.

1 Introduction

The first step in gene expression is transcription of the genetic information contained in
DNA into RNA. In this process, the RNA polymerase generates aprimary RNA transcript
that extends from the initiation site to the termination site in a perfect complementary
match to the DNA sequence used as a template. In eukaryotes, however, not all tran-
scribed RNA is destined to arrive in the cytoplasm as mRNA. Rather, by an incompletely
understood process, sequences complementary to introns are excised from the primary
transcript, and the ends of exon sequences are joined together in a process termed “splic-
ing.” The exons are short segments ranging from tens to hundreds of base pairs, while the
introns are normally several orders of magnitude longer. Tomake a cDNA library, one
isolates all the mRNA from a cell or tissue. Then, using this mRNA as a template, reverse
transcriptase makes cDNA copies of each mRNA molecule in themixture. A completely
sequenced cDNA is termed “full-length” cDNA. For economical reasons, however, cDNA
is often only partially sequenced, yielding expressed sequence tags (ESTs). As mentioned
above, cDNA consists only of the exons of the transcribed gene because the introns have
been spliced out. The problem of cDNA mapping is to find the gene and its exon/intron
structure on the genome from which the cDNA originated; see Figure 1. In this way, cDNA
libraries can be used to identify previously unknown genes or to annotate a genomic se-
quence.

The software tool BLAT (the BLAST-Like Alignment Tool) [Ken02] allows a fast mapping
of a cDNA/EST sequence to a genomic sequence as follows. First, the genomic sequence
(the database) is divided into consecutive non-overlapping K-mers (subsequences ofK
contiguous bases). Then, the position of each occurrence ofeachK-mer is stored in a

∗Computer Science Faculty, Theoretical Bioinformatics, University of Ulm, 89069 Ulm, Germany. Email:
eo@informatik.uni-ulm.de

exon 1 exon 3exon 2

exon 2 exon 3

intron intron

exon 1
cDNA

Genome

Figure 1: An example of cDNA mapped to a genomic sequence.

hash table. Searching for a cDNA/EST sequence (the query sequence) in the genome is
done by obtaining from the hash table the “hits” for eachK-mer in the query sequence. In
other words, in the “search stage” one looks for allK-mers that are shared by the query
sequence and the database. Other software tools like e.g. SSAHA [NCM01] use the same
strategy. Because extensions of these shared regions are likely to be homologous, BLAT
examines these regions in more detail and in an “alignment stage” produces alignments
for the regions that are indeed homologous according to somecriteria. Thus, BLAT uses
a seed-and-extend strategy: The exactK-mer matches are the seeds that are extended
in the alignment stage. BLAT also supports alternative search methods, in which a seed
consists of either anear perfect match (with at most one mismatch) or multiple exact
K-mer matches that are constrained to be near each other.

Our method is not a seed-and-extendmethod; it rather resembles the anchor-based multiple
alignment methods. To be precise, we first build a suffix tree from the genomic sequence.
Then, maximal exact matches1 (MEMs)—exceeding a length thresholdk—between the
genomic sequence and the query sequence are determined by matching the query against
the suffix tree. In fact, instead of a suffix tree, we use a data structure that requires less
memory. This data structure, called enhanced suffix array [AKO04], requires only 5 bytes
per character in the database. Finally, the MEMs computed inthe search stage are clustered
by a suitable chaining algorithm.

2 Searching with single exact matches

BesidesK (the K-mer size) andk (the length threshold on MEMs), we will use the fol-
lowing parameters:

H : The size of a homologous region. For a human exon this is typically 50-200 bp.

M : The probability that two corresponding nucleotides in twohomologous regions coin-
cide. Roughly speaking,M is the match ratio between homologous regions.

G: Length of the genomic sequence. For example, the human genome contains3 · 109 bp.

Q: Length of the query sequence. For cDNA/EST mapping this is typically 500 bp.

1A maximal exact match is an exact match that is bounded by mismatches.

A: The alphabet size. HereA = 4 because we solely consider nucleotide sequences.

P : Probability that homologous regions of lengthH will be found.

F : Expected number of (random) matches, based on the assumption thatG andQ are
random sequences (i.e., at each position each nucleotide occurs with probability1

A
= 1

4).

For the singleK-mer match strategy described above, the values ofP and F can be

computed by the equations [Ken02]:P = 1 − (1 − MK)⌊
H

K ⌋ and F = (Q − K +
1)(G/K)(1/A)K . For example, ifM = 97% andH = 100, then the probability that
two homologous regions contain an exact match of lengthK = 16 exceeds99%. In other
words, if one searches for allK-mers of length16 and extends these seeds appropriately,
then two homologous regions will be found with probabilityP ≥ 99%. To put it dif-
ferently, givenM andH we can asked for the largestK such thatP ≥ 99%. Table 1
shows the values ofK for varyingM . Furthermore, it shows the respective values ofF
for G = 3 · 109 andQ = 500. The value ofF gives a hint of how many false positive
seeds are to be expected by chance. A large value ofF means that one can expect that a
lot of work in the alignment stage will be wasted, because many alignments of extended
seeds will be “thrown away” because of poor quality.

single exact near perfect near perfect two exact K-
K-mer match single MEM K-mer match MEM mer matches two MEMs

M K F k F K F k F K F k F

81% 6 6.0e+7 8 1.7e+7 10 4.4e+6 13 5.9e+5 5 4.8e+6 7 2.4e+5
83% 6 6.0e+7 9 4.2e+6 11 1.1e+6 14 1.6e+5 5 4.8e+6 7 2,4e+5
85% 7 1.3e+7 10 1.1e+6 12 2.7e+5 15 42773 6 2.0e+5 8 1.5e+4
87% 8 2.8e+6 11 2.6e+5 12 2.7e+5 17 3043 6 2.0e+5 9 905
89% 9 6.3e+5 12 65625 13 67124 18 807 7 9233 10 55
91% 10 1.4e+5 13 16373 16 1037 21 15 8 427 11 3.3
93% 11 31861 15 1019 19 16 24 0.3 9 21 12 0.2
95% 14 389 18 16 22 0.2 29 0.0 11 0.1 14 0.0
97% 16 21 23 0.0 29 0.0 36 0.0 14 0.0 18 0.0

Table 1: GivenM , the table shows the largestK (k, respectively) for whichP ≥ 99%, where
H = 100, G = 3 · 109 andQ = 500. TheF columns show the corresponding numbers of matches
that are expected by chance.

In order to compare the singleK-mer match strategy with the single MEM strategy, we
will show how P andF can be computed for the latter. The probability that two ho-
mologous regions of lengthH contain an exact match of length≥ k is the same as the
probability thatH coin flips (where the probability of the event head isM and that of
tail is 1 − M) produce a sequence of≥ k consecutive heads. The probability of such a
headrun can be obtained by the0-order Markov model depicted in Figure 2.

The Markov model starts in state0 and the transition probabilitiespi,i+1 from statei to
statei + 1 areM for 0 ≤ i < k. Moreover, we havepi,0 = 1 − M for 0 ≤ i < k
andpk,k = 1, while all other transition probabilities are0. Thus the transition matrix

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��

-
M

-
M

-
M

-
M

-
M

...

� � � � � �
1 − M

�
�

- �
��

�

1

?

0 1 2 3 4 k-1 k

Figure 2: Markov model for the probability of a headrun of length≥ k.

P = (pi,j) is:

P =

0

B

B

B

B

@

p0,0 p0,1 ... p0,k

p1,0 p1,1 ... p1,k

...

pk−1,0 pk−1,1 ... pk−1,k

pk,0 pk,1 ... pk,k

1

C

C

C

C

A

=

0

B

B

B

B

@

1 − M M 0 0 ... 0 0
1 − M 0 M 0 ... 0 0

...

1 − M 0 0 0 ... 0 M

0 0 0 0 ... 0 1

1

C

C

C

C

A

After H time steps, the Markov model is in statek if and only if a headrun of length
≥ k occurred. LetP = p

(H)
0,k denote the probability of this event. It is a consequence

of the Chapman-Kolmogorov equations [Pap84] that the entries in theH th power of the
transition matrix give theH step transition probabilities. Hencep(H)

0,k = (PH)0,k. Again,
for H = 100 and varyingM , Table 1 shows the largestk such thatP ≥ 99%.2 It is not
difficult to verify that if two homologous regions of100bp contain exactly3 mismatches,
then they contain at least one MEM of length≥ ⌊100/(3 + 1)⌋ = 25; see [KCO+01].
Thus the reader may wonder why, according to Table 1, forM = 97% the largestk such
thatP ≥ 99% is 23 and not25. The explanation for this discrepancy is thatM = 97%
(recall thatM is the probability that two corresponding nucleotides in two homologous
regions coincide) does not mean that any two homologous regions have3% mismatches.

In order to computeF for the single MEM-strategy, letIl,i,j be the following random
variable:

Il,i,j =

{

1, if there is a MEM of lengthl ending at positioni in Q and at positionj in G

0, otherwise

The expected value ofIl,i,j is

E(Il,i,j) = P (Il,i,j = 1) =

(

1 −
1

A

) (

1

A

)l (

1 −
1

A

)

because this is the probability ofl matching characters bounded by mismatches. Thus,F

2If a headrun is a rare event, then the probability that headrun of length≥ k occurs can be obtained by
the Chen-Stein method; see [Wat95]. However, these events are not rare in our context, because we deal with
homologous regions.

can be calculated as follows.

F = E

0

@

Q
X

l=k

G
X

i=l

Q
X

j=l

Il,i,j

1

A =

Q
X

l=k

G
X

i=l

Q
X

j=l

E(Il,i,j) ≤

Q
X

l=k

G
X

i=k

Q
X

j=k

„

1 −
1

A

«2 „

1

A

«l

=

Q
X

l=k

(G − k + 1)(Q − k + 1)

„

1 −
1

A

«2„

1

A

«l

Using the formula
∑n

i=0 ci = 1−cn+1

1−c
for c 6= 1 yields

∑Q
l=k(1

A
)l =

Q
X

l=0

„

1

A

«l

−

k−1
X

l=0

„

1

A

«l

=

1 −
`

1

A

´Q+1

1 −
`

1

A

´ −
1 −

`

1

A

´k

1 −
`

1

A

´

!

=

„

1

A

«k

−

„

1

A

«Q+1
!

Since
(

1
A

)Q+1
is really small (GQ

(

1
A

)Q+1
= 3.5·10−290 for Q = 500, G = 3·109, A =

4), we can computeF approximately by

F ≈ (G − k + 1)(Q − k + 1)

„

1 −
1

A

«„

1

A

«k

Table 1 shows the values ofF for varyingM .

Kent [Ken02] also derived formulas for the computation ofP andF for the cases in which
a seed consists of either a near perfect match (with at most one mismatch) or two exactK-
mer matches that are constrained to be near each other. We didthe same for MEMs instead
of K-mer matches. For space reasons, the derivations of the corresponding formulas are
omitted, but the respective values ofP and F can be found in Table 1. The strategy
of using MEMs instead ofK-mers has the advantage that less matches are expected by
chance. For example, ifM = 93%, thenK = 11 andk = 15 guarantee that homologous
regions are found with probabilityP ≥ 99% by the single match strategy. In this case
31861 randomK-mer matches are expected, but only 1019 random MEMs. If one uses
a seed-and-extend method, then this implies that 30 times more random seeds have to be
examined in the singleK-mer match strategy than in the single MEM strategy.

By default BLAT uses a twoK-mer matches strategy withK = 11. Our chaining algo-
rithm that will be explained in the next section can be viewedas a single MEM strategy.

3 Chaining instead of seed-and-extend

In contrast to BLAT, we do not use a seed-and-extend method. Instead we search for the
highest scoring chain of colinear matches (MEMs) between the cDNA and the genomic
sequence. To make this precise, we need some preliminaries.

GGACACAGTACCCGCC

(a)

genome

cDNA/EST

GGACACAGT GTACCCGCC

(b)

genome

cDNA/EST

GGACACAGT GTGTACCCGCC

GGACACAGTGTACCCGCC

Figure 3: Overlapping MEMs.

3.1 Preliminaries

Definition 3.1 An exact match between two sequencesG andQ is a triple(l, p, q) such
thatG[p..p + l − 1] = Q[q..q + l − 1], i.e., thel-character-long substring ofG starting
at positionp coincides with thel-character-long substring ofQ starting at positionq. An
exact match isleft maximal if G[p−1] 6= Q[q−1] andright maximal if G[p+l] 6= Q[q+l].
A maximal exact match (MEM) is a left and right maximal exact match.

A maximal unique match (MUM) is a MEM (l, p, q) such that the substringG[p..p + l −
1] = Q[q..q + l − 1] occurs exactly once inG and exactly once inQ.

Definition 3.2 Let (l1, p1, q1) and(l2, p2, q2) be two MEMs withp1 < p2 andq1 < q2.
We say that(l1, p1, q1) overlaps with (l2, p2, q2)

• in G if and only if p2 ≤ p1 + l1 − 1 < p2 + l2 − 1

• in Q if and only if q2 ≤ q1 + l1 − 1 < q2 + l2 − 1

Figure 3 (a) shows two MEMs that overlap inQ but not inG, while Figure 3 (b) shows
two MEMs that overlap in bothG andQ.

A MEM (l, p, q) can be represented by a rectangle inR
2 with the two extreme corner

points (p, q) and (p + l − 1, q + l − 1); see Figure 4. Such a rectangle is also called
fragment. In the following, we will identify a MEM(l, p, q) with its fragmentf in R

2

and denote the two extreme corner points bybeg(f) = (beg(f).x, beg(f).y) = (p, q)
andend(f) = (end(f).x, end(f).y) = (p + l − 1, q + l − 1). Furthermore, we define
f.length = l. That is,f.length denotes the length of the MEM corresponding tof .

Definition 3.3 The relation≪ on the set of fragments is defined as follows.f ′ ≪ f if
and only if the following two conditions hold:

1. beg(f ′).x < beg(f).x andbeg(f ′).y < beg(f).y.

2. end(f ′).x < end(f).x andend(f ′).y < end(f).y.

If f ′ ≪ f , then we say thatf ′ precedes f . The fragmentsf ′ andf arecolinear if either
f ′ precedesf or f precedesf ′.

C

C

o

f

o

D

BA

f

A B

CD

Q Q

G Gpp

q q

2

1

(a) (b)

Figure 4: (a) The four cases that have to be considered in Shibuya and Kurochkin’s approach.
(b) The two casesA ∪ B andC ∪ D that have to be considered in our approach.

Thus, two fragments are colinear if they appear in the same order in both sequences. Note
that if we further haveend(f ′).x < beg(f).x andend(f ′).y < beg(f).y, thenf ′ andf
are colinear and non-overlapping.

3.2 A new chaining algorithm for cDNA mapping

In cDNA mapping, the scorescore(C) of a chainC of colinear and non-overlapping
MEMs is the sum of the lengths of the MEMs inC. That is, gaps between the matches
are not penalized because large gaps correspond to introns.Thus, a highest-scoring chain
contains MEMs that best “cover” the cDNA and hence the locations of these matches in
the genomic sequence are the most promising exon candidates. It is well-known that a
highest-scoring chain can be computed inO(m log m) time using the technique ofsparse
dynamic programming [EGGI92], wherem denotes the number of matches. We have
shown in [AO05] that highest-scoring chains for more than two sequences can also be
computed in subquadratic time usingrange maximum queries (RMQs) based on range
trees orkD-trees. Contemporaneously, Shibuya and Kurochkin [SK03] showed that the
chaining problem for two sequences can be solved with dynamic RMQs based on AVL
trees. To take overlaps into account, they defined theoverlap length of two MEMs to be the
maximum of the amount of overlap inG and inQ. In their paper, the scorescore(C) of a
chainC of colinear MEMs is the sum of the lengths of the MEMs inC minus their overlap
lengths. As a consequence of their definition of the overlap length, in the computation of
a highest-scoring chainCf of colinear MEMs ending with MEMf , one has to consider
four different regions, namelyA, B∪C1, C2, andD; see Figure 4 (a). Each of these cases
yields a candidate MEMfi and a highest-scoring chainCfi

of colinear MEMs ending
with fi, 1 ≤ i ≤ 4. Then,score(Cf) is computed byscore(Cf) = maxi{score(Cfi

) +
f.length − overlap length(f, fi)}; see [SK03] for details. Shibuya and Kurochkin’s
algorithm runs inO(m log m) time, but it is rather complicated because it is a mixture of
RMQs and the candidate list paradigm.

We argue that for cDNA mapping Shibuya and Kurochkin’s penalty for overlaps is not
suitable. In our opinion, the overlap length of two MEMs should be defined solely as
the amount of their overlap in the cDNA because in the problemat hand one wants to
maximize the coverage of the cDNA. In other words, we suggestto not penalize an overlap
in the genomic sequenceG. The consequences of our approach are illustrated in Figure
4 (b). Thex-axis corresponds to the genomic sequenceG, while they-axis corresponds
to the cDNA sequenceQ. Each MEM that can precede the MEMf in a chain must start
in region A. Those that do not overlap withf in Q must end in region A or B. Those that
do overlap withf in Q must end in region C or D. We will show next that this means that
the cDNA mapping problem can be solved by two two-dimensional RMQs in the regions
A ∪ B andC ∪ D.

Definition 3.4 For any two fragmentsf ′ ≪ f , the amount of overlap in the cDNA se-
quence is

overlapy(f ′, f) =

{

end(f ′).y − beg(f).y + 1, if end(f ′).y ≥ beg(f).y
0, otherwise

In our opinion, the cDNA mapping problem should be formulated as follows.

Definition 3.5 Given a set ofm fragments, find a chainC of colinear fragments
f1, f2, . . . , ft (i.e., f1 ≪ f2 ≪ . . . ≪ ft) such thatscore(C) =

∑t

i=1 fi.length −
∑t−1

i=1 overlapy(fi, fi+1) is maximal.

Thus, we want to maximize the amount of cDNA sequence mapped to the genomic se-
quence. It is easy to see that a perfect mapping has a score that equals the cDNA length.

In the following,f.score denotes the maximum score of all chains ending with the frag-
mentf . When we speak about the score of the pointsbeg(f) = (beg(f).x, beg(f).y) and
end(f) = (end(f).x, end(f).y) we implicitly mean the score off . Clearly,f.score can
be computed by the recurrence

f.score = f.length + max{f ′.score − overlapy(f ′, f)|f ′ ≪ f}

Algorithm 3.6 is a geometric solution to this recurrence. Ituses a line sweep proce-
dure w.r.t. the genomic sequence and range maximum queries to find the fragment that
maximizes the score. There are two data structuresD1 and D2 to efficiently answer
2-dimensional range maximum queries with activation. In this algorithm, the function
RMQDi

([x1..x2], [y1..y2]), i ∈ {1, 2}, is a range maximum query that retrieves the point
of maximum score in the set of active points stored in the datastructureDi and within
the rectangular region defined by the intervals[x1..x2] in G and[y1..y2] in Q. For greater
details, we recommend the reader to consult our paper [AO05].

Algorithm 3.6
Sort all start points of the m fragments in ascending order w.r.t. their x coordinate

and store them in the array points.
Store all the end points as inactive in the data structures D1 and D2.
for 1 ≤ i ≤ m

determine the fragment f with beg(f).x = points[i]
q1 := RMQD1

([0..end(f).x − 1], [0..beg(f).y − 1])
q2 := RMQD2

([0..end(f).x − 1], [beg(f).y..end(f).y − 1])
determine the fragment f1 with end(f1) = q1

if f1 = ⊥ then score1 = 0
elsescore1 = f1.score
determine the fragment f2 with end(f2) = q2

if f2 = ⊥ then score2 = 0
else

if beg(f2).y < beg(f).y) then
score2 = f2.score − (end(f2).y − beg(f).y)

elsef2 = ⊥, and score2 = 0
f.score = f.length + max{score1, score2}
if score1 ≥ score2 > 0 then connect f1 to f else ifscore2 > 0 then connect f2 to f
activate (end(f).x, end(f).y) in D1 with score f.score
activate (end(f).x, end(f).y) in D2 with score f.score − end(f).y

Before proving the correctness of this algorithm, we would like to explain it. When the
start point of a fragmentf is scanned, we search for a fragmentf ′ that precedesf and
maximizesf ′.score − overlapy(f ′, f). To take overlaps into account, we have to divide
the search region into two subregions. The first subregion isthe rectangle([0..end(f).x−
1], [0..beg(f).y− 1]); this is the regionA∪B in Figure 4 (b). In the following this region
will be denoted byAB(f) to emphasize its dependence onf . Any fragment in this region
that precedesf does not overlap withf in the cDNA sequenceQ. The second subregion
is the rectangle([0..end(f).x − 1], [beg(f).y..end(f).y − 1]), denoted byCD(f); see
regionC ∪ D in Figure 4 (b). Any fragment in this region that precedesf overlaps with
f in the cDNA sequenceQ. In order to penalize this overlap, we activate each end point
in D2 with f.score− end(f).y instead off.score. This guarantees, as we shall see in the
correctness proof, that a fragmentf2 will be found such thatf2.score − overlapy(f2, f)
is maximal inCD(f). However, it may happen thatbeg(f2).y ≥ beg(f).y. That is,
beg(f2) /∈ A(f), whereA(f) denotes the rectangle([0..beg(f).x− 1], [0..beg(f).y− 1]).
In this case, we simply ignoref2. This does not affect the correctness of the algorithm,
because then there is a fragment inAB(f) whose score is at least as high as that off2.
Finally, if f1.score ≥ f2.score − overlapy(f, f2), thenf1 is connected tof . Otherwise,
f2 is connected tof .

For a formal correctness proof, we need the following definition and lemmata.

Definition 3.7 The priority of a fragmentf ′, denoted byf ′.priority, is defined as
f ′.priority = f ′.score − end(f ′).y.

Lemma 3.8 Let f ′ and f ′′ be fragments with end(f ′) ∈ CD(f) and end(f ′′) ∈ CD(f).

We have f ′′.priority < f ′.priority if and only if f ′′.score − overlapy(f ′′, f) <
f ′.score − overlapy(f ′, f).

Proof

f ′′.priority < f ′.priority
⇔ f ′′.score − end(f ′′).y < f ′.score − end(f ′).y
⇔ f ′′.score − (end(f ′′).y − beg(f).y) < f ′.score − (end(f ′).y − beg(f).y)
⇔ f ′′.score − overlapy(f ′′, f) < f ′.score − overlapy(f ′, f)

Note that in the lemma< can be replaced with≤. 2

Thus, iff ′ is a fragment with highest priority inCD(f), thenf ′.score− overlapy(f
′, f)

is maximal inCD(f). The priority of a fragmentf ′ is independent off . Hence, it can be
computed in constant time whenf ′ is scanned. This has the advantage that the overlaps
between all fragments need not be computed in advance (note that this would yield a
quadratic time algorithm).

Lemma 3.9 Let C be a chain composed of the fragments f1, . . . , ft. For every index i,
1 ≤ i ≤ t − 1, we have fi+1.priority ≤ fi.priority.

Proof

fi+1.priority = fi+1.score − end(fi+1).y
= fi.score + fi+1.length− overlapy(fi, fi+1) − end(fi+1).y
= fi.score − beg(fi+1).y − overlapy(fi, fi+1) + 1
≤ fi.score − end(fi).y
≤ fi.priority

Not that ifoverlapy(fi, fi+1) = 0, thenfi+1.priority < fi.priority. 2

Theorem 3.10 Algorithm 3.6 correctly computes an optimal chain.

Proof When the sweep-line reaches the start pointbeg(f) of fragmentf , the end points
of all fragments that started beforebeg(f).x are already activated in the data structures
D1 andD2. The end points of the remaining fragments are still inactive. This guaran-
tees that each fragment whose end point lies inAB(f) or CD(f) but whose start point
occurs afterbeg(f).x will not be considered in what follows. Because each fragment
with end point in regionAB(f) does not overlap withf in the cDNA sequence, the two-
dimensionalRMQD1

retrieves the fragmentf1 of maximum score in the regionAB(f)
by searching in the set of active end points inD1. Analogously, because a fragmentf ′

with end point in regionCD(f) overlaps withf in the cDNA sequence, it is activated in
D2 with priority f ′.score − end(f ′).y. The two-dimensionalRMQD2

yields the fragment
f2 of the highest priority inCD(f), by searching in the set of active end points inD2.

By Lemma 3.8,f2.score − overlapy(f2, f) is maximal inCD(f). Suppose first that
beg(f2).y < beg(f).y, i.e., the start point off2 lies inA(f). In this case we connectf2 to
f , if f2.score−overlapy(f2, f) > f1.score. Otherwise, we connectf1 to f provided that
f1 6= ⊥, and we are done. Now suppose thatbeg(f2).y ≥ beg(f).y, i.e., the start point
of f2 lies in CD(f). This impliesoverlapy(f2, f) ≥ f2.length. According to Lemma
3.9, if there is a fragmentf ′ connected tof2 (i.e.,f ′ is the predecessor off2 in a highest-
scoring chain ending withf2), then the end pointend(f ′) of f ′ must lie inA(f). Hence,
overlapy(f ′, f2) = 0 and we have

f ′.score = f ′.score − overlapy(f ′, f2)

= f2.length + f ′.score − overlapy(f
′, f2) − f2.length

= f2.score − f2.length

≥ f2.score − overlapy(f2, f)

Recall from Lemma 3.8 thatf2.score − overlapy(f2, f) is maximal inCD(f). Now it
follows from f ′.score ≥ f2.score − overlapy(f2, f) in conjunction withf ′.score ≤
f1.score thatf2 can safely be ignored.

There is one remaining case:f2 has no predecessor. Again,f2 can be ignored by Lemma
3.8 becausef2.score − overlapy(f2, f) = f2.length− overlapy(f2, f) ≤ 0. 2

The complexity of Algorithm 3.6 depends on the complexity oftheRMQs with activation
supported by the data structuresD1 andD2. If D1 andD2 are implemented as range trees
supported by the technique of fractional cascading and enhanced with priority queues as
shown in [AO05], then the complexity of the algorithm isO(m log m log log m) time and
O(m log m) space. If thekd-tree is used instead of the range tree, then the algorithm takes
O(m1.5) time in the worst case andO(m) space. Interestingly, the query time ofkd-tree
can be improved in practice using a set of programming tricks[Ben90]. If the gaps between
successive fragments in a chain are constrained to be at mostW characters long (e.g.,W
could be set to the estimated maximum intron length), thenRMQD1

andRMQD2
have to be

limited to the regions([end(f).x−W..end(f).x−1], [beg(f).y−W..beg(f).y−1]), and
([end(f).x − W..end(f).x − 1], [beg(f).y..end(f).y − 1]), respectively. This restriction
increases the complexity of the algorithm using the range tree toO(m log2 m) time and
O(m log m) space (because the priority queues can no longer be used). The complexity
using thekd-tree remains the same.

3.3 Special cases

In Algorithm 3.6, the range maximum queries are two-dimensional to guarantee that
beg(f ′) ∈ A(f) andend(f ′) ∈ {A ∪ B ∪ C ∪ D}. However, one-dimensionalRMQs
suffice if beg(f ′) ∈ A(f) impliesend(f ′) ∈ {A ∪ B ∪ C ∪ D} and vice versa. There are
two interesting special cases that meet this requirement. The first is the usage ofMUMs
or rare-MEMs instead ofMEMs and the second is the restriction to a certain amount of
overlapping.

f
f

f

f

f

f

C

D f

B

A

G

Q

o

2

1

3

6

4

5

Figure 5: Fragmentf1 is embedded in fragmentf in Q, while f is embedded inf2 in Q and inf3

in G. Such embeddings cannot occur ifMUMs are used instead ofMEMs.

3.3.1 MUMs or rare-MEMs

Suppose one usesMUMs instead ofMEMs. When the sweep-line reaches the start point
beg(f) of fragmentf , then it is sufficient to use the one-dimensional range maximum
queriesRMQD1

([0..beg(f).y − 1]) andRMQD2
([beg(f).y..end(f).y − 1]) instead of the

two-dimensionalRMQs of Algorithm 3.6. This is becauseRMQD1
([0..beg(f).y − 1]) con-

siders only the end points that where activated before, thatis, the corresponding start point
must occur beforebeg(f).x. In summary, theRMQ yields a fragmentf ′ with beg(f ′) in
A(f). If end(f ′) were not contained in the regionAB(f), thenf would be embedded in
f ′; cf. fragmentf3 in Figure 5. However, aMUM cannot be embedded in anotherMUM.
(If suchMUMs would exist, then the substring of the embeddedMUM would occur more
than once inG or Q, which contradicts with the definition ofMUMs). Analogously, one
can show thatRMQD2

([beg(f).y..end(f).y − 1]) retrieves the end point of a fragmentf ′′

such thatbeg(f ′′) ∈ A(f) andend(f ′′) ∈ CD(f). Clearly, this implies that the algorithm
sketched above requiresO(m log m) time andO(m) space. (For a one-dimensionalRMQ
the range tree andkd-tree are equivalent.) The algorithm can be modified to deal with
rare-MEMs inO(rm log m) time andO(m) space.

3.3.2 Restricting the amount of overlapping

Suppose that the minimum fragment length isk. If we tolerate overlappings of at mostk−1
characters between any two successive fragmentsf ′ andf in a chain, (i.e.,end(f ′).x <
beg(f).x + k andend(f ′).y < beg(f).y + k), then it follows thatbeg(f ′) ∈ AB(f) (i.e.,
beg(f ′).x < beg(f).x andbeg(f ′).y < beg(f).y). This property can be used to reduce
the dimension of theRMQs to one. To this end, we attach to each fragmentf the virtual
pointv(f) = (beg(f).x+k, beg(f).y+k). When the sweep-line reachesv(f), we launch
RMQD1

([0, beg(f).y − 1]) andRMQD2
(beg(f).y, v(f).y − 1]) to find the fragments of

highest score. Algorithm 3.11 shows how to compute a chain ofmaximum score allowing
only overlaps of at mostk − 1 characters. (For ease of presentation, we ignore the case in
which the fragments retrieved byRMQD1

or RMQD2
are⊥.)

Algorithm 3.11
Sort all virtual and all end points of the m fragments in ascending order w.r.t. their x1

coordinate and store them in the array points.
Store all the end points (ignoring their x1 coordinate) as inactive in D1 and D2.
for 1 ≤ i ≤ 2m

if points[i] is the point v(f) then
q1 := RMQD1

(0, beg(f).y − 1)
q2 := RMQD2

(beg(f).y, beg(f).y + k − 1)
determine the fragment f1 with end(f1) = q1

determine the fragment f2 with end(f2) = q2

score1 = f.length + f1.score
score2 = f.length + f2.score − (end(f2).y − beg(f).y)
f.score = max{score1, score2}
if f.score = score1 then connect f to f1 elseconnect f to f2

else/⋆ points[i] is the end point of a fragment f ⋆/
activate end(f).y in D1 with score f.score
activate end(f).y in D2 with score f.score − end(f).y

4 Experimental results

We mapped the Fantom database [OFK+02] (version 2.1.1, 60770 full cDNA sequences
of total length 120 Mbp) to the mouse chromosome 19 (UCSC Genome Browser) using
BLAT and our method. More precisely, we used theVmatch package developed by Ste-
fan Kurtz (http://www.vmatch.de) to generate allMEMs of minimum length 20
(approx. 1.4 million) and the program CHAINER [AO04] to compute the highest-scoring
chains of MEMs. (Although Table 1 suggests to usek = 23 for the experiments, we found
thatk = 20 results in a better coverage of the chains.) We tested BLAT using the default
options (in particularK = 11) with and without the option that excludesK-mers that
occur too often. BLAT took 442 minutes without this option and 12 minutes with this op-
tion. The running time ofVmatch and CHAINER was 18 minutes: 16 minutes to obtain the
MEMs and 2 minutes to build the chains. Using the unmasked chromosome, BLAT took
39 hours even when over-repeatedK-mers were excluded, whileVmatch and CHAINER
took 2 hours when over-repeated MEMs were excluded. The experiments were performed
on a Sun Fire 280 computer equipped with 6 GB RAM and two processors (UltraSPARC
III Cu 1.015 GHz).

We compared our results on two levels with those obtained by BLAT, taking the annotation
as a reference. The first level measures whether the cDNA is mapped or not. The second
level measures the amount of correctly mapped exons in each cDNA. Table 2 shows the
results of this comparison. These results are w.r.t. the positive strand only. From the
table, one can see that BLAT and CHAINER have the same sensitivity on the gene level.
However, the specificity of BLAT on that level is lower than that of CHAINER. Although
we removed BLAT hits whose percentage identity is less than50%, there are still 113 false
positives. There are 41 genes that are contained solely in the annotation; this is due to the

Gene Level
a ∧ b ∧ c a ∧ b a ∧ c b ∧ c a b c

985 1 1 123 41 113 0

Exon Level
a ∧ b ∧ c a ∧ b a ∧ c b ∧ c a b c

5056 8 9 53 43 20 11

Table 2: Accuracy of the cDNA mapping on the gene and exon level. The symbola stands for the
annotation,b refers to BLAT results, andc denotes CHAINER results. The terma∧ b∧ c stands for
the set of genes/exons contained ina, b, andc.

0− 50− 60− 70− 80− 90− 100

0 42 63 89 147 616 29

0− 50− 60− 70− 80− 90− 100

0 17 23 20 34 29 0

Table 3: Coverage w.r.t. CHAINER. Left: Coverage of the chains that are in the annotation. Right:
Coverage of the chains that are not in the annotation.

fact that their regions were masked in the chromosomal sequence used.

On the exon level, we considered only the exons of the genes that occur in the annotation
and that were found by both BLAT and CHAINER. On this level, BLAT also has less
specificity than CHAINER. We examined the 20 hits found only by BLAT and found that
all of them are false positives. Usually these hits correspond to the boundaries of the
mapped cDNA and the hits lie far away from the corresponding annotated position in the
genomic sequence. Interestingly, some of the 11 exons foundonly by CHAINER seem to
be missing from the annotation. All 53 exons found by BLAT andCHAINER that are not
in the annotation seem to be true positives.

Table 3 shows the coverage (percentage identity) of the chains obtained by CHAINER.
We measured the coverage to estimate the amount of work needed to post-process the
chains by means of a standard dynamic programming algorithmon the character level
that takes splice site signals into account. From the table,one can see that about90%
of the annotated cDNAs have chains whose coverage is higher than70%. This shows
that dynamic programming has to be applied only to short regions. The cDNA sequences
not occurring in the annotation that were mapped by BLAT and CHAINER have varying
coverage levels. Table 3 (right) shows the coverage of thesepotentially false positives.
Note that some of them have a rather high coverage, so one cannot rule out the possibility
that these are in fact genes.

Finally, Table 4 quantifies the number and the amount of overlaps. It is interesting to
note that most of the overlaps occur in the cDNA sequences andthe size of the overlap is
usually two, due to the splice site signals.

References

[AKO04] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing Suffix Trees with Enhanced
Suffix Arrays.Journal of Discrete Algorithms, 2:53–86, 2004.

In the Annotation
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 − 19

Q 3071 796 1187 857 465 169 84 27 13 8 16 17 3 6 28

G 6472 69 73 29 9 4 12 5 13 11 11 8 7 4 20

Not in the Annotation
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 − 19

Q 1844 25 29 13 5 2 7 0 7 0 0 0 0 0 2

G 1892 6 3 13 5 0 10 3 1 0 0 0 0 1 0

Table 4: Amount of overlapping between theMEMs in the chains. The row titledQ contains overlaps
in the cDNA sequence, while that titledG contains overlaps in the genomic sequence. The total
number of overlaps occurring in both the cDNA and the genome is 264 (226 occur in the annotation
and 38 do not occur in the annotation).

[AO04] M.I. Abouelhoda and E. Ohlebusch. CHAINER: Softwarefor Comparing Genomes.
In 12th International Conference on Intelligent Systems for Molecular Biology/3rd
European Conference on Computational Biology, 2004. Short paper available at
http://www.iscb.org/ismbeccb2004/short%20papers/19.pdf.

[AO05] M.I. Abouelhoda and E. Ohlebusch. Chaining Algorithms for Multiple Genome Com-
parison.Journal of Discrete Algorithms, 3:321–341, 2005.

[Ben90] J.L. Bentley. K-d trees for Semidynamic Point Sets.In Proc. 6th Annual ACM Sympo-
sium on Computational Geometry, pages 187–197, 1990.

[EGGI92] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dynamic programming.
I: Linear cost functions; II: Convex and concave cost functions. Journal of the ACM,
39:519–567, 1992.

[KCO+01] S. Kurtz, J.V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R. Giegerich.
REPuter: The Manifold Applications of Repeat Analysis on a Genomic Scale.Nucleic
Acids Research, 29(22):4633–4642, 2001.

[Ken02] W.J. Kent. BLAT—The BLAST-Like Alignment Tool.Genome Research, 12:656–664,
2002.

[NCM01] Z. Ning, A.J. Cox, and J.C. Mullikin. SSAHA: A Fast Search Method for Large DNA
Databases.Genome Research, 11(10):1725–1729, 2001.

[OFK+02] Y. Okazaki, M. Furuno, T. Kasukawa, J. Adachi, H. Bono, S.Kondo, I. Nikaido, N. Os-
ato, R. Saito, and H. Suzuki et al. Analysis of the mouse transcriptome based on func-
tional annotation of 60770 full-length cDNAs.Nature, 420(6951):563–573, 2002.

[Pap84] A. Papoulis.Probability, Random Variables, and Stochastic Processes. McGraw-Hill,
New York, 1984.

[SK03] S. Shibuya and I. Kurochkin. Match Chaining Algorithms for cDNA Mapping. InProc.
3rd International Workshop on Algorithms in Bioinformatics, volume 2812 ofLecture
Notes in Bioinformatics, pages 462–475, Berlin, 2003. Springer-Verlag.

[Wat95] M.S. Waterman. Introduction to Computational Biology: Maps, Sequences and
Genomes. Chapman Hall, 1995.

