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Abstract

In the median problem, we are given a distance or dissimilarity measure d, three
genomes G1, G2, and G3, and we want to find a genome G (a median) such that the
sum

∑
3

i=1
d(G,Gi) is minimized. The median problem is a special case of the mul-

tiple genome rearrangement problem, where one wants to find a phylogenetic tree
describing the most “plausible” rearrangement scenario for multiple species. The
median problem is NP-hard for both the breakpoint and the reversal distance. To
the best of our knowledge, there is no approach yet that takes biological constraints
on genome rearrangements into account. In this paper, we make use of the fact
that in circular bacterial genomes the predominant mechanism of rearrangement
are inversions that are centered around the origin or the terminus of replication and
single gene inversions. These constraints simplify the median problem significantly.
More precisely, we show that the median problem for the reversal distance can be
solved in linear time for circular bacterial genomes.

Key words: median problem, reversal distance, inversions, circular genomes,
genome rearrangements, comparative genomics

1 Introduction

During evolution, the genomic DNA sequences of organisms are subject to
genome rearrangements such as transpositions (where a section of the genome
is excised and inserted at a new position in the genome, without changing ori-
entation) and inversions (where a section of the genome is excised, reversed in
orientation, and re-inserted). In unichromosomal genomes, the most common
rearrangements are inversions, which are usually called reversals in bioinfor-
matics. In the following, we will focus on unichromosomal genomes and use
the terms “inversion” and “reversal” synonymously. The study of genome re-
arrangements started more than 65 years ago [8], but interest on the subject
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Fig. 1. Genome (+1,−2,+3,+4,−5,+6,−7,−8) before and after the inversion
ρ(3, 6).

has flourished in the last decade because of the progress in large-scale sequenc-
ing. In the context of genome rearrangement, a genome G is typically viewed
as a signed permutation, where each integer corresponds to a unique gene and
the sign corresponds to its orientation. A + (−) sign means that the gene lies
on the leading (lagging) DNA strand.

As usual in the context of genome rearrangement problems, we assume that
orthologous genes between two genomes G1 and G2 have already been deter-
mined. That is, we model the genomes as permutations on the same set of
orthologous genes {1, . . . , n} and do not consider the other genes (nor non-
coding regions). So let G1 = (π1, . . . , πn) and G2 = (γ1, . . . , γn) be permuta-
tions of genes {1, . . . , n}. Two adjacent genes πi and πi+1 in G1 determine a
breakpoint in G1 w.r.t. G2 if and only if neither πi precedes πi+1 in G2 nor
−πi+1 precedes −πi in G2. The breakpoint distance bd(G1, G2) between G1 and
G2 is defined as the number of breakpoints in G1 w.r.t. G2 [17, 25]. This is
clearly equal to the number of breakpoints in G2 w.r.t. G1. In other words,
the breakpoint distance between G1 and G2 is the smallest number of places
where one genome must be broken so that the pieces can be rearranged to
form the other genome.

Given a genome G = (π1, . . . , πi−1, πi . . . , πj, πj+1, . . . , πn), a reversal ρ(i, j)
applied to G reverses the segment πi, . . . , πj and produces the permutation
Gρ(i, j) = (π1, . . . , πi−1,−πj ,−πj−1, . . . ,−πi+1,−πi, πj+1, . . . , πn) (see Figure
1 for an illustration). Given two genomes G1 and G2, the reversal distance
rd(G1, G2) between them is defined as the minimum number of reversals re-
quired to convert one genome into the other. (The phrase sorting by reversals
refers to the equivalent problem of finding the minimum number of reversals
required to convert a permutation π into the identity permutation.) The study
of the reversal distance was pioneered by Sankoff [20] and has received increas-
ing attention in recent years. There are dozens of papers on the subject; see
e.g. [1, 2, 10, 13] and the references therein.

The median problem is NP-hard for both the breakpoint and the reversal
distance [5, 19]. That is the reason why researchers developed heuristics to
solve the median and the multiple genome rearrangement problem. Very good
heuristics exist for the breakpoint-based multiple genome rearrangement prob-
lems [3, 21]. These rely on the ability to solve the breakpoint median problem
by reducing it to the Traveling Salesman Problem. Solutions to the reversal
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Fig. 2. An X-shaped pattern resulting from a genome comparison of the bacteria
Chlamydia pneumonia (x-axis) and Chlamydia trachomatis (y-axis).

median problem can be found in [4, 6, 16, 22]. There is a dispute about the
“right” distance in multiple genome rearrangement problems. While the au-
thors of [3, 21] argue that the breakpoint distance is the better choice, in [16]
it is conjectured that the usage of the reversal distance yields better phy-
logenetic reconstructions. Furthermore, [4] discusses some advantages of the
reversal distance approach over the breakpoint distance approach.

To the best of our knowledge, there is no approach yet that takes biological
constraints on genome rearrangements into account. In this paper, we make
use of the fact that in circular bacterial genomes the predominant mechanism
of rearrangement are inversions that are centered around the origin or the
terminus of replication [9, 12, 23, 24] and single gene inversions [7, 14]. These
constraints simplify the median problem significantly. More precisely, we show
that the median problem for the reversal distance can be solved in linear time
for circular bacterial genomes.

2 Inversions around the origin/terminus of replication and single
gene inversions

In this paper, we study the median problem (unless stated otherwise, the term
median problem refers to the reversal median problem) for circular bacterial
genomes. In whole genome comparisons, an X-shaped pattern (see Figure 2) in
plots of orthologous genes has been observed [9, 12, 23, 24], indicating that al-
most all long range inversions within closely related circular bacterial genomes
are centered around the origin or the terminus of replication. Among the short
range inversions, single gene inversions [7, 14] seem to be predominant. On the
one hand, Tiller and Collins [24] have argued that a substantial proportion of
rearrangements result from recombination sites that are determined by the po-
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Fig. 3. A genome that replicates bi-directionally from a single origin.

sition of the replication forks. In genomes that replicate bi-directionally from
a single origin, the two replication forks (see Figure 3) will be approximately
equidistant from the origin, so that genes are inverted and translocated to the
“opposite side” of the genome: a mirror-image position across the replication
axis (defined by the origin O and terminus T of replication). On the other
hand, Mackiewicz et al. [15] argued that selection may be mainly responsible.
In their opinion, “selection pressure leads to the optimal position of genes
with respect to the distance from the origin of replication.” Furthermore, they
write that another “selection force that could lead to biased rearrangements
might be the trend towards keeping both replichores the same size.” More-
over, according to Hughes [12], “a high frequency of recombination in the
terminus region is related to the mechanism of chromosome separation after
replication.”

Whatever the reasons might be, the observations strongly indicate that inver-
sions around the origin/terminus of replication and single gene inversions are
the predominant rearrangements in prokaryotic genomes. In the following, we
will take this into account.

As usual in the comparison of genomes on the gene level, we assume that
the genomes have the same set {1, . . . , n} of unique genes and that inversions
do not cut genes. As a consequence, genes may neither overlap on the same
DNA strand nor on different DNA strands. In our model, in which inversions
around the origin/terminus of replication and single gene inversions are the
predominant mechanism of rearrangement, it is further assumed that in each
genome, these n genes occur in the same order w.r.t. the distance to the origin
of replication.

Because the genes keep their distance to the origin O, we enumerate them in
increasing distance to O. That is, starting with the origin of replication, we
simultaneously traverse both DNA strands of the circular genome in clockwise
and counterclockwise order. This process ends when the terminus T of repli-
cation is reached and it divides the circular genome into two halves, called
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Fig. 4. Left: A cartoon representation of a circular bacterial genome. Of course,
bacteria have hundreds, or even thousands, of genes. Moreover, a bacterial genome
does not have long stretches of DNA without genes. Right: The same genome after
the inversion ρ(4).

replichores. The clockwise traversal yields the right replichore and the coun-
terclockwise traversal yields the left replichore. A gene encountered gets the
next number (the first gene gets number 1). If this gene is lying on the lead-
ing strand, it is labeled with a + sign, otherwise it gets a − sign. If it was
encountered in the clockwise (resp. counterclockwise) direction, its number is
put to the right (resp. left) of the origin O and a 0 to the left (resp. right) of
O, which for better readability will be denoted by the symbol |. For example,
if the first gene is encountered in the counterclockwise direction and is lying
on the leading strand, then this yields (+1 | 0). A more complex example
is (+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, +9, 0), which is
shown in Figure 4.

In what follows, ρ(i) denotes an inversion centered around the origin of repli-
cation that acts on the ith nearest genes of O. Furthermore, we will use postfix
notation to denote the application of a reversal to a genome. For example,

(+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, +9, 0) ρ(4)

= (+10, 0, 0, 0, +6,−5, +4, +3, 0,−1 | 0,−2, 0, 0, 0, 0,−7,−8, +9, 0)

Similarly, ρ(i) denotes an inversion centered around the terminus of replication
that acts on the ith nearest genes of T . As an example consider

(+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, +9, 0) ρ(2)

= (0,−9, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, 0,−10)

Next, we will simplify the above representation without loosing any infor-
mation. (+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, +9, 0), for
example, will be represented by the bit vector (1, 0, 1, 1, 0, 0, 1, 1, 1, 0) and the
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Fig. 5. Left: The cartoon representation of our circular bacterial genome. Right:
The same genome after the single gene inversion σ(7).

orientation vector (+, +,−,−,−, +,−,−, +, +). In the bit vector, a 1 (resp.
0) at position p means that the gene with number p is located in the right
(resp. left) replichore of the circular bacterial genome. Furthermore, a + (resp.
−) sign in the orientation vector at position p means that gene p lies on the
leading (resp. lagging) strand. Therefore, the preceding inversions are modeled
by

(+1, +0,−1,−1,−0, +0,−1,−1, +1, +0) ρ(4)

= (−0,−1, +0, +0,−0, +0,−1,−1, +1, +0)

(+1, +0,−1,−1,−0, +0,−1,−1, +1, +0) ρ(2)

= (+1, +0,−1,−1,−0, +0,−1,−1,−0,−1)

In the following, we will also consider single gene inversions. A single gene
inversion σ(i) flips the ith sign in the orientation vector because the ith gene
is translocated to the opposite DNA strand and thus changes its orientation.
However, a single gene inversion σ(i) does not change the ith bit in the bit
vector because the gene remains in its replichore. The following example is
also depicted in Figure 5.

(+1, +0,−1,−1,−0, +0,−1,−1, +1, +0) σ(7)

= (+1, +0,−1,−1,−0, +0, +1,−1, +1, +0)

Lemma 2.1 The composition of inversions is commutative and associative.

Proof Let ρ1, ρ2, and ρ3 be inversions. We have ρ1 ·ρ2 = ρ2 ·ρ1 (commutativity)
and (ρ1 · ρ2) · ρ3 = ρ1 · (ρ2 · ρ3) (associativity) because every gene is inverted
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the same number of times on either side of the respective equation. 2

An important consequence of the preceding lemma is that reordering any
sequence of inversions does not change the result. Thus, Gρ1ρ2 · · · ρk (recall
that an application of a reversal to a genome is denoted by postfix notation)
is the genome obtained from G by applications of the reversals ρ1, ρ2, . . . , ρk

in an arbitrary order.

Note that every reversal ρ has an inverse, viz. ρ itself because ρ · ρ = id.

Let ρ(n) := ρ(n) = ρ(n) be the inversion that inverts the whole genome.
The reflection flip(G) of genome G is defined by flip(G) := ρ(n). A genome
G is biologically equivalent to its reflection [11]. Given a reversal ρ around
the origin/terminus of replication, a reversal τ around the origin/terminus of
replication satisfying ρ(n) · ρ = τ is called the complementary reversal of ρ.

Lemma 2.2 Every reversal ρ around the origin/terminus of replication has a
(unique) complementary reversal τ around the terminus/origin of replication.

Proof If ρ = ρ(i), then τ = ρ(n− i) because ρ(n) · ρ(i) = ρ(n− i). Otherwise,
if ρ = ρ(i), then τ = ρ(n − i) because ρ(n) · ρ(i) = ρ(n − i). 2

The preceding lemma in conjunction with the fact that a genome and its re-
flection are equivalent implies that one can restrict solely to inversions around
the origin of replication (or, by a symmetric argument, to inversions around
the terminus of replication).

3 The reversal distance

Given two genomes G and G′, we fix one of the genomes, say G′, and try to
transform G into G′ or flip(G′) by as few inversions as possible.

Let (±1b1,±2b2,±3b3, . . . ,±nbn) be the oriented bit vector representation of a
circular bacterial genome G. Here ±i denotes the orientation of the i-th gene,
i.e., ±i = + (±i = −) if gene i lies on the leading (lagging) DNA strand. In the
rest of the paper, we will just speak of genome G, that is, we omit the phrase
“circular bacterial.” Furthermore, we will use the following notations for 1 ≤
i ≤ j ≤ n: G[i] = ±ibi, Gb[i] = bi, Go[i] = ±i, G[i..j] = (±ibi, . . . ,±jbj),
Gb[i..j] = (bi, . . . , bj), and Go[i..j] = (±i, . . . ,±j). That is, Gb denotes the
genes without their orientation, Go denotes the orientations of the genes, and
G denotes the genes with their orientation.
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Fig. 6. Breakpoints between two genomes. The gene order breakpoints are depicted
by colons, whereas the gene orientation breakpoints are underlined.

The next definition is a modification of the usual definition of a breakpoint.
The distinction between gene order breakpoints and gene orientation break-
points is crucial in our context.

Definition 3.1 Let two genomes G = (±1b1,±2b2,±3b3, . . . ,±nbn) and G′ =
(±′

1b
′

1,±
′

2b
′

2,±
′

3b
′

3, . . . ,±
′

nb
′

n) be given. Two consecutive indices i and i + 1
determine a gene order breakpoint if and only if neither Gb[i..i+1] = G′

b[i..i+1]
nor Gb[i..i + 1] = (flip(G′[i..i + 1]))b. An index j is called gene orientation
breakpoint if

• either Gb[i] = G′

b[i] and Go[i] 6= G′

o[i]
• or Gb[i] 6= G′

b[i] and Go[i] = G′

o[i].

Figure 6 shows two genomes G and G′ with three gene order breakpoints and
one gene orientation breakpoint. Note that G and G′ are equivalent (i.e., G =
G′ or G = flip(G′)) if and only if there is no (gene order nor gene orientation)
breakpoint between G and G′. On the one hand, an inversion around the
origin/terminus of replication can remove a gene order breakpoint, but a single
gene inversion cannot. On the other hand, a single gene inversion can remove
a gene orientation breakpoint, but an inversion around the origin/terminus of
replication cannot. This is made precise in the following lemmata.

Lemma 3.2 Let G = (±1b1,±2b2, . . . ,±nbn), G′ = (±′

1b
′

1,±
′

2b
′

2, . . . ,±
′

nb′n),
and ρ(i) with 1 ≤ i ≤ n − 1 be given.

(1) For all j with either 1 ≤ j < i or i < j < n we have: (j, j + 1) is a gene
order breakpoint between G and G′ if and only if (j, j +1) is a gene order
breakpoint between Gρ(i) and G′.

(2) If (i, i + 1) is a gene order breakpoint between G and G′, then (i, i + 1) is
not a gene order breakpoint between Gρ(i) and G′ and vice versa.

(3) For all k, 1 ≤ k ≤ n, index k is a gene orientation breakpoint between
G and G′ if and only if k is a gene orientation breakpoint between Gρ(i)
and G′.

Proof (1) If i < j < n, then there is nothing to show because ρ(i) has no
effect on the genes j and j +1. Suppose 1 ≤ j < i. The following equivalences
hold:

(j, j + 1) is a gene order breakpoint between G and G′

8



⇔ either (bj = b′j and bj+1 6= b′j+1) or (bj 6= b′j and bj+1 = b′j+1)

⇔ either (flip(bj) 6= b′j and flip(bj+1) = b′j+1)

or (flip(bj) = b′j and flip(bj+1) 6= b′j+1)

⇔ (j, j + 1) is a gene order breakpoint between Gρ(i) and G′

(2) This case follows by a similar reasoning as in (1).
(3) This is because ρ(k) either changes both Gb[k] and Go[k] or it has no effect
on both of them. 2

Lemma 3.3 Let G = (±1b1,±2b2, . . . ,±nbn), G′ = (±′

1b
′

1,±
′

2b
′

2, . . . ,±
′

nb′n),
and σ(i) with 1 ≤ i ≤ n be given.

(1) For all j with either 1 ≤ j < i or i < j < n we have: j is a gene orien-
tation breakpoint between G and G′ if and only if j is a gene orientation
breakpoint between Gσ(i) and G′.

(2) If i is a gene orientation breakpoint between G and G′, then i is not a
gene orientation breakpoint between Gσ(i) and G′ and vice versa.

(3) For all k with 1 ≤ k < n we have: (k, k + 1) is a gene order breakpoint
between G and G′ if and only if (k, k + 1) is a gene order breakpoint
between Gσ(i) and G′.

Proof Straightforward. 2

In particular, any reversal can remove at most one breakpoint. The follow-
ing simple procedure rd(G, G′) returns the reversal distance d between two
genomes G and G′, as well as d inversions that transform G into G′.

procedure rd(G, G′)
determine the gene order breakpoints (i1, i1 + 1), . . . , (ik, ik + 1) of G and G′

determine the gene orientation breakpoints j1, . . . , jℓ of G and G′

return the reversal distance k + ℓ and ρ(i1), . . . , ρ(ik), σ(j1), . . . , σ(jℓ)

The correctness of procedure rd(G, G′) is a direct consequence of the pre-
ceding lemmata. This can be seen as follows. By Lemma 3.2, each reversal
ρ(i1), . . . , ρ(ik) removes one gene order breakpoint, so that there is no gene or-
der breakpoint between G̃ := Gρ(i1) · · ·ρ(ik) and G′. Furthermore, according
to Lemma 3.3, each single gene inversion σ(j1) . . . σ(jℓ) removes one gene orien-
tation breakpoint, so that there is no breakpoint at all between G̃σ(j1) . . . σ(jℓ)
and G′. Because no reversal can remove more than one breakpoint, the reversal
distance between G and G′ is k + ℓ.

Clearly, the worst case running time of the procedure rd(G, G′) is O(n).
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4 The median problem for the reversal distance

In the median problem we want to find a genome G (a median) for G1, G2,
and G3 such that

∑
3

i=1 rd(G, Gi) is minimized. In the following, let

dm(G1, G2, G3) = min{
3∑

i=1

rd(G, Gi) | G is a genome}

With G1, G2, and G3 we associate a labeled, weighted graph (V, E) defined
as follows. The set of vertices V = {1, . . . , n} coincides with the set of genes.
For every i, 1 ≤ i ≤ n − 1, there is an edge (i, i + 1) ∈ E with weight
wc(i, i + 1), where wc(i, i + 1) is the number of times the genes i and i + 1 are
on the same replichore in G1, G2, and G3. Obviously, genes i and i + 1 occur
wd(i, i + 1) = 3−wc(i, i + 1) times on different replichores. If wc(i, i + 1) = 1,
then we further label the edge (i, i + 1) with the genome Gj for which Gj[i]
and Gj[i + 1] are on the same replichore. Analogously, if wd(i, i + 1) = 1 (i.e.,
wc(i, i+1) = 2), then we label the edge (i, i+1) with the genome Gj for which
Gj [i] and Gj[i + 1] are on different replichores. Moreover, a vertex i ∈ V can
also get a label. In what follows, let Gj [i] = ±j

i b
j
i for 1 ≤ j ≤ 3.

• If b1
i = b2

i = b3
i , then we set sign := majority(±1

i ,±
2
i ,±

3
i ). If there is a j

such that ±j
i 6= sign, where 1 ≤ j ≤ 3, then we label vertex i with Gj . If

there is no such j (i.e., ±1
i = ±2

i = ±3
i ), then vertex i remains unlabeled.

• Otherwise, if there is a bit, say b3
i , which differs from the other two bits b1

i and
b2
i (this implies b1

i = b2
i ), then we first flip G3[i], so that b1

i = b2
i = flip(b3

i ),
and then determine the label of vertex i as in the previous case.

An example graph can be found in Fig. 7.

Lemma 4.1 Three genomes G1, G2, and G3 are pairwise equivalent if and
only if their associated graph has no label.

Proof The following equivalences hold true.

• G1, G2, and G3 are pairwise equivalent.
• For all k, ℓ ∈ {1, 2, 3}, all 1 ≤ i < n, and all 1 ≤ j ≤ n:

(i, i + 1) is not a gene order breakpoint between Gk and Gℓ and index j is
not a gene orientation breakpoint between Gk and Gℓ.

• For all 1 ≤ i < n either wc(i, i + 1) = 3 or wc(i, i + 1) = 0 and for all
1 ≤ j ≤ n vertex j has no label.

• The graph associated with G1, G2, and G3 has no label.

2
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Fig. 7. Three genomes G1, G2, and G3 and their associated graph (V,E).
The labels within the boxes belong to the edges, while the labels within
the diamonds belong to the vertices. Procedure median(G1, G2, G3) returns
(G1ρ(4), ρ(4), ρ(1)σ(3), ρ(3)σ(4)σ(6)).

Consequently, to transform G1, G2, and G3 into a median, their associated
graph must be transformed into an unlabeled graph. The following lemma
characterizes the effect of an inversion on the labels.

Lemma 4.2 Let (V, E) be the labeled, weighted graph associated with the three
genomes G1, G2, and G3 of length n. Suppose an inversion ρ is applied to one of
the genomes, say G3, and let (V ′, E ′) be the labeled, weighted graph associated
with the three genomes G1, G2, and G3ρ. Then the following statements hold:

(1) If ρ = ρ(i), where 1 ≤ i ≤ n−1, then (V, E) and (V ′, E ′) coincide, except
for the label of the edge (i, i + 1) (and its weight wc(i, i + 1)):
• If the edge (i, i + 1) is labeled with G3 in (V, E), then it has no label in

(V ′, E ′).
• If the edge (i, i + 1) has no label in (V, E), then it is labeled with G3 in

(V ′, E ′).
• If the edge (i, i + 1) is labeled with G1 (resp. G2) in (V, E), then it is

labeled with G2 (resp. G1) in (V ′, E ′).
(2) If ρ = σ(i), where 1 ≤ i ≤ n, then (V, E) and (V ′, E ′) coincide, except

for the label of vertex i:
• If vertex i is labeled with G3 in (V, E), then it has no label in (V ′, E ′).
• If vertex i has no label in (V, E), then it is labeled with G3 in (V ′, E ′).
• If vertex i is labeled with G1 (resp. G2) in (V, E), then it is labeled with

G2 (resp. G1) in (V ′, E ′).

Proof (1) Let ρ = ρ(i), where 1 ≤ i ≤ n − 1. It is an immediate consequence
of the definition of the label of a vertex that labels of the respective vertices
in (V, E) and (V ′, E ′) are the same. Furthermore, because ρ(i) does not affect
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the genes i + 1, . . . , n, the labels (and weights) of the edges (p, p + 1), where
i + 1 ≤ p ≤ n− 1, are also the same in (V, E) and (V ′, E ′). Thus consider the
genes p and p + 1, where 1 ≤ p ≤ i − 1. Because p < i, the genes p and p + 1
are on the same replichore in G3 if and only if they are on the same replichore
in G3ρ(i). Obviously, this implies that the labels (and weights) of the edges
(p, p + 1) coincide in (V, E) and (V ′, E ′).
Now let us consider the edge (i, i+1). If it is labeled with G3, then genes i and
i + 1 are on the same replichore in G3 but on different replichores in G1 and
G2 or vice versa. Clearly, after the application of reversal ρ(i) to G3 genes i

and i+1 are either on the same replichore in all three genomes or they are on
different replichores in all three genomes, i.e., the edge (i, i + 1) has no label
in (V ′, E ′). The other statements are proven in a similar fashion.
(2) Because σ(i) does not affect the bit representation of G3, the labels (and
weights) of the edges (i, i+1) coincide in (V, E) and (V ′, E ′). Clearly, σ(i) does
only affect gene i, so that the labels of a vertex p 6= i coincide in (V, E) and
(V ′, E ′). If vertex i is labeled with G3 in (V, E), then we have ±1

i = ±2
i 6= ±3

i

(the case in which we first have to flip gene i in G3 is treated similarly).
Obviously, after the application of reversal σ(i) to G3 the orientation of gene
i is the same in all three genomes, i.e., vertex i has no label in (V ′, E ′). The
other statements are proven similarly.
2

In particular, any reversal can remove at most one label. The following proce-
dure median(G1, G2, G3) relies on this fact. It returns a median of the genomes
G1, G2, and G3, as well as the inversions that transform each of the genomes
into the median.

procedure median(G1, G2, G3)
construct the graph (V, E)
for m := 1 to 3 do

determine the edges (im1 , im1 + 1), . . . , (imkm

, imkm

+ 1) that are labeled with Gm

determine the vertices jm
1 , . . . , jm

ℓm

that are labeled with Gm

return a median G = G1ρ(i11) · · ·ρ(i1k1
)σ(j1

1) · · ·σ(j1
ℓ1

) and the reversals
ρ(i11), . . . , ρ(i1k1

), σ(j1
1), . . . , σ(j1

ℓ1
),

ρ(i21), . . . , ρ(i2k2
), σ(j2

1), . . . , σ(j2
ℓ2

),
ρ(i31), . . . , ρ(i3k3

), σ(j3
1), . . . , σ(j3

ℓ3
)

The graph associated with G1, G2, and G3 has
∑

3

m=1(i
m
km

+jm
ℓm

) labels. Each re-
versal in Gmρ(im1 ) · · · ρ(imkm

)σ(jm
1 ) · · ·σ(jm

ℓm

) removes one label. Therefore, upon
termination of procedure median(G1, G2, G3), the graph associated with the
genomes G1ρ(i11) · · ·ρ(i1k1

)σ(j1
1) · · ·σ(j1

ℓ1
), G2ρ(i21) · · · ρ(i2k2

)σ(j2
1) · · ·σ(j2

ℓ2
), and

G3ρ(i31) · · · ρ(i3k3
)σ(j3

1) · · ·σ(j3
ℓ3

) has no label. Because no reversal can remove
more than one label, the genome G returned by procedure median is a median
of the genomes G1, G2, and G3.
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If we would really apply the reversals ρ(i11) · · ·ρ(i1k1
) around the origin of repli-

cation to genome G1, then median(G1, G2, G3) would take quadratic time.
However, a linear time implementation is possible. According to Lemma 2.1,
we may assume w.l.o.g. that i11 > i12 > . . . > i1k1

. We observe that for each pair
of reversals ρ(i1p) and ρ(i1p+1), where p is an odd number, the application of
both ρ(i1p) and ρ(i1p+1) has the effect that just the genes i with i1p+1 < i ≤ i1p
are flipped. In other words, the application of all reversals can be mimicked
in linear time.

5 Conclusions

In this paper, we have shown that—under the assumption that in circular bac-
terial genomes the predominant mechanism of rearrangement are inversions
around the origin/terminus of replication and single gene inversions—the me-
dian problem for the reversal distance can be solved in linear time. Because
the median problem for the reversal distance is in general NP-hard, our result
nicely demonstrates that it is worthwhile to make use of biological constraints.
We consider this “message” to be the main contribution of this paper. From
an algorithmic point of view, our method is rather simple. We would like
to mention that this method can directly be extended to more than three
genomes.

Remark
A preliminary version of this paper appeared in [18]. The paper at hand ex-
tends the model presented in [18] by single gene inversions. Moreover, the
presentation is considerably simplified because a genome is considered to be
equivalent to its reflection.
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