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ABSTRACT

In this article, we propose a new method for computing rare maximal exact matches between

multiple sequences. A rare match between k sequences S1; : : : ; Sk is a string that occurs

at most ti -times in the sequence Si , where the ti > 0 are user-defined thresholds. First,

the suffix tree of one of the sequences (the reference sequence) is built, and then the other

sequences are matched separately against this suffix tree. Second, the resulting pairwise

exact matches are combined to multiple exact matches. A clever implementation of this

method yields a very fast and space efficient program. This program can be applied in

several comparative genomics tasks, such as the identification of synteny blocks between

whole genomes.
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1. INTRODUCTION

WHOLE GENOME COMPARISONS can be used as a first step toward solving genomic puzzles, such
as determining coding regions, discovering regulatory signals, and deducing the mechanisms and

history of genome evolution. One aspect that makes computational comparative genomics difficult is the fact

that both local and global mutations of the DNA molecules occur during evolution. Local mutations (point

mutations) consist of the substitution, insertion, or deletion of single nucleotides, while global mutations

(genome rearrangements) change the DNA molecules on a large scale. In unichromosomal genomes,

the most common rearrangements are inversions, where a section of the genome is excised, reversed in
orientation, and re-inserted. But large-scale duplications, deletions (gene loss), insertions (horizontal gene

transfer), and transpositions also play a role. In a transposition, a section of the genome is excised and

inserted at a new position in the genome; this may or may not also involve an inversion. In genomes with

multiple chromosomes, further genome rearrangements are translocations (in a reciprocal translocation, two

non-homologous chromosomes break and exchange fragments), fusions (where two chromosomes fuse),
and fissions (where a chromosome breaks into two parts).

Thus, if the organisms under consideration are closely related (that is, if no or only a few genome

rearrangements have occurred) or one compares regions of conserved synteny (these are regions in two

or more genomes in which orthologous genes occur in the same order), then global alignments can, for

example, be used for the prediction of genes and regulatory elements. This is because coding regions
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are relatively well preserved, while non-coding regions tend to show varying degree of conservation.

Non-coding regions that do show conservation are thought important for regulating gene expression and

maintaining the structural organization of the genome; they possibly have other, yet unknown functions.
Several comparative sequence approaches based on alignments have been used to analyze corresponding

coding and non-coding regions from different species. These approaches are based on software tools for

aligning DNA-sequences (Chain et al., 2003; Treangen and Messeguer, 2006). To cope with the shear

volume of data, most of the software tools use an anchor-based method that is composed of three phases:

1. Computation of fragments (segments in the genomes that are similar).
2. Computation of a highest-scoring global chain of colinear non-overlapping fragments: these are the

anchors that form the basis of the alignment.

3. Alignment of the regions between the anchors.

For diverged genomic sequences, however, a global alignment strategy is likely predestined to failure for

having to align non-syntenic and unrelated regions in an end-to-end colinear approach. In this case, one

must first identify syntenic regions, which then can be studied individually. Moreover, the ordering of such
“synteny blocks” can then be used as input to software tools such as MGR (Bourque and Pevzner, 2002) that

compute plausible rearrangement scenarios for multiple genomes. In the gene-based approach, the problem

of automatically finding syntenic regions requires a priori knowledge of all genes and which of the genes

are orthologous. It is safe to say that gene prediction and the accurate determination of orthologous genes

are computationally difficult, but it is beyond the scope of this paper to discuss these issues in detail.
Pevzner and Tesler (2003) bypassed “the difficult issues of gene annotation and ortholog identification” by

using sequenced-based synteny blocks. In Abouelhoda and Ohlebusch (2003), it was shown that significant

local chains (instead of a highest-scoring global chain as in phase (2) of the anchor-based method) of

multiMEMs can be used to efficiently find synteny blocks in prokaryotic genomes. However, multiMEMs

cannot be used for comparing eukaryotic genomes containing many repetitive elements. This is because the
number of multiMEMs “explodes” in the presence of many repeats. Of course, many repetitive elements

can be eliminated by repeat masking tools such as RepeatMasker (Smit and Green, 2008). However,

repeat masking takes a long time, does not eliminate all repeats, and causes new problems (not discussed

here). Repeat masking can be avoided by using multiMUMs instead of multiMEMs as fragments. As noted

by Mau et al. (2005), however, using multiMUMs may fail to generate enough anchors. Consequently,

something in between multiMUMs and multiMEMs is needed, and we found that rare multiMEMs meet
the requirements. With an appropriately chosen threshold t on the allowed number of copies of a rare

multiMEM, it is possible to generate sufficiently many anchors while at the same time avoiding an explosion

of the number of multiple matches (without repeat masking). For example, when computing multiMEMs

of minimal length 20, for a set of six Staphylococcus aureus genomes, we found that there are 110 times

more multiMEMs than rare multiMEMs .t D 5/. When comparing the X-chromosomes of four vertebrate
genomes, we can easily compute the rare multiMEMs, but not the multiMEMs (because there are too many).

See Section 8 for more details.

A method to compute rare multiMEMs is sketched in Abouelhoda et al. (2006).1 This method is a

modification of the following technique to find all multiMEMs (Höhl et al., 2002; Kurtz and Lonardi,

2004) among k genomic DNA sequences S1; : : : ; Sk (in our application, Si is the sequence of nucleotides
in one strand of the DNA double strand of a chromosome of genome Gi ). First, the strings S1; : : : ; Sk are

concatenated, using distinct symbols $1; : : : ; $k�1 to mark the borders between the strings. Then, one builds

the suffix tree (or the enhanced suffix array) of the resulting string S D S1$1S2$2; : : : ; Sk�1$k�1Sk and

computes all multiMEMs basically by computing all repeats (satisfying some constraints) in the string S .

In this way, it is possible to compare chromosomes of several species simultaneously provided that one

computes rare multiMEMs instead of all multiMEMs.
However, for a comparison of multiple genomes, the method is rather time and space consuming. We

will clarify this by an example. Suppose one wants to compare the genomes of human, mouse, and

rat. The human genome consists of 46 chromosomes: 22 pairs of homologous chromosomes plus the X

and Y chromosome (of course, females have two X chromosomes). The mouse genome has 19 pairs of

homologous chromosomes, while the rat genome has 20. Therefore, 24 � 21 � 22 combinations have to be

1To be precise, the algorithm searches for infrequent multiMEMs, a slight variation of rare multiMEMs.
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dealt with in a comparison of all leading strands of the chromosomes. Because one also has to take the

lagging strands into account, the number of combinations increases to 24 � 42 � 44 D 44,352 (the lagging

strands of one genome need not be considered because, for example, the comparison of all leading strands
of the X chromosomes of human, mouse, and rat is equivalent to the comparison of all lagging strands

of these chromosomes). That is, one has to build the suffix tree (or the enhanced suffix array) of 44,352

long strings, each of which is the concatenation of the leading strand of a human chromosome with the

leading or lagging strands of a mouse and a rat chromosome. Although one cannot change the number of

combinations to be considered, there is a better strategy that works as follows. First, one builds the suffix
tree only for the leading strands of the chromosomes of a reference genome, say, the human genome. Then

one separately matches the leading and lagging strands of each chromosome of the other genomes against

each suffix tree. This procedure yields pairwise matches in the form of rare MEMs, which are stored in

a suitable data structure (on file, if necessary). Finally, if one wants to compare specific chromosomes

(e.g., human chromosome 17 with mouse chromosome 11 and rat chromosome 10), then one combines the

pairwise rare MEMs between these chromosomes to rare multiMEMs. Obviously, this approach is much
more flexible than the aforementioned. If one has a “data base” of rare MEMs with respect to a reference

genome, then one can easily perform pairwise or multiple comparisons between the reference genome and

other genomes from the data base.

As another example, we would like to mention the mapping of cDNA to multiple genomes. In his

experiments, Abouelhoda (2007) found out that rare multiMEMs were most suitable for this task. This is
because, on the one hand, the sensitivity with multiMUMs was too low, and on the other hand, the number

of multiMEMs was too large to be computed.

The paper is organized as follows. After a brief discussion of related work in Section 2, we state the basic

concepts in Section 3. In Section 4, we recall a method for finding all maximal exact matches between two

sequences, and in Section 5, we show that this method can be modified (albeit with considerable effort)
such that it computes rare maximal exact matches. This computation is generalized to multiple sequences

in Section 6. Section 7 discusses implementation details, and in Section 8 we report on experimental

results. The concepts and notions introduced here are illustrated by several examples.

2. RELATED WORK

As already mentioned, many software tools for aligning large DNA sequences depend on the ability
to efficiently compute exact matches (either k-mers or maximal matches) (Chain et al., 2003; Treangen

and Messeguer, 2006). Software tools that simultaneously compute exact matches in all sequences under

consideration are MGA (Höhl et al., 2002), EMAGEN (Deogen et al., 2004), Mauve (Darling et al.,

2004), and M-GCAT (Treangen and Messeguer, 2006). MGA uses maximal multiple exact matches, while

the other tools use maximal multiple unique matches. As discussed in Section 1, MGA’s strategy of
computing maximal multiple exact matches between k strings S1; : : : ; Sk by computing repeats in the

string S D S1$1S2$2; : : : ; Sk�1$k�1Sk has certain disadvantages. These disadvantages can be overcome by

matching k � 1 of the sequences against the remaining (reference) sequence. The technique of matching a

query string against a suffix tree in linear time by using suffix links goes back to Chang and Lawler (1994).

This technique was also used in MUMmer2 (Delcher et al., 2002) to compute maximal unique matches

between two sequences. MUMmer3 (Kurtz et al., 2004) additionally allows one to compute all maximal
exact matches between two sequences in this manner, using an algorithm described in Kurtz and Lonardi

(2004). Although no details are given in Treangen and Messeguer (2006), it seems that M-GCAT uses a

similar algorithm to compute maximal unique matches between multiple sequences. We stress, however,

that no algorithm is known that computes rare maximal exact matches between two or multiple sequences

in this way.

3. BASIC DEFINITIONS

For 1 � i � k, Si denotes a string of length ni D jSi j. If Si D uvw for some (possibly empty)

sequences u; v and w, then u is a prefix of s, v is a substring of s, and w is a suffix of s. A substring, a
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prefix or a suffix of s is proper if it is different from s. In our application, Si is one strand of the DNA

double strand of a chromosome or genome Gi . However, the algorithms presented here work for any kind

of sequence.
Let $ be a special sentinel character that does not occur in Si . It is appended to Si , so that no suffix

of Si $ is also a prefix of Si (this fact is important when using suffix trees for substring matches). Si Œh�

denotes the character at position h in Si , while Si Œl::h� denotes the substring of Si starting at position l

and ending at position h. Given ti 2 N, the substring Si Œl::h� of Si is said to be rare in Si if it occurs at

most ti times in Si .

3.1. Suffix trees

A suffix tree ST.S1$/ for the string S1$ is a rooted directed tree with exactly n1 C 1 leaves numbered

0 to n1. Each internal node, other than the root, has at least two children, and each edge is labeled with

a nonempty substring of S1$. No two edges out of a node can have edge labels beginning with the same
character. The key feature of the suffix tree is that for any leaf j , the concatenation of the edge labels on

the path from the root to leaf j exactly spells out S1Œj::n1 �1�$, the j -th nonempty suffix of the string S1$.

Figure 1 shows the suffix tree for the string S1$ D acaaacatat$.

For ST.S1$/ we also use the abbreviation ST. As already mentioned, the leaves in ST are numbered

such that leaf j represents the j th suffix of S1$. For convenience, let the interior nodes of ST also be

numbered. That is, an interior node gets a number n1 < j � n0, where n0 � 2n1 � 1 is the number of
nodes in ST (Fig. 2). For each node j ¤ root , let parent.j / denote the parent node of j in ST. In the

following, we denote a node j in the suffix tree by u if and only if the concatenation of the edge labels

on the path from the root to node j spells out the string u. juj is the depth of node u. It is a property of

suffix trees that for any internal node au, where a is some character, there is also an internal node u. A

pointer from au to u is called a suffix link (Fig. 1).
A suffix tree can be built in linear time and space (Weiner, 1973).

3.2. Exact matches

Definition 1. An exact match between two strings S1 and S2 is a triple .l; p1; p2/ such that S1Œp1::p1C

l �1� D S2Œp2::p2 C l �1�. An exact match is called right maximal (RMEM) if p1 C1 D n1 or p2 C1 D n2

or S1Œp1 C l � ¤ S2Œp2 C l �. It is called left maximal if p1 D 0 or p2 D 0 or S1Œp1 � 1� ¤ S2Œp2 � 1�.

A left and right maximal exact match is called maximal exact match (MEM).

Using user-defined thresholds t1 and t2 on the number of allowed copies of a MEM in the strings S1

and S2 yields the notion of rare MEM.

FIG. 1. The suffix tree for S1$ D acaaacatat$. Suffix links for the interior nodes are drawn as dotted arrows. The

leaves and interior nodes are numbered as described in the text.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0105&iName=master.img-008.png&w=418&h=184
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FIG. 2. The suffix tree for S1$ D acaaacatat$ annotated with matches with respect to S2 D aaaaact taacaacat .

(Note that the element .2; 4/ at node 12 will be deleted from LŒ12� in the subsequent deletion phase.)

Definition 2. Given t1 and t2, a MEM or RMEM .l; p1; p2/ is called rare in Si if the string S1Œp1::p1 C

l � 1� D S2Œp2::p2 C l � 1� is rare in Si , that is, if it occurs at most ti times in Si . A MEM or RMEM

.l; p1; p2/ is called rare if it is rare in S1 and S2. A maximal unique match (MUM) is a rare MEM with

respect to the thresholds t1 D 1 D t2. In other words, the number of allowed copies of that string equals 1.

4. FINDING ALL MEMs BETWEEN TWO STRINGS

In this section, we will recall how one can compute all MEMs between two genomic sequences S1 and

S2 by using only the suffix tree ST of the sequence S1$ (Kurtz and Lonardi, 2004). Our exposition follows
Gusfield (1997), which contains a description of Chang and Lawler’s (1994) technique of matching a query

sequence S2 against a suffix tree ST in linear time.

The naive way to compute all MEMs .l; p1; p2/, where p2 is a fixed position in S2, is to match the

initial characters of S2Œp2::n2 � 1� against ST by following the unique path of character matches until no

further matches are possible. If there are l matches until a mismatch occurs, and the mismatch occurs on
the edge label u ! uv, then S2Œp2::p2 C l � 1� D uw for some proper prefix w of v (w D " is possible),

but S2Œp2::p2 C l � does not match any substring of S1. If w D ", then we say that the matching substring

S2Œp2::p2 C l �1� ends at node u. If w ¤ ", then we say that the matching substring S2Œp2::p2 C l �1� ends

at node uv. We can find out at what positions the string uw occurs in S1 by considering the leaf numbers

of the subtree rooted at uv if w ¤ " (at u if w D ", respectively). Let leafset.uv/ be the leaf set for uv,
that is, the set of leaf numbers in the subtree below node uv. For each j 2 leafset.uv/, the concatenation

of the edge labels on the path from the root to leaf j exactly spells out the string S1Œj::n1 � 1�$ (i.e.,

the j th suffix of S1$). Consequently, for each p1 2 leafset.uv/, the triple .l; p1; p2/ is an RMEM. It is a

MEM if it is also left-maximal. The test for left-maximality (check whether either p1 D 0 or p2 D 0 or

S1Œp1 � 1� ¤ S2Œp2 � 1� holds) takes only constant time. On the one hand, repeating this procedure for

every p2, 0 � p2 � n2 � 1 would not yield a linear time algorithm. On the other hand, if we would supply
every node u in ST with a counter that is incremented whenever u is visited, then we could count how

often the string u occurs in S2.

To compute all MEMs .l; p1; p2/ for p2 D 0, we use the naive method described above, that is, we

match the characters of string S2 against ST by following the unique matching path of S2Œ0::n2 �1� starting

from the root of ST. Now suppose in general that the algorithm has just followed a matching path for some
position p2 in S2 ending at node j . More precisely, let S2Œp2::p2 Cl �1� be the length l substring of S2 that

starts at position p2 and matches auw, where au is the string corresponding to node au D parent.j / and

w is a non-empty prefix of the label v (w D v is possible) of the edge parent.j / ! j , but S2Œp2::p2 C l �

does not match a substring of S1. To match the next suffix S2Œp2 C 1::n2 � 1� against ST, one follows the

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0105&iName=master.img-009.png&w=418&h=171
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suffix link au ! u. Because auw is a prefix of S2Œp2::p2 C l �1�, uw is a prefix of S2Œp2 C1::p2 C l �1�.

That is, the search for matches can start at node u. Moreover, instead of traversing the path labeled uw by

examining every character on it, the algorithm uses the skip and count trick of Ukkonen’s (1995) suffix tree
construction algorithm. This trick works as follows: Let u ! uw1 ! uw1w2 ! � � � ! uw1w2; : : : ; wm

be the path in ST such that w D w1w2; : : : ; wmwmC1 and there is an edge outgoing from uw1w2; : : : ; wm

such that wmC1 is a proper prefix of the edge label (wmC1 D " is possible). For each node uw1w2; : : : ; wi ,

one follows the edge whose first character (of the label) coincides with the first character of wiC1. In

this manner, the correct child node uw1w2; : : : ; wiwiC1 is reached in constant time. Finally, the matching
phase continues by following the unique matching path of S2Œjuwj::n2 �1� starting from the jwmC1jC1-th

character of the label of the outgoing edge of uw1w2; : : : ; wm whose first character coincides with the first

character of wmC1.

Example 1. Let S1 D acaaacatat . The suffix tree for S1$ is depicted in Figure 1. Suppose that

in the computation of all maximal exact matches between S1 and the string S2 D aaaaact taacaacat ,
the algorithm has followed the matching path of the suffix cat of S2. In order to find the matching path

for at , the algorithm first follows the suffix link from node 15 (ca) to node 14 (a), and then follows the

edge whose label has t as the first letter.

Matching query sequence S2 against the suffix tree ST takes linear time. To be precise, the construction

of ST takes O.n1/ time, and the matching phase takes O.n2/ time. In contrast to the naive algorithm,
however, if we would supply every node u in ST with a counter that is incremented whenever u is visited,

then the value of this counter does not generally give the number of occurrences of the string u in S2.

This is because the algorithm takes the suffix link shortcuts.

The overall time complexity for the computation of all MEMs in this way is O.n1 C n2 C r/, where r

is the number of RMEMs. Note that the space consumption does not depend on n2.

5. COMPUTATION OF RARE MEMs

Here we will show how all rare MEMs of S1 and S2 that exceed a length threshold ` can be computed

space efficiently by matching S2 against the suffix tree ST of S1$. A node j in ST is called relevant w.r.t.

S2 if there is a rare RMEM between S1 and S2 of length � ` ending at j . Our algorithm consists of three
phases:

1. Matching phase, in which we identify (a) nodes in ST that are potentially relevant and (b) strings

corresponding to potentially rare RMEMs (these are stored in lists).

2. Deletion phase, in which we (a) determine whether a potentially relevant node is really relevant or not

and (b) delete strings corresponding to RMEMs that are not rare (from the lists).
3. Output phase, in which rare MEMs are generated and output.

5.1. Pairwise matching phase

Each node j in ST satisfying (1) j has string depth � `, and (2) the subtree of ST with root j has at

most t1 leaves, is potentially relevant. Any other node u is irrelevant because if (1) is not satisfied, then u

is too short and if (2) is not satisfied, then u is not rare in S1. A potentially relevant node j is associated
with a value minŒj � and a list LŒj �. Initially, minŒj � WD ` and LŒj � WD Œ �, where Œ � denotes the empty list.

LŒj � has at most t2 entries of the form .length; position/ in decreasing order w.r.t. the first component. The

following invariants are maintained in each step of the matching phase:

� Each entry .length; position/ in LŒj � satisfies length � minŒj �.
� If minŒj � D `, then at most t2 matches of length ` ending at node j have been detected so far.
� If minŒj � > `, then the prefix of length minŒj � � 1 of u occurs more than t2 times in S2, where u is the

string corresponding to node j .

At the beginning, as long as LŒj � has less than t2 members (i.e., jLŒj �j < t2), we insert exact matches

ending at node j into LŒj � provided that the length of the match is greater than or equal to minŒj � D `.
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At the point at which LŒj � has exactly t2 members and there is another exact match ending at node j , we

have to update LŒj � such that it does not contain exact matches which we already know are not rare in S2.

From that point on, the list may shrink and expand.
Let us turn to the details of this procedure. Suppose that the algorithm has just followed a matching

path for some position p2 in S2 ending at node j . More precisely, let S2Œp2::p2 C l � 1� be the length

l substring of S2 that starts at position p2 and matches uw, where u is the string corresponding to node

parent.j / and w is a non-empty prefix of the label v (w D v is possible) of the edge parent.j / ! j ,

but S2Œp2::p2 C l � does not match a substring of S1. If l < minŒj �, there is nothing to do. Otherwise, if
l � minŒj �, we further proceed by case analysis.

� If jLŒj �j < t2, then the capacity of LŒj � is not exceeded and so the pair .l; p2/ is inserted into LŒj �.
� Suppose jLŒj �j D t2 and let len be the smallest length value in LŒj �.

ı Let l � len. Since len � minŒj �, we have l � minŒj �. Hence, there are more than t2 occurrences

of S2Œp2::p2 C len � 1� in S2. We delete all elements with length value len from LŒj � and set

minŒj � WD len C 1. Note that at least one element was deleted from LŒj �. So .l; p2/ is inserted into

LŒj � if l > len. After deleting the elements and one possible insertion (if l > len), we have jLŒj �j � t2
and it is easy to see that the invariants specified above are satisfied.

ı If l < len, then we know that S2Œp2::p2 C l � 1� occurs more than t2 times in S2. Hence, we set

minŒj � WD l C 1. Since all elements of LŒj � are of length at least len � l C 1 D minŒj �, the invariants

specified above are satisfied.

Example 2. Figure 2 depicts the annotated suffix tree of S1$ D acaaacatat$ after matching S2 D

aaaaact taacaacat with threshold parameters ` D 2 and t1 D t2 D 2 against it. Note that the nodes 10,

14, 16, and 17 are irrelevant because their string depth is smaller than `. Moreover, the subtrees with root
node 14 and 17 have more than t1 nodes.

To show how our method works, consider the list LŒ2� of leaf 2. It contains all matches of substrings of

S2 with prefixes of the suffix aaacatat that start at position 2 in S1. When the algorithm detects that the

first three characters of the suffix of S2 starting at position 0 and those of aaacatat match, it inserts the

pair .3; 0/ into the initially empty list LŒ2�. Analogously, the pair .3; 1/ is inserted into LŒ2� because the
capacity of LŒ2� is not exceeded yet. However, when the match of the length 4 prefix of aaacatat and

S2Œ2::15� is detected, the list LŒ2� already contains t2 D 2 elements. Consequently, the elements .3; 0/ and

.3; 1/ are deleted from the list (they have the smallest length value len D 3), the value minŒ2� is set to

len C 1 D 4, and the pair .4; 2/ is inserted into LŒ2�.

5.2. Deletion phase

Because of the nature of the matching procedure (described in Section 4), it cannot be used to count

how often a string u occurs in S2. That is the reason why the suffix tree may be annotated with more
lists and list elements than necessary. Thus, before we compute rare MEMs by a traversal of ST, we

get rid of unnecessary nodes and list-elements. More precisely, we first want to identify nodes that are

irrelevant. Second, for the remaining relevant nodes j , we want to delete elements from list LŒj � that do

not correspond to rare RMEMs.

Let us turn to the details of this procedure. In a bottom-up traversal of ST, for any node j , the following

value is computed:

elem_in_sublistsŒj � WD

8

ˆ

<

ˆ

:

0 if j is a leaf

X

j 0Wj Dparent.j 0/

.elem_in_sublistsŒj 0� C jLŒj 0�j/ otherwise

In words, elem_in_sublistsŒj � denotes the total number of elements in the L-lists of all nodes in the subtrees

strictly below j . That is, the string u corresponding to j occurs elem_in_sublistsŒj � times as a proper

substring of matches between S1 and S2.

If j satisfies minŒj � > `, then by the third invariant the prefix of length minŒj ��1 of u occurs more than

t2 times in S2. In other words, every ancestor of j is irrelevant because its corresponding string occurs too

many times. Consequently, there is no need to continue the bottom-up traversal of the annotated suffix tree
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with the ancestors of j . In our example, node 2 satisfies minŒ2� D 4 > ` D 2 and hence every ancestor of

node 2 is irrelevant (in particular, node 11 is irrelevant).

From now on, we assume that the node j under consideration was not identified to be irrelevant yet.
Hence every successor j 0 of j satisfies minŒj 0� D `. That is, nothing was deleted from the list LŒj 0�.

Theorem 1. Node j is irrelevant if and only if at least one of the following conditions holds (where

u is the string corresponding to node j ).

(1) LŒj � D Œ � and elem_in_sublistsŒj � D 0.

(2) minŒj � > juj.

(3) elem_in_sublistsŒj � C jf.r; q/ 2 LŒj � j r D jujgj > t2.

Proof. “if” If j satisfies (1), then there is no rare RMEM ending at j . If j satisfies (2), then we have

minŒj � > juj � ` and hence u is of length � minŒj ��1 and thus occurs more than t2 times in S2 (see third

invariant above). If condition (3) is satisfied, then the strings represented by the elements in LŒj � occur

more than t2 times in S2. This argumentation shows that each node j satisfying one of the conditions
(1)–(3) is irrelevant.

“only if” Conversely, assume that none of the above-mentioned conditions holds for node j . Because

conditions (2) and (3) are not satisfied, it follows that the string u occurs at most t2 times in S2. In order

to show that j is relevant, we proceed by case analysis. If j is a leaf, then elem_in_sublistsŒj � D 0. Since

condition (1) is not true, it follows that list LŒj � is not empty, and it is readily verified that every element
in LŒj � corresponds to a rare RMEM. Hence j is relevant. Now suppose that j is an internal node. If

elem_in_sublistsŒj � ¤ 0, then there is at least one successor j 0 of j such that .l; p2/ 2 LŒj 0�. Because j

is an internal node and every internal node is branching, there is a suffix S1Œp1; : : : ; n1�$ of S1$ in the

subtree rooted at j , which is not in the subtree rooted at j 0. Therefore, .juj; p1; p2/ is a rare RMEM. In

other words, node j is relevant. Otherwise, elem_in_sublistsŒj � D 0 and LŒj � ¤ Œ �. Again, it is readily
seen that every element in LŒj � corresponds to a rare RMEM. Thus, j is also relevant in this case.

In phase (2a) of our algorithm, we mark all nodes that are irrelevant according to the preceding

theorem. In our example, none of the nodes is marked, but if, for example, LŒ15� would contain an

entry .length; position/ with length D 2, then node 15 would be marked because of condition (3).

We now explain phase (2b) of our algorithm. Let j be a relevant node. For each element .l; p2/ 2 LŒj �,

the string S2Œp2::p2 C l � 1� of length l occurs as a substring of S1. We say that this string is represented

by .l; p2/. Since elem_in_sublistsŒj � � t2, the value t2 � elem_in_sublistsŒj � is an upper bound on the
number of rare strings on the path from the root of ST to node j . We distinguish between the cases

jLŒj �j � t2 � elem_in_sublistsŒj � and jLŒj �j > t2 � elem_in_sublistsŒj �:

� Suppose jLŒj �j � t2 �elem_in_sublistsŒj �. Then each element in LŒj � represents a string that corresponds

to rare RMEMs. Therefore, we keep the complete list LŒj �.
� Suppose jLŒj �j > t2 � elem_in_sublistsŒj �. This means elem_in_sublistsŒj � C jLŒj �j > t2. Hence we

have to delete elements from LŒj �. We iteratively delete all elements from LŒj � with minimum length

component,2 until we arrive at a list LŒj � such that elem_in_sublistsŒj � C jLŒj �j does not exceed t2. The
deletion of these elements does no harm because the strings corresponding to the elements occur more

than t2 times in S2.

Note that in case we delete elements from LŒj �, we have to update minŒj � appropriately. To make this

more precise, suppose the original size of LŒj � was q and the new size after deleting the elements is q0 < q.

Let .l; p2/ be the element at index q0 C1 in the original list. Then all elements in the new list are of length

at least l C 1, and the prefix of u of length l occurs more than t2 times in S2. As a consequence, we set

minŒj � to l C 1.
To illustrate the deletion phase (2b), we continue Example 2. The element .2; 4/ at node 12 will be

deleted from LŒ12� and minŒ12� is set to 3. Although the L-list of node 12 is empty after the deletion phase,

the node is relevant w.r.t. S2 (leading to type 2 match candidate specifications).

2After each deletion step, the resulting list is again called LŒj �.
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Although the computation of the elem_in_sublists-values and the deletion phases (2a) and (2b) have

been described as separate steps, we would like to stress that all these computations are actually done in

a single bottom-up traversal of the suffix tree.

5.3. Output phase

In this section, we assume that j is a relevant node for which minŒj � and LŒj � have been computed by

the matching and deletion procedures of Sections 5.1 and 5.2. It is clear from the previous sections that

all rare RMEMs between S1 and S2 are contained in the L-lists of relevant nodes. To be precise, given

a relevant node j , the matches contained in LŒj � immediately yield rare RMEMs ending at j . Moreover,

every match contained in LŒj 0�, where j 0 is a successor of j gives rise to at least one rare RMEM ending
at j .

In view of the more general case of rare multiRMEMs, we now introduce the abstract concept of match

candidate specifications for j . In the pairwise case, each match candidate specification leads to at least

one rare RMEM as we shall see below.

5.3.1. Type 1 match candidate specifications. Let j be a relevant node w.r.t. S2. For each .l; p2/ in LŒj �,

the triple .l; P1; p2/ is called a type 1 match candidate specification for j and S2, where P1 D leafset.j /.

In the pairwise case, a type 1 match candidate specification directly leads to at least one rare RMEM. That

is, for each match candidate specification .l; P1; p2/ and each p1 2 P1, the triple .l; p1; p2/ is a rare right-

maximal exact match between S1 and S2. Clearly, if .l; p1; p2/ is also left-maximal, then it is a rare MEM.
To check for left-maximality, we have to verify that either p1 D 0 or p2 D 0 or S1Œp1 � 1� ¤ S2Œp2 � 1�.

Continuing the previous example, we have the following type 1 match candidate specifications:

.4; f2g; 2/, .4; f3g; 8/, .5; f3g; 11/, .4; f0g; 9/, .4; f4g; 12/, .2; f6; 8g; 14/, .3; f1g; 10/, .3; f5g; 13/, and

.2; f7g; 7/. The match candidate specification .2; f6; 8g; 14/ specifies the right-maximal exact matches

.2; 6; 14/ and .2; 8; 14/. Since S1Œ5� D c D S2Œ13�, it follows that .2; 6; 14/ is not left-maximal, whereas

S1Œ7� D t ¤ c D S2Œ13� shows that .2; 8; 14/ is left-maximal. Hence, .2; 8; 14/ is a rare MEM.

5.3.2. Type 2 match candidate specifications. Suppose there is a pair of relevant nodes j and j 0, where

j 0 is a successor of j . Furthermore, let j 00 be the direct successor of j on the path from j to j 0 (note that

j 0 D j 00 is possible). For each .l; p2/ in LŒj 0�, the triple .l 0; P1; p2/ is a type 2 match candidate specification
for j and S2, where l 0 is the string depth of j and P1 D leafset.j / n leafset.j 00/. We exclude leafset.j 00/

from P1 because the leaves in the subtree below j 00 have already been considered when computing other

match candidate specifications.

Continuing our example, we have the following type 2 match candidate specifications: .3; f0g; 12/,

.3; f4g; 9/, .2; f1g; 13/, and .2; f5g; 10/.
In the pairwise case, a type 2 match candidate specification directly leads to at least one rare RMEM.

That is, for each match candidate specification .l 0; P1; p2/ and each p1 2 P1, the triple .l 0; p1; p2/ is a

rare right-maximal exact match between S1 and S2. Clearly, .l 0; p1; p2/ is a rare MEM if and only if it is

left-maximal.

5.4. Time and space complexity

As already discussed in Section 4, the construction of the suffix tree ST takes O.n1/ time, and matching

S2 against ST takes O.n2/ time. Here, however, L-lists have to be updated during the matching phase.
Because the length of any L-list is limited to t2, the matching phase requires O.n2t2/ time.

In the deletion and output phases, we traverse ST in a bottom-up fashion. Such a bottom-up traversal

of ST requires O.n1/ time. At each node, we check in O.t2/ time whether it is relevant or not. If so,

superfluous elements from its L-list are deleted in O.t2/ time. At each relevant node, the number of length/

position pairs leading to match candidate specifications is bounded by O.t2/. To obtain type 2 match
candidate specifications, one further collects sets of relevant nodes j 0 during the traversal, combines them

with relevant predecessor nodes j , and derives type 2 match candidate specifications as described above.

The size of the node sets collected during the traversal is bounded by O.t1/. Because left-maximality of

a rare RMEM can be verified in constant time and there are at most t1t2 rare RMEMs ending at a node j ,
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all type 1 and 2 match candidate specifications can be computed in O.n1t1t2/ time. Therefore, the overall

time complexity is O.n2t2 C n1t1t2/.

We would like to point out that the space complexity does not depend on n2. The space consumption
for the suffix tree ST of the sequence S1, as well as for the min-values and the L-lists stored at each node

of ST is O.n1t2/.

6. THE GENERALIZATION TO MORE THAN TWO GENOMES

The following definition naturally extends the notion of “rare maximal exact match between two

sequences” to multiple sequences.

Definition 3. A multiple exact match between k strings S1; : : : ; Sk is a .k C 1/–tuple .l; p1; : : : ; pk/

such that S1Œp1::p1 C l � 1� D S2Œp2::p2 C l � 1� D � � � D Sk Œpk::pk C l � 1�. A multiple exact match

is right (left) maximal if it cannot be simultaneously extended to the right (left) in each sequence Si ,

1 � i � k. We use the term multiRMEM as a shorthand for right maximal multiple exact match. A left
and right maximal multiple exact match is called maximal multiple exact match (multiMEM). Given

t1; : : : ; tk 2 N, a multiMEM or multiRMEM .l; p1; : : : ; pk/ is called rare if it is rare in each Si , that is, the

string S1Œp1::p1 C l � 1� D Si Œpi ::pi C l � 1� occurs at most ti times in Si for all 1 � i � k. A maximal

multiple unique match (multiMUM) is a rare multiMEM with respect to the thresholds t1 D � � � D tk D 1.

In other words, the number of allowed copies of that string equals 1.

6.1. The multiple matching and deletion phases

In order to compute rare multiMEMs, we match each Si , 2 � i � k, separately against ST and compute

mini Œj � and Li Œj � as described in Sections 5.1 and 5.2. The advantage of this strategy is that the values

can be computed in parallel.

We would like to stress, however, that it is also possible to compute mini Œj � and Li Œj � incrementally

by sequentially matching S2; : : : ; Sk against ST. That is, first S2 is matched against ST as described in

Section 5. Then S3 is matched against ST and so on. This strategy has the following advantage: If for some
i � 3, node j is not relevant w.r.t. Si�1, then it is not necessary to compute Li Œj � because there cannot be

a rare multiMEM ending at node j . This strategy may considerably reduce the number of matches to be

stored. Furthermore, if node j is relevant for all Sh with 2 � h < i , then mini Œj � can be initialized with

mini�1Œj � instead of `.

6.2. A characterization of rare right-maximal multiple exact matches

We now show how to combine the values from the pairwise matching and deletion phases to compute

rare multiRMEMs. In essence, we combine pairwise rare RMEMs. As we shall see, however, the length li
of such a pairwise rare RMEM .li ; p1; pi/ between S1 and Si usually must be shortened to some l� < li .

The next lemma provides a criterion for testing whether the string S1Œp1::pi C l� �1� D Si Œpi ::pi C l� �1�

is rare in Si .

Lemma 1. Let j be a relevant node w.r.t. Si such that the string Si Œpi ::pi C l� � 1� with l� � ` ends

at node j or at a successor node of j . Then it is rare in Si if and only if l� � mini Œj �.

Proof. If l� < mini Œj �, then Si Œpi ::pi C l� � 1� is not rare in Si according to the invariants maintained

in the matching phase. To show the other direction, suppose that Si Œpi ::pi C l� � 1� is not rare in Si . As

usual, let u be the string corresponding to node j . If l� > juj, then j would be irrelevant. Thus l� � juj

must hold. If Si Œpi ::pi C l� � 1� was not inserted into LŒj � in the matching phase, then this was because
l� < mini Œj �. If it was inserted into LŒj � but afterwards deleted from LŒj � in the matching phase, then we

also have l� < mini Œj �. Finally, if Si Œpi ::pi C l� � 1� was deleted from LŒj � in the deletion phase, then

l� � mini Œj � C 1 (hence l� < mini Œj �) because mini Œj � was set to l C 1, where l� � l .

The next theorem provides a characterization of rare multiRMEMs that can be used to compute all rare

multiRMEMs efficiently.
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Theorem 2. Suppose that the string S1Œp1::p1 C l� � 1� ends at node j in the suffix tree of S1. Then

.l�; p1; : : : ; pk/ is a rare multiRMEM if and only if the following holds:

� for all 2 � i � k, node j is relevant w.r.t. Si , and
� for all 2 � i � k there is a RMEM .li ; p1; pi/ such that

ı .li ; p1; pi/ is rare in S1 and Si ,

ı l� D minfli j 2 � i � kg, and

ı l� � maxminŒj �, where maxminŒj � D maxfmini Œj � j 2 � i � kg.

Proof. “only if” Let .l�; p1; : : : ; pk/ be a rare multiRMEM. That is, the string S1Œp1::p1 C l� � 1� D

S2Œp2::p2 C l� � 1� D � � � D SkŒpk ::pk C l� � 1� is rare and there is at least one i such that S1Œp1 C l�� ¤

Si Œpi C l��. For each 2 � i � k, let li be the number such that S1Œp1::p1 C li � 1� D Si Œpi ::pi C li � 1�

and S1Œp1 C li � ¤ Si Œpi C li �. Obviously, .li ; p1; pi / is a RMEM and li � l�. The former implies that j is

relevant w.r.t. Si . Moreover, it follows from the latter that .li ; p1; pi / is rare in Si (otherwise .l�; p1; pi/

would not be rare in Si ) and that l� D minfli j 2 � i � kg (recall that at least for one i , we have li D l�).
For an indirect proof of l� � maxminŒj � suppose that l� < maxminŒj �. Let i be an index such that

mini Œj � D maxminŒj �. It follows from l� < mini Œj � that the string S1Œp1::p1 C l� �1� D Si Œpi ::pi C li �1�

is not rare in Si . This is a contradiction to the fact that this string is rare (in each Si).

“if” Now suppose that for all 2 � i � k node j is relevant w.r.t. Si and there is a RMEM .li ; p1; pi/.

Furthermore, l� D minfli j 2 � i � kg satisfies l� � maxminŒj �. Clearly, S1Œp1::p1Cl��1� D S2Œp2::p2C

l� � 1� D � � � D Sk Œpk ::pk C l� � 1�. Because there is at least one i such that S1Œp1 C l�� ¤ Si Œpi C l��,
the tuple .l�; p1; : : : ; pk/ is a multiRMEM. It must still be shown that the string S1Œp1::p1 C l� � 1� is

rare in each Si , where 2 � i � k. It follows from l� � maxminŒj � that l� � mini Œj � for all 2 � i � k.

According to Lemma 1, for any 2 � i � k, the string S1Œp1::p1 C l� � 1� D Si Œpi ::pi C l� � 1� is rare in

Si if and only if l� � mini Œj �. Hence, we conclude that .l�; p1; : : : ; pk/ is a rare multiRMEM.

6.3. The multiple output phase

With the help of the preceding characterization of rare multiRMEMs, we immediately obtain an algorithm

that computes all rare multiRMEMs. At first, all relevant nodes j are computed, that is, for all 2 � i � k;

node j must be relevant w.r.t. Si . For each such node j , the following steps are performed:

(1) For each i; 2 � i � k; compute the set of all type 1, type 2, and type 3 match candidate specifications

for j and Si . Type 3 match candidate specifications are defined as follows: Enumerate all nodes j 0

in the subtree below j . For each .l; p2/ 2 Li Œj
0�, .l; leafset.j 0/; p2/ is a type 3 match candidate

specification for j and Si .

(2) Compute maxminŒj � D maxfmini Œj � j 2 � i � kg.

(3) Discard match candidate specifications .li ; P1; pi/ satisfying li < maxminŒj �. For each i; 2 � i � k,

let MCSi Œj � denote the set of all remaining match candidate specifications for j and Si .
(4) Enumerate the elements of the Cartesian product

MCS�Œj � WD MCS2Œj � � MCS3Œj � � � � � � MCSk�1Œj � � MCSk Œj �

and for each element ..l2; P 2
1 ; p2/; .l3; P 3

1 ; p3/; : : : ; .lk ; P k
1 ; pk// do the following:

(a) Discard it if it solely consists of match candidate specifications of type 3.

(b) � Compute P �

1 D
Tk

iD2 P i
1 .

� Compute l� D minfli j 2 � i � kg.
� For all p1 2 P �

1 , .l�; p1; p2; p3; : : : ; pk/ is a rare multiRMEM. If pi D 0 for at least one i with

1 � i � k, or the set fS1Œp1 � 1�g [ fSi Œpi � 1� j 2 � i � kg is not singleton, then it is also

left-maximal and thus a rare multiMEM.

The correctness of our algorithm is a direct consequence of Theorem 2. According to this theorem, it

suffices to solely consider relevant nodes. Furthermore, for each relevant node j , a rare multiRMEM ending
at j is the combination of rare RMEMs .li ; p1; pi /, 2 � i � k, ending at j or at a successor of j (note

that this is the reason why we have to add type 3 match specifications). Moreover, the theorem implies

that none of the rare RMEMs .li ; p1; pi/ is allowed to have a length smaller than maxminŒj �. That is the

reason why such rare RMEMs are excluded in our algorithm. Finally, all elements of MCS�Œj � that solely
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FIG. 3. The suffix tree for S1$ D acaaacatat$ annotated with matches w.r.t. S3 D atatatacaaca.

consist of type 3 match candidate specifications correspond to rare multiRMEMs ending at a successor

node of j and thus have already been taken into account.

Example 3. As before, let S1 D acaaacatat and S2 D aaaaact taacaacat . Additionally, let

S3 D atatatacaaca. Matching S3 against the suffix tree of S1$ yields the annotated suffix tree depicted

in Figure 3.

To illustrate how our algorithm works, we consider the internal node j D 12. For this node and S2,

there is no type 1 match specification, the type 2 match specifications are .3; f0g; 12/ and .3; f4g; 9/, while
the type 3 match specifications are .4; f0g; 9/ and .4; f4g; 12/. With respect to node j D 12 and S3, there

is one type 1 match specification .3; f0; 4g; 9/, one type 2 match specification .3; f4g; 6/, and one type 3

match specification .4; f0g; 6/. The combination of these match specifications leads to the following rare

multiRMEMs: .3; 0; 12; 9/, .3; 0; 12; 6/, .3; 4; 9; 9/, .3; 4; 9; 6/, .3; 0; 9; 9/, .3; 4; 12; 9/, and .3; 4; 12; 6/.

Note that the combination of the type 3 match specifications .4; f0g; 9/ and .4; f0g; 6/ is discarded at node
j D 12 because the corresponding rare multiRMEM .4; 0; 9; 6/ has already been computed at leaf node

j D 0. Out of these seven rare multiRMEMs, only .3; 4; 9; 9/ and .3; 4; 12; 9/ are not rare multiMEMs

because S1Œ3� D S2Œ8� D S3Œ8� and S1Œ3� D S2Œ11� D S3Œ8�.

6.4. Time and space complexity

Again, the construction time of the suffix tree ST of S1$ is O.n1/. Recall from Section 5.4 that for

each i , 2 � i � k, the matching phase takes O.ni ti / time, the deletion phase takes O.n1ti / time, and

the computation of all match candidate specifications w.r.t. Si requires O.n1t1ti / time. Thus, the time

complexity up to step (1) of Section 6.3 is O.
Pk

iD2 ni ti C n1t1
Pk

iD2 ti /.

The computation of maxminŒj � in step (2) can be done in O.k/ time for every node j in ST, resulting

in an O.n1k/ time complexity for this step.

Step (3) requires O.n1t1
Pk

iD2 ti / time because there are O.t1ti / match candidate specifications at each
node j in ST.

For every node j in ST, the set MCS�Œj � has O.
Qk

iD2.t1ti // elements. Therefore, the time needed in

step (4) to compute the Cartesian products at all relevant nodes would be O.n1tk�1
1

Qk
iD2 ti /. In order to

avoid the factor tk�1
1 , the Cartesian product can be built incrementally and the intersection of the position

sets is taken into account. More precisely, at each node j we first build MCS2Œj � � MCS3Œj � and delete
all elements with P 2

1 \ P 3
1 D ;. This takes O..t1 � t2/ � .t1 � t3// D O.t2

1 � t2 � t3/ time. The resulting set

MCS2;3Œj � has at most t1 � t2 � t3 elements. Then we build MCS2;3Œj � � MCS4Œj � and delete all elements

with P 2
1 \ P 3

1 \ P 4
1 D ;. Similarly, this takes O.t2

1 � t2 � t3 � t4/ time, and the resulting set has at most

t1 � t2 � t3 � t4 elements.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0105&iName=master.img-044.png&w=418&h=171
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This process is continued until we get

f..l2; P 2
1 ; p2/; .l3; P 3

1 ; p3/; : : : ; .lk ; P k
1 ; pk// 2 MCS�Œj � j P �

1 D

k
\

iD2

P i
1 6D ;g

in time O.k t2
1

Qk
iD2 ti /. In this way, step (4) can be implemented in O.n1k t2

1

Qk
iD2 ti / time.

Consequently, the overall time complexity of our algorithm is O.
Pk

iD2 ni ti C n1k t2
1

Qk
iD2 ti /.

Again, note that the space complexity is independent of the sequence lengths n2; : : : ; nk . The space

consumption is O.maxfn1ti j 2 � i � kg/ because after matching Si against ST, the resulting pairwise

rare matches can be stored in secondary memory.

7. IMPLEMENTATION

An implementation of our algorithms requires a representation of leaf sets. As suggested in Stoye and

Gusfield (2002), leaf sets can efficiently be represented by two additional integers for each interior node of
the suffix tree. These integers refer to an interval of an array storing all leaf numbers of ST in depth first

order. This additional array is the well-known suffix array as introduced by Manber and Myers (1993). Of

course, the two integers need only be added to all nodes j with string depth � ` and jleafset.j /j � t1.

Nevertheless, the representation requires considerable space in addition to the suffix tree representation.

Instead of suffix trees, our implementation employs enhanced suffix arrays. This is for the following
reasons:

� As shown in Abouelhoda et al. (2004), the enhanced suffix array is as powerful as the suffix tree. Any

algorithm on the suffix tree can be implemented on the enhanced suffix array, without sacrificing optimal

asymptotic running times. Moreover, enhanced suffix arrays require much less space than suffix trees.
� Enhanced suffix arrays already represent leaf sets.
� The software tool Vmatch3 provides a comprehensive code base implementing enhanced suffix arrays.

In fact, our implementation extensively uses this code base.

Before we describe our implementation in detail, let us briefly introduce the notion of enhanced suffix

arrays in its simplest form:
Let Tj D S1Œj::n1 � 1�$ denote the suffix of S1$ beginning with j th position. The suffix array suftab

of the string S1$ is an array of integers in the range 0 to n1, specifying the lexicographic ordering of the

n1 C 1 suffixes of the string S1$. That is, TsuftabŒ0�; TsuftabŒ1�; : : : ; TsuftabŒn1 � is the sequence of suffixes of S1$

in ascending lexicographic order. The lcp-table lcptab is an array of integers in the range 1 to n1. We define

lcptabŒj � to be the length of the longest common prefix of TsuftabŒj �1� and TsuftabŒj �, for 1 � j � n1. The

enhanced suffix array for S1 consists of the tables suftab and lcptab. An interval Œl::r �, 0 � l � r � n1, is
an lcp-interval of lcp-value q (or q-interval, for short) if the following holds:

1. if l < r , then
� l D 0 or lcptabŒl � < q,
� lcptabŒs� � q for all s, l C 1 � s � r ,
� lcptabŒs� D q for at least one s, l C 1 � s � r ,
� r D n or lcptabŒr C 1� < q.

2. if l D r , then q D n1 C 1 � suftabŒl �.

Note that this definition of lcp-intervals also includes singleton intervals. By contrast, the original
definition of lcp-intervals does not include singleton intervals (Abouelhoda et al., 2004). We will also use

the shorthand lcp-interval for an lcp-interval Œl::r � of unknown lcp-value. The size of an lcp-interval Œl::r �

is r � l C 1. A q-interval Œl::r � is said to be embedded in a q0-interval Œl 0::r 0� if it is a subinterval of Œl 0::r 0�

(i.e., l 0 � l � r � r 0) and q > q0. The lcp-interval Œl 0::r 0� is then called the interval enclosing Œl::r �. If

3www.vmatch.de.
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Œl 0::r 0� encloses Œl::r � and there is no interval embedded in Œl 0::r 0� that also encloses Œl::r �, then Œl::r � is

called a child interval of Œl 0::r 0�.

7.1. Representing suffix tree nodes

Lcp-intervals of size one (singleton intervals) correspond to leaves of ST. q-intervals of size greater

than one correspond to interior nodes of ST of depth q. In our implementation, we represent suffix tree

nodes by lcp-intervals. The parent-child relationship of lcp-intervals constitutes a conceptual (or virtual)
tree which we call the lcp-interval tree. The lcp-interval tree is equivalent to the suffix tree. Hence, in the

following, we reuse several suffix tree notions for the lcp-interval tree.

Example 4. Figure 4 shows the enhanced suffix array for the sequence S1$ D acaaacatat$, and

Figure 5 shows the corresponding lcp-interval tree.

The Vmatch code base provides a function which delivers right maximal matches of S2 in the enhanced

suffix array of S1. It reports the lcp-interval where the matching substring ends. This is exactly what we

need for computing rare matches. The corresponding algorithm, described in Kurtz and Lonardi (2004) on

the basis of suffix trees, runs in O.n2 C z/ time, where z is the number of reported matches, provided that
the enhanced suffix array for S1 is already precomputed.

7.2. Representing leaf sets

Each leaf set occurring in our algorithms is represented by an interval hl; ri, where 0 � l � r � n1.
hl; ri represents the leaf set fsuftabŒs� j l � s � rg. Note that there are leaf sets hl; ri such that Œl::r �

is not an lcp-interval. The leaf sets generated by our algorithms are subject to difference and intersection

operations. The difference operation leafset.j 0/ n leafset.j 00/ (see Section 5.3.2) means to subtract hl 0; r 0i

FIG. 4. The enhanced suffix array for S1$ D acaaacatat$.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0105&iName=master.img-046.png&w=149&h=287
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FIG. 5. The lcp-interval tree for S1$ D acaaacatat$. The corresponding suffix array is Œ2; 3; 0; 4; 6; 8; 1; 5; 7;9; 10�

(see also Fig. 4).

and hl 00; r 00i representing leafset.j 0/ and leafset.j 00/, respectively. Since the node j 00 is in the subtree
below j 0, we have l 0 � l 00 � r 00 � r 0. Thus, the difference operation delivers two leaf sets, hl 0; l 00 � 1i

and hr 00 C 1; r 0i, one of which is empty if l 0 D l 00 or r 00 D r 0. The split of a leaf set leads to two match

candidate specifications, rather than one as described in Section 5.3.2. This however does not affect the

correctness or efficiency of our algorithms. The intersection on k leaf sets (see Section 6.3, step (4)) can

be computed in O.k/ steps. Each step computes the intersection hmaxfl; l 0g; minfr; r 0gi of two leaf sets
hl; ri and hl 0; r 0i.

7.3. Storing min-values and L-lists

In the pairwise matching and deletion phase, we have to store, lookup, and update min-values and L-lists
for a subset of all possible lcp-intervals. Since we expect only a small fraction of all possible lcp-intervals

to be annotated, we use a balanced binary search tree (i.e., red-black tree) to store, lookup, and update

these values during the pairwise matching and deletion phase. Since an lcp-interval is uniquely determined

by its left and right boundaries l and r , we use the pair .l; r/ as search key. Figure 6 shows the binary

search tree obtained when matching S2 D aaaaact taacaacat against the enhanced suffix array of S1.

To save space, we do not store the lcp-value with each search key, but recompute it on the fly by
evaluating minflcptabŒs� j l C1 � s � rg. Since we only consider lcp-intervals Œl::r � of size at most t1, this

requires O.t1/ time. L-lists are stored as linked lists. We do not store the length of a list, but recompute it

on the fly when required.

Whenever we find a right maximal matching substring of length � ` at position p2 in S2 ending at the

interval Œl::r �, we insert this match into the search tree. We also insert additional lcp-intervals (associated
with a min-value of ` and an empty L-list), to guarantee that all relevant lcp-intervals are finally contained

in the search tree. In particular, we insert a q0-interval Œl 0::r 0�, if the following holds:

� Œl 0::r 0� is on the path from the root of the lcp-interval tree to Œl::r �,
� r 0 � l 0 C 1 � t1,
� q0 � `,
� Œl 0::r 0� is not already contained in the search tree.

These additional lcp-intervals can be found in O.t1/ time by looking up the appropriate values in table

lcptab.

7.4. Representing parent-child relationships for lcp-intervals

To efficiently compute elem_in_sublists-values and in turn decide whether an lcp-interval is relevant, we

have to perform a bottom-up traversal of the lcp-interval tree, restricted to the lcp-intervals contained in
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FIG. 6. The binary search-tree obtained when matching S2 D aaaaact taacaacat against the enhanced suffix array

of S1$ D acaaacatat$. For each node of the binary search tree, we show the stored lcp-interval and the corresponding

list of matches (see also Fig. 2).

the search tree. This requires information about the parent-child relationship of a subset of all lcp-intervals.
This relationship is already available in the search tree, because we store the search keys according to the

total order �, defined as follows: .l 0; r 0/ � .l; r/ if and only if l 0 < l or l 0 D l and r 0 > r . This order

is consistent with the parent-child relationship of the lcp-intervals in the lcp-interval tree. That is, if we

enumerate the elements of the search tree in �-order, then a parent comes before all of its children. This

allows one to simulate the required bottom up traversal over the suffix tree in time proportional to the size
of the search tree.

While the matching and deletion phases of our algorithms both require random insert and update

operations on the min-values and L-lists, the output phase (pairwise or multiple) merely needs sequential

read access. Moreover, in the multiple output phase, we have to combine the results of k � 1 matching

and deletion phases. Therefore, we store the result of the matching and deletion phases as a bit stream.

For an lcp-interval Œl::r �, we store l , r � l , minŒŒl::r ��, and all elements of L-lists in the bit stream. An
additional bit for each interval is used to mark the end of the bit stream encoding for the current interval.

Since we know the distribution of the values stored in the bit stream, each kind of value can be stored

as a fixed number of bits. Especially for the min-value, the difference r � l , and the length component of

the elements of the L-lists, we only need a small number of bits. A Huffman-coding would lead to even

better results. The bit stream encodes all relevant intervals w.r.t. to the order �. Hence, we can simulate a
bottom-up traversal over the lcp-interval tree restricted to all relevant lcp-intervals (as required to compute

type 2 and type 3 match candidate specifications), without explicitly storing parent-child relationships.

7.5. Combining min-values and L-lists in the multiple output phase

In the multiple output phase, we first have to identify the lcp-intervals that are relevant w.r.t. Si , for

all i , 2 � i � k. Since for each i , the relevant lcp-intervals for Si are stored w.r.t. to the same order
�, this identification task can be performed efficiently by iteratively merging the sequence of relevant

lcp-intervals. That is, we first merge the sequence of relevant lcp-intervals for S2 and the sequence of

relevant lcp-intervals for S3. This gives us the lcp-intervals which are relevant both for S2 and S3. For each

such lcp-interval, we store the maximum of the min-values and two references to the bit streams encoding

the relevant lcp-intervals. The combined sequence is then merged with the sequence of relevant intervals
for S4, resulting in a sequence of intervals that are relevant w.r.t. all Si , for 2 � i � 4. This process is

continued until the identification task is completed. As a result, we obtain a sequence of lcp-intervals. For

each such interval, say Œl::r �, we store maxfmini ŒŒl::r �� j 2 � i � kg and k � 1 references r2; : : : ; rk, where

ri refers to the bit streams encoding the lcp-interval Œl::r � relevant for Si .

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0105&iName=master.img-047.png&w=418&h=192
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There are two motivations for using the bit stream. At first, it reduces the size of the representation.

To see this, let us compare the size of the bit stream to the size of the random access representation of

the binary search tree. Assuming a pointer size of 4 bytes, each node in this binary search tree requires
32 C 12.m � 1/ bytes, where m is the number of matches it stores. In contrast, the simplest form of bit

stream encodes all relevant values as 4 bytes integers. It requires 8 C 8m bytes for a singleton interval and

12 C 8m bytes for any other interval. Thus depending on the number of matches and kinds of intervals to

store, we obtain a space improvement by a factor of about 2–3 times. Second, and more important than the

space reduction, is the fact that in the multiple output phase the bit stream can be processed sequentially.
That is, instead of keeping several binary search trees resulting from the match/deletion phases in memory,

we sequentially read the bit streams, keeping only a small part of them in main memory.

8. EXPERIMENTAL RESULTS

The algorithms described here were implemented in C. The resulting program ramaco (rare match

computation) will be made available free of charge for academia. The goal of this section is to show that
the described algorithms are of practical use concerning their time and space requirements.

For our first experiment, the sequences from the MOSAIC project (Chiapello et al., 2005) were used.

This project aims to provide high-quality pairwise and multiple alignments of groups of related bacterial

genomes (http://genome.jouy.inra.fr/mosaic/). The MOSAIC sequences consist of 24 groups of genomes

(12 groups of two genomes, 6 groups of three genomes, 4 groups of four genomes, 2 groups of six

genomes). The MOSAIC sequences were downloaded from Genbank, and ramaco was applied to each
group. More precisely, the enhanced suffix array of the first genome of each group was constructed, and

the remaining sequences were used as queries (in forward direction). For each combination of index and

queries, three runs where performed:

� In the first run, rare maximal matches were computed in a single program call (all-run).
� In the second run, only the matching and deletion phases for the index and each query were performed.

The result of this phase was stored on files (search-run).
� In the third run, only the output phase was performed, using the result from the appropriate search-runs

(output-run).

Table 1 shows the result when computing rare matches for four MOSAIC groups with ` D 14 and ti D 5.

Each of the chosen groups was the largest (in terms of base pairs [bp]) among all groups with the same

number of sequences. The results for the other groups do not significantly differ from the results of the
groups shown here. The first column of Table 1 gives the name of the group, the number of rare multiMEMs,

and the number of multiMEMs in the group. We additionally show how many more multiMEMs than rare

multiMEMs exist. The second column gives the Genbank accession number of the genomes making up

the group. In the third column, the size of the genome (in bp) is reported. The fourth column shows for

which kind of run (all, search, or output) the results are given. Column 5 gives the running time (in sec)
on a Pentium 4 computer (2.4 GHz CPU, 4 GB RAM) running Linux. Column 6 reports the overall space

peak (in megabytes) of the corresponding run. Column 7 shows the “rare match space peak” (abbreviated

RM-space), that is, the space peak minus the space for the index and the query sequence. While the space

for the index and the query sequence only depends on the input size, the rare match space peak depends

on the number of pairwise matches. This is because our algorithm has to store the pairwise matches, until

their rareness can finally be verified. As a consequence, the rare match space peak gives the additional
space required for handling the rareness constraints. To allow a comparison between the groups of different

sizes, column 8 reports the rare match space peak per rare match (in bytes).

Table 1 shows that the ratio of the number of multiMEMs and rare multiMEMs (rareness ratio) signif-

icantly differs. In the first two groups, almost all multiMEMs are rare. In the last two groups, with four

and six genomes, less than 2% and less than 1% are rare, respectively. That is, for the last two groups,
the rareness constraint represents a very effective filter for matches. Concerning the required resources, it

is obvious that all sets of genomes can easily be handled by ramaco, although the genomes inside one

group are very similar. The running times are in a range of a few seconds to about 3 min for the set

with six genomes. The running times for the separate search and output runs approximately sum up to
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TABLE 1. RUNNING TIME AND SPACE RESULTS WHEN APPLYING ramaco TO FOUR MOSAIC GROUPS

WITH ` D 14 AND ti D 5

Group Genomes

Length

(bp) Phase

Time

(sec)

Space

(MB )

RM-space

(MB)

Per match

(bytes)

` D 14; ti D 5, matches on

forward strand

Pseudomonas syringae

[549036 rare MEMs,

627290 MEMs (1.1�)]

NC_005773 5,928,787 All 13.00 119.08 70.90 135

NC_007005 6,093,698 Search 13.53 95.08 46.90 90

Output 0.66 64.74 24.21 46

Bacillus cereus [896291 rare

MEMs, 1308576 MEMs

(1.5�)]

NC_003909 5,224,283 All 53.14 309.54 262.12 307

NC_004722 5,411,809 Search 31.30 163.60 121.24 142

NC_006274 5,300,915 Output 19.53 212.22 171.79 201

Escherichia coli [1198345

rare MEMs, 75520384

MEMs (63.0�)]

NC_004431 5,231,428 All 108.93 543.50 491.31 430

NC_000913 4,639,675 Search 53.22 247.02 204.50 179

NC_002655 5,528,445 Output 49.58 405.01 359.81 315

NC_002695 5,498,450

Staphylococcus aureus

[10260430 rare MEMs,

1140814012 MEMs

(111.2�)]

NC_002758 2,878,040 All 184.39 643.94 609.02 62

NC_003923 2,820,462 Search 61.14 293.02 268.82 27

NC_002745 2,814,816 Output 114.12 434.35 404.17 41

NC_002951 2,809,422

NC_002952 2,902,619

NC_002953 2,799,802

ramaco, Rare match computation.

the time for the all run. More important, the separation of the computation into two program calls leads

to a considerably reduced space requirement. The last column of Table 1 shows that the space per match

considerably differs between the different groups, ranging from 27 to 430 bytes. This large variation is due

to the fact that the rare match space (RM-space) is mainly dependent on number of pairwise matches, and
to a lesser extent on the number of multiMEMs. But given the usual context that the entire set of matches

are stored (on file or in RAM) to be further processed (i.e., by chaining methods), the per match space

seems acceptable in practice.

To study the effect of the length threshold, we ran ramaco for the same MOSAIC groups and with

` D 20 and ti D 5 (Table 2).
Interestingly, the number of rare multiMEMs decreases more than the number of multiMEMs. As a

consequence, the rareness ratio increases, except for the S. aureus-group, where it hardly changes. This

means that rareness filtering is also relevant for larger length thresholds. The running times only slightly

decrease by a factor of 1.2–1.5, compared to the runs reported in Table 1. The decrease in the space

requirement is by a factor of 1.1–2.0. Unfortunately, the per match space increases by a factor of up to 10,
compared to the run with ` D 14. Again, this can be explained by the fact that there are many pairwise

matches, which do not lead to rare multiMEMs.

Our second experiment deals with the computation of rare MEMs for two groups of X-chromosomes

from different vertebrate genomes. More precisely, as a first group, the X-chromosomes of Homo sapiens

(human), of Mus musculus (mouse), and of Rattus norvegicus (rat) were used. The second group consists

of the members of the first group plus the X-chromosome of Canis familiaris (dog). The same procedure
as in the first experiment was applied. Additionally, rare multiMEMs on the reverse strands were computed.

The results are shown in Table 3; see above for the explanation of the values given in the different columns.

ramaco efficiently computed all rare MEMs of length at least 20 with rareness threshold ti D 10.

While the program is able to compute multiMEMs (without any rareness constraints), it failed to do

so for the X-chromosomes because there are simply too many multiMEMs. Table 3 shows that ramaco

can handle large sequence sets of about 600 million bp. The running time (for the all-runs) is about 9–

13 min, and the space requirement is on the order of 2 gigabytes. The additional dog genome led to an

increased number of rare multiMEMs by a factor of 2.7. The number of matches on the forward strand

only slightly differs from the number of matches on the reverse strand. This shows that it is necessary to
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TABLE 2. RUNNING TIME AND SPACE RESULTS WHEN APPLYING ramaco TO FOUR MOSAIC GROUPS

WITH ` D 20 AND ti D 5

Group Genomes

Length

(bp) Phase

Time

(sec)

Space

(MB)

RM-space

(MB)

Per match

(bytes)

` D 20; ti D 5

Pseudomonas syringae

[51274 rare MEMs, 75308

MEMs (1.47�)]

NC_005773 5,928,787 All 9.77 82.35 34.17 699

NC_007005 6,093,698 Search 9.93 70.99 22.81 466

Output 0.37 52.11 11.58 237

Bacillus cereus [55581 rare

MEMs, 230193 MEMs

(4.14�)]

NC_003909 5,224,283 All 36.59 209.59 162.17 3060

NC_004722 5,411,809 Search 25.29 126.06 83.70 1579

NC_006274 5,300,915 Output 11.70 141.69 101.26 1910

Escherichia coli [103631 rare

MEMs, 10211804 MEMs

(98.54�)]

NC_004431 5,231,428 All 91.02 450.38 398.19 4029

NC_000913 4,639,675 Search 51.58 214.15 171.63 1737

NC_002655 5,528,445 Output 43.03 332.42 287.22 2906

NC_002695 5,498,450

Staphylococcus aureus

[379856 rare MEMs,

42011419 MEMs

(110.60�)]

NC_002758 2,878,040 All 146.83 565.17 530.25 1464

NC_003923 2,820,462 Search 67.78 273.84 249.64 689

NC_002745 2,814,816 Output 78.54 372.19 342.01 944

NC_002951 2,809,422

NC_002952 2,902,619

NC_002953 2,799,802

ramaco, Rare match computation.

TABLE 3. RUNNING TIME AND SPACE RESULTS WHEN APPLYING ramaco TO TWO COLLECTIONS OF

X-CHROMOSOMES WITH ` D 20 AND ti D 10

Group Genomes

Length

(bp) Phase

Time

(sec)

Space

(MB)

RM-space

(MB)

Per match

(bytes)

` D 20; ti D 10, forward

strands

X-chromosome

human/mouse/rat

[6295682 rare MEMs]

NC_000023 154,824,264 All 511.24 1676.69 348.17 58

NC_000086 164,906,252 Search 497.84 1409.61 234.34 39

NC_005120 160,699,376 Output 18.28 1336.19 283.32 47

X-chromosome

human/dog/mouse/rat

[17111495 rare MEMs]

NC_000023 154,824,264 All 744.19 1846.88 397.35 24

NC_006621 126,883,977 Search 713.70 1468.98 293.71 18

NC_000086 164,906,252 Output 117.48 1423.84 249.96 15

NC_005120 160,699,376

` D 20; ti D 10, reverse

strands

X-chromosome

human/mouse/rat

[6256893 rare MEMs]

NC_000023 154,824,264 All 517.72 1972.00 643.48 108

NC_000086 164,906,252 Search 505.82 1556.79 381.52 64

NC_005120 160,699,376 Output 18.17 1326.25 273.38 46

X-chromosome

human/dog/mouse/rat

[17102466 rare MEMs]

NC_000023 154,824,264 All 743.23 2232.21 782.68 48

NC_006621 126,883,977 Search 714.16 1596.77 421.50 26

NC_000086 164,906,252 Output 36.69 1413.41 239.53 15

NC_005120 160,699,376

ramaco, Rare match computation.
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compute matches on both strands. This is done by a script appropriately calling ramaco for each possible

combination of strands. For the first set of X-chromosomes, this gives a running time of about 30 min. For

the second set of X-chromosomes, this gives a running time of about 100 min. Note that the per match
space requirement given in Table 3 is generally smaller and has less variance than the per match space

requirement for the bacterial sequences of the first experiment. This may be explained by the fact that the

X-chromosomes are so similar that pairwise matches lead to multiMEMs with high probability.

9. CONCLUSION

We have devised an efficient algorithm for solving an important sequence comparison problem, viz.

finding rare maximal exact matches between multiple sequences. Apart from that, we have also presented

an efficient implementation technique. This allowed us to implement the algorithm with a space complexity
that is independent of the sizes of the sequences. Our experiments show that the rareness constraints

significantly reduce the number of matches, and their computation is feasible.

Because multiMUMs are special rare multiMEMs, any algorithm for finding rare multiMEMs can also

be used to search for multiMUMs. If one is solely interested in multiMUMs, however, then a more efficient

implementation can be obtained by exploiting the properties of this special case. We refrained from giving

the details of how our algorithm can be specialized for finding multiMUMs because multiMUMs are not
particularly suitable for the genome comparisons we have in mind.
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