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ABSTRACT

In this article, we propose a new method for computing rare maximal exact matches between
multiple sequences. A rare match between k sequences Si,..., S is a string that occurs
at most 7;-times in the sequence S;, where the 7; > 0 are user-defined thresholds. First,
the suffix tree of one of the sequences (the reference sequence) is built, and then the other
sequences are matched separately against this suffix tree. Second, the resulting pairwise
exact matches are combined to multiple exact matches. A clever implementation of this
method yields a very fast and space efficient program. This program can be applied in
several comparative genomics tasks, such as the identification of synteny blocks between
whole genomes.
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1. INTRODUCTION

WHOLE GENOME COMPARISONS can be used as a first step toward solving genomic puzzles, such
as determining coding regions, discovering regulatory signals, and deducing the mechanisms and
history of genome evolution. One aspect that makes computational comparative genomics difficult is the fact
that both local and global mutations of the DNA molecules occur during evolution. Local mutations (point
mutations) consist of the substitution, insertion, or deletion of single nucleotides, while global mutations
(genome rearrangements) change the DNA molecules on a large scale. In unichromosomal genomes,
the most common rearrangements are inversions, where a section of the genome is excised, reversed in
orientation, and re-inserted. But large-scale duplications, deletions (gene loss), insertions (horizontal gene
transfer), and transpositions also play a role. In a transposition, a section of the genome is excised and
inserted at a new position in the genome; this may or may not also involve an inversion. In genomes with
multiple chromosomes, further genome rearrangements are translocations (in a reciprocal translocation, two
non-homologous chromosomes break and exchange fragments), fusions (where two chromosomes fuse),
and fissions (where a chromosome breaks into two parts).

Thus, if the organisms under consideration are closely related (that is, if no or only a few genome
rearrangements have occurred) or one compares regions of conserved synteny (these are regions in two
or more genomes in which orthologous genes occur in the same order), then global alignments can, for
example, be used for the prediction of genes and regulatory elements. This is because coding regions
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are relatively well preserved, while non-coding regions tend to show varying degree of conservation.
Non-coding regions that do show conservation are thought important for regulating gene expression and
maintaining the structural organization of the genome; they possibly have other, yet unknown functions.
Several comparative sequence approaches based on alignments have been used to analyze corresponding
coding and non-coding regions from different species. These approaches are based on software tools for
aligning DNA-sequences (Chain et al., 2003; Treangen and Messeguer, 2006). To cope with the shear
volume of data, most of the software tools use an anchor-based method that is composed of three phases:

1. Computation of fragments (segments in the genomes that are similar).

2. Computation of a highest-scoring global chain of colinear non-overlapping fragments: these are the
anchors that form the basis of the alignment.

3. Alignment of the regions between the anchors.

For diverged genomic sequences, however, a global alignment strategy is likely predestined to failure for
having to align non-syntenic and unrelated regions in an end-to-end colinear approach. In this case, one
must first identify syntenic regions, which then can be studied individually. Moreover, the ordering of such
“synteny blocks” can then be used as input to software tools such as MGR (Bourque and Pevzner, 2002) that
compute plausible rearrangement scenarios for multiple genomes. In the gene-based approach, the problem
of automatically finding syntenic regions requires a priori knowledge of all genes and which of the genes
are orthologous. It is safe to say that gene prediction and the accurate determination of orthologous genes
are computationally difficult, but it is beyond the scope of this paper to discuss these issues in detail.
Pevzner and Tesler (2003) bypassed “the difficult issues of gene annotation and ortholog identification” by
using sequenced-based synteny blocks. In Abouelhoda and Ohlebusch (2003), it was shown that significant
local chains (instead of a highest-scoring global chain as in phase (2) of the anchor-based method) of
multiMEMSs can be used to efficiently find synteny blocks in prokaryotic genomes. However, multiMEMs
cannot be used for comparing eukaryotic genomes containing many repetitive elements. This is because the
number of multiMEMs “explodes” in the presence of many repeats. Of course, many repetitive elements
can be eliminated by repeat masking tools such as RepeatMasker (Smit and Green, 2008). However,
repeat masking takes a long time, does not eliminate all repeats, and causes new problems (not discussed
here). Repeat masking can be avoided by using multiMUMs instead of multiMEM:s as fragments. As noted
by Mau et al. (2005), however, using multiMUMs may fail to generate enough anchors. Consequently,
something in between multiMUMs and multiMEMs is needed, and we found that rare multiMEMs meet
the requirements. With an appropriately chosen threshold # on the allowed number of copies of a rare
multiMEM, it is possible to generate sufficiently many anchors while at the same time avoiding an explosion
of the number of multiple matches (without repeat masking). For example, when computing multiMEMs
of minimal length 20, for a set of six Staphylococcus aureus genomes, we found that there are 110 times
more multiMEMs than rare multiMEMs (¢ = 5). When comparing the X-chromosomes of four vertebrate
genomes, we can easily compute the rare multiM EMs, but not the multiM EMs (because there are too many).
See Section 8 for more details.

A method to compute rare multiMEMs is sketched in Abouelhoda et al. (2006).! This method is a
modification of the following technique to find all multiMEMs (Hohl et al., 2002; Kurtz and Lonardi,
2004) among k genomic DNA sequences S, ..., Sk (in our application, S; is the sequence of nucleotides
in one strand of the DNA double strand of a chromosome of genome G;). First, the strings S, ..., Sk are
concatenated, using distinct symbols $1, ..., $;x—; to mark the borders between the strings. Then, one builds
the suffix tree (or the enhanced suffix array) of the resulting string S = S1$15,%5, ..., Sk—1$%x—1S; and
computes all multiMEMs basically by computing all repeats (satisfying some constraints) in the string S.
In this way, it is possible to compare chromosomes of several species simultaneously provided that one
computes rare multiMEMs instead of all multiMEMs.

However, for a comparison of multiple genomes, the method is rather time and space consuming. We
will clarify this by an example. Suppose one wants to compare the genomes of human, mouse, and
rat. The human genome consists of 46 chromosomes: 22 pairs of homologous chromosomes plus the X
and Y chromosome (of course, females have two X chromosomes). The mouse genome has 19 pairs of
homologous chromosomes, while the rat genome has 20. Therefore, 24 - 21 - 22 combinations have to be

'To be precise, the algorithm searches for infrequent multiMEMs, a slight variation of rare multiMEMs.
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dealt with in a comparison of all leading strands of the chromosomes. Because one also has to take the
lagging strands into account, the number of combinations increases to 24 - 42 - 44 = 44,352 (the lagging
strands of one genome need not be considered because, for example, the comparison of all leading strands
of the X chromosomes of human, mouse, and rat is equivalent to the comparison of all lagging strands
of these chromosomes). That is, one has to build the suffix tree (or the enhanced suffix array) of 44,352
long strings, each of which is the concatenation of the leading strand of a human chromosome with the
leading or lagging strands of a mouse and a rat chromosome. Although one cannot change the number of
combinations to be considered, there is a better strategy that works as follows. First, one builds the suffix
tree only for the leading strands of the chromosomes of a reference genome, say, the human genome. Then
one separately matches the leading and lagging strands of each chromosome of the other genomes against
each suffix tree. This procedure yields pairwise matches in the form of rare MEMs, which are stored in
a suitable data structure (on file, if necessary). Finally, if one wants to compare specific chromosomes
(e.g., human chromosome 17 with mouse chromosome 11 and rat chromosome 10), then one combines the
pairwise rare MEMs between these chromosomes to rare multiMEMs. Obviously, this approach is much
more flexible than the aforementioned. If one has a “data base” of rare MEMs with respect to a reference
genome, then one can easily perform pairwise or multiple comparisons between the reference genome and
other genomes from the data base.

As another example, we would like to mention the mapping of cDNA to multiple genomes. In his
experiments, Abouelhoda (2007) found out that rare multiMEMs were most suitable for this task. This is
because, on the one hand, the sensitivity with multiMUMs was too low, and on the other hand, the number
of multiMEMSs was too large to be computed.

The paper is organized as follows. After a brief discussion of related work in Section 2, we state the basic
concepts in Section 3. In Section 4, we recall a method for finding all maximal exact matches between two
sequences, and in Section 5, we show that this method can be modified (albeit with considerable effort)
such that it computes rare maximal exact matches. This computation is generalized to multiple sequences
in Section 6. Section 7 discusses implementation details, and in Section 8 we report on experimental
results. The concepts and notions introduced here are illustrated by several examples.

2. RELATED WORK

As already mentioned, many software tools for aligning large DNA sequences depend on the ability
to efficiently compute exact matches (either k-mers or maximal matches) (Chain et al., 2003; Treangen
and Messeguer, 2006). Software tools that simultaneously compute exact matches in all sequences under
consideration are MGA (Hohl et al., 2002), EMAGEN (Deogen et al., 2004), Mauve (Darling et al.,
2004), and M-GCAT (Treangen and Messeguer, 2006). MGA uses maximal multiple exact matches, while
the other tools use maximal multiple unique matches. As discussed in Section 1, MGA’s strategy of
computing maximal multiple exact matches between k strings Si,..., Sy by computing repeats in the
string S = §1$152%2, ..., Sk—18%—1Sk has certain disadvantages. These disadvantages can be overcome by
matching k — 1 of the sequences against the remaining (reference) sequence. The technique of matching a
query string against a suffix tree in linear time by using suffix links goes back to Chang and Lawler (1994).
This technique was also used in MUMmer2 (Delcher et al., 2002) to compute maximal unique matches
between two sequences. MUMmer3 (Kurtz et al., 2004) additionally allows one to compute all maximal
exact matches between two sequences in this manner, using an algorithm described in Kurtz and Lonardi
(2004). Although no details are given in Treangen and Messeguer (2006), it seems that M-GCAT uses a
similar algorithm to compute maximal unique matches between multiple sequences. We stress, however,
that no algorithm is known that computes rare maximal exact matches between two or multiple sequences
in this way.

3. BASIC DEFINITIONS

For 1 <i < k, S; denotes a string of length n; = |S;|. If S; = uvw for some (possibly empty)
sequences u, v and w, then u is a prefix of s, v is a substring of s, and w is a suffix of s. A substring, a
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prefix or a suffix of s is proper if it is different from s. In our application, S; is one strand of the DNA
double strand of a chromosome or genome G;. However, the algorithms presented here work for any kind
of sequence.

Let $ be a special sentinel character that does not occur in S;. It is appended to S;, so that no suffix
of S;$ is also a prefix of S; (this fact is important when using suffix trees for substring matches). S;[h]
denotes the character at position h in S;, while S;[l..h] denotes the substring of S; starting at position /
and ending at position /. Given #; € N, the substring S;[/..h] of S; is said to be rare in S; if it occurs at
most ¢; times in S;.

3.1. Suffix trees

A suffix tree ST(S,$) for the string S;$ is a rooted directed tree with exactly n; + 1 leaves numbered
0 to n;. Each internal node, other than the root, has at least two children, and each edge is labeled with
a nonempty substring of S1$. No two edges out of a node can have edge labels beginning with the same
character. The key feature of the suffix tree is that for any leaf j, the concatenation of the edge labels on
the path from the root to leaf j exactly spells out S;[j..n; —1]$, the j-th nonempty suffix of the string S;$.
Figure 1 shows the suffix tree for the string $1$ = acaaacatat$.

For ST(S:$) we also use the abbreviation ST. As already mentioned, the leaves in ST are numbered
such that leaf j represents the jth suffix of S;$. For convenience, let the interior nodes of ST also be
numbered. That is, an interior node gets a number n; < j < n’, where n’ < 2n; — 1 is the number of
nodes in ST (Fig. 2). For each node j # root, let parent(j) denote the parent node of j in ST. In the
following, we denote a node j in the suffix tree by u if and only if the concatenation of the edge labels
on the path from the root to node j spells out the string u. |u| is the depth of node u. It is a property of
suffix trees that for any internal node au, where a is some character, there is also an internal node u. A
pointer from au to u is called a suffix link (Fig. 1).

A suffix tree can be built in linear time and space (Weiner, 1973).

3.2. Exact matches

Definition 1.  An exact match between two strings Sy and S, is a triple (I, py, p2) such that Sy[py..p1 +
[ —1] = Sy2[p2..p2 + 1 —1]. An exact match is called right maximal (RMEM) if py+1 =n,0or po+1=n
or Si[p1 + 1] # S2[p2 + []. It is called left maximal if py = 0 or p, = 0 or Si[p1 — 1] # Sa2[p2 — 1].
A left and right maximal exact match is called maximal exact match (MEM).

Using user-defined thresholds #; and #; on the number of allowed copies of a MEM in the strings S
and S, yields the notion of rare MEM.

FIG. 1. The suffix tree for S1$ = acaaacatat$. Suffix links for the interior nodes are drawn as dotted arrows. The
leaves and interior nodes are numbered as described in the text.
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FIG. 2. The suffix tree for $1$ = acaaacatat$ annotated with matches with respect to S» = aaaaacttaacaacat.
(Note that the element (2, 4) at node 12 will be deleted from L[12] in the subsequent deletion phase.)

Definition 2.  Given ¢; and t,, a MEM or RMEM (I, p1, p») is called rare in S; if the string S1[p1..p1+
[ — 1] = S3[p2..p2 + 1 — 1] is rare in S, that is, if it occurs at most #; times in S;. A MEM or RMEM
(I, p1, p2) is called rare if it is rare in S; and S,. A maximal unique match (MUM) is a rare MEM with
respect to the thresholds #{ = 1 = #,. In other words, the number of allowed copies of that string equals 1.

4. FINDING ALL MEMs BETWEEN TWO STRINGS

In this section, we will recall how one can compute all MEMs between two genomic sequences S; and
S, by using only the suffix tree ST of the sequence S;$ (Kurtz and Lonardi, 2004). Our exposition follows
Gusfield (1997), which contains a description of Chang and Lawler’s (1994) technique of matching a query
sequence S, against a suffix tree ST in linear time.

The naive way to compute all MEMs (I, p1, p2), where p, is a fixed position in S3, is to match the
initial characters of S[p,..n, — 1] against ST by following the unique path of character matches until no
further matches are possible. If there are / matches until a mismatch occurs, and the mismatch occurs on
the edge label W — uw, then Sy[p2..p2 + 1 — 1] = uw for some proper prefix w of v (w = ¢ is possible),
but Sy[p2..p2 + [] does not match any substring of S;. If w = ¢, then we say that the matching substring
So[pa..pa +1—1] ends at node u. If w # ¢, then we say that the matching substring Sz[p2..p2 +1—1] ends
at node uv. We can find out at what positions the string #w occurs in S; by considering the leaf numbers
of the subtree rooted at uv if w # ¢ (at u if w = ¢, respectively). Let leafset(uv) be the leaf set for uv,
that is, the set of leaf numbers in the subtree below node uv. For each j € leafset(uv), the concatenation
of the edge labels on the path from the root to leaf j exactly spells out the string S;[j..n; — 1]$ (i.e.,
the jth suffix of S;$). Consequently, for each p; € leafset(uv), the triple (I, p1, p2) is an RMEM. 1t is a
MEM if it is also left-maximal. The test for left-maximality (check whether either p; = 0 or p, = 0 or
Si[p1 — 1] # Sa[p2 — 1] holds) takes only constant time. On the one hand, repeating this procedure for
every p2, 0 < p» < np—1 would not yield a linear time algorithm. On the other hand, if we would supply
every node u in ST with a counter that is incremented whenever u is visited, then we could count how
often the string u occurs in S;.

To compute all MEMs (I, py, p2) for p = 0, we use the naive method described above, that is, we
match the characters of string S, against ST by following the unique matching path of S,[0..n, — 1] starting
from the root of S7. Now suppose in general that the algorithm has just followed a matching path for some
position p, in S, ending at node j. More precisely, let Sz[p2..p2 +1—1] be the length / substring of S, that
starts at position p, and matches auw, where au is the string corresponding to node au = parent(j) and
w is a non-empty prefix of the label v (w = v is possible) of the edge parent(j) — j, but Sa[p2..p2 + ]
does not match a substring of S;. To match the next suffix Sz[p, + 1..n, — 1] against ST, one follows the
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suffix link @ — u. Because auw is a prefix of Sy[p2..p2 +1 —1], uw is a prefix of Sy[p2+ 1..pa+1—1].
That is, the search for matches can start at node u. Moreover, instead of traversing the path labeled uw by
examining every character on it, the algorithm uses the skip and count trick of Ukkonen’s (1995) suffix tree

construction algorithm. This trick works as follows: Let ¥ — uw; — uwjw; — -+ = UW Wa, ..., Wy
be the path in ST such that w = wjw,, ..., W,W,+ and there is an edge outgoing from uw Wy, ..., Wy,
such that w,,+; is a proper prefix of the edge label (w,,+1 = ¢ is possible). For each node uwiw,, ..., w;,
one follows the edge whose first character (of the label) coincides with the first character of w;y;. In
this manner, the correct child node ww;wy, ..., w;w;+; is reached in constant time. Finally, the matching
phase continues by following the unique matching path of Sy[|uw|..n, — 1] starting from the |w;,+1| + 1-th
character of the label of the outgoing edge of uwiw>, ..., W, whose first character coincides with the first

character of w;,;+.

Example 1. Let S| = acaaacatat. The suffix tree for S;$ is depicted in Figure 1. Suppose that
in the computation of all maximal exact matches between S; and the string S, = aaaaacttaacaacat,
the algorithm has followed the matching path of the suffix cat of S,. In order to find the matching path
for at, the algorithm first follows the suffix link from node 15 (¢a) to node 14 (@), and then follows the
edge whose label has ¢ as the first letter.

Matching query sequence S, against the suffix tree ST takes linear time. To be precise, the construction
of ST takes O(n;) time, and the matching phase takes O(n,) time. In contrast to the naive algorithm,
however, if we would supply every node u in ST with a counter that is incremented whenever u is visited,
then the value of this counter does not generally give the number of occurrences of the string u in S5.
This is because the algorithm takes the suffix link shortcuts.

The overall time complexity for the computation of all MEMs in this way is O(ny + ny + r), where r
is the number of RMEMs. Note that the space consumption does not depend on 7.

5. COMPUTATION OF RARE MEMs

Here we will show how all rare MEMs of S; and S, that exceed a length threshold £ can be computed
space efficiently by matching S, against the suffix tree ST of S1$. A node j in ST is called relevant w.r.t.
S, if there is a rare RMEM between S| and S» of length > £ ending at j. Our algorithm consists of three
phases:

1. Matching phase, in which we identify (a) nodes in ST that are potentially relevant and (b) strings
corresponding to potentially rare RMEMs (these are stored in lists).

2. Deletion phase, in which we (a) determine whether a potentially relevant node is really relevant or not
and (b) delete strings corresponding to RMEMs that are not rare (from the lists).

3. Output phase, in which rare MEMs are generated and output.

5.1. Pairwise matching phase

Each node j in ST satisfying (1) j has string depth > £, and (2) the subtree of ST with root j has at
most #; leaves, is potentially relevant. Any other node u is irrelevant because if (1) is not satisfied, then u
is too short and if (2) is not satisfied, then u is not rare in S;. A potentially relevant node j is associated
with a value min[j] and a list L[/]. Initially, min[j] := £ and L[j] := [ ], where [ ] denotes the empty list.
L[/] has at most #, entries of the form (length, position) in decreasing order w.r.t. the first component. The
following invariants are maintained in each step of the matching phase:

® Each entry (length, position) in L[j] satisfies length > min[J].

® If min[j] = ¢, then at most #, matches of length £ ending at node j have been detected so far.

® If min[j] > £, then the prefix of length min[j] — 1 of u occurs more than #, times in S,, where u is the
string corresponding to node ;.

At the beginning, as long as L[j] has less than #, members (i.e., |L[j]| < f2), we insert exact matches
ending at node j into L[j] provided that the length of the match is greater than or equal to min[;j] = £.
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At the point at which L[;] has exactly #, members and there is another exact match ending at node j, we
have to update L[] such that it does not contain exact matches which we already know are not rare in S,.
From that point on, the list may shrink and expand.

Let us turn to the details of this procedure. Suppose that the algorithm has just followed a matching
path for some position p, in S, ending at node j. More precisely, let Sy[ps..p2 + [ — 1] be the length
[ substring of S, that starts at position p, and matches uw, where u is the string corresponding to node
parent(j) and w is a non-empty prefix of the label v (w = v is possible) of the edge parent(j) — j,
but Sz[p2..p2 + [] does not match a substring of S;. If / < min[], there is nothing to do. Otherwise, if
[ > min[j], we further proceed by case analysis.

® If |L[j]| < t2, then the capacity of L[j] is not exceeded and so the pair (/, p,) is inserted into L[;].
® Suppose |L[j]| = 7, and let len be the smallest length value in L[/].

o Let [ > len. Since len > min[j], we have / > min[;j]. Hence, there are more than #, occurrences
of Sy[pa..p2 + len — 1] in S,. We delete all elements with length value len from L[j] and set
min[j] := len 4+ 1. Note that at least one element was deleted from L[j]. So (I, p2) is inserted into
L[j]if I > len. After deleting the elements and one possible insertion (if / > len), we have |L[j]| < £,
and it is easy to see that the invariants specified above are satisfied.

o If [ < len, then we know that Sp[p,..p> + [ — 1] occurs more than f, times in S,. Hence, we set
min[j] := [ + 1. Since all elements of L[;] are of length at least len > [ + 1 = min[j], the invariants
specified above are satisfied.

Example 2. Figure 2 depicts the annotated suffix tree of S$1$ = acaaacatat$ after matching S, =
aaaaacttaacaacat with threshold parameters £ = 2 and #; = t, = 2 against it. Note that the nodes 10,
14, 16, and 17 are irrelevant because their string depth is smaller than £. Moreover, the subtrees with root
node 14 and 17 have more than #; nodes.

To show how our method works, consider the list L[2] of leaf 2. It contains all matches of substrings of
S with prefixes of the suffix aaacatat that start at position 2 in S;. When the algorithm detects that the
first three characters of the suffix of S, starting at position O and those of aaacatat match, it inserts the
pair (3,0) into the initially empty list L[2]. Analogously, the pair (3, 1) is inserted into L[2] because the
capacity of L[2] is not exceeded yet. However, when the match of the length 4 prefix of aaacatat and
S,[2..15] is detected, the list L[2] already contains #, = 2 elements. Consequently, the elements (3, 0) and
(3, 1) are deleted from the list (they have the smallest length value len = 3), the value min[2] is set to
len 4+ 1 = 4, and the pair (4, 2) is inserted into L[2].

5.2. Deletion phase

Because of the nature of the matching procedure (described in Section 4), it cannot be used to count
how often a string u occurs in S». That is the reason why the suffix tree may be annotated with more
lists and list elements than necessary. Thus, before we compute rare MEMs by a traversal of ST, we
get rid of unnecessary nodes and list-elements. More precisely, we first want to identify nodes that are
irrelevant. Second, for the remaining relevant nodes j, we want to delete elements from list L[] that do
not correspond to rare RMEMs.

Let us turn to the details of this procedure. In a bottom-up traversal of ST, for any node j, the following
value is computed:

0 if j is a leaf
elem_in_sublists(j] := Z (elem_in_sublists[j'] + |L[j']|) otherwise

j'j=parent(j’)

In words, elem_in_sublists[ j] denotes the total number of elements in the L-lists of all nodes in the subtrees
strictly below j. That is, the string u corresponding to j occurs elem_in_sublists[j] times as a proper
substring of matches between S| and S,.

If j satisfies min[j] > £, then by the third invariant the prefix of length min[j]—1 of u occurs more than
t, times in S». In other words, every ancestor of j is irrelevant because its corresponding string occurs too
many times. Consequently, there is no need to continue the bottom-up traversal of the annotated suffix tree
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with the ancestors of j. In our example, node 2 satisfies min[2] = 4 > £ = 2 and hence every ancestor of
node 2 is irrelevant (in particular, node 11 is irrelevant).

From now on, we assume that the node j under consideration was not identified to be irrelevant yet.
Hence every successor j’ of j satisfies min[j’] = €. That is, nothing was deleted from the list L[;'].

Theorem 1. Node j is irrelevant if and only if at least one of the following conditions holds (where
u is the string corresponding to node j ).

(1) L[j] =[] and elem_in_sublists[j] = 0.
(2) min[j] > |u|.
(3) elem_in_sublists[j] + |{(r,q) € L[j] | r = |ul|}| > to.

Proof. “if” If j satisfies (1), then there is no rare RMEM ending at j. If j satisfies (2), then we have
min[j] > |u| > £ and hence u is of length < min[;j]—1 and thus occurs more than ¢, times in S, (see third
invariant above). If condition (3) is satisfied, then the strings represented by the elements in L[j] occur
more than #, times in S». This argumentation shows that each node j satisfying one of the conditions
(1)—(3) is irrelevant.

“only if”” Conversely, assume that none of the above-mentioned conditions holds for node j. Because
conditions (2) and (3) are not satisfied, it follows that the string ¥ occurs at most #, times in S,. In order
to show that j is relevant, we proceed by case analysis. If j is a leaf, then elem_in_sublists[j] = 0. Since
condition (1) is not true, it follows that list L[] is not empty, and it is readily verified that every element
in L[j] corresponds to a rare RMEM. Hence j is relevant. Now suppose that j is an internal node. If
elem_in_sublists[j] # 0, then there is at least one successor j’ of j such that (/, p,) € L[j']. Because j
is an internal node and every internal node is branching, there is a suffix Si[p1,...,n;]$ of Si$ in the
subtree rooted at j, which is not in the subtree rooted at j’. Therefore, (Ju|, p1, p2) is a rare RMEM. In
other words, node j is relevant. Otherwise, elem_in_sublists[j] = 0 and L[] # [ ]. Again, it is readily
seen that every element in L[] corresponds to a rare RMEM. Thus, j is also relevant in this case. |

In phase (2a) of our algorithm, we mark all nodes that are irrelevant according to the preceding
theorem. In our example, none of the nodes is marked, but if, for example, L[15] would contain an
entry (length, position) with length = 2, then node 15 would be marked because of condition (3).

We now explain phase (2b) of our algorithm. Let j be a relevant node. For each element (I, p2) € L[j],
the string Sa[p2..p2 + 1 — 1] of length [ occurs as a substring of S;. We say that this string is represented
by ([, p2). Since elem_in_sublists[j] < t», the value t, — elem_in_sublists[j] is an upper bound on the
number of rare strings on the path from the root of ST to node j. We distinguish between the cases
IL[J]] <t — elem_in_sublists[j] and |L[j]| > to — elem_in_sublists[j]:

® Suppose |L[j]| < to—elem_in_sublists[j]. Then each element in L[;] represents a string that corresponds
to rare RMEMs. Therefore, we keep the complete list L[f].

® Suppose |L[j]| > t» — elem_in_sublists[j]. This means elem_in_sublists[j] + |L[j]| > t,. Hence we
have to delete elements from L[j]. We iteratively delete all elements from L[j] with minimum length
component,” until we arrive at a list L[] such that elem_in_sublists[j] + |L[j]| does not exceed t,. The
deletion of these elements does no harm because the strings corresponding to the elements occur more
than 7, times in S,.

Note that in case we delete elements from L[], we have to update min[j] appropriately. To make this
more precise, suppose the original size of L[j] was ¢ and the new size after deleting the elements is ¢’ < ¢.
Let (I, p») be the element at index ¢’ 4 1 in the original list. Then all elements in the new list are of length
at least [ + 1, and the prefix of u of length / occurs more than #, times in S,. As a consequence, we set
min[j] to [ + 1.

To illustrate the deletion phase (2b), we continue Example 2. The element (2, 4) at node 12 will be
deleted from L[12] and min[12] is set to 3. Although the L-list of node 12 is empty after the deletion phase,
the node is relevant w.r.t. S» (leading to type 2 match candidate specifications).

2 After each deletion step, the resulting list is again called L[].
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Although the computation of the elem_in_sublists-values and the deletion phases (2a) and (2b) have
been described as separate steps, we would like to stress that all these computations are actually done in
a single bottom-up traversal of the suffix tree.

5.3. Output phase

In this section, we assume that j is a relevant node for which min[;j] and L[j] have been computed by
the matching and deletion procedures of Sections 5.1 and 5.2. It is clear from the previous sections that
all rare RMEMSs between S| and S, are contained in the L-lists of relevant nodes. To be precise, given
a relevant node j, the matches contained in L[j] immediately yield rare RMEMs ending at j. Moreover,
every match contained in L[;'], where j’ is a successor of j gives rise to at least one rare RMEM ending
at j.

In view of the more general case of rare multiRMEMs, we now introduce the abstract concept of match
candidate specifications for j. In the pairwise case, each match candidate specification leads to at least
one rare RMEM as we shall see below.

5.3.1. Type 1 match candidate specifications. Let j be a relevant node w.r.t. S,. For each (I, p,) in L[],
the triple (/, P1, p») is called a type I match candidate specification for j and S», where P, = leafset(j).

In the pairwise case, a type 1 match candidate specification directly leads to at least one rare RMEM. That
is, for each match candidate specification (I, Py, p;) and each p; € Py, the triple (I, pi, p») is a rare right-
maximal exact match between S; and S,. Clearly, if (I, pi, p») is also left-maximal, then it is a rare MEM.
To check for left-maximality, we have to verify that either p; = 0 or p, = 0 or Si[p1 — 1] # S2[p2 — 1].

Continuing the previous example, we have the following type 1 match candidate specifications:
4,{2},2), (4,{3}.8), (5,{3},11), (4,{0},9), (4,{4},12), (2,{6,8},14), (3,{1},10), (3,{5},13), and
(2,{7},7). The match candidate specification (2, {6, 8}, 14) specifies the right-maximal exact matches
(2,6,14) and (2, 8, 14). Since S;[5] = ¢ = S,[13], it follows that (2, 6, 14) is not left-maximal, whereas
Si[7] =t # ¢ = S,[13] shows that (2, 8, 14) is left-maximal. Hence, (2, 8, 14) is a rare MEM.

5.3.2. Type 2 match candidate specifications. Suppose there is a pair of relevant nodes j and j’, where
J' is a successor of j. Furthermore, let j” be the direct successor of j on the path from j to j’ (note that
J' = j" is possible). For each (I, p,) in L[;'], the triple (I’, Py, p,) is a type 2 match candidate specification
for j and S,, where [’ is the string depth of j and Py = leafset(j) \ leafset(j"). We exclude leafset(j")
from P; because the leaves in the subtree below j” have already been considered when computing other
match candidate specifications.

Continuing our example, we have the following type 2 match candidate specifications: (3, {0}, 12),
(3,{4},9), (2,{1},13), and (2, {5}, 10).

In the pairwise case, a type 2 match candidate specification directly leads to at least one rare RMEM.
That is, for each match candidate specification (I’, Py, p») and each p, € Py, the triple (I, p1, p2) is a
rare right-maximal exact match between S and S,. Clearly, (I’, p1, p2) is a rare MEM if and only if it is
left-maximal.

5.4. Time and space complexity

As already discussed in Section 4, the construction of the suffix tree ST takes O(n;) time, and matching
S, against ST takes O(n,) time. Here, however, L-lists have to be updated during the matching phase.
Because the length of any L-list is limited to #,, the matching phase requires O(n2t;) time.

In the deletion and output phases, we traverse ST in a bottom-up fashion. Such a bottom-up traversal
of ST requires O(n;) time. At each node, we check in O(f;) time whether it is relevant or not. If so,
superfluous elements from its L-list are deleted in O(t,) time. At each relevant node, the number of length/
position pairs leading to match candidate specifications is bounded by O(t;). To obtain type 2 match
candidate specifications, one further collects sets of relevant nodes j’ during the traversal, combines them
with relevant predecessor nodes j, and derives type 2 match candidate specifications as described above.
The size of the node sets collected during the traversal is bounded by O(t;). Because left-maximality of
a rare RMEM can be verified in constant time and there are at most #7, rare RMEMs ending at a node j,
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all type 1 and 2 match candidate specifications can be computed in O(nt,f,) time. Therefore, the overall
time complexity is O(naty + nit1ts).

We would like to point out that the space complexity does not depend on n,. The space consumption
for the suffix tree ST of the sequence S, as well as for the min-values and the L-lists stored at each node
of ST is O(ntp).

6. THE GENERALIZATION TO MORE THAN TWO GENOMES

The following definition naturally extends the notion of “rare maximal exact match between two
sequences” to multiple sequences.

Definition 3. A multiple exact match between k strings Sy, ..., Sk is a (k + 1)-tuple (/, p1,..., pr)
such that Si[p1..p1 +1 — 1] = S2[pa..p2 +1 —1] = --- = Sk[pk.-pr + [ — 1]. A multiple exact match
is right (left) maximal if it cannot be simultaneously extended to the right (left) in each sequence S;,
1 <i < k. We use the term multiRMEM as a shorthand for right maximal multiple exact match. A left
and right maximal multiple exact match is called maximal multiple exact match (multiMEM). Given
t, ...ty €N, a multiMEM or multiRMEM (I, py, ..., pi) is called rare if it is rare in each S;, that is, the
string Si[p1..p1 + 1 — 1] = Si[pi..pi + 1 — 1] occurs at most ¢; times in S; for all 1 <i < k. A maximal
multiple unique match (multiMUM) is a rare multiMEM with respect to the thresholds #; = --- =7 = 1.
In other words, the number of allowed copies of that string equals 1.

6.1. The multiple matching and deletion phases

In order to compute rare multiMEMSs, we match each S;, 2 <i < k, separately against ST and compute
min;[j] and L;[j] as described in Sections 5.1 and 5.2. The advantage of this strategy is that the values
can be computed in parallel.

We would like to stress, however, that it is also possible to compute min;[j] and L;[j] incrementally
by sequentially matching S», ..., S; against ST. That is, first S, is matched against ST as described in
Section 5. Then S5 is matched against ST and so on. This strategy has the following advantage: If for some
i > 3, node j is not relevant w.r.t. S;_;, then it is not necessary to compute L;[j] because there cannot be
a rare multiMEM ending at node j. This strategy may considerably reduce the number of matches to be
stored. Furthermore, if node j is relevant for all S; with 2 < h < i, then min;[;j] can be initialized with
min; _1[/] instead of £.

6.2. A characterization of rare right-maximal multiple exact matches

We now show how to combine the values from the pairwise matching and deletion phases to compute
rare multiRMEMs. In essence, we combine pairwise rare RMEMs. As we shall see, however, the length /;
of such a pairwise rare RMEM (I;, p1, p;) between S; and S; usually must be shortened to some [* < ;.
The next lemma provides a criterion for testing whether the string Sy [p;..p; +1*—1] = Si[p;i..pi +1* —1]
is rare in S;.

Lemma 1. Ler j be a relevant node w.r.t. S; such that the string S;[p;..pi +1* — 1] with [* > { ends
at node j or at a successor node of j. Then it is rare in S; if and only if [* > min;[j].

Proof. If /* < min;[j], then S;[p;..p; +{* —1] is not rare in S; according to the invariants maintained
in the matching phase. To show the other direction, suppose that S;[p;..p; + [* — 1] is not rare in S;. As
usual, let u be the string corresponding to node j. If /* > |u|, then j would be irrelevant. Thus [* < |u|
must hold. If S;[p;..p; + [* — 1] was not inserted into L[j] in the matching phase, then this was because
[* < min;[j]. If it was inserted into L[] but afterwards deleted from L[;] in the matching phase, then we
also have [* < min;[j]. Finally, if S;[p;..p; + {* — 1] was deleted from L[] in the deletion phase, then
[* <min;[j]+ 1 (hence [* < min;[j]) because min;[;] was set to [ + 1, where [* <. |

The next theorem provides a characterization of rare multiRMEMs that can be used to compute all rare
multiRMEM:s efficiently.
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Theorem 2. Suppose that the string Si[p1..p1 + [* — 1] ends at node j in the suffix tree of S,. Then
(I*, p1,..., pr) is a rare multiRMEM if and only if the following holds:

® forall 2 <i <k, node j is relevant w.rt. S;, and
® forall 2 <i <k there is a RMEM (I;, p1, p;) such that
o (l;, p1, pi) is rare in Sy and S;,
o I*=min{l; |2 <i <k}, and
o [* = maxmin[j], where maxmin[j] = max{min;[j] |2 <i < k}.

Proof. “only if” Let (/*, p1,..., px) be a rare multiRMEM. That is, the string Si[p;..p1 +1* —1] =
So[pae.pa +1* =11 = -+ = Sk[pk..px +1* — 1] is rare and there is at least one i such that S|[p; +[*] #
Si[pi +I*]. For each 2 < i <k, let /; be the number such that S[p;..p1 + ; — 1] = S;[pi..pi +1; —1]
and Si[p1 + ;] # Si[pi + [;]. Obviously, (I;, p1, p;) is a RMEM and [; > [*. The former implies that j is
relevant w.r.t. ;. Moreover, it follows from the latter that (I;, p;, p;) is rare in S; (otherwise (I*, p1, p;)
would not be rare in S;) and that [* = min{l; | 2 <i < k} (recall that at least for one i, we have [; = [*).
For an indirect proof of /* > maxmin[j] suppose that /* < maxmin[j]. Let i be an index such that
min;[j] = maxmin[]. It follows from /* < min;[;] that the string S;[p1..p1 +{*—1] = S;i[pi..pi +1i —1]
is not rare in S;. This is a contradiction to the fact that this string is rare (in each S;).

“if” Now suppose that for all 2 < i < k node j is relevant w.r.t. S; and there is a RMEM (I;, p1, p;).
Furthermore, [* = min{l; | 2 <i < k} satisfies [* > maxmin[j]. Clearly, S;[p1..p1+{*—1] = Sz2[p2..p2+
[*—1]=--- = Sk[pk..prx + " — 1]. Because there is at least one i such that Si[p; + [*] # Si[p; + ],
the tuple (I*, pi, ..., px) is a multiRMEM. It must still be shown that the string Si[p;..p1 + [* — 1] is
rare in each S;, where 2 < i < k. It follows from [* > maxmin[j] that [* > min;[j] for all 2 <i < k.
According to Lemma 1, for any 2 <i < k, the string Si[pi..p1 +* — 1] = Si[p;i..pi +[* — 1] is rare in
S; if and only if [* > min;[j]. Hence, we conclude that (/*, py, ..., px) is a rare multiRMEM. |

6.3. The multiple output phase

With the help of the preceding characterization of rare multiRMEMs, we immediately obtain an algorithm
that computes all rare multiRMEMs. At first, all relevant nodes j are computed, that is, for all 2 <i <k,
node j must be relevant w.r.t. S;. For each such node j, the following steps are performed:

(1) For each i,2 <i <k, compute the set of all type 1, type 2, and type 3 match candidate specifications
for j and S;. Type 3 match candidate specifications are defined as follows: Enumerate all nodes j’
in the subtree below j. For each (I, p2) € Li[j’], (/,leafset(j’), p2) is a type 3 match candidate
specification for j and S;.

(2) Compute maxmin[j] = max{min;[j] |2 <i < k}.

(3) Discard match candidate specifications (/;, Py, p;) satisfying I; < maxmin[j]. For each i,2 <i <k,
let MCS;[j] denote the set of all remaining match candidate specifications for j and S;.

(4) Enumerate the elements of the Cartesian product

MCS™[j] := MCS;[j] x MCS;[j] x -+ - x MCS;—1[j] x MCS[ ]

and for each element ((/5, Plz, p2), (I3, P13, P3)s s (ks Plk, pi)) do the following:
(a) Discard it if it solely consists of match candidate specifications of type 3.
(b) ® Compute P;* = (i_, P}.
® Compute [* = min{/; | 2 <i <k}.
® For all p; € P, (I*, p1, p2, 3, ..., Pr) is a rare multiRMEM. If p; = 0 for at least one i with
1 <i <k, ortheset {Si[p1 — 1]} U{Si[pi —1] | 2 <i < k} is not singleton, then it is also
left-maximal and thus a rare multiMEM.

The correctness of our algorithm is a direct consequence of Theorem 2. According to this theorem, it
suffices to solely consider relevant nodes. Furthermore, for each relevant node j, a rare multiRMEM ending
at j is the combination of rare RMEMs (I;, p1, pi), 2 <i < k, ending at j or at a successor of j (note
that this is the reason why we have to add type 3 match specifications). Moreover, the theorem implies
that none of the rare RMEMs (I;, p1, pi) is allowed to have a length smaller than maxmin[;]. That is the
reason why such rare RMEMs are excluded in our algorithm. Finally, all elements of MCS*[j] that solely



368 OHLEBUSCH AND KURTZ

ancatat$

[(3,7)]

[(3.1),{3.3)]

atutd 3

[(4.8)] [(4.6)] [(4,0),(4,2)]

FIG. 3. The suffix tree for S1$ = acaaacatat$ annotated with matches w.r.t. S3 = atatatacaaca.

consist of type 3 match candidate specifications correspond to rare multiRMEMs ending at a successor
node of j and thus have already been taken into account.

Example 3. As before, let S| = acaaacatat and S, = aaaaacttaacaacat. Additionally, let
S3 = atatatacaaca. Matching S3 against the suffix tree of S$ yields the annotated suffix tree depicted
in Figure 3.

To illustrate how our algorithm works, we consider the internal node j = 12. For this node and S,
there is no type 1 match specification, the type 2 match specifications are (3, {0}, 12) and (3, {4}, 9), while
the type 3 match specifications are (4, {0}, 9) and (4, {4}, 12). With respect to node j = 12 and S3, there
is one type 1 match specification (3, {0, 4}, 9), one type 2 match specification (3, {4}, 6), and one type 3
match specification (4, {0}, 6). The combination of these match specifications leads to the following rare
multiRMEMs: (3,0,12,9), (3,0,12,6), (3,4,9,9), (3,4,9,6), (3,0,9,9), (3,4,12,9), and (3,4, 12,6).
Note that the combination of the type 3 match specifications (4, {0}, 9) and (4, {0}, 6) is discarded at node
Jj = 12 because the corresponding rare multiRMEM (4,0, 9, 6) has already been computed at leaf node
j = 0. Out of these seven rare multiRMEMs, only (3,4,9,9) and (3,4, 12,9) are not rare multiMEMs
because Si[3] = S»2[8] = S3[8] and S1[3] = S,[11] = S3[8].

6.4. Time and space complexity

Again, the construction time of the suffix tree ST of S1$ is O(n1). Recall from Section 5.4 that for
each i, 2 < i < k, the matching phase takes O(n;t;) time, the deletion phase takes O(n;t;) time, and
the computation of all match candidate specifications w.r.t. S; requires O(nt¢;) time. Thus, the time
complexity up to step (1) of Section 6.3 is O(Zf;z nit; +nit Zf;z t).

The computation of maxmin[;] in step (2) can be done in O(k) time for every node j in ST, resulting
in an O(n k) time complexity for this step.

Step (3) requires O(n1t; Zf;z t;) time because there are O(f;¢;) match candidate specifications at each
node j in ST.

For every node j in ST, the set MCS*[] has 0(]_[?=2(t1t,-)) elements. Therefore, the time needed in
step (4) to compute the Cartesian products at all relevant nodes would be O(nlt{‘_l ]_[f;z t;). In order to
avoid the factor t{‘_l, the Cartesian product can be built incrementally and the intersection of the position
sets is taken into account. More precisely, at each node j we first build MCS,[j] x MCS;[;] and delete
all elements with Pl2 n P13 = (. This takes O((t; - tp) - (t; - 13)) = 0(t12 -t - t3) time. The resulting set
MCS, 3[j] has at most #; - t, - t; elements. Then we build MCS; 3[j] x MCS4[j] and delete all elements
with Pl2 N P13 n Pl4 = @. Similarly, this takes 0(t12 -1y - 13 - t4) time, and the resulting set has at most
t1 -t - t3 - t4 elements.
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This process is continued until we get

k

{((l. P2, p2). (15, P, p3)...... (k. P, pr)) € MCS*[j]| Pf = (") P # 0}
=2

in time O(k tlz ]_[f;2 t;). In this way, step (4) can be implemented in O(nk tlz ]_[f;2 t;) time.
Consequently, the overall time complexity of our algorithm is O(Zf;z nit; +nik tlz ]_[f;z t).
Again, note that the space complexity is independent of the sequence lengths n,,...,n;. The space
consumption is O(max{n#; | 2 <i < k}) because after matching S; against ST, the resulting pairwise
rare matches can be stored in secondary memory.

7. IMPLEMENTATION

An implementation of our algorithms requires a representation of leaf sets. As suggested in Stoye and
Gusfield (2002), leaf sets can efficiently be represented by two additional integers for each interior node of
the suffix tree. These integers refer to an interval of an array storing all leaf numbers of ST in depth first
order. This additional array is the well-known suffix array as introduced by Manber and Myers (1993). Of
course, the two integers need only be added to all nodes j with string depth > ¢ and |leafset(j)| < t;.
Nevertheless, the representation requires considerable space in addition to the suffix tree representation.

Instead of suffix trees, our implementation employs enhanced suffix arrays. This is for the following
reasons:

® As shown in Abouelhoda et al. (2004), the enhanced suffix array is as powerful as the suffix tree. Any
algorithm on the suffix tree can be implemented on the enhanced suffix array, without sacrificing optimal
asymptotic running times. Moreover, enhanced suffix arrays require much less space than suffix trees.

® Enhanced suffix arrays already represent leaf sets.

® The software tool Vmatch® provides a comprehensive code base implementing enhanced suffix arrays.
In fact, our implementation extensively uses this code base.

Before we describe our implementation in detail, let us briefly introduce the notion of enhanced suffix
arrays in its simplest form:

Let T; = Si[j..n1 — 1]$ denote the suffix of S$ beginning with jth position. The suffix array suftab
of the string S;$ is an array of integers in the range 0 to n;, specifying the lexicographic ordering of the
ny1 + 1 suffixes of the string $1$. That is, Tsyttabjo], Tsuftab[1]s - - - » Lsuftabfr;] 1S the sequence of suffixes of S;$
in ascending lexicographic order. The Icp-table Icptab is an array of integers in the range 1 to n;. We define
lcptab[j] to be the length of the longest common prefix of Tgysiabjj—1] and Tsunianfj], for 1 < j < ni. The
enhanced suffix array for S; consists of the tables suftab and Icptab. An interval [[..r], 0 <[ <r <ny, is
an [cp-interval of lcp-value q (or g-interval, for short) if the following holds:

1. if [ < r, then
e | =0 or Icptab[/] < ¢,
® Icptab[s] > ¢ forall s,/ + 1 <s<r,
® Icptab[s] = ¢ for at least one s, [ +1 <s <r,
® r =n or lcptab[r + 1] < g.
2. if [ = r, then ¢ = n; + 1 — suftab[/].

Note that this definition of Icp-intervals also includes singleton intervals. By contrast, the original
definition of Icp-intervals does not include singleton intervals (Abouelhoda et al., 2004). We will also use
the shorthand Icp-interval for an lcp-interval [/..r] of unknown lcp-value. The size of an Icp-interval [/..r]
isr—1I1+ 1. A g-interval [[..r] is said to be embedded in a ¢’-interval [/’..r'] if it is a subinterval of [I’..r’]
(e, I’ <1 <r <r')and q > ¢q'. The Icp-interval [/’..r'] is then called the interval enclosing [l..r]. If

3ywww.vmatch.de.
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[I’..r'] encloses [l..r] and there is no interval embedded in [/’..r'] that also encloses [/..r], then [/..r] is
called a child interval of [I'..r'].

7.1. Representing suffix tree nodes

Lcp-intervals of size one (singleton intervals) correspond to leaves of ST. g-intervals of size greater
than one correspond to interior nodes of ST of depth ¢g. In our implementation, we represent suffix tree
nodes by Icp-intervals. The parent-child relationship of Icp-intervals constitutes a conceptual (or virtual)
tree which we call the Icp-interval tree. The lcp-interval tree is equivalent to the suffix tree. Hence, in the
following, we reuse several suffix tree notions for the Icp-interval tree.

Example 4. Figure 4 shows the enhanced suffix array for the sequence S|$ = acaaacatat$, and
Figure 5 shows the corresponding Icp-interval tree.

The Vmatch code base provides a function which delivers right maximal matches of S, in the enhanced
suffix array of Sj. It reports the lcp-interval where the matching substring ends. This is exactly what we
need for computing rare matches. The corresponding algorithm, described in Kurtz and Lonardi (2004) on
the basis of suffix trees, runs in O(n, + z) time, where z is the number of reported matches, provided that
the enhanced suffix array for S, is already precomputed.

7.2. Representing leaf sets

Each leaf set occurring in our algorithms is represented by an interval (/,r), where 0 <[ <r < nj.
(I, r) represents the leaf set {suftab[s] | / < s < r}. Note that there are leaf sets (/,r) such that [/..r]
is not an Icp-interval. The leaf sets generated by our algorithms are subject to difference and intersection
operations. The difference operation leafset(j') \ leafset(j”) (see Section 5.3.2) means to subtract (I’, r’)

e,

suftab Icptab Slsuﬂab[{j

0 2 aaacatat$

1 3 2 | aacatat$

2 0 1{acaaacatat$
3 4 3 | acatat$

4 6 1|atat$

b 8 2iath

6 1 0] caaacatat$
7 5 2 | catat$

8 7 0| tat$

9 9 1]t$

10 10 0%

FIG. 4. The enhanced suffix array for $1$ = acaaacatat$.
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FIG. 5. The Icp-interval tree for S$1$ = acaaacatat$. The corresponding suffix array is [2,3,0,4,6,8,1,5,7,9, 10]
(see also Fig. 4).

and (I”,r") representing leafset(j') and leafset(j"'), respectively. Since the node j” is in the subtree
below j’, we have I’ < [” < r” < r’. Thus, the difference operation delivers two leaf sets, {/’,!” — 1)
and (r” + 1, r’), one of which is empty if I’ = [” or r”” = r’. The split of a leaf set leads to two match
candidate specifications, rather than one as described in Section 5.3.2. This however does not affect the
correctness or efficiency of our algorithms. The intersection on k leaf sets (see Section 6.3, step (4)) can
be computed in O(k) steps. Each step computes the intersection (max{/, /’}, min{r, r'}) of two leaf sets

(I,r)and (I',1).

7.3. Storing min-values and L-lists

In the pairwise matching and deletion phase, we have to store, lookup, and update min-values and L-lists
for a subset of all possible Icp-intervals. Since we expect only a small fraction of all possible lcp-intervals
to be annotated, we use a balanced binary search tree (i.e., red-black tree) to store, lookup, and update
these values during the pairwise matching and deletion phase. Since an lcp-interval is uniquely determined
by its left and right boundaries / and r, we use the pair (/,r) as search key. Figure 6 shows the binary
search tree obtained when matching S, = aaaaacttaacaacat against the enhanced suffix array of S;.

To save space, we do not store the Icp-value with each search key, but recompute it on the fly by
evaluating min{lcptab[s] | / + 1 < s < r}. Since we only consider lcp-intervals [/..r] of size at most #;, this
requires O(t;) time. L-lists are stored as linked lists. We do not store the length of a list, but recompute it
on the fly when required.

Whenever we find a right maximal matching substring of length > £ at position p; in S, ending at the
interval [/..r], we insert this match into the search tree. We also insert additional Icp-intervals (associated
with a min-value of £ and an empty L-list), to guarantee that all relevant lcp-intervals are finally contained
in the search tree. In particular, we insert a ¢’-interval [I’..r'], if the following holds:

[I’..r] is on the path from the root of the Icp-interval tree to [/..r],
r=U+1=<t,

q' >4,

[I’..r"] is not already contained in the search tree.

These additional Icp-intervals can be found in O(#;) time by looking up the appropriate values in table
Icptab.
7.4. Representing parent-child relationships for Icp-intervals

To efficiently compute elem_in_sublists-values and in turn decide whether an Icp-interval is relevant, we
have to perform a bottom-up traversal of the Icp-interval tree, restricted to the Icp-intervals contained in
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{6.,6)
[(3,20)]
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[{1,2]] [{4.8),(5,11)] (] [(2.14)]

FIG. 6. The binary search-tree obtained when matching S» = aaaaacttaacaacat against the enhanced suffix array
of S1$ = acaaacatat$. For each node of the binary search tree, we show the stored Icp-interval and the corresponding
list of matches (see also Fig. 2).

the search tree. This requires information about the parent-child relationship of a subset of all Icp-intervals.
This relationship is already available in the search tree, because we store the search keys according to the
total order <, defined as follows: (//,r") < (I,r) if and only if I’ < [ or I’ = [ and r’ > r. This order
is consistent with the parent-child relationship of the lcp-intervals in the lcp-interval tree. That is, if we
enumerate the elements of the search tree in <-order, then a parent comes before all of its children. This
allows one to simulate the required bottom up traversal over the suffix tree in time proportional to the size
of the search tree.

While the matching and deletion phases of our algorithms both require random insert and update
operations on the min-values and L-lists, the output phase (pairwise or multiple) merely needs sequential
read access. Moreover, in the multiple output phase, we have to combine the results of k — 1 matching
and deletion phases. Therefore, we store the result of the matching and deletion phases as a bit stream.
For an Icp-interval [/..r], we store [, r — [, min[[/..r]], and all elements of L-lists in the bit stream. An
additional bit for each interval is used to mark the end of the bit stream encoding for the current interval.
Since we know the distribution of the values stored in the bit stream, each kind of value can be stored
as a fixed number of bits. Especially for the min-value, the difference r — /, and the length component of
the elements of the L-lists, we only need a small number of bits. A Huffman-coding would lead to even
better results. The bit stream encodes all relevant intervals w.r.t. to the order <. Hence, we can simulate a
bottom-up traversal over the Icp-interval tree restricted to all relevant Icp-intervals (as required to compute
type 2 and type 3 match candidate specifications), without explicitly storing parent-child relationships.

7.5. Combining min-values and L-lists in the multiple output phase

In the multiple output phase, we first have to identify the lcp-intervals that are relevant w.r.t. S;, for
all i, 2 < i < k. Since for each i, the relevant Icp-intervals for S; are stored w.r.t. to the same order
<, this identification task can be performed efficiently by iteratively merging the sequence of relevant
Icp-intervals. That is, we first merge the sequence of relevant Icp-intervals for S, and the sequence of
relevant Icp-intervals for S3. This gives us the lcp-intervals which are relevant both for S, and 3. For each
such Icp-interval, we store the maximum of the min-values and two references to the bit streams encoding
the relevant lcp-intervals. The combined sequence is then merged with the sequence of relevant intervals
for Sy4, resulting in a sequence of intervals that are relevant w.r.t. all S;, for 2 < i < 4. This process is
continued until the identification task is completed. As a result, we obtain a sequence of lcp-intervals. For
each such interval, say [[..r], we store max{min;[[/..r]] | 2 <i < k} and k — 1 references r5, ..., rr, where
r; refers to the bit streams encoding the lcp-interval [/..r] relevant for S;.
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There are two motivations for using the bit stream. At first, it reduces the size of the representation.
To see this, let us compare the size of the bit stream to the size of the random access representation of
the binary search tree. Assuming a pointer size of 4 bytes, each node in this binary search tree requires
32 4+ 12(m — 1) bytes, where m is the number of matches it stores. In contrast, the simplest form of bit
stream encodes all relevant values as 4 bytes integers. It requires 8 + 8m bytes for a singleton interval and
12 4 8m bytes for any other interval. Thus depending on the number of matches and kinds of intervals to
store, we obtain a space improvement by a factor of about 2-3 times. Second, and more important than the
space reduction, is the fact that in the multiple output phase the bit stream can be processed sequentially.
That is, instead of keeping several binary search trees resulting from the match/deletion phases in memory,
we sequentially read the bit streams, keeping only a small part of them in main memory.

8. EXPERIMENTAL RESULTS

The algorithms described here were implemented in C. The resulting program ramaco (rare match
computation) will be made available free of charge for academia. The goal of this section is to show that
the described algorithms are of practical use concerning their time and space requirements.

For our first experiment, the sequences from the MOSAIC project (Chiapello et al., 2005) were used.
This project aims to provide high-quality pairwise and multiple alignments of groups of related bacterial
genomes (http://genome.jouy.inra.fr/mosaic/). The MOSAIC sequences consist of 24 groups of genomes
(12 groups of two genomes, 6 groups of three genomes, 4 groups of four genomes, 2 groups of six
genomes). The MOSAIC sequences were downloaded from Genbank, and ramaco was applied to each
group. More precisely, the enhanced suffix array of the first genome of each group was constructed, and
the remaining sequences were used as queries (in forward direction). For each combination of index and
queries, three runs where performed:

® In the first run, rare maximal matches were computed in a single program call (all-run).

® In the second run, only the matching and deletion phases for the index and each query were performed.
The result of this phase was stored on files (search-run).

® In the third run, only the output phase was performed, using the result from the appropriate search-runs
(output-run).

Table 1 shows the result when computing rare matches for four MOSAIC groups with{ = 14 and t; = 5.

Each of the chosen groups was the largest (in terms of base pairs [bp]) among all groups with the same
number of sequences. The results for the other groups do not significantly differ from the results of the
groups shown here. The first column of Table 1 gives the name of the group, the number of rare multiMEM:s,
and the number of multiMEMs in the group. We additionally show how many more multiMEMs than rare
multiMEMs exist. The second column gives the Genbank accession number of the genomes making up
the group. In the third column, the size of the genome (in bp) is reported. The fourth column shows for
which kind of run (all, search, or output) the results are given. Column 5 gives the running time (in sec)
on a Pentium 4 computer (2.4 GHz CPU, 4 GB RAM) running Linux. Column 6 reports the overall space
peak (in megabytes) of the corresponding run. Column 7 shows the “rare match space peak” (abbreviated
RM-space), that is, the space peak minus the space for the index and the query sequence. While the space
for the index and the query sequence only depends on the input size, the rare match space peak depends
on the number of pairwise matches. This is because our algorithm has to store the pairwise matches, until
their rareness can finally be verified. As a consequence, the rare match space peak gives the additional
space required for handling the rareness constraints. To allow a comparison between the groups of different
sizes, column 8 reports the rare match space peak per rare match (in bytes).

Table 1 shows that the ratio of the number of multiMEMs and rare multiMEMSs (rareness ratio) signif-
icantly differs. In the first two groups, almost all multiMEMs are rare. In the last two groups, with four
and six genomes, less than 2% and less than 1% are rare, respectively. That is, for the last two groups,
the rareness constraint represents a very effective filter for matches. Concerning the required resources, it
is obvious that all sets of genomes can easily be handled by ramaco, although the genomes inside one
group are very similar. The running times are in a range of a few seconds to about 3 min for the set
with six genomes. The running times for the separate search and output runs approximately sum up to
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TABLE 1. RUNNING TIME AND SPACE RESULTS WHEN APPLYING ramaco TO FOUR MOSAIC GROUPS
WITH{ =14 AND t; =5

Length Time Space RM-space  Per match
Group Genomes (bp) Phase (sec) (MB ) (MB) (bytes)
{ = 14,t; = 5, matches on
forward strand
Pseudomonas syringae NC_005773 5,928,787 All 13.00 119.08 70.90 135
[549036 rare MEMs, NC_007005 6,093,698 Search 13.53 95.08 46.90 90
627290 MEMs (1.1x)] Output 0.66 64.74 24.21 46
Bacillus cereus [896291 rare NC_003909 5,224,283 Al 53.14 309.54 262.12 307
MEMs, 1308576 MEMs NC_004722 5,411,809 Search 31.30 163.60 121.24 142
(1.5%)] NC_006274 5,300,915 Output 19.53 21222 171.79 201
Escherichia coli [1198345 NC_004431 5,231,428 Al 108.93  543.50 491.31 430
rare MEMs, 75520384 NC_000913 4,639,675 Search 5322 247.02 204.50 179
MEMs (63.0%)] NC_002655 5,528,445 Output 49.58 405.01 359.81 315
NC_002695 5,498,450
Staphylococcus aureus NC_002758 2,878,040 All 184.39 643.94 609.02 62
[10260430 rare MEMs, NC_003923 2,820,462 Search 61.14 293.02 268.82 27
1140814012 MEMs NC_002745 2,814,816 Output 114.12 434.35 404.17 41
(111.2x%)] NC_002951 2,809,422

NC_002952 2,902,619
NC_002953 2,799,802

ramaco, Rare match computation.

the time for the all run. More important, the separation of the computation into two program calls leads
to a considerably reduced space requirement. The last column of Table 1 shows that the space per match
considerably differs between the different groups, ranging from 27 to 430 bytes. This large variation is due
to the fact that the rare match space (RM-space) is mainly dependent on number of pairwise matches, and
to a lesser extent on the number of multiMEMs. But given the usual context that the entire set of matches
are stored (on file or in RAM) to be further processed (i.e., by chaining methods), the per match space
seems acceptable in practice.

To study the effect of the length threshold, we ran ramaco for the same MOSAIC groups and with
¢ =20 and t; = 5 (Table 2).

Interestingly, the number of rare multiMEMs decreases more than the number of multiMEMs. As a
consequence, the rareness ratio increases, except for the S. aureus-group, where it hardly changes. This
means that rareness filtering is also relevant for larger length thresholds. The running times only slightly
decrease by a factor of 1.2-1.5, compared to the runs reported in Table 1. The decrease in the space
requirement is by a factor of 1.1-2.0. Unfortunately, the per match space increases by a factor of up to 10,
compared to the run with £ = 14. Again, this can be explained by the fact that there are many pairwise
matches, which do not lead to rare multiMEMs.

Our second experiment deals with the computation of rare MEMs for two groups of X-chromosomes
from different vertebrate genomes. More precisely, as a first group, the X-chromosomes of Homo sapiens
(human), of Mus musculus (mouse), and of Rattus norvegicus (rat) were used. The second group consists
of the members of the first group plus the X-chromosome of Canis familiaris (dog). The same procedure
as in the first experiment was applied. Additionally, rare multiMEMs on the reverse strands were computed.
The results are shown in Table 3; see above for the explanation of the values given in the different columns.
ramaco efficiently computed all rare MEMs of length at least 20 with rareness threshold #; = 10.

While the program is able to compute multiMEMs (without any rareness constraints), it failed to do
so for the X-chromosomes because there are simply too many multiMEMs. Table 3 shows that ramaco
can handle large sequence sets of about 600 million bp. The running time (for the all-runs) is about 9—
13 min, and the space requirement is on the order of 2 gigabytes. The additional dog genome led to an
increased number of rare multiMEMs by a factor of 2.7. The number of matches on the forward strand
only slightly differs from the number of matches on the reverse strand. This shows that it is necessary to



COMPUTATION OF RARE MAXIMAL EXACT MATCHES 375

TABLE 2. RUNNING TIME AND SPACE RESULTS WHEN APPLYING ramaco TO FOUR MOSAIC GROUPS
WITH £ =20 AND t; =5

Length Time Space  RM-space  Per match
Group Genomes (bp) Phase (sec) (MB) (MB) (bytes)
{=120,t; =5
Pseudomonas syringae NC_005773 5,928,787 All 9.77 82.35 34.17 699
[51274 rare MEMs, 75308  NC_007005 6,093,698 Search 9.93 70.99 22.81 466
MEMs (1.47x%)] Output 0.37 52.11 11.58 237
Bacillus cereus [55581 rare NC_003909 5,224,283 All 36.59 209.59 162.17 3060
MEMs, 230193 MEMs NC_004722 5,411,809 Search 2529 126.06 83.70 1579
(4.14x)] NC_006274 5,300,915 Output 11.70  141.69 101.26 1910
Escherichia coli [103631 rare  NC_004431 5,231,428 All 91.02 450.38 398.19 4029
MEMs, 10211804 MEMs NC_000913 4,639,675 Search 51.58 214.15 171.63 1737
(98.54x)] NC_002655 5,528,445 Output 43.03 33242 287.22 2906
NC_002695 5,498,450
Staphylococcus aureus NC_002758 2,878,040 Al 146.83 565.17 530.25 1464
[379856 rare MEMs,
42011419 MEMs NC_003923 2,820,462 Search 67.78 273.84 249.64 689
(110.60x)] NC_002745 2,814,816 Output 78.54 372.19 342.01 944

NC_002951 2,809,422
NC_002952 2,902,619
NC_002953 2,799,802

ramaco, Rare match computation.

TABLE 3. RUNNING TIME AND SPACE RESULTS WHEN APPLYING ramaco TO TWO COLLECTIONS OF
X-CHROMOSOMES WITH { = 20 AND t; = 10

Length Time Space  RM-space  Per match
Group Genomes (bp) Phase (sec) (MB) (MB) (bytes)
{ =20,t; = 10, forward

strands

X-chromosome NC_000023 154,824,264 All 511.24 1676.69 348.17 58
human/mouse/rat NC_000086 164,906,252 Search 497.84 1409.61 234.34 39
[6295682 rare MEMs)] NC_005120 160,699,376 Output 18.28 1336.19 283.32 47

X-chromosome NC_000023 154,824,264 All 744.19 1846.88 397.35 24
human/dog/mouse/rat NC_006621 126,883,977 Search 713.70 1468.98 293.71 18
[17111495 rare MEMs]  NC_000086 164,906,252 Output 117.48 1423.84 249.96 15

NC_005120 160,699,376
{ =20,t; = 10, reverse

strands
X-chromosome NC_000023 154,824,264 All 517.72  1972.00 643.48 108
human/mouse/rat NC_000086 164,906,252 Search 505.82 1556.79 381.52 64
[6256893 rare MEMs)] NC_005120 160,699,376  Output 18.17 1326.25 273.38 46
X-chromosome NC_000023 154,824,264 All 74323 2232.21 782.68 48
human/dog/mouse/rat NC_006621 126,883,977 Search 714.16 1596.77 421.50 26
[17102466 rare MEMs]  NC_000086 164,906,252  Output 36.69 1413.41 239.53 15

NC_005120 160,699,376

ramaco, Rare match computation.
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compute matches on both strands. This is done by a script appropriately calling ramaco for each possible
combination of strands. For the first set of X-chromosomes, this gives a running time of about 30 min. For
the second set of X-chromosomes, this gives a running time of about 100 min. Note that the per match
space requirement given in Table 3 is generally smaller and has less variance than the per match space
requirement for the bacterial sequences of the first experiment. This may be explained by the fact that the
X-chromosomes are so similar that pairwise matches lead to multiMEMs with high probability.

9. CONCLUSION

We have devised an efficient algorithm for solving an important sequence comparison problem, viz.
finding rare maximal exact matches between multiple sequences. Apart from that, we have also presented
an efficient implementation technique. This allowed us to implement the algorithm with a space complexity
that is independent of the sizes of the sequences. Our experiments show that the rareness constraints
significantly reduce the number of matches, and their computation is feasible.

Because multiMUMs are special rare multiMEMs, any algorithm for finding rare multiMEMs can also
be used to search for multiMUMs. If one is solely interested in multiMUMs, however, then a more efficient
implementation can be obtained by exploiting the properties of this special case. We refrained from giving
the details of how our algorithm can be specialized for finding multiMUMs because multiMUMSs are not
particularly suitable for the genome comparisons we have in mind.

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Abouelhoda, M. 2007. A chaining algorithm for mapping cDNA sequences to multiple genomic sequences. Lect. Notes
Comp. Sci., vol. 4726, 1-13. Springer-Verlag, Berlin.

Abouelhoda, M., Kurtz, S., and Ohlebusch, E. 2004. Replacing suffix trees with enhanced suffix arrays. J. Discrete
Algorithms 2, 53-86.

Abouelhoda, M., Kurtz, S., and Ohlebusch, E. 2006. Enhanced suffix arrays and applications. In: Aluru, S., ed.,
Handbook of Computational Molecular Biology, 7-1-7-21. Chapman & Hall, New York.

Abouelhoda, M., and Ohlebusch, E. 2003. A local chaining algorithm and its applications in comparative genomics.
Lect. Notes Bioinform. 2812, 1-16. Berlin.

Bourque, B., and Pevzner, P. 2002. Genome-scale evolution: reconstructing gene orders in the ancestral species. Genonie
Res. 12, 26-36.

Chain, P., Kurtz, S., Ohlebusch, E., et al. 2003. An applications-focused review of comparative genomics tools:
capabilities, limitations and future challenges. Brief Bioinform. 4, 105-123.

Chang, W., and Lawler, E. (1994). Sublinear approximate string matching and biological applications. Algorithmica
12, 327-344.

Chiapello, H., Bourgait, 1., Sourivong, F., et al. 2005. Systematic determination of the mosaic structure of bacterial
genomes: species backbone versus strain-specific loops. BMC Bioinform., 6, 171.

Darling, A., Mau, B., Blattner, F., et al. 2004. Mauve: multiple alignment of conserved genomic sequence with
rearrangements. Genome Res. 14, 1394-1403.

Delcher, A., Phillippy, A., Carlton, J., et al. 2002. Fast algorithms for large-scale genome alignment and comparison.
Nucleic Acids Res. 30, 2478-2483.

Deogen, J., Yang, J., and Ma, F. 2004. EMAGEN: an efficient approach to multiple genome alignment. Proc. 2nd Asia
Pacific Bioinform. Conf. 113-122.

Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York.

Hohl, M., Kurtz, S., and Ohlebusch, E. 2002. Efficient multiple genome alignment. Bioinformatics 18, S312-S320.

Kurtz, S., and Lonardi, S. 2004. Computational biology. In: Mehta, D., and Sahni, S., eds., Handbook on Data
Structures and Applications, 58-1-58-17. CRC Press, Boca Raton, FL.



COMPUTATION OF RARE MAXIMAL EXACT MATCHES 377

Kurtz, S., Phillippy, A., Delcher, A., et al. 2004. Versatile and open software for comparing large genomes. Genonte
Biol. 5, R12.

Manber, U., and Myers, E. 1993. Suffix arrays: a new method for on-line string searches. SIAM _J_Comput. 22,
935-948.

Mau, B., Darling, A., and Perna, N. 2005. Identifying evolutionarily conserved segments among multiple divergent
and rearranged genomes. Lect. Notes Bioinform. 3388, 72-84.

Pevzner, P., and Tesler, G. 2003. Genome rearrangements in mammalian evolution: lessons from human and mouse
genomic sequences. Genome Res. 13, 3-26.

Smit, A., and Green, P. 2008. RepeatMasker. Available at: www.repeatmasker.org/. Accessed February 27, 2008.

Stoye, J., and Gusfield, D. 2002. Simple and flexible detection of contiguous repeats using a suffix tree. Theoret.
Comput. Sci. 270, 843-856.

Treangen, T., and Messeguer, X. 2006. M-GCAT: interactively and efficiently constructing large-scale multiple genome
comparison frameworks in closely related species. BMC Bioinform. 7, 433.

Ukkonen, E. 1995. On-line construction of suffix-trees. Algorithmica 14, 249-260.

Weiner, P. 1973. Linear pattern matching algorithms. Proc. 14th IEEE Ann. Symp. Switching Autom. Theory, 1-11.

Address reprint requests to:

Dr. Enno Ohlebusch

Faculty of Engineering and Computer Sciences
University of Ulm

89069 Ulm, Germany

E-mail: enno.ohlebusch@uni-ulm.de



