
Chaining algorithms for multiple genome

comparison

Mohamed Ibrahim Abouelhoda, Enno Ohlebusch

Faculty of Computer Science, University of Ulm, 89069 Ulm, Germany.
E-mail: {mibrahim,eo}@informatik.uni-ulm.de

Abstract

Given n fragments from k > 2 genomes, Myers and Miller showed how to find an
optimal global chain of colinear non-overlapping fragments in O(n logk n) time and
O(n logk−1 n) space. For gap costs in the L1-metric, we reduce the time complexity

of their algorithm by a factor log2 n
log log n

and the space complexity by a factor log n.
For the sum-of-pairs gap cost, our algorithm improves the time complexity of their
algorithm by a factor log n

log log n
. A variant of our algorithm finds all significant local

chains of colinear non-overlapping fragments. These chaining algorithms can be
used in a variety of problems in comparative genomics: the computation of global
alignments of complete genomes, the identification of regions of similarity (candidate
regions of conserved synteny), the detection of genome rearrangements, and exon
prediction.

Key words: fragment-chaining algorithms, multiple alignment, comparative
genomics, range maximum query

1 Introduction

Given the continuing improvements in high-throughput genomic sequencing
and the ever-expanding biological sequence databases, new advances in soft-
ware tools for post-sequencing functional analysis are being demanded by the
biological scientific community. Whole genome comparisons have been her-
alded as the next logical step toward solving genomic puzzles, such as deter-
mining coding regions, discovering regulatory signals, and deducing the mech-
anisms and history of genome evolution. However, before any such detailed
analysis can be addressed, methods are required for comparing such large se-
quences. If the organisms under consideration are closely related (that is, if no
or only a few genome rearrangements have occurred) or one compares regions
of conserved synteny (regions in which orthologous genes occur in the same

Preprint submitted to Elsevier Science 18 June 2004

(b)(a)

t

o

6

5

4

3

632

1 754
2S

S

2S

1
S

732

1

1

2

7

Fig. 1. Given a set of fragments (upper left figure), an optimal global chain of
colinear non-overlapping fragments (lower left figure) can be computed, e.g., by
computing an optimal path in the graph in (b) (in which not all edges are shown).
How the graph can be constructed from the fragments is explained in Section 2.

order), then global alignments can be used for the prediction of genes and reg-
ulatory elements. This is because coding regions are relatively well preserved,
while non-coding regions tend to show varying degree of conservation. Non-
coding regions that do show conservation are thought important for regulating
gene expression, maintaining the structural organization of the genome and
possibly have other, yet unknown functions. Several comparative sequence ap-
proaches using alignments have recently been used to analyze corresponding
coding and non-coding regions from different species, although mainly between
human and mouse. These approaches are based on software-tools for aligning
DNA-sequences [5, 7, 8, 11, 12, 18, 19, 21, 27]; see [9] for a review.

To cope with the shear volume of data, most of the software-tools use an
anchor-based method that is composed of three phases:

(1) Computation of fragments (regions in the genomes that are similar).
(2) Computation of an optimal global chain of colinear non-overlapping frag-

ments: these are the anchors that form the basis of the alignment.
(3) Alignment of the regions between the anchors.

The fragments computed in the first phase are often exact matches (maximal
unique matches as in MUMmer [11, 12], maximal multiple exact matches as
in MGA [18], or exact k-mers as in GLASS [5]), but one may also allow
substitutions (yielding fragments as in DIALIGN [21]) or even insertions and
deletions (as the BLASTZ-hits [26] that are used in MultiPipMaker [27]).
Each of the fragments has a weight that can, for example, be the length of the
fragment (in case of exact fragments) or its statistical significance. This article
is concerned with algorithms for solving the combinatorial chaining problem
of the second phase: finding an optimal (i.e., maximum weight) global chain
of colinear non-overlapping fragments; see Fig. 1(a). Note that every genome

2

alignment tool has to solve the chaining problem somehow, but the algorithms
differ from tool to tool.

A well-known solution to the chaining problem consists of finding a maximum
weight path in a weighted directed acyclic graph. However, the running time
of this chaining algorithm is quadratic in the number n of fragments. This can
be a serious drawback if n is large. To overcome this obstacle, Zhang et al. [30]
presented an algorithm that constructs an optimal chain using space division
based on kd-trees, a data structure known from computational geometry [6].
However, a rigorous analysis of the running time of their algorithm is difficult
because the construction of the chain is embedded in the kd-tree structure.
Another chaining algorithm, devised by Myers and Miller [23], is based on the
line-sweep paradigm, and uses orthogonal range-searching supported by range
trees instead of kd-trees. It is the only chaining algorithm for k > 2 sequences
that runs in sub-quadratic time O(n logk n), but the result is a time bound
higher by a logarithmic factor than what one would expect. In particular, for
k = 2 sequences it is one log-factor slower than previous chaining algorithms
[13, 22], which require only O(n logn) time. In the epilogue of their paper
[23], Myers and Miller wrote: “We thought hard about trying to reduce this
discrepancy but have been unable to do so, and the reasons appear to be
fundamental” and “To improve upon our result appears to be a difficult open
problem.” In this article, we will improve their result. For gap costs in the L1-
metric, we can not only reduce the time and space complexities of Myers and
Miller’s algorithm by a log-factor but actually improve the time complexity by
a factor log2 n

log log n
. For the sum-of-pairs gap cost, our method yields a reduction

by a factor log n

log log n
. In essence, this improvement is achieved by enhancing the

ordinary range tree with (1) the combination of fractional cascading [29] and
the efficient priority queues of [17, 28], which yields a more efficient search, and
(2) an appropriate incorporation of gap costs, so that it is enough to determine
a maximum function value over a semi-dynamic set (instead of a dynamic
set). We would like to point out that our algorithm can also employ other
data structures that support orthogonal range-searching. For example, if the

kd -tree is used instead of the range tree, the algorithm takes O((k−1)n2− 1
k−1)

time and O(n) space in the worst case, for k > 2 and gap costs in the L1-
metric.

As already mentioned, global alignments are a valuable tool for comparing
the genomes of closely related species. In case of diverged genomic sequences,
however, genome rearrangements have occurred during evolution, so that a
global alignment strategy is likely predestined to failure for having to align
unrelated regions in an end-to-end colinear approach. In this case, either local
alignments are the strategy of choice or one must first identify syntenic regions,
which then can be individually aligned. However, both alternatives are faced
with obstacles. Current local alignment programs suffer from a huge running

3

time, while the problem of automatically finding syntenic regions requires a
priori knowledge of all genes and their locations in the genomes—a piece of
information that is often not available. (It is beyond the scope of this paper
to discuss the computational difficulties of gene prediction and the accurate
determination of orthologous genes.) We will show that a local variant of our
global chaining algorithm can be used to solve the problem of automatically
finding regions of similarity in large genomic DNA sequences. As in the anchor-
based global alignment method, one first computes fragments. In the second
phase, however, instead of computing an optimal global chain of colinear non-
overlapping fragments, one computes significant local chains. We call a local
chain significant if its score (the sum of the weights of the fragments in the
chain, where gaps between the fragments are penalized) exceeds a user-defined
threshold. The computation of significant local chains can be done in the
same time and space complexities as above-mentioned (for solving the global
fragment-chaining problem).

Under stringent thresholds, significant local chains of colinear non-overlapping
fragments represent candidate regions of conserved synteny. If one aligns these
individually, one gets good local alignments. We would like to point out that
the automatic identification of regions of similarity is a first step toward an
automatic detection of genome rearrangements. In [2], we have demonstrated
that our method can be used to detect genome rearrangements such as trans-
positions (where a section of the genome is excised and inserted at a new
position in the genome, without changing orientation) and inversions (where
a section of the genome is excised, reversed in orientation, and re-inserted).

We see several advantages of our chaining algorithms:

(1) They can handle multiple genomes.
(2) They can handle any kind of fragments.
(3) In contrast to most other algorithms used in comparative genomics, they

are not heuristic: They correctly solve clearly defined problems.

It is worth mentioning that chaining algorithms are also useful in other bioin-
formatics applications such as comparing restriction maps [22] or solving the
exon assembly problem which is part of eucaryotic gene prediction [15]. A
variety of applications in comparative genomics is described in [24].

This article is organized as follows. Section 2 defines the basic concepts dealt
with. In Section 3, we will explain a global chaining algorithm that neglects
gap costs. In Section 4, the algorithm is modified in two steps, so that it can
deal with certain gap costs. Section 5 presents a local variant of the global
chaining algorithm that can be used for finding regions of similarity in large
genomic DNA sequences. Finally, Section 6 summarizes the main achievements
of our work.

4

Parts of this article appeared in [1] and [2].

2 Basic concepts and definitions

For 1 ≤ i ≤ k, Si = Si[1 . . . ni] denotes a string of length |Si| = ni. In
our application, Si is a (long) DNA sequence. Si[l . . . h] is the substring of Si

starting at position l and ending at position h. A fragment f consists of two k-
tuples beg(f)= (l1, l2, . . . , lk) and end(f)= (h1, h2, . . . , hk) such that the strings
S1[l1 . . . h1], S2[l2 . . . h2], . . . , Sk[lk . . . hk] are “similar”. Furthermore, we speak
of an exact fragment (or multiple exact match) if the substrings are identical,
i.e., S1[l1 . . . h1] = S2[l2 . . . h2] = . . . = Sk[lk . . . hk]. An exact fragment is
maximal, if the substrings can neither be simultaneously extended to the left
nor to the right in all Si.

A fragment f of k genomes can be represented by a hyper-rectangle in R
k with

the two extreme corner points beg(f) and end(f), where each coordinate of the
points is a non-negative integer (consequently, the words number of genomes
and dimension will be used synonymously in what follows). A hyper-rectangle
(called hyperrectangular domain in [25]) is the Cartesian product of intervals
on distinct coordinate axes. A hyper-rectangle [l1 . . . h1] × [l2 . . . h2] × . . . ×
[lk . . . hk] (with li < hi for all 1 ≤ i ≤ k) will here be denoted by R(p, q),
where p = (l1, . . . , lk) and q = (h1, . . . , hk).

With every fragment f , we associate a positive weight f.weight ∈ R. This
weight can, for example, be the length of the fragment (in case of exact frag-
ments) or its statistical significance.

In what follows, we will often identify the point beg(f) or end(f) with the
fragment f . This is possible because we assume that all fragments are known
from the first phase of the anchored-based approach described in Section 1
(so that every point can be annotated with a tag that identifies the fragment
it stems from). For example, if we speak about the score of a point beg(f) or
end(f), we mean the score of the fragment f .

For ease of presentation, we consider the points 0 = (0, . . . , 0) (the origin) and
t = (|S1|+1, . . . , |Sk|+1) (the terminus) as fragments with weight 0. For these
fragments, we define beg(0) = ⊥, end(0) = 0, beg(t) = t, and end(t) = ⊥.

The coordinates of a point p ∈ R
k will be denoted by p.x1, p.x2, . . . , p.xk. If

k = 2, the coordinates of p will also be written as p.x and p.y.

Definition 2.1 We define a binary relation ≪ on the set of fragments by
f ≪ f ′ if and only if end(f).xi < beg(f ′).xi for all 1 ≤ i ≤ k. If f ≪ f ′, then

5

we say that f precedes f ′.

Note that 0 ≪ f ≪ t for every fragment f with f 6= 0 and f 6= t.

Definition 2.2 A chain of colinear non-overlapping fragments (or chain for
short) is a sequence of fragments f1, f2, . . . , fℓ such that fi ≪ fi+1 for all
1 ≤ i < ℓ. The score of C is

score(C) =
ℓ

∑

i=1

fi.weight−
ℓ−1
∑

i=1

g(fi+1, fi)

where g(fi+1, fi) is the cost of connecting fragment fi to fi+1 in the chain. We
will call this cost gap cost.

Definition 2.3 Given n weighted fragments and a gap cost function, the
global fragment-chaining problem is to determine a chain of maximum score
(called optimal global chain in the following) starting at the origin 0 and
ending at terminus t.

A direct solution to this problem is to construct a weighted directed acyclic
graph G = (V, E), where the set V of vertices consists of all fragments (in-
cluding 0 and t) and the set of edges E is characterized as follows: There is
an edge f → f ′ with weight f ′.weight − g(f ′, f) if f ≪ f ′. See Fig. 1(b) for
an example (where edges f → f ′ are omitted whenever there is a fragment f̃
such that f ≪ f̃ ≪ f ′). An optimal global chain of fragments corresponds to
a path with maximum score from vertex 0 to vertex t in the graph. Because
the graph is acyclic, such a path can be computed as follows. Let f ′.score be
defined as the maximum score of all chains starting at 0 and ending at f ′.
f ′.score can be expressed by the recurrence: 0.score = 0 and

f ′.score = f ′.weight + max{f.score − g(f ′, f) : f ≪ f ′} (1)

A dynamic programming algorithm based on this recurrence takes O(|V | +
|E|) time provided that computing gap costs takes constant time. Because
|V | + |E| ∈ O(n2), computing an optimal global chain takes quadratic time
and linear space. This graph-based solution works for any number of genomes
and for any kind of gap cost. As explained in Section 1, however, the time
bound can be improved by considering the geometric nature of the problem.
In order to present our result systematically, we first give a chaining algorithm
that neglects gap costs. Then we will modify this algorithm in two steps, so
that it can deal with certain gap costs.

6

3 The global chaining algorithm without gap costs

3.1 The basic chaining algorithm

Given a set S of points in R
k with associated score, a range query RQ(p, q)

asks for all points of S that lie in the hyper-rectangle R(p, q), while a range
maximum query RMQ(p, q) asks for a point of maximum score in R(p, q).

Lemma 3.1 Suppose that the gap cost function is the constant function 0. If
RMQ(0, beg(f ′) − ~1) returns the end point of fragment f (where ~1 denotes the
vector (1, . . . , 1)),then f ′.score = f ′.weight + f.score.

Proof This follows immediately from recurrence (1). 2

Suppose that the start and end points of the fragments are sorted w.r.t. their
x1 coordinate. Then, processing the points in ascending order of their x1 co-
ordinate simulates a line (plane or hyper-plane in higher dimensions) that
sweeps the points w.r.t. their x1 coordinate. Here, we will use this so-called
line-sweep technique to construct an optimal chain. If a point has already been
scanned by the sweeping line, it is said to be active; otherwise it is said to be
inactive. During the sweeping process, the x1 coordinates of the active points
are smaller than the x1 coordinate of the currently scanned point s. According
to Lemma 3.1, if s is the start point of fragment f ′, then an optimal chain
ending at f ′ can be found by an RMQ over the set of active end points of frag-
ments. Since p.x1 < s.x1 for every active end point p, the RMQ need not take
the first coordinate into account. In other words, the RMQ is confined to the
range R(0, (s.x2, . . . , s.xk)−~1) in R

k−1, so that the dimension of the problem is
reduced by one. To manipulate the point set during the sweeping process, we
need a semi-dynamic data structure D that stores the end points of fragments
and efficiently supports the following two operations: (1) activation and (2)
RMQ over the set of active points. Algorithm 1 is based on such a data structure
D, which will be defined later. In the algorithm, f ′.prec denotes a field that
stores the preceding fragment of f ′ in a chain. It is an immediate consequence
of Lemma 3.1 that Algorithm 1 finds an optimal chain. The complexity of the
algorithm depends of course on how the data structure D is implemented. In
the following subsection, we will outline an implementation of D that supports
RMQs with activation in time O(n logd−1 n log log n) and space O(n logd−1 n) for
n points, where d is the dimension. Because in our chaining problem d = k−1,
finding an optimal chain by Algorithm 1 takes O(n logk−2 n log log n) time and
O(n logk−2 n) space.

7

Algorithm 1. (k-dimensional chaining of n fragments)

Sort all start and end points of the n fragments in ascending order w.r.t. their
x1 coordinate and store them in the array points; because we include the end
point of the origin and the start point of the terminus, there are 2n + 2 points.
Store all end points of the fragments (ignoring their x1 coordinate) as inactive
in the (k − 1)-dimensional data structure D.
for i := 1 to 2n + 2

if points[i] is the start point of fragment f ′ then

q := RMQ(0, (points[i].x2, . . . , points[i].xk) −~1)
determine the fragment f with end(f) = q
f ′.prec := f
f ′.score := f ′.weight + f.score

else /⋆ points[i] is end point of a fragment ⋆/
activate (points[i].x2, . . . , points[i].xk) in D

3.2 Answering RMQs with activation efficiently

Our orthogonal range-searching data structure is based on range trees, which
are well-known in computational geometry. Given a set S of n d-dimensional
points, its range tree can be built as follows (see, e.g., [4, 25]). For d = 1, the
range tree of S is a minimum-height binary search tree or an array storing S
in sorted order. For d > 1, the range tree of S is a minimum-height binary
search tree T with n leaves, whose ith leftmost leaf stores the point in S with
the ith smallest x1-coordinate. To each interior node v of T , we associate a
canonical subset Cv ⊆ S containing the points stored at the leaves of the
subtree rooted at v. For each v, let lv (resp. hv) be the smallest (resp. largest)
x1 coordinate of any point in Cv and let C∗

v = {(p.x2, . . . , p.xd) ∈ R
d−1 |

(p.x1, p.x2, . . . , p.xd) ∈ Cv}. The interior node v stores lv, hv, and a (d − 1)-
dimensional range tree constructed on C∗

v . For any fixed dimension d, the
data structure can be built in O(n logd−1 n) time and space. A range query
RQ(p, q) for the hyper-rectangle R(p, q) = [l1 . . . h1]× [l2 . . . h2]× . . .× [ld . . . hd]
can be answered as follows. If d = 1, the query can be answered in O(log n)
time by a binary search. For d > 1, we traverse the range tree starting at
the root. Suppose node v is visited in the traversal. If v is a leaf, then we
report its corresponding point if it lies inside R(p, q). If v is an interior node,
and the interval [lv, hv] does not intersect [l1, h1], there is nothing to do. If
[lv, hv] ⊆ [l1, h1], we recursively search in the (d − 1)-dimensional range tree
stored at v with the hyper-rectangle [l2 . . . h2]× . . .× [ld . . . hd]. Otherwise, we
recursively visit both children of v. This procedure takes O(logd n + z) time,
where z is the number of points in the hyper-rectangle R(p, q).

The technique of fractional cascading [29] saves one log-factor in answering
range queries (in the same construction time and using the same space as the
original range tree). Here, we will recall this technique for range queries of

8

p6

p2

p4

p5

p3p1

p8

p7

(3, 29)
(9, 33)

(21, 15)
(13, 19)

(7, 1)

(17, 27)

query rectangle [0 .. 22]x[0 .. 28]

(31, 23)

(25, 5)

Fig. 2. A set of points and a query rectangle.

p1 p2 p8p4 p5 p6p3

p7 p8p2 p1

p3p1p2 p7

p7

��
��
��

��
��
��

p6 p5

��
��
��

��
��
��

p3

p8p6p7p3p1

p8p4

p4

p5p2

p5p6

p4

21

25

7

1793

1 2 3 4 5 6 7 8

3 2 31 4 1 4

1 2

2

13

Fig. 3. Range tree with fractional cascading for the points in Fig. 2. The colored
nodes are visited for answering the range query of Fig. 2. Hatched nodes are the
canonical nodes. The small circles refer to NULL pointers. In this example, ph1 = p6

and ph2 = p5. The colored elements of the y-arrays of the canonical nodes are the
points in the query rectangle of Fig. 2. The value hv.L in every internal node v is
the x coordinate that separates the points in its left subtree from those occurring
in its right subtree.

the form RQ(0, q) because we want to modify it to answer range maximum
queries of the form RMQ(0, q) efficiently. For ease of presentation, we consider
the case d = 2. In this case, the range tree is a binary search tree (called
x-tree) of arrays (called y-arrays). Let v be a node in the x-tree and let
v.L and v.R be its left and right children. The y-array Av of v contains all
the points in Cv sorted in ascending order w.r.t. their y coordinate. Every
element p ∈ Av has two downstream pointers: The left pointer Lptr and the
right pointer Rptr. The left pointer Lptr points to the largest (i.e., rightmost)
element q1 in Av.L such that q1 ≤ p (Lptr is a NULL pointer if such an element
does not exist). In an implementation, Lptr is the index with Av.L[Lptr] = q1.
Analogously, the right pointer Rptr points to the largest element q2 of Av.R

such that q2 ≤ p. Fig. 3 shows an example of this structure. Locating all the
points in a rectangle R(0, (h1, h2)) is done in two stages. In the first stage,

9

a binary search is performed over the y-array of the root node of the x-tree
to locate the rightmost point ph2 such that ph2.y ∈ [0 . . . h2]. Then, in the
second stage, the x-tree is traversed (while keeping track of the downstream
pointers) to locate the rightmost leaf ph1 such that ph1 .x ∈ [0 . . . h1]. During
the traversal of the x-tree, we identify a set of nodes which we call canonical
nodes (w.r.t. the given range query). The set of canonical nodes is the smallest
set of nodes v1, . . . , vℓ ∈ x-tree such that ⊎ℓ

j=1Cvj
= RQ(0, (h1,∞)). (⊎ denotes

disjoint union.) In other words, P := ⊎ℓ
j=1Avj

= ⊎ℓ
j=1Cvj

contains every point
p ∈ S such that p.x ∈ [0 . . . h1]. However, not every point p ∈ P satisfies
p.y ∈ [0 . . . h2]. Here, the downstream pointers come into play. As already
mentioned, the downstream pointers are followed while traversing the x-tree,
and to follow one pointer takes constant time. If we encounter a canonical
node vj , then the element ej , to which the last downstream pointer points,
partitions the list Avj

as follows: Every e that is strictly to the right of ej is
not in R(0, (h1, h2)), whereas all other elements of Avj

lie in R(0, (h1, h2)). For
this reason, we will call the element ej the split element. It is easy to see that
the number of canonical nodes is O(log n). Moreover, we can find all of them
and the split elements of their y-arrays in O(log n) time; cf. [29]. Therefore,
the range tree with fractional cascading supports 2-dimensional range queries
in O(logn + z) time, where z is the number of points in the rectangle R(0, q).
For dimension d > 2, it takes time O(logd−1 n + z).

In order to answer RMQs with activation, we will further enhance every y-array
that occurs in the fractional cascading data structure with a priority queue
as described in [17, 28]. Each of these queues is (implicitly) constructed over
the rank space 1 of the points in the y-array. The rank space of the points
in the y-array consists of points in the range [0 . . .m], where m is the size of
the y-array, and the rank of a point is its index in the y-array because the
y-array is sorted w.r.t. the y dimension.

The priority queue supports the operations insert(r), delete(r), predecessor(r)
(gives the largest element ≤ r), and successor(r) (gives the smallest element
> r) in time O(log log m), where r is an integer in the range [0 . . .m]. Algo-
rithm 2 shows how to activate a point q in the 2-dimensional range tree and
Algorithm 3 shows how to answers an RMQ(0, q).

Note that in the outer while-loop of Algorithm 2, the following invariant is
maintained: If 0 ≤ i1 < i2 < . . . < iℓ ≤ m are the entries in the priority queue
attached to Av, then Av[i1].score ≤ Av[i2].score ≤ . . . ≤ Av[iℓ].score.

Algorithm 3 gives pseudo-code for answering RMQ(0, q), but we would like to
first describe the idea on a higher level. In essence, we locate all canonical nodes
v1, . . . , vℓ in D for the hyper-rectangle R(0, q). For any vj , 1 ≤ j ≤ ℓ, let the

1 See, e.g., [10, 14] for more details on the rank space.

10

Algorithm 2. (Activation of a point q in the data structure D)

v := root node of the x-tree
find the rank (index) r of q in Av by a binary search
while (v 6= ⊥)

if (Av[r].score > Av[predecessor(r)].score) then

insert(r) into the priority queue attached to Av

while(Av[r].score > Av[successor(r)].score)
delete(successor(r)) from the priority queue attached to Av

if (Av[r] = Av.L[Av[r].Lptr]) then

r := Av[r].Lptr
v := v.L

else

r := Av[r].Rptr
v := v.R

Algorithm 3. (RMQ(0, q) in the data structure D)

v := root node of the x-tree
max score := −∞
max point := ⊥
find the rank (index) r of the rightmost point p with p.y ∈ [0 . . . q.y] in Av

while (v 6= ⊥)
if (hv.x ≤ q.x) then /⋆ v is a canonical node ⋆/

tmp := predecessor(r) in the priority queue of Av

max score := max{max score, Av[tmp].score}
if (max score = tmp.score) then max point := Av[tmp]

else if (hv.L.x ≤ q.x) then /⋆ v.L is a canonical node ⋆/
tmp := predecessor(Av[r].Lptr) in the priority queue of Av.L

max score := max{max score, Av.L[tmp].score}
if (max score = tmp.score) then max point := Av.L[tmp]
r := Av[r].Rptr
v := v.R

else

r := Av[r].Lptr
v := v.L

rjth element be the split element in Avj
. We have seen that ⊎ℓ

j=1Avj
contains

every point p ∈ S such that p.x ∈ [0 . . . q.x]. Now if rj is the index of the
split element of Avj

, then all points Avj
[i] with i ≤ rj are in R(0, q), whereas

all other elements Avj
[i] with i > rj are not in R(0, q). Since Algorithm 2

maintains the above-mentioned invariant, the element with highest score in the
priority queue of Avj

that lies in R(0, q) is qj = predecessor(rj) (if rj is in the
priority queue of Avj

, then qj = rj because predecessor(rj) gives the largest
element ≤ rj). We then compute max score := max{Avj

[qj].score | 1 ≤ j ≤ ℓ}
and return max point = Avi

[qi], where Avi
[qi].score = max score.

11

Because the number of canonical nodes is O(log n) and any of the priority
queue operations takes O(log log n) time, answering a 2-dimensional range
maximum query takes O(log n log log n) time. Since every point occurs in at
most log n priority queues, there are at most n log n delete operations. Hence
the total time complexity of activating n points is O(n logn log log n).

Theorem 3.2 Given k > 2 genomes and n fragments, an optimal global
chain (without gap costs) can be found in O(n logk−2 n log log n) time and
O(n logk−2 n) space.

Proof In Algorithm 1, the points are first sorted w.r.t. their first dimen-
sion and the RMQ with activation is required only for d = k − 1 dimen-
sions. For d ≥ 2 dimensions, the preceding data structure is implemented
for the last two dimensions of the range tree, which yields a data structure D
that requires O(n logd−1 n) space and O(n logd−1 n log log n) time for n RMQs
and n activation operations. Consequently, one can find an optimal chain in
O(n logk−2 n log log n) time and O(n logk−2 n) space. 2

In case k = 2, the data structure D is simply a priority queue (over the
rank space of all points). Therefore, if the points are already sorted, then
the algorithm takes O(n log log n) time. Otherwise, the sorting procedure in
Algorithm 1 dominates the overall time complexity of Algorithm 1 because it
requires O(n log n) time.

4 Incorporating gap costs

In the previous section, fragments were chained without penalizing the gaps
in between them. In this section, we modify the algorithm, so that it can take
gap costs into account.

4.1 Gap costs in the L1 metric

We first handle the case in which the cost for the gap between two fragments
is the distance between the end and start point of the two fragments in the
L1 metric. For two points p, q ∈ R

k, this distance is defined by

d1(p, q) =
k

∑

i=1

|p.xi − q.xi|

12

ACCXXXX AGG

ACC YYYAGG

ACCXXXXAGG

ACCYYY AGG

Fig. 4. Alignments based on the fragments ACC and AGG w.r.t. gap cost g1 (left)
and the sum-of-pairs gap cost with λ > 1

2ǫ (right), where X and Y are anonymous
characters.

and for two fragments f ≪ f ′ we define g1(f
′, f) = d1(beg(f ′),end(f)). If

an alignment of two sequences S1 and S2 shall be based on fragments and
one uses this gap cost, then the characters between the two fragments are
deleted/inserted; see left side of Fig. 4.

The problem with gap costs in our approach is that an RMQ does not take
the cost g(f ′, f) from recurrence (1) into account, and if we would explicitly
compute g(f ′, f) for every pair of fragments with f ≪ f ′, then this would
yield a quadratic time algorithm. Thus, it is necessary to express the gap
costs implicitly in terms of weight information attached to the points. We
achieve this by using the geometric cost of a fragment f , which we define in
terms of the terminus point t as gc(f) = d1(t, end(f)).

Lemma 4.1 Let f , f̃ , and f ′ be fragments such that f ≪ f ′ and f̃ ≪ f ′.
Then the inequality f̃ .score − g1(f

′, f̃) > f.score − g1(f
′, f) holds true if and

only if the inequality f̃ .score − gc(f̃) > f.score − gc(f) holds.

Proof

f̃ .score − g1(f
′, f̃) > f.score − g1(f

′, f)

⇔ f̃ .score −
∑k

i=1 (beg(f ′).xi − end(f̃).xi) >

f.score −
∑k

i=1 (beg(f ′).xi − end(f).xi)

⇔ f̃ .score −
∑k

i=1 (t.xi − end(f̃).xi) >

f.score −
∑k

i=1 (t.xi − end(f).xi)

⇔ f̃ .score − gc(f̃) > f.score − gc(f)

The second equivalence follows from adding
∑k

i=1 beg(f ′).xi to and subtracting
∑k

i=1 t.xi from both sides of the inequality. Fig. 5 illustrates the lemma for
k = 2. 2

Because t is fixed, the value gc(f) is known in advance for every fragment f .
Therefore, Algorithm 1 needs only two slight modifications to take gap costs
into account. First, we replace the statement f ′.score := f ′.weight + f.score

13

sweep-line

ty

xo

s

q

p

Fig. 5. Points p and q are active end points of the fragments f and f̃ . The start
point s of fragment f ′ is currently scanned by the sweeping line and t is the terminus
point.

with

f ′.score := f ′.weight + f.score − g1(f
′, f)

Second, if points[i] is the end point of f ′, then it will be activated with
f ′.priority := f ′.score − gc(f ′). Thus, an RMQ will return a point of maxi-
mum priority instead of a point of maximum score. The next lemma implies
the correctness of the modified algorithm.

Lemma 4.2 If the range maximum query RMQ(0, beg(f ′) − ~1) returns the
end point of fragment f̃ , then we have f̃ .score − g1(f

′, f̃) = max{f.score −
g1(f

′, f) : f ≪ f ′}.

Proof RMQ(0, beg(f ′) − ~1) returns the end point of fragment f̃ such that
f̃ .priority = max{f.priority : f ≪ f ′}. Since f.priority = f.score − gc(f)
for every fragment f , it is an immediate consequence of Lemma 4.1 that
f̃ .score − g1(f

′, f̃) = max{f.score − g1(f
′, f) : f ≪ f ′}. 2

4.2 The sum-of-pairs gap cost

In this section we consider the gap cost associated with the “sum-of-pairs”
model, which was introduced by Myers and Miller [23]. For clarity of presen-
tation, we first treat the case k = 2 because the general case k > 2 is rather
involved.

14

t

s

sweep-line

y

xo

p
O

O

q

2

1

Fig. 6. The first quadrant of point s is divided into two octants.

4.2.1 The case k = 2:

For two points p, q ∈ R
2, we write ∆xi

(p, q) = |p.xi − q.xi|, where i ∈ {1, 2}.
We will sometimes simply write ∆x1 and ∆x2 if their arguments can be inferred
from the context. The sum-of-pairs distance of two points p, q ∈ R

2 depends
on the parameters ǫ and λ and was defined in [23] as follows:

d(p, q) =











ǫ∆x2 + λ(∆x1 − ∆x2) if ∆x1 ≥ ∆x2

ǫ∆x1 + λ(∆x2 − ∆x1) if ∆x2 ≥ ∆x1

We rearrange these terms and derive the following equivalent definition:

d(p, q) =











λ∆x1 + (ǫ − λ)∆x2 if ∆x1 ≥ ∆x2

(ǫ − λ)∆x1 + λ∆x2 if ∆x2 ≥ ∆x1

For two fragments f and f ′ with f ≪ f ′, we define g(f ′, f) = d(beg(f ′), end(f)).
Intuitively, λ > 0 is the cost of aligning an anonymous character with a gap
position in the other sequence, while ǫ > 0 is the cost of aligning two anony-
mous characters. For λ = 1 and ǫ = 2, this gap cost coincides with the g1 gap
cost, whereas for λ = 1 and ǫ = 1, this gap cost corresponds to the L∞ metric.
(The gap cost of connecting two fragments f ≪ f ′ in the L∞ metric is defined
by g∞(f ′, f) = d∞(beg(f ′),end(f)), where d∞(p, q) = maxi∈[1..k] |p.xi − q.xi|
for p, q ∈ R

k.) Following [23, 30], we demand that λ > 1
2
ǫ because otherwise

it would always be best to connect fragments entirely by gaps as in the L1

metric. So if an alignment of two sequences S1 and S2 shall be based on frag-
ments and one uses the sum-of-pairs gap cost with λ > 1

2
ǫ, then the characters

between the two fragments are replaced as long as possible and the remaining
characters are deleted or inserted; see right side of Fig. 4.

15

In order to compute the score of a fragment f ′ with beg(f ′) = s, the following
definitions are useful. The first quadrant of a point s ∈ R

2 consists of all points
p ∈ R

2 with p.x1 ≤ s.x1 and p.x2 ≤ s.x2. We divide the first quadrant of s
into regions O1 and O2 by the straight line x2 = x1 + (s.x2 − s.x1). O1, called
the first octant of s, consists of all points p in the first quadrant of s satisfying
∆x1 ≥ ∆x2 (i.e., s.x1 − p.x1 ≥ s.x2 − p.x2), these are the points lying above or
on the straight line x2 = x1 + (s.x2 − s.x1); see Fig. 6. The second octant O2

consists of all points q satisfying ∆x2 ≥ ∆x1 (i.e., s.x2 − q.x2 ≥ s.x1 − q.x1),
these are the points lying below or on the straight line x2 = x1 +(s.x2 −s.x1).
Then f ′.score = f ′.weight + max{v1, v2}, where vi = max{f.score− g(f ′, f) :
f ≪ f ′ and end(f) lies in octant Oi}, for i ∈ {1, 2}.

However, our chaining algorithms rely on RMQs, and these work only for orthog-
onal regions, not for octants. For this reason, we will make use of the octant-
to-quadrant transformations of Guibas and Stolfi [16]. The transformation
T1 : (x1, x2) 7→ (x1−x2, x2) maps the first octant to a quadrant. More precisely,
point T1(p) is in the first quadrant of T1(s) if and only if p is in the first octant
of point s. 2 Similarly, for the transformation T2 : (x1, x2) 7→ (x1, x2 − x1),
point q is in the second octant of point s if and only if T2(q) is in the first
quadrant of T2(s). By means of these transformations, we can apply the same
techniques as in the previous sections. We just have to define the geometric
cost properly. The following lemma shows how to choose the geometric cost
gc1 for points in the first octant O1. An analogous lemma holds for points in
the second octant.

Lemma 4.3 Let f , f̃ , and f ′ be fragments such that f ≪ f ′ and f̃ ≪ f ′. If
end(f) and end(f̃) lie in the first octant of beg(f ′), then f̃ .score − g(f ′, f̃) >
f.score − g(f ′, f) if and only if f̃ .score − gc1(f̃) > f.score − gc1(f), where
gc1(f̂) = λ∆x1(t, end(f̂)) + (ǫ − λ)∆x2(t, end(f̂)) for any fragment f̂ .

Proof Similar to the proof of Lemma 4.1. 2

In Section 4.1 there was only one geometric cost gc, but here we have to
take two different geometric costs gc1 and gc2 into account. To cope with this
problem, we need two data structures D1 and D2, where Di stores the set of
points

{Ti(end(f)) | f is a fragment}

2 Observe that the transformation may yield points with negative coordinates, but
it is easy to overcome this obstacle by an additional transformation (a translation).
Hence we will skip this minor problem.

16

If we encounter the end point of fragment f ′ in Algorithm 1, then we activate
point T1(end(f ′)) in D1 with priority f ′.score−gc1(f

′) and point T2(end(f ′)) in
D2 with priority f ′.score−gc2(f

′). If we encounter the start point of fragment
f ′, then we launch two range maximum queries, namely RMQ(0, T1(beg(f ′)−~1))
in D1 and RMQ(0, T2(beg(f ′) − ~1)) in D2. If the first RMQ returns T1(end(f1))
and the second returns T2(end(f2)), then fi is a fragment of highest priority
in Di, 1 ≤ i ≤ 2, such that Ti(end(fi)) ≪ Ti(beg(f ′)). Because a point p is
in the octant Oi of point beg(f ′) if and only if Ti(p) is in the first quadrant
of Ti(beg(f ′)), it follows that fi is a fragment such that its priority fi.score−
gci(fi) is maximal in octant Oi. Therefore, according to Lemma 4.3, the value
vi = fi.score−g(f ′, fi) is maximal in octant Oi. Hence, if v1 > v2, then we set
f ′.prec = f1 and f ′.score := f ′.weight + v1. Otherwise, we set f ′.prec = f2

and f ′.score := f ′.weight + v2.

For the sum-of-pairs gap cost, the two-dimensional chaining algorithm runs in
O(n log n log log n) time and O(n logn) space because of the two-dimensional
RMQs required for the transformed points. This is in sharp contrast to gap costs
in the L1-metric, where we merely need one-dimensional RMQs.

4.2.2 The case k > 2:

In this case, the sum-of-pairs gap cost is defined for fragments f ≪ f ′ by

gsop(f
′, f) =

∑

0≤i<j≤k

g(f ′
i,j, fi,j)

where f ′
i,j and fi,j are the two-dimensional fragments consisting of the ith

and jth component of f ′ and f , respectively. For example, in case of k = 3,
let s = beg(f ′) and p = end(f) and assume that ∆x1(s, p) ≥ ∆x2(s, p) ≥
∆x3(s, p). In this case, we have gsop(f

′, f) = 2λ∆x1 + ǫ∆x2 + (ǫ − λ)2∆x3

because g(f ′
1,2, f1,2) = λ∆x1 + (ǫ − λ)∆x2 , g(f ′

1,3, f1,3) = λ∆x1 + (ǫ − λ)∆x3 ,
and g(f ′

2,3, f2,3) = λ∆x2 + (ǫ − λ)∆x3 . By contrast, if ∆x1 ≥ ∆x3 ≥ ∆x2, then
the equality gsop(f

′, f) = 2λ∆x1 + (ǫ − λ)2∆x2 + ǫ∆x3 holds.

In general, each of the k! permutations π of 1, . . . , k yields a hyper-region
Rπ defined by ∆xπ(1)

≥ ∆xπ(2)
≥ . . . ≥ ∆xπ(k)

in which a specific formula for
gsop(f

′, f) holds. That is, in order to obtain the score of a fragment f ′, we must
compute f ′.score = f ′.weight + max{vπ | π is a permutation of 1, . . . , k},
where

vπ = max{f.score − gsop(f
′, f) : f ≪ f ′ and end(f) lies in Rπ}

Because our RMQ-based approach requires orthogonal regions, each of these
hyper-regions Rπ of s must be transformed into the first hyper-corner of some

17

point s̃. The first hyper-corner of a point s̃ ∈ R
k is the k-dimensional analogue

to the first quadrant of a point in R
2. It consists of all points p ∈ R

k with
p.xi ≤ s̃.xi for all 1 ≤ i ≤ k (note that there are 2k hyper-corners). We describe
the generalization of the octant-to-quadrant transformations for the case k = 3.
The extension to the case k > 3 is obvious. There are 3! hyper-regions, hence
6 transformations:

∆x1 ≥ ∆x2 ≥ ∆x3 :T1(x1, x2, x3) = (x1 − x2, x2 − x3, x3)

∆x1 ≥ ∆x3 ≥ ∆x2 :T2(x1, x2, x3) = (x1 − x3, x2, x3 − x2)

∆x2 ≥ ∆x1 ≥ ∆x3 :T3(x1, x2, x3) = (x1 − x3, x2 − x1, x3)

∆x2 ≥ ∆x3 ≥ ∆x1 :T4(x1, x2, x3) = (x1, x2 − x3, x3 − x1)

∆x3 ≥ ∆x1 ≥ ∆x2 :T5(x1, x2, x3) = (x1 − x2, x2, x3 − x1)

∆x3 ≥ ∆x2 ≥ ∆x1 :T6(x1, x2, x3) = (x1, x2 − x1, x3 − x2)

In what follows, we will focus on the particular case where π is the identity
permutation. The hyper-region corresponding to the identity permutation will
be denoted by R1 and its transformation by T1. The other permutations are
numbered in an arbitrary order and are handled similarly.

Lemma 4.4 Point p ∈ R
k is in hyper-region R1 of point s if and only if T1(p)

is in the first hyper-corner of T1(s), where T1(x1, x2, . . . , xk) = (x1−x2, x2−x3,
. . . , xk−1 − xk, xk).

Proof T1(p) is in the first hyper-corner of T1(s)

⇔ T1(s).xi ≥ T1(p).xi for all 1 ≤ i ≤ k

⇔ s.xi − s.xi+1 ≥ p.xi − p.xi+1 and s.xk ≥ p.xk for all 1 ≤ i < k

⇔ (s.x1 − p.x1) ≥ (s.x2 − p.x2) ≥ . . . ≥ (s.xk − p.xk)

⇔ ∆x1(s, p) ≥ ∆x2(s, p) ≥ . . . ≥ ∆xk
(s, p)

The last statement holds if and only if p is in hyper-region R1 of s. 2

For each hyper-region Rj , we compute the corresponding geometric cost gcj(f)
of every fragment f . Note that for every index j a k-dimensional analogue to
Lemma 4.3 holds. Furthermore, for each transformation Tj, we keep a data
structure Dj that stores the transformed end points Tj(end(f)) of all frag-
ments f . Algorithm 4 generalizes the 2-dimensional chaining algorithm de-
scribed above to k dimensions. For every start point beg(f ′) of a fragment
f ′, Algorithm 4 searches for a fragment f in the first hyper-corner of beg(f ′)
such that f.score − gsop(f

′, f) is maximal. This entails k! RMQs because the

18

Algorithm 4. (k-dim. chaining of n fragments w.r.t. the sum-of-pairs gap cost)

Sort all start and end points of the n fragments in ascending order w.r.t. their
x1 coordinate and store them in the array points; because we include the end
point of the origin and the start point of the terminus, there are 2n + 2 points.
for j := 1 to k!

apply transformation Tj to the end points of the fragments and store the
resulting points as inactive in the k-dimensional data structure Dj

for i := 1 to 2n + 2
if points[i] is the start point of fragment f ′ then

maxRMQ := −∞
for j := 1 to k!

q := RMQ(0, Tj(points[i] −~1)) in Dj

determine the fragment fq with Tj(end(fq)) = q
maxRMQ := max{maxRMQ, fq.score − gsop(f

′, fq)}
if fq.score − gsop(f

′, fq) = maxRMQ then f := fq

f ′.prec := f
f ′.score := f ′.weight + maxRMQ

else /⋆ points[i] is end point of a fragment f ′ ⋆/
for j := 1 to k!

activate Tj(points[i]) in Dj with priority f ′.score − gcj(f
′)

first hyper-corner is divided into k! hyper-regions. Analogously, for every end
point end(f ′) of a fragment f ′, Algorithm 4 performs k! activation operations.
Therefore, the total time complexity of Algorithm 4 is O(k! n logk−1 n log log n)
and its space requirement is O(k! n logk−1 n). This result improves the running
time of Myers and Miller’s algorithm [23] by a factor log n

log log n
.

5 The local chaining algorithm

In the previous sections, we have tackled the global chaining problem, which
asks for an optimal chain starting at the origin 0 and ending at terminus
t. However, in many applications (such as searching for local similarities in
genomic sequences) one is interested in chains that can start and end with
arbitrary fragments. If we remove the restriction that a chain must start at
the origin and end at the terminus, we get the local chaining problem; see Fig.
7.

Definition 5.1 Given n weighted fragments and a gap cost function g, the
local fragment-chaining problem is to determine a chain of maximum score
≥ 0. Such a chain will be called optimal local chain.

Note that if g is the constant function 0, then an optimal local chain must also
be an optimal global chain, and vice versa. Our solution to the local chaining

19

g

g
1

o g

g

1

2

(b)

t3

87
641

9

87

6

54

2

1

95

6

4

3

2

2

(a)

7

1

8

Fig. 7. Computation of local chains of colinear non-overlapping fragments. The
optimal local chain is composed of the fragments 1, 4, and 6. Another significant
local chain consists of the fragments 7 and 8.

problem is a variant of the global chaining algorithm. For ease of presentation,
we will use gap costs corresponding to the L1 metric (see Section 4.1), but the
approach also works with the sum-of-pairs gap cost (see Section 4.2).

Definition 5.2 Let

f ′.score = max{score(C) : C is a chain ending with f ′}

A chain C ending with f ′ and satisfying f ′.score = score(C) will be called
optimal chain ending with f ′.

Lemma 5.3 The following equality holds:

f ′.score = f ′.weight + max{0, f.score − g1(f
′, f) : f ≪ f ′} (2)

Proof Let C ′ = f1, f2, . . . , fℓ, f
′ be an optimal chain ending with f ′, that

is, score(C ′) = f ′.score. Because the chain that solely consists of frag-
ment f ′ has score f ′.weight ≥ 0, we must have score(C ′) ≥ f ′.weight. If
score(C ′) = f ′.weight, then f.score − g1(f

′, f) ≤ 0 for every fragment f
that precedes f ′, because otherwise it would follow score(C ′) > f ′.weight.
Hence equality (2) holds in this case. So suppose score(C ′) > f ′.weight.
Clearly, score(C ′) = f ′.weight+score(C)−g1(f

′, fℓ), where C = f1, f2, . . . , fℓ.
It is not difficult to see that C must be an optimal chain that is ending
with fℓ because otherwise C ′ would not be optimal. Therefore, score(C ′) =
f ′.weight + fℓ.score − g1(f

′, fℓ). If there were a fragment f that precedes f ′

such that f.score − g1(f
′, f) > fℓ.score − g1(f

′, fℓ), then it would follow that
C ′ is not optimal. We conclude that equality (2) holds. 2

With the help of Lemma 5.3, we obtain Algorithm 5. It is not difficult to

20

Algorithm 5. (Finding an optimal local chain)

for every fragment f ′ do begin

determine f̂ with f̂ .score − g1(f
′, f̂) = max{f.score − g1(f

′, f) | f ≪ f ′}

max := max{0, f̂ .score − g1(f
′, f̂)}

if max > 0 thenf ′.prec := f̂ else f ′.prec := NULL
f ′.score := f ′.weight + max

end

determine a fragment f̃ such that f̃ .score = max{f.score | f is a fragment}

report an optimal local chain by following the pointers f̃ .prec until a frag-
ment f with f.prec = NULL is reached

verify that we can implement this algorithm by means of the techniques of the
previous sections such that it solves the local fragment-chaining problem in
the same time and space complexities as our solution to the global fragment-
chaining problem.

We stress that Algorithm 5 can easily be modified, so that it can report all
chains whose score exceeds some threshold T (in Algorithm 5, instead of deter-
mining a fragment f̃ of maximum score, one determines all fragments whose
score exceeds T). Such chains will be called significant local chains; see Fig. 7.
As outlined in Section 1, under stringent thresholds, significant local chains of
colinear non-overlapping fragments represent candidate regions of conserved
synteny. Furthermore, the automatic identification of regions of similarity is
a first step toward an automatic detection of genome rearrangements. The
interested reader is referred to [2], where we have provided evidence that our
local chaining method can be used to detect genome rearrangements such as
transpositions and inversions.

6 Conclusions

In this article, we have presented line-sweep algorithms that solve both the
global and the local fragment-chaining problem of multiple genomes. For k > 2
genomes, our algorithms take

• O(n logk−2 n log log n) time and O(n logk−2 n) space without gap costs,
• O(n logk−2 n log log n) time and O(n logk−2 n) space for gap costs in the L1

metric,
• O(k! n logk−1 n log log n) time and O(k! n logk−1 n) space for the sum-of-

pairs gap cost and for gap costs in the L∞ metric.

For k = 2, they take O(n logn) time and O(n) space for gap costs in the L1

metric. If the fragments are already sorted, then the time complexity reduces

21

to O(n log log n). For the sum-of-pairs gap cost and for gap costs in the L∞

metric, our algorithms take O(n log n log log n) time and O(n logn) space.

We stress that our algorithm can employ any other data structure that sup-
ports orthogonal range-searching. For example, if the kd -tree is used instead

of the range tree, the algorithms take O((k − 1)n2− 1
k−1) time and O(n) space

for gap costs in the L1 metric. (It has been shown in [20] that answering one

d-dimensional range query with the kd -tree takes O(dn1− 1
d) time in the worst

case.) Moreover, for small k, a collection of programming tricks can speed up
the running time in practice; for more details we refer the reader to [6].

Among other things, the software tool CHAINER [3] contains an implementa-
tion of the chaining algorithms presented here. Currently, this implementation
uses gap costs in the L1 metric and is based on kd -trees. It remains future
work to experimentally compare this kd -tree version with an implementation
based on range trees.

Acknowledgment

The authors were supported by DFG-grant Oh 54/4-1. Thanks go to an anony-
mous reviewer whose suggestions helped to improve the presentation of this
article.

References

[1] M.I. Abouelhoda and E. Ohlebusch. Multiple genome alignment: Chaining
algorithms revisited. In Proc. 14th Annual Symposium on Combinatorial
Pattern Matching, LNCS 2676, pages 1–16. Springer-Verlag, 2003.

[2] M.I. Abouelhoda and E. Ohlebusch. A local chaining algorithm and its
applications in comparative genomics. In Proc. 3rd Workshop on Algorithms in
Bioinformatics, LNBI 2812, pages 1–16. Springer-Verlag, 2003.

[3] M.I. Abouelhoda and E. Ohlebusch. CHAINER: Software for comparing
genomes. In 12th International Conference on Intelligent Systems for Molecular
Biology/3rd European Conference on Computational Biology, to appear.

[4] P. Agarwal. Range searching. In J.E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 31, pages 575–603.
CRC Press, 1997.

[5] S. Batzoglou, L. Pachter, J.P. Mesirov, B. Berger, and E.S. Lander. Human and
mouse gene structure: Comparative analysis and application to exon prediction.
Genome Research, 10:950–958, 2001.

22

[6] J.L. Bently. K-d trees for semidynamic point sets. In 6th Annual ACM
Symposium on Computational Geometry, pages 187–197. ACM, 1990.

[7] N. Bray and L. Pachter. MAVID multiple alignment server. Nucleic Acids
Research, 31:3525–3526, 2003.

[8] M. Brudno, C.B. Do, G.M. Cooper, M.F. Kim, E. Davydov, E.D. Green,
A. Sidow, and S. Batzoglou. LAGAN and Multi-LAGAN: Efficient tools for
large-scale multiple alignment of genomic DNA. Genome Research, 13(4):721–
731, 2003.

[9] P. Chain, S. Kurtz, E. Ohlebusch, and T. Slezak. An applications-focused review
of comparative genomics tools: Capabilities, limitations and future challenges.
Briefings in Bioinformatics, 4(2):105-123, 2003.

[10] B. Chazelle. A functional approach to data structures and its use in
multidimensional searching. SIAM Journal on Computing, 17(3):427–462, 1988.

[11] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and
S.L. Salzberg. Alignment of whole genomes. Nucleic Acids Res., 27:2369–2376,
1999.

[12] A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for
large-scale genome alignment and comparison. Nucleic Acids Res., 30(11):2478-
2483, 2002.

[13] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dynamic
programming. I:Linear cost functions; II:Convex and concave cost functions.
Journal of the ACM, 39:519–567, 1992.

[14] H.N. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and related techniques
for geometry problems. In Proc. 16th Annual ACM Symposium on Theory of
Computing, pages 135–143. ACM, 1984.

[15] M.S. Gelfand, A.A. Mironov, and P.A. Pevzner. Gene recognition via spliced
sequence alignment. Proc. Nat. Acad. Sci., 93:9061–9066, 1996.

[16] L.J. Guibas and J. Stolfi. On computing all north-east nearest neighbors in the
L1 metric. Information Processing Letters, 17(4):219–223, 1983.

[17] D.B. Johnson. A priority queue in which initialization and queue operations
take O(log log D) time. Mathematical Systems Theory, 15:295–309, 1982.

[18] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment.
Bioinformatics, 18:S312–S320, 2002.

[19] W.J. Kent and A.M. Zahler. Conservation, regulation, synteny, and introns
in a large-scale C.briggsae-C.elegans genomic alignment. Genome Research,
10:1115–1125, 2000.

[20] D.T. Lee and C.K. Wong. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees. Acta
Informatica, 9:23–29, 1977.

23

[21] B. Morgenstern. A space-efficient algorithm for aligning large genomic
sequences. Bioinformatics 16:948-949, 2000.

[22] E.W. Myers and X. Huang. An O(n2 log n) restriction map comparison and
search algorithm. Bulletin of Mathematical Biology, 54(4):599–618, 1992.

[23] E.W. Myers and W. Miller. Chaining multiple-alignment fragments in sub-
quadratic time. Proc. 6th ACM-SIAM Symposium on Discrete Algorithms,
pages 38–47. ACM, 1995.

[24] E. Ohlebusch and M.I. Abouelhoda. Chaining algorithms and applications
in comparative genomics. In S. Aluru, editor, Handbook of Computational
Molecular Biology, chapter 20. CRC Press, to appear.

[25] F.P. Preparata and M.I. Shamos. Computational geometry: An introduction.
Springer-Verlag, New York, 1985.

[26] S. Schwartz, J.K. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison,
D. Haussler, and W. Miller. Human-mouse alignments with BLASTZ. Genome
Research, 13:103–107, 2003.

[27] S. Schwartz, L. Elnitski, M. Li, M. Weirauch, C. Riemer, A. Smit, NISC
Comparative Sequencing Program, E. D. Green, R. C. Hardison, and W. Miller.
MultiPipMaker and supporting tools: Alignments and analysis of multiple
genomic DNA sequences. Nucleic Acids Research, 31(13):3518–3524, 2003.

[28] P. van Emde Boas. Preserving order in a forest in less than logarithmic time
and linear space. Information Processing Letters, 6(3):80–82, 1977.

[29] D.E. Willard. New data structures for orthogonal range queries. SIAM Journal
of Computing, 14:232–253, 1985.

[30] Z. Zhang, B. Raghavachari, R. Hardison, and W. Miller. Chaining multiple-
alignment blocks. Journal of Computational Biology, 1:217–226, 1994.

24

