%!PS-Adobe-2.0 %%Creator: dvipsk 5.66a Copyright 1986-97 Radical Eye Software (www.radicaleye.com) %%Title: paper.dvi %%Pages: 15 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%DocumentFonts: Helvetica %%DocumentPaperSizes: a4 %%EndComments %DVIPSCommandLine: dvips -Ppisimplex -o paper.ps paper.dvi %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 2000.03.27:1020 %%BeginProcSet: texc.pro %! /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]/id ch-image N /rw ch-width 7 add 8 idiv string N /rc 0 N /gp 0 N /cp 0 N{rc 0 ne{rc 1 sub /rc X rw}{G}ifelse}imagemask restore}B /G{{id gp get /gp gp 1 add N dup 18 mod S 18 idiv pl S get exec}loop}B /adv{cp add /cp X}B /chg{rw cp id gp 4 index getinterval putinterval dup gp add /gp X adv}B /nd{/cp 0 N rw exit}B /lsh{rw cp 2 copy get dup 0 eq{pop 1}{ dup 255 eq{pop 254}{dup dup add 255 and S 1 and or}ifelse}ifelse put 1 adv}B /rsh{rw cp 2 copy get dup 0 eq{pop 128}{dup 255 eq{pop 127}{dup 2 idiv S 128 and or}ifelse}ifelse put 1 adv}B /clr{rw cp 2 index string putinterval adv}B /set{rw cp fillstr 0 4 index getinterval putinterval adv}B /fillstr 18 string 0 1 17{2 copy 255 put pop}for N /pl[{adv 1 chg} {adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{ adv rsh nd}{1 add adv}{/rc X nd}{1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]dup{bind pop}forall N /D{/cc X dup type /stringtype ne{] }if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict /eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{dup length product length le{dup length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false} ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot} imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail{dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M}B /d{ -3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{p 1 w} B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet %%BeginProcSet: 8r.enc % @@psencodingfile@{ % author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry", % version = "0.6", % date = "22 June 1996", % filename = "8r.enc", % email = "kb@@mail.tug.org", % address = "135 Center Hill Rd. // Plymouth, MA 02360", % codetable = "ISO/ASCII", % checksum = "119 662 4424", % docstring = "Encoding for TrueType or Type 1 fonts to be used with TeX." % @} % % Idea is to have all the characters normally included in Type 1 fonts % available for typesetting. This is effectively the characters in Adobe % Standard Encoding + ISO Latin 1 + extra characters from Lucida. % % Character code assignments were made as follows: % % (1) the Windows ANSI characters are almost all in their Windows ANSI % positions, because some Windows users cannot easily reencode the % fonts, and it makes no difference on other systems. The only Windows % ANSI characters not available are those that make no sense for % typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen % (173). quotesingle and grave are moved just because it's such an % irritation not having them in TeX positions. % % (2) Remaining characters are assigned arbitrarily to the lower part % of the range, avoiding 0, 10 and 13 in case we meet dumb software. % % (3) Y&Y Lucida Bright includes some extra text characters; in the % hopes that other PostScript fonts, perhaps created for public % consumption, will include them, they are included starting at 0x12. % % (4) Remaining positions left undefined are for use in (hopefully) % upward-compatible revisions, if someday more characters are generally % available. % % (5) hyphen appears twice for compatibility with both ASCII and Windows. % /TeXBase1Encoding [ % 0x00 (encoded characters from Adobe Standard not in Windows 3.1) /.notdef /dotaccent /fi /fl /fraction /hungarumlaut /Lslash /lslash /ogonek /ring /.notdef /breve /minus /.notdef % These are the only two remaining unencoded characters, so may as % well include them. /Zcaron /zcaron % 0x10 /caron /dotlessi % (unusual TeX characters available in, e.g., Lucida Bright) /dotlessj /ff /ffi /ffl /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef % very contentious; it's so painful not having quoteleft and quoteright % at 96 and 145 that we move the things normally found there down to here. /grave /quotesingle % 0x20 (ASCII begins) /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash % 0x30 /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question % 0x40 /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O % 0x50 /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore % 0x60 /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o % 0x70 /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef % rubout; ASCII ends % 0x80 /.notdef /.notdef /quotesinglbase /florin /quotedblbase /ellipsis /dagger /daggerdbl /circumflex /perthousand /Scaron /guilsinglleft /OE /.notdef /.notdef /.notdef % 0x90 /.notdef /.notdef /.notdef /quotedblleft /quotedblright /bullet /endash /emdash /tilde /trademark /scaron /guilsinglright /oe /.notdef /.notdef /Ydieresis % 0xA0 /.notdef % nobreakspace /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen % Y&Y (also at 45); Windows' softhyphen /registered /macron % 0xD0 /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown % 0xC0 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis % 0xD0 /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls % 0xE0 /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis % 0xF0 /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def %%EndProcSet %%BeginProcSet: special.pro %! TeXDict begin /SDict 200 dict N SDict begin /@SpecialDefaults{/hs 612 N /vs 792 N /ho 0 N /vo 0 N /hsc 1 N /vsc 1 N /ang 0 N /CLIP 0 N /rwiSeen false N /rhiSeen false N /letter{}N /note{}N /a4{}N /legal{}N}B /@scaleunit 100 N /@hscale{@scaleunit div /hsc X}B /@vscale{@scaleunit div /vsc X}B /@hsize{/hs X /CLIP 1 N}B /@vsize{/vs X /CLIP 1 N}B /@clip{ /CLIP 2 N}B /@hoffset{/ho X}B /@voffset{/vo X}B /@angle{/ang X}B /@rwi{ 10 div /rwi X /rwiSeen true N}B /@rhi{10 div /rhi X /rhiSeen true N}B /@llx{/llx X}B /@lly{/lly X}B /@urx{/urx X}B /@ury{/ury X}B /magscale true def end /@MacSetUp{userdict /md known{userdict /md get type /dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N /note{}N /legal{} N /od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{itransform lineto} }{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{ itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{ closepath}}pathforall newpath counttomark array astore /gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}if}N /txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N /cp {pop pop showpage pm restore}N end}if}if}N /normalscale{Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale}if 0 setgray} N /psfts{S 65781.76 div N}N /startTexFig{/psf$SavedState save N userdict maxlength dict begin /magscale true def normalscale currentpoint TR /psf$ury psfts /psf$urx psfts /psf$lly psfts /psf$llx psfts /psf$y psfts /psf$x psfts currentpoint /psf$cy X /psf$cx X /psf$sx psf$x psf$urx psf$llx sub div N /psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR /showpage{}N /erasepage{}N /copypage{}N /p 3 def @MacSetUp}N /doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N /endTexFig{end psf$SavedState restore}N /@beginspecial{SDict begin /SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count /ocount X /dcount countdictstack N}N /@setspecial {CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if /showpage{}N /erasepage{}N /copypage{}N newpath }N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{ end}repeat grestore SpecialSave restore end}N /@defspecial{SDict begin} N /@fedspecial{end}B /li{lineto}B /rl{rlineto}B /rc{rcurveto}B /np{ /SaveX currentpoint /SaveY X N 1 setlinecap newpath}N /st{stroke SaveX SaveY moveto}N /fil{fill SaveX SaveY moveto}N /ellipse{/endangle X /startangle X /yrad X /xrad X /savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet %%BeginProcSet: color.pro %! TeXDict begin /setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll }repeat setrgbcolor pop}ifelse}B}ifelse /TeXcolorcmyk{setcmykcolor}def /TeXcolorrgb{setrgbcolor}def /TeXcolorgrey{setgray}def /TeXcolorgray{ setgray}def /TeXcolorhsb{sethsbcolor}def /currentcmykcolor where{pop}{ /currentcmykcolor{currentrgbcolor 10}B}ifelse /DC{exch dup userdict exch known{pop pop}{X}ifelse}B /GreenYellow{0.15 0 0.69 0 setcmykcolor}DC /Yellow{0 0 1 0 setcmykcolor}DC /Goldenrod{0 0.10 0.84 0 setcmykcolor} DC /Dandelion{0 0.29 0.84 0 setcmykcolor}DC /Apricot{0 0.32 0.52 0 setcmykcolor}DC /Peach{0 0.50 0.70 0 setcmykcolor}DC /Melon{0 0.46 0.50 0 setcmykcolor}DC /YellowOrange{0 0.42 1 0 setcmykcolor}DC /Orange{0 0.61 0.87 0 setcmykcolor}DC /BurntOrange{0 0.51 1 0 setcmykcolor}DC /Bittersweet{0 0.75 1 0.24 setcmykcolor}DC /RedOrange{0 0.77 0.87 0 setcmykcolor}DC /Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC /Maroon{0 0.87 0.68 0.32 setcmykcolor}DC /BrickRed{0 0.89 0.94 0.28 setcmykcolor} DC /Red{0 1 1 0 setcmykcolor}DC /OrangeRed{0 1 0.50 0 setcmykcolor}DC /RubineRed{0 1 0.13 0 setcmykcolor}DC /WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC /Salmon{0 0.53 0.38 0 setcmykcolor}DC /CarnationPink{0 0.63 0 0 setcmykcolor}DC /Magenta{0 1 0 0 setcmykcolor}DC /VioletRed{0 0.81 0 0 setcmykcolor}DC /Rhodamine{0 0.82 0 0 setcmykcolor}DC /Mulberry {0.34 0.90 0 0.02 setcmykcolor}DC /RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC /Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC /Lavender{0 0.48 0 0 setcmykcolor}DC /Thistle{0.12 0.59 0 0 setcmykcolor}DC /Orchid{ 0.32 0.64 0 0 setcmykcolor}DC /DarkOrchid{0.40 0.80 0.20 0 setcmykcolor} DC /Purple{0.45 0.86 0 0 setcmykcolor}DC /Plum{0.50 1 0 0 setcmykcolor} DC /Violet{0.79 0.88 0 0 setcmykcolor}DC /RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC /BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC /Periwinkle {0.57 0.55 0 0 setcmykcolor}DC /CadetBlue{0.62 0.57 0.23 0 setcmykcolor} DC /CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC /MidnightBlue{0.98 0.13 0 0.43 setcmykcolor}DC /NavyBlue{0.94 0.54 0 0 setcmykcolor}DC /RoyalBlue{1 0.50 0 0 setcmykcolor}DC /Blue{1 1 0 0 setcmykcolor}DC /Cerulean{0.94 0.11 0 0 setcmykcolor}DC /Cyan{1 0 0 0 setcmykcolor}DC /ProcessBlue{0.96 0 0 0 setcmykcolor}DC /SkyBlue{0.62 0 0.12 0 setcmykcolor}DC /Turquoise{0.85 0 0.20 0 setcmykcolor}DC /TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC /Aquamarine{0.82 0 0.30 0 setcmykcolor}DC /BlueGreen{0.85 0 0.33 0 setcmykcolor}DC /Emerald{1 0 0.50 0 setcmykcolor}DC /JungleGreen{0.99 0 0.52 0 setcmykcolor}DC /SeaGreen{ 0.69 0 0.50 0 setcmykcolor}DC /Green{1 0 1 0 setcmykcolor}DC /ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC /PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC /LimeGreen{0.50 0 1 0 setcmykcolor}DC /YellowGreen{ 0.44 0 0.74 0 setcmykcolor}DC /SpringGreen{0.26 0 0.76 0 setcmykcolor} DC /OliveGreen{0.64 0 0.95 0.40 setcmykcolor}DC /RawSienna{0 0.72 1 0.45 setcmykcolor}DC /Sepia{0 0.83 1 0.70 setcmykcolor}DC /Brown{0 0.81 1 0.60 setcmykcolor}DC /Tan{0.14 0.42 0.56 0 setcmykcolor}DC /Gray{0 0 0 0.50 setcmykcolor}DC /Black{0 0 0 1 setcmykcolor}DC /White{0 0 0 0 setcmykcolor}DC end %%EndProcSet TeXDict begin 39158280 55380996 1000 600 600 (paper.dvi) @start %DVIPSBitmapFont: Fa cmtt9 9 28 /Fa 28 123 df<007FB512F8B612FCA46C14F81E067C9927>45 D<121EEA7F80A2EAFFC0 A4EA7F80A2EA1E000A0A728927>I<1538157C15FCA2140115F8140315F0140715E0140F 15C0141F1580143F1500A25C147E14FE5C13015C13035C13075C130F5CA2131F5C133F91 C7FC5B137E13FE5B12015B12035BA212075B120F5B121F5B123F90C8FC5A127E12FE5AA2 5A12781E3A7CB327>II<130E131FA25B5BA25B5A5A127FB5FCA2 13BFEA7E3F1200B3AA003FB512805A15C01580A21A2F79AE27>I<14FF010713C0011F13 F04913F890B5FC48EB81FC3803FE0113F8EA07F0EA0FE09038C000F8001F1400485A90C8 FCA25A127EEB0FF838FE3FFE48B51280B612C015E09038F80FF09038E007F890388001FC 90C7FC15FE48147E157F153FA3127EA3127F6C147F157E6C6C13FE9038C001FC120F9038 F007F83907F81FF06CB512E06C14C06C148090383FFE00EB0FF820307DAE27>54 D57 D<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCAC121EEA7F80A2EAFFC0A4EA7F80A2EA 1E000A20729F27>I<387FFFF0B512FE6E7E816C803907E01FF014076E7E1401811400A5 14015D14034A5A141F90B55A5D5DA281EBE01F6E7E14076E7EA816F0EDF1F8A4397FFE01 FBB5EBFFF08016E06C48EB7FC0C8EA1F00252F7FAD27>82 D<3803FFC0000F13F04813FC 4813FF811380EC1FC0381F000F000480C71207A2EB0FFF137F0003B5FC120F5A383FFC07 EA7FC0130012FE5AA46C130F007F131FEBC0FF6CB612806C15C07E000313F1C69038807F 8022207C9F27>97 DIIIII<153F90391FC0FF80D97FF313C048B612 E05A4814EF390FF07F873A1FC01FC3C0EDC000EB800F48486C7EA66C6C485AEBC01FA239 0FF07F8090B5C7FC5C485BEB7FF0EB1FC090C9FCA27F6CB5FC15E015F84814FE4880EB80 01007EC7EA3F80007C140F00FC15C0481407A46C140F007C1580007F143F6C6CEB7F0090 38F807FF6CB55A000714F86C5CC614C0D90FFCC7FC23337EA027>II<130F497E497EA46D5A6DC7FC90C8FCA738 3FFF80487FA37EEA000FB3A4007FB512F0B6FC15F815F07E1D2F7BAE27>I107 D<387FFF80B57EA37EEA000FB3B2007FB512F8B612FCA36C14F81E2E7CAD27>I<387FE0 7F39FFF1FFC001F713F090B5FC6C80000313C1EC01FCEBFE005B5BA25BB03A7FFF83FFE0 B500C713F0A36C018313E024207F9F27>110 DI<387FE0FFD8FFF313C090B512F0816C800003EB81FE49C67E49EB3F 8049131F16C049130FA216E01507A6150F16C07F151F6DEB3F80157F6DEBFF009038FF83 FEECFFFC5D5D01F313C0D9F0FEC7FC91C8FCAC387FFF80B57EA36C5B23317F9F27>I<39 7FFC03FC39FFFE0FFF023F13804A13C0007F90B5FC39007FFE1F14F89138F00F809138E0 02004AC7FC5CA291C8FCA2137EAD007FB57EB67EA36C5C22207E9F27>114 D<9038FFF3800007EBFFC0121F5A5AEB803F38FC000F5AA2EC07806C90C7FCEA7F8013FC 383FFFF06C13FC000713FF00011480D8000F13C09038003FE014070078EB03F000FC1301 A27E14036CEB07E0EBE01F90B512C01580150000FB13FC38707FF01C207B9F27>I<133C 137EA8007FB512F0B612F8A36C14F0D8007EC7FCAE1518157EA415FE6D13FC1483ECFFF8 6D13F06D13E0010313C0010013001F297EA827>I<397FE01FF8486C487EA3007F131F00 031300B21401A21403EBFC0F6CB612E016F07EEB3FFE90390FF87FE024207F9F27>I<00 1FB512FE4814FFA490380001FEEC03FCEC07F8EC0FF0001EEB1FE0C7EA3FC0EC7F80ECFF 00495A495A495AEB1FE0495A495A49C7FC485A4848131E4848133F485A485A485A485AB7 FCA46C14FE20207E9F27>122 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fb lasy10 10 1 /Fb 1 51 df<003FB712FEB9FCA300F0C9120FB3B3A4B9FCA4303079B43E>50 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fc line10 10 1 /Fc 1 65 df<126012F87E127E7E6C7E6C7E6C7E6C7E6C7E6C7E137E7F6D7E6D7E6D7E6D 7E6D7E6D7E147E806E7E6E7E6E7E6E7E6E7E6E7E157E816F7E6F7E6F7E6F7E6F7E6F7E16 7E82707E707E707E707E707E707E177E83717E717E717E717E717E717E187E84727E727E 727E727E727E727E197E85737E737E737E737E737E737E1A7E86747E747E747E747E747E 747E1B7E87F31F80F30FC0F307E0F303F0F301F8F300FC1C7E1C3E1C1E1C0C575782D453 >64 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fd cmsy5 5 2 /Fd 2 49 df0 D48 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fe lcircle10 10 1 /Fe 1 115 df114 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ff cmr5 5 3 /Ff 3 51 df<14E0B0B712C0A3C700E0C7FCB022237C9B2B>43 D<1360EA01E0120F12FF 12F11201B3A3387FFF80A2111C7B9B1C>49 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fg cmsy6 6 2 /Fg 2 21 df0 D20 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fh cmmi6 6 12 /Fh 12 120 df<127812FCA212FEA2127E1206A3120CA2121C121812301260124007107A 8513>59 D<90B6FC16E0903907C003F8ED00FC4948133E161E161FEE0F8049C7FCA317C0 133EA4491580161FA21700495CA2163E5E485A5E4B5A4B5A4848495A4B5A033EC7FC0007 EB01F8B612E092C8FC2A227CA132>68 D99 DII<13F8EA0FF0A2 1200A2485AA4485AA4380787E0EB9FF8EBB83CEBE01C380FC01E1380A21300001E5BA35C 5AA2ECF0201530481460EB01E015C0A239F000E380ECFF000060133C1C247CA224>104 D<1338137CA2137813701300A7EA0780EA1FC0EA38E01230EA60F0EAC1E0A3EA03C0A3EA 0780A2EA0F0013041306EA1E0CA21318121CEA1E70EA0FE0EA07800F237DA116>I<13F8 EA0FF0A21200A2485AA4485AA43807801E147FEB81C3EB8387380F060F495A1318EB700E 4848C7FCA213FCEA1E7EEA3C0F80EB0781158039780F0300A21402EB070600F0138CEB03 F8386000F019247CA221>107 D<000F017E13FC3A1F81FF83FF3B31C383C707803A61EE 03CC039026EC01F813C0D8C1F813F013F001E013E00003903903C0078013C0A2EE0F0039 07800780A2EE1E041706270F000F00130C163C1718A2001E011EEB1C70EE1FE0000C010C EB07802F177D9536>109 D<3801E01F3903F07FC0390639C1E0390C3F80F0EB3E000018 14F8013C137815F8C65AA49038F001F0A3EC03E0D801E013C0EBF00715809038F80F0038 03DC3CEBCFF8EBC7E001C0C7FC485AA448C8FCA2EA7FF012FF1D20809520>112 D<3807800E380FE01FEA38F012300060130F12C01407EAC1E000011306EA03C0A3380780 0CA214081418A21430146014C0EA03C13801FF00EA007E18177D951F>118 DI E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi cmmi9 9 9 /Fi 9 119 df<123C127E12FFA4127E123C08087A8715>58 D<127012FCB4FCEA7FC0EA 1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FCEC01FF91 38007FC0ED1FF0ED07FCED01FF9238007FC0EE1FF0EE07FCEE01FEA2EE07FCEE1FF0EE7F C0923801FF00ED07FCED1FF0ED7FC04A48C7FCEC07FCEC1FF0EC7FC04948C8FCEB07FCEB 1FF0EB7FC04848C9FCEA07FCEA1FF0EA7FC048CAFC12FC12702F2E7AA93C>62 D<16035E5EA24C7EA2163F167FA216FFA2ED01BFED033F831506161F150C1518A2153015 70156015C083EC01800203130F15001406A25C141C14184A80A2027FB5FC91B6FCA29039 01800007A249C7FC1306835B16035B5B1370136013E01201D807F04A7EB549B512F0A25B 34367DB53A>65 D107 D109 D<011F131F90397FC07FE09039E3E1E0F09039C3E380783A01C1F7007C D981FE133CD983FC133E00035BEB03F0163FEA0707120600025B1200010F147F167E5CA2 011F14FE16FC5CA2013FEB01F8A291380003F016E0491307ED0FC002801380ED1F009038 FFC03E9038FEE0F89038FC7FE0EC1F80000190C8FCA25BA21203A25BA21207A25BB57EA3 283083A027>112 D<903801F803903807FE0790381F071F90387C03BF9038F801BED801 F013FE00031300485A4913FC120F485A1401D83F0013F8A3481303007E14F0A300FE1307 4814E0A3140F15C0127C141F143F003CEB7F80003E13FF381E01DF380F07BF3907FE3F00 EA00F813005C147EA314FE5CA21301A25C90387FFFE090B5FCA220307EA022>I115 D<01F0130ED803FC131FD8071EEB3F80EA0E1F121C0038EB801F0030140F013F13070070 1300006014035BD8E07E14001240EA00FE495B000114065BA2150E0003140C5B151C1518 1538491330157015606D13E04A5A0001495A6D48C7FC3800FC1EEB3FF8EB07E021227EA0 25>118 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fj cmmi5 5 5 /Fj 5 108 df98 D100 D<137F3803FF80380781C0EA0E005A5A38780780387FFF00EAFFF800F0C7FCA312701440 6C13E0383C03C0380FFF00EA07F813127C911C>I104 D107 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fk cmex10 10 16 /Fk 16 126 df<12F0B3B3B3B3B3A4B512F8A41562708227>4 D<1478B3B3B3B3B3A4B5 12F8A415627F8227>I<161E167EED01FE1507ED0FF8ED3FE0ED7FC0EDFF80913801FE00 4A5A4A5A5D140F4A5A5D143F5D147F92C7FCA25C5CB3B3B3A313015CA3495AA213075C49 5AA2495A495A137F49C8FC485A485AEA07F0EA1FE0485AB4C9FC12FCA2B4FCEA3FC06C7E EA07F0EA03FC6C7E6C7E6D7E133F6D7E6D7EA26D7E801303A26D7EA3801300B3B3B3A380 80A281143F81141F816E7E1407816E7E6E7E913800FF80ED7FC0ED3FE0ED0FF8ED07FE15 01ED007E161E27C675823E>26 D56 D58 D60 D62 D80 D<12F8B3B3B3B3B3B3B3B1B6FCA51894 6E822C>106 D<141FB3B3B3B3B3B3B3B1B6FCA518947F822C>I110 D<12F012FE6C7E13E0EA3FF0EA0FFCEA03FE6C7E6C6C7E6D7E6D7EA26D7E1307A2801303 B3B3A76D7EA28013008080816E7E6E7E6E7E6E7EEC01FC6EB4FCED3FC0150FA2153FEDFF 00EC01FCEC07F84A5A4A5A4A5A4A5A92C7FC5C5C13015CA2495AB3B3A713075CA2130F49 5AA2495A495A4848C8FC485AEA0FFCEA3FF0B45A138048C9FC12F02294768237>I122 DI<12F8 7E7E7EA26C7E6C7E7F6C7EEA0FFC6C7E6C6C7E14E06C13F86C13FF013F13E06D13FF6DEC FF807F13016D7E80140F14016E7E150FED007F291B839A25>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fl cmsy7 7 4 /Fl 4 113 df0 D<13E0EA01F0EA03F8A3EA07F0A313E0A2120F 13C0A3EA1F80A21300A25A123EA35AA3127812F8A25A12100D1E7D9F13>48 D<12E0B3B3B3A5033B78AB14>106 D<186018E0170118C0170318801707EF0F00170E17 1E171C173C17381778177017F05F16014C5A5F160794C7FC5E160E161E161C163C163848 6C147800075DD81FC05C003F1401D8F7E05C00C31403D803F05C000114076D91C8FC0000 5C6D130E017C131E017E5B013E1338013F13786D1370EC80F0010F5B14C101075B14E301 035B14F76DB4C9FC5C13005C147C14781438333A7B8237>112 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fm cmbx10 10 43 /Fm 43 124 df<913803FFC0027F13F00103B512FC010FEB00FED93FF8133FD97FE0EBFF 8049485A5A1480484A13C04A6C1380A36F1300167E93C7FCA592383FFFC0B8FCA4000390 C7FCB3ABB5D8FC3F13FFA4303A7EB935>12 D46 D<141E143E14FE1307133FB5FCA313CFEA000FB3B3A6 007FB61280A4213779B630>49 DIII<001C15C0D81F80130701F8137F90B61280A216005D5D15F05D15804AC7FC 14F090C9FCA8EB07FE90383FFFE090B512F89038FC07FC9038E003FFD98001138090C713 C0120EC813E0157F16F0A216F8A21206EA3F80EA7FE012FF7FA44914F0A26C4813FF90C7 13E0007C15C06C5B6C491380D9C0071300390FF01FFE6CB512F8000114E06C6C1380D90F F8C7FC25387BB630>II<123C123EEA 3FE090B71280A41700485D5E5E5EA25E007CC7EA0FC000784A5A4BC7FC00F8147E48147C 15FC4A5A4A5AC7485A5D140F4A5A143F92C8FC5C147E14FE1301A2495AA31307A2130F5C A2131FA5133FA96D5A6D5A6D5A293A7BB830>I65 D67 DIII< B612FCA439007FF800B3B3ADB612FCA41E397DB824>73 D76 D81 DI I<003FB91280A4D9F800EBF003D87FC09238007FC049161F007EC7150FA2007C1707A200 781703A400F818E0481701A4C892C7FCB3AE010FB7FCA43B387DB742>I<0160130301E0 5B0003141F49131E48485B48C75A001E5CA248495A00385C0078130300705CA300F01307 4891C7FCD8E7C0133ED8FFF0EBFF8001F814C0A201FC14E0A3007F7FA26C486C13C0A26C 486C1380D807C0EB3E00231D75B932>92 D97 D<903801FFC0010F13FC017F 13FFD9FF8013802603FE0013C048485AEA0FF8121F13F0123F6E13804848EB7F00151C92 C7FC12FFA9127FA27F123FED01E06C7E15036C6CEB07C06C6C14806C6C131FC69038C07E 006DB45A010F13F00101138023257DA42A>99 DI<903803FF80011F13F0017F13FC3901FF83FE3A03FE 007F804848133F484814C0001FEC1FE05B003FEC0FF0A2485A16F8150712FFA290B6FCA3 01E0C8FCA4127FA36C7E1678121F6C6C14F86D14F000071403D801FFEB0FE06C9038C07F C06DB51200010F13FC010113E025257DA42C>II<161FD907FEEBFFC090387FFFE348B6EAEFE02607 FE07138F260FF801131F48486C138F003F15CF4990387FC7C0EEC000007F81A6003F5DA2 6D13FF001F5D6C6C4890C7FC3907FE07FE48B512F86D13E0261E07FEC8FC90CAFCA2123E 123F7F6C7E90B512F8EDFF8016E06C15F86C816C815A001F81393FC0000F48C813804815 7F5A163FA36C157F6C16006D5C6C6C495AD81FF0EB07FCD807FEEB3FF00001B612C06C6C 91C7FC010713F02B377DA530>I<13FFB5FCA412077EAFED7FC0913803FFF8020F13FE91 381F03FFDA3C01138014784A7E4A14C05CA25CA291C7FCB3A3B5D8FC3F13FFA4303A7DB9 35>II<13FFB5FCA412077EB3B3ACB512FCA4163A7DB91B>108 D<01FED97FE0EB0FFC00FF902601FFFC90383FFF80020701FF90B512E0DA1F81903983F0 3FF0DA3C00903887801F000749DACF007F00034914DE6D48D97FFC6D7E4A5CA24A5CA291 C75BB3A3B5D8FC1FB50083B512F0A44C257DA451>I<01FEEB7FC000FF903803FFF8020F 13FE91381F03FFDA3C011380000713780003497E6D4814C05CA25CA291C7FCB3A3B5D8FC 3F13FFA430257DA435>I<903801FFC0010F13F8017F13FFD9FF807F3A03FE003FE04848 6D7E48486D7E48486D7EA2003F81491303007F81A300FF1680A9007F1600A3003F5D6D13 07001F5DA26C6C495A6C6C495A6C6C495A6C6C6CB45A6C6CB5C7FC011F13FC010113C029 257DA430>I<9039FF01FF80B5000F13F0023F13FC9138FE07FFDAF00113800003496C13 C00280EB7FE091C713F0EE3FF8A2EE1FFCA3EE0FFEAA17FC161FA217F8163F17F06E137F 6E14E06EEBFFC0DAF00313809139FC07FE0091383FFFF8020F13E0020390C7FC91C9FCAC B512FCA42F357EA435>I<9038FE03F000FFEB0FFEEC3FFF91387C7F809138F8FFC00007 5B6C6C5A5CA29138807F80ED3F00150C92C7FC91C8FCB3A2B512FEA422257EA427>114 D<90383FF0383903FFFEF8000F13FF381FC00F383F0003007E1301007C130012FC15787E 7E6D130013FCEBFFE06C13FCECFF806C14C06C14F06C14F81203C614FC131F9038007FFE 140700F0130114007E157E7E157C6C14FC6C14F8EB80019038F007F090B512C000F81400 38E01FF81F257DA426>I<130FA55BA45BA25B5BA25A1207001FEBFFE0B6FCA3000390C7 FCB21578A815F86CEB80F014816CEBC3E090383FFFC06D1380903803FE001D357EB425> I<01FFEC3FC0B5EB3FFFA4000714016C80B3A35DA25DA26C5C6E4813E06CD9C03E13FF90 387FFFFC011F13F00103138030257DA435>IIIII123 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fn cmr6 6 8 /Fn 8 121 df<130C1338137013E0EA01C0EA038013005A120EA25AA25AA312781270A3 12F0AB1270A312781238A37EA27EA27E7E1380EA01C0EA00E013701338130C0E317AA418 >40 D<12C012707E7E7E7E7E1380EA01C0A2EA00E0A21370A313781338A3133CAB1338A3 13781370A313E0A2EA01C0A2EA038013005A120E5A5A5A12C00E317CA418>I<13E01201 120712FF12F91201B3A7487EB512C0A212217AA01E>49 DI61 D97 D<3A0F07F007F03AFF1FFC1FFC 9039703E703E3A1FC01EC01E6C486C487EA201001300AE3BFFF0FFF0FFF0A22C167D9532 >109 D<397FE07FE0A2390FC03F000007133C3803E0386C6C5A6C6C5AEB7DC0EB3F806D C7FC7F497EEB3BC0EB71E0EBE0F03801C0783803807C00077F001F133F39FFC07FF0A21C 157E9420>120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo bbm10 10 1 /Fo 1 79 df78 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmmi7 7 20 /Fp 20 122 df<1238127C12FE12FFA2127F123B1203A31206A3120C1218123812701220 08127A8614>59 D<013FB512FC16FF903A01FC001FC04AEB03E0EE01F801031400177C4A 80A2010781A25CA2130F18805CA2011F1600A24A5CA2133F173E91C8127E177C4915FC5F 017E14015F01FE4A5AA2494A5A4C5A00014BC7FC167C495CED03E00003EC1FC0B600FEC8 FC15F031287DA736>68 D87 D97 DII<15F8141FA2EC01F0A21403 A215E0A21407A215C0A2140FEB1F8F90387FCF80EBF0EF3803C03FEA0780390F001F00A2 001E5B123E003C133E127C147E5A147CA214FC5AECF830A3903801F060A2EA7803010E13 C0393C1CF980381FF07F3907C01E001D297CA723>II<133EEA07FE A2EA007CA213FCA25BA21201A25BA2120314FCEBE3FF9038EF0780D807FC13C0EBF00313 E0A2EA0FC014071380A2121FEC0F801300A248EB1F00A2003E1406143E127EEC7C0C127C 151800FCEB3C30157048EB1FE00070EB0F801F297CA727>104 D<130E131F5BA2133E13 1C90C7FCA7EA03E0487EEA0C78EA187C1230A212605B12C0A2EA01F0A3485AA2485AA2EB C180EA0F81A2381F0300A213066C5A131CEA07F06C5A11287DA617>I<1407EC0F80141F A21500140E91C7FCA7EB03E0EB07F8EB0C3C1318EB303E136013C0A248485AA2C7FCA25C A4495AA4495AA4495AA4495AA21238D87C1FC7FC12FC133E485AEA70F8EA7FE0EA1F8019 3380A61B>I<133EEA07FEA2EA007CA213FCA25BA21201A25BA21203EC07809038E01FC0 EC38600007EB61E014C3EBC187EBC307D80FC613C09038CC038001B8C7FC13E0487E13FE EB3F80EB0FC0486C7E1303003E1460A2127EECC0C0127CECC18012FC903801E30038F800 FE0070137C1B297CA723>I<137CEA0FFCA2EA00F8A21201A213F0A21203A213E0A21207 A213C0A2120FA21380A2121FA21300A25AA2123EA2127EA2EA7C18A3EAF830A21320EA78 6013C0EA3F80EA0F000E297EA715>I<3B07801FC007E03B0FE07FF01FF83B18F0E0F878 3C3B30F1807CE03E903AFB007D801ED860FEEB3F005B49133E00C14A133E5B1201A24848 495BA35F4848485A1830EE01F0A23C0F8003E003E060A218C0933801E180271F0007C013 E3933800FF00000E6D48137C341B7D993B>I<3907801FC0390FE07FF03918F0E0F83930 F1807CEBFB00D860FE133C5B5B00C1147C5B1201A248485BA34A5AEA07C01660EC03E0A2 3A0F8007C0C0A2EDC180913803C300D81F0013C7EC01FE000EEB00F8231B7D9929>I<90 38F007C03901FC1FF039031E78780006EBE03C90381FC01C000CEB801E14005B0018141F 133E1200137E153E137CA213FC157C5B1578000114F0A2EC01E0EC03C03903FC07809038 FE1F00EBE7FCEBE1F0D807E0C7FCA25BA2120FA25B121FEAFFF8A22025809922>112 DI<3807803E390FE0FF803818F3C13930 F703C0EBFE073860FC0F13F8158039C1F0070091C7FC1201A2485AA4485AA4485AA448C8 FCA2120E1A1B7D991F>II121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmr7 7 17 /Fq 17 121 df<1306130C13181330136013E0EA01C0EA0380A2EA07005A120E121EA212 1C123CA35AA512F85AAB7E1278A57EA3121C121EA2120E120F7EEA0380A2EA01C0EA00E0 136013301318130C13060F3B7AAB1A>40 D<12C012607E7E7E120E7EEA0380A2EA01C013 E0120013F0A213701378A3133CA5133E131EAB133E133CA51378A3137013F0A213E01201 13C0EA0380A2EA0700120E120C5A5A5A5A0F3B7DAB1A>I<140EB3A2B812E0A3C7000EC8 FCB3A22B2B7DA333>43 D48 D<13381378EA01F8121F12FE12E01200B3AB48 7EB512F8A215267BA521>I<13FF000313E0380E03F0381800F848137C48137E00787F12 FC6CEB1F80A4127CC7FC15005C143E147E147C5C495A495A5C495A010EC7FC5B5B903870 018013E0EA0180390300030012065A001FB5FC5A485BB5FCA219267DA521>I<13FF0003 13E0380F01F8381C007C0030137E003C133E007E133FA4123CC7123E147E147C5C495AEB 07E03801FF8091C7FC380001E06D7E147C80143F801580A21238127C12FEA21500485B00 78133E00705B6C5B381F01F03807FFC0C690C7FC19277DA521>I<1438A2147814F81301 A2130313071306130C131C131813301370136013C012011380EA03005A120E120C121C5A 12305A12E0B612E0A2C7EAF800A7497E90383FFFE0A21B277EA621>I<0018130C001F13 7CEBFFF85C5C1480D819FCC7FC0018C8FCA7137F3819FFE0381F81F0381E0078001C7F00 18133EC7FC80A21580A21230127C12FCA3150012F00060133E127000305B001C5B380F03 E03803FFC0C648C7FC19277DA521>II61 D<13FE3807FFC0380F03E0381C00F0003E1378003F137C143C143E121EC7FCA3EB3FFEEA 01FF3807F03EEA1FC0EA3F00127EA2481418A3147E127EECDF38393F838FF0390FFE0FE0 3903F807C01D1C7E9A21>97 D<90387E03E03901FF9FF03807C3FC380F00F048EBF80000 1E1378003E137CA6001E1378001F13F86C5BEBC3E0380DFF80D81C7EC7FC90C8FCA3121E 380FFFF014FC6C13FF001F1480393E001FC000781307EC03E0481301A40078EB03C0007C 13076CEB0F80390FC07E003803FFF838007FC01C277E9921>103 D108 D<260F81FC137F3BFF8FFF03FFC0903A9C0F8703E03B1FB007CC01F0D80FE013D8903AC0 03F000F8A301805BAF486C486C487E3CFFF83FFE0FFF80A2311A7E9937>I 111 D<39FFF81FFCA2390FF00FE0D807E01380D803F013003801F80E00005BEB7C386D5A EB3FE06D5A130F130780497EEB1DF8EB38FCEB707EEBE03E48487E0003EB0F80000714C0 001F14E039FFE01FFEA21F197F9823>120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fr cmsy10 10 15 /Fr 15 107 df<007FB81280B912C0A26C17803204799641>0 D<0060150600F8150F6C 151F007E153F6C157E6C6C14FC6C6CEB01F86C6CEB03F06C6CEB07E06C6CEB0FC06C6CEB 1F80017EEB3F006D137E6D6C5A90380FC1F8903807E3F0903803F7E06DB45A6D5B6EC7FC A24A7E497F903803F7E0903807E3F090380FC1F890381F80FC90383F007E017E7F49EB1F 804848EB0FC04848EB07E04848EB03F04848EB01F84848EB00FC48C8127E007E153F4815 1F48150F00601506282874A841>2 D20 D<126012F812FEEA7F80EA3FE0EA0FF8EA 03FEC66C7EEB3FE0EB0FF8EB03FE903800FF80EC3FE0EC0FF8EC03FE913800FF80ED3FE0 ED0FF8ED03FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FC0171FEF7F80933801 FF00EE07FCEE1FF0EE7FC04B48C7FCED07FCED1FF0ED7FC04A48C8FCEC07FCEC1FF0EC7F C04948C9FCEB07FCEB1FF0EB7FC04848CAFCEA07FCEA1FF0EA7FC048CBFC12FC1270CCFC AE007FB81280B912C0A26C1780324479B441>I<181EA4181F84A285180785727EA2727E 727E85197E85F11F80F10FC0F107F0007FBA12FCBCFCA26C19FCCCEA07F0F10FC0F11F80 F13F00197E61614E5A4E5AA24E5A61180F96C7FCA260181EA4482C7BAA53>33 D<91381FFFFE91B6FC1303010F14FED91FF0C7FCEB7F8001FEC8FCEA01F8485A485A485A 5B48C9FCA2123EA25AA2127812F8A25AA2B712FE16FFA216FE00F0C9FCA27EA21278127C A27EA27EA26C7E7F6C7E6C7E6C7EEA00FEEB7F80EB1FF06DB512FE010314FF1300021F13 FE283279AD37>50 D54 D<007FB612F0B712F8A2 7EC91278B3A5003FB612F85AA27EC91278B3A5007FB612F8B7FCA26C15F0253A7CB92E> 57 D<18F017011707A3170FA2171F60173F1737177F176F17EF17CF04017F178F160317 0FEE0707160EA2161C161816381630167016E0A2ED01C016801503ED0700A2150E5DA25D 157815705D02018103CFB5FCEC03BF4AB6FCA2020EC71203141E5C143802788100205B38 6001E0EAF0036C4848140126FE1F8081B5C8FC190C49EEFF3C496F13F06C4817E06C4817 806C48EE7E00D8078093C7FC3E407DBB42>65 D<0370EBFF80912601E00713E0912603C0 1F13F891260F007F7F021E9038F03FFE913A7803C00FFF9139F0078003494848486C1380 902603C01E7F902607803EEC7FC049485A011E49143F013E17E0494848141FEBF8035D26 01F007150F00035CEBE00F00075CD9C01EC8FC000F131C49C9FC121FA248CA13C0A34817 1F1980127EA2183F00FE1800A2183E187E187C18FC6017016C5F4D5A6017076C6C4B5A4D C7FC171E6D5D6C6C5D5F6D4A5A6C6CEC03806C6C020FC8FC01FF143E6C01C013F86C9038 F807E06C90B512806C6C49C9FC011F13F0010313803B3D7BBA42>79 D<126012F0B3B3B3B3A5B512F014F8A26C13F0155272BD25>98 D<14301478B3B3B3B3A5 387FFFF8B5FCA26C13F015527FBD25>I102 D<12FCEAFFC0EA07F0EA01FCEA007E7F80131F80130FB3A7801307806D7E6D7EEB007EEC 1FF0EC07F8EC1FF0EC7E00495A495A495A5C130F5CB3A7131F5C133F91C7FC137E485AEA 07F0EAFFC000FCC8FC1D537ABD2A>I<126012F0B3B3B3B3A91260045377BD17>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fs cmmi10 10 44 /Fs 44 123 df<1403EC3FF891387FFF80D901E313C014800103133F9138001F80ED0700 92C7FC80A280A2808013018080130080147F81143F8149B47E130790380F8FF0EB3E0F49 6C7E13F83801F003D803E07F1207380FC0011380121FEA3F0014005A127EA212FE5D4813 01A35DA24813035D6C13075D127C4A5A6C91C7FC5C6C133E6C6C5A3807C0F03801FFE0D8 003FC8FC223D7DBB25>14 D34 D39 D<121C127FEAFF80A5EA7F00121C0909798817>58 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A1206120E5A5A5A 12600A19798817>I I<150C151E153EA2153C157CA2157815F8A215F01401A215E01403A215C01407A2158014 0FA215005CA2141E143EA2143C147CA2147814F8A25C1301A25C1303A2495AA25C130FA2 91C7FC5BA2131E133EA2133C137CA2137813F8A25B1201A25B1203A25B1207A25B120FA2 90C8FC5AA2121E123EA2123C127CA2127812F8A25A12601F537BBD2A>I<126012FCB4FC EA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FC EC01FF9138007FC0ED1FF0ED07FCED01FF9238007FC0EE1FF0EE07FCEE01FF9338007F80 EF1FC0A2EF7F80933801FF00EE07FCEE1FF0EE7FC04B48C7FCED07FCED1FF0ED7FC04A48 C8FCEC07FCEC1FF0EC7FC04948C9FCEB07FCEB1FF0EB7FC04848CAFCEA07FCEA3FF0EA7F C048CBFC12FC1270323279AD41>I<1760177017F01601A21603A21607160FA24C7EA216 331673166316C3A2ED0183A2ED0303150683150C160115181530A21560A215C014011580 DA03007FA202061300140E140C5C021FB5FC5CA20260C7FC5C83495A8349C8FC1306A25B A25B13385B01F01680487E000716FFB56C013F13FF5EA2383C7DBB3E>65 D<0103B77E4916F018FC903B0007F80003FE4BEB00FFF07F80020FED3FC0181F4B15E0A2 141FA25DA2143F19C04B143F1980027F157F190092C812FE4D5A4A4A5AEF0FF04AEC1FC0 05FFC7FC49B612FC5F02FCC7B4FCEF3FC00103ED0FE0717E5C717E1307844A1401A2130F 17035CA2131F4D5A5C4D5A133F4D5A4A4A5A4D5A017F4BC7FC4C5A91C7EA07FC49EC3FF0 B812C094C8FC16F83B397DB83F>I<0103B7FC4916E018F8903B0007F80007FE4BEB00FF F03F80020FED1FC0180F4B15E0F007F0021F1503A24B15F81801143F19FC5DA2147FA292 C8FCA25C18035CA2130119F84A1507A2130319F04A150FA2010717E0181F4A16C0A2010F EE3F80A24AED7F00187E011F16FE4D5A4A5D4D5A013F4B5A4D5A4A4A5A057FC7FC017F15 FEEE03FC91C7EA0FF049EC7FC0B8C8FC16FC16C03E397DB845>68 D71 D<902603FFF893383FFF80496081D900079438 FF80000206DC01BFC7FCA2020E4C5A1A7E020C1606190CDA1C7E16FE4F5A02181630A202 38166162023016C1F00181DA703F158395380303F002601506A202E0ED0C076202C01518 183001016D6C140F06605B028015C0A20103923801801FDD03005B140092380FC0064917 3F4D91C8FC01065DA2010E4B5B4D137E130C6F6C5A011C17FEDCE1805B011802E3C7FCA2 013802E6130104EC5C1330ED03F8017016034C5C01F05CD807FC4C7EB500E0D9C007B512 F01680150151397CB851>77 D<0103B7FC4916E018F8903B0007F80007FC4BEB00FE187F 020FED3F80F01FC05DA2021F16E0A25DA2143FF03FC05DA2027FED7F80A292C8130018FE 4A4A5A604AEC07F04D5A0101ED3FC04CB4C7FC91B612FC17E0D903FCCAFCA25CA21307A2 5CA2130FA25CA2131FA25CA2133FA25CA2137FA291CBFC497EB6FCA33B397DB835>80 D<4BB4FC031F13F09238FE01FC913903F0007EDA07C0EB1F80DA1F80EB0FC0023EC7EA07 E002FCEC03F0495A4948EC01F8495A4948EC00FC495A013F16FE49C9FC13FE187F485A12 035B12075B120F4916FF121FA2485AA34848ED01FEA448C9EA03FCA3EF07F8A218F0170F 18E0171F18C0EF3F807EEF7F0017FEDA07C05B6C90391FF001F8903980383803001F496C 485A9139E00C0FE0260FC0C0EB1F80D807E1D90E3FC7FC0280137ED803F1EB07F8D801F9 5C3A007FC00FC0903A3FE07F0003903807FFFE0100018F5BDA000F1306170E171E705A17 7CEEC1F816FF5FA25F5F6F5B6F48C7FCED00F8384B7CBA42>I<0103B612F849EDFF8018 E0903B0007F8001FF84BEB03FCEF00FE020F157FA24BEC3F80A2021F16C0A25DA2143FF0 7F805DA2027FEDFF006092C7485A4D5A4A4A5A4D5A4AEC1F80057FC7FC0101EC07F891B6 12E094C8FC9139FC000FC00103EC03F0707E4A6D7E831307177E5C177F010F5D5F5CA201 1F1401A25CA2133F16034A4A1360A2017F17E019C091C71401496C01011480B615039339 00FE0700EF7E0ECAEA1FFCEF07F03B3B7DB83F>I<92391FE00380DBFFFC130002036D5A 91390FE01F8F91393F0007DF027EEB01FE02F81300495A4948147E177C4948143C495AA2 011F153891C8FCA3491530A28094C7FC80806D7E14FEECFFE06D13FE6DEBFFC06D14F06D 806D80021F7F02037FEC003F03037F1500167F163F161FA3120C160FA2001C151F94C7FC A3003C153EA25E003E5D127E007F4A5A6D495A6DEB0FC0D8F9F0495AD8F0FE01FEC8FC39 E03FFFF8010F13E0D8C00190C9FC313D7CBA33>I<0003B812FEA25A903AF8003FC00101 C0913880007E4848163C90C7007F141C121E001C92C7FCA2485CA200305C007017180060 130112E0485CA21403C716005DA21407A25DA2140FA25DA2141FA25DA2143FA25DA2147F A292C9FCA25CA25CA21301A25CA21303A25CEB0FFC003FB6FC5AA237397EB831>I<277F FFFC01B500F890B51280B5FC60000390C7D807FCC7380FF80001FC4BEC03E00001620403 5E98C7FC621A0604075DA2040F5DA2041B5D6216336D02735D1663000003C34A5A83DB01 834AC8FC04815CDB0301140603075D1506030C5DA203185D1970033015606115606D01E0 4A5A15C090267F01804AC9FC17FEDA030014060400130E0206150C020E5D140C4A5DA24A 5D18E04A5D715A5C4A92CAFCA26DC85AA2013E157C1778133C1770133801301560513B7C B84E>87 D<147E903803FF8090390FC1C38090391F00EFC0017E137F49133F485A4848EB 1F8012075B000F143F48481400A2485A5D007F147E90C7FCA215FE485C5AA214015D4815 0CA21403EDF01C16181407007C1538007E010F1330003E131F027B13706C01E113E03A0F 83C0F9C03A03FF007F80D800FCEB1F0026267DA42C>97 D<133FEA1FFFA3C67E137EA313 FE5BA312015BA312035BA31207EBE0FCEBE3FF9038E707C0390FFE03E09038F801F001F0 13F8EBE000485A15FC5BA2123F90C7FCA214015A127EA2140312FE4814F8A2140715F05A EC0FE0A215C0EC1F80143F00781400007C137E5C383C01F86C485A380F07C06CB4C7FCEA 01FC1E3B7CB924>II<163FED1FFFA3ED007F167EA216FEA216FCA21501A216F8A21503 A216F0A21507A2027E13E0903803FF8790380FC1CF90381F00EF017EEB7FC049133F485A 4848131F000715805B000F143F485A1600485A5D127F90C7127EA215FE5A485CA21401A2 48ECF80CA21403161CEDF0181407007C1538007E010F1330003E131F027B13706C01E113 E03A0F83C0F9C03A03FF007F80D800FCEB1F00283B7DB92B>II<16F8ED03FEED 0F8792381F0F80ED3E3F167F157CA215FC1700161C4A48C7FCA414035DA414075DA20107 B512F0A39026000FE0C7FC5DA4141F5DA4143F92C8FCA45C147EA514FE5CA413015CA449 5AA45C1307A25C121E123F387F8F80A200FF90C9FC131E12FEEA7C3CEA7878EA1FF0EA07 C0294C7CBA29>I104 D<14E0EB03F8A21307A314F0EB01C090C7FCAB13F8EA03FEEA070F000E 1380121C121812381230EA701F1260133F00E0130012C05BEA007EA213FE5B1201A25B12 035BA20007131813E01438000F133013C01470EB806014E014C01381EB838038078700EA 03FEEA00F815397EB71D>I<150FED3F80A2157FA31600151C92C7FCABEC0F80EC3FE0EC F0F0903801C0F849487E14005B130E130C131CEB1801133801305BA2EB0003A25DA21407 A25DA2140FA25DA2141FA25DA2143FA292C7FCA25CA2147EA214FEA25CA21301001E5B12 3F387F83F0A238FF87E0495A00FE5BD87C1FC8FCEA707EEA3FF8EA0FC0214981B722>I< EB03F0EA01FFA3EA00075CA3130F5CA3131F5CA3133F91C8FCA35B017EEB07C0ED1FF0ED 783801FEEBE0F89039FC01C1FCEC0383EC07070001130ED9F81C13F891383803F0913870 01E0000349C7FCEBF1C0EBF38001F7C8FCEA07FEA2EBFFE0EBE7F8380FE0FEEBC07F6E7E 141F001F80D9800F1330A21670003F011F136001001380A216E04815C0007E1481020F13 80158300FE903807870048EB03FE0038EB00F8263B7CB92B>III II<90390F8003F090391FE00FFC903939F03C1F903A70F8700F8090 3AE0FDE007C09038C0FF80030013E00001491303018015F05CEA038113015CA2D8000314 07A25CA20107140FA24A14E0A2010F141F17C05CEE3F80131FEE7F004A137E16FE013F5C 6E485A4B5A6E485A90397F700F80DA383FC7FC90387E1FFCEC07E001FEC9FCA25BA21201 A25BA21203A25B1207B512C0A32C3583A42A>I<02FC13C0903803FF0190380F83839038 3F01C790397E00EF8049137F485A4848133F000715005B485A001F5C157E485AA2007F14 FE90C75AA3481301485CA31403485CA314075D140F127C141F007E495A003E137F381F01 EF380F839F3903FF1F80EA00FC1300143F92C7FCA35C147EA314FE5C130190387FFFF0A3 22357DA425>I<3903E001F83907F807FE390E3C1E07391C3E381F3A183F703F800038EB E07F0030EBC0FF00705B00601500EC007E153CD8E07F90C7FCEAC07EA2120013FE5BA312 015BA312035BA312075BA3120F5BA3121F5B0007C9FC21267EA425>I<14FF010313C090 380F80F090383E00380178131C153C4913FC0001130113E0A33903F000F06D13007F3801 FFE014FC14FF6C14806D13C0011F13E013039038003FF014071403001E1301127FA24814 E0A348EB03C012F800E0EB07800070EB0F006C133E001E13F83807FFE0000190C7FC1E26 7CA427>II<13F8D803FE 1438D8070F147C000E6D13FC121C1218003814011230D8701F5C12601503EAE03F00C001 005B5BD8007E1307A201FE5C5B150F1201495CA2151F120349EC80C0A2153F1681EE0180 A2ED7F0303FF130012014A5B3A00F8079F0E90397C0E0F1C90393FFC07F8903907F001F0 2A267EA430>I<01F8EB03C0D803FEEB07E0D8070F130F000E018013F0121C1218003814 0700301403D8701F130112601500D8E03F14E000C090C7FC5BEA007E16C013FE5B150100 0115805B150316001203495B1506150E150C151C151815385D00015C6D485A6C6C485AD9 7E0FC7FCEB1FFEEB07F024267EA428>I<01F816F0D803FE9138E001F8D8070F903801F0 03000ED9800314FC121C12180038020713010030EDE000D8701F167C1260030F143CD8E0 3F163800C001005B5BD8007E131F183001FE5C5B033F1470000117604991C7FCA218E000 034A14C049137E17011880170318005F03FE1306170E000101015C01F801BF5B3B00FC03 9F8070903A7E0F0FC0E0903A1FFC03FFC0902703F0007FC7FC36267EA43B>I<903907E0 01F090391FF807FC9039783E0E0F9039E01F1C1FD801C09038383F803A03800FF07F0100 EBE0FF5A000E4A1300000C157E021F133C001C4AC7FC1218A2C7123FA292C8FCA25CA214 7EA214FEA24A130CA20101141C001E1518003F5BD87F81143801835C00FF1560010714E0 3AFE0E7C01C0D87C1C495A2778383E0FC7FC391FF00FFC3907C003F029267EA42F>I<13 F8D803FE1470D8070F14F8000EEB8001121C121800381403003015F0EA701F1260013F13 0700E0010013E012C05BD8007E130F16C013FE5B151F000115805BA2153F000315005BA2 5D157EA315FE5D1401000113033800F80790387C1FF8EB3FF9EB0FE1EB00035DA2000E13 07D83F805B007F495AA24A5A92C7FCEB003E007C5B00705B6C485A381E07C06CB4C8FCEA 01FC25367EA429>II E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ft cmr10 10 76 /Ft 76 125 df<010FB612C0A3D900070180C7FCDA01FEC8FCA7D8FF80ED07FC01E0151F 001F17E001F0153F000F17C001F8157F00071780ACD803FCEDFF00A4D801FE4A5AA20000 5E017F4A5A02811307013F5DD91FC1495AD90FE1495AD903F9017FC7FC0100B512FC023F 13F0020390C8FC6E5AA8913807FF80010FB612C0A336397BB841>9 D11 DIII<001C 131C007F137F39FF80FF80A26D13C0A3007F137F001C131C00001300A400011301018013 80A20003130301001300485B00061306000E130E485B485B485B006013601A197DB92A> 34 D36 D<017C166048B416F02607C3801401260F81C01403D900E04A 5A001E01784A5A003E6D141F003C013FEC7F80007C90271BE003FFC7FC0218B512BF0078 91381FFC3E00F8011CC75A020C14FC5F4C5A16035F4C5A160F5F4CC8FC021C5B00780118 133E007C5D16FC003C01385B003E90383001F0001EEB70036C01E05B903981C007C03907 C3800F2601FF005BD8007C49C9FC90C748EB07C0033EEB1FF04BEB3C3803FCEBF81C4B49 7E913A01F001E00602030103130703E0497E912607C0071480020F15011580DA1F000180 13C04A010F1300143E5C14FC5C495A13035C495A130F4A0107130149C701C013805B013E 1603490203140001FC6F5A49020113064848913800F00E0003705A49ED3C3849ED1FF06C 48ED07C03A437BBD45>I<121C127FEAFF80A213C0A3127F121C1200A412011380A21203 13005A1206120E5A5A5A12600A1979B917>39 D<146014E0EB01C0EB0380EB0700130E13 1E5B5BA25B485AA2485AA212075B120F90C7FCA25A121EA2123EA35AA65AB2127CA67EA3 121EA2121F7EA27F12077F1203A26C7EA26C7E1378A27F7F130E7FEB0380EB01C0EB00E0 1460135278BD20>I<12C07E12707E7E7E120F6C7E6C7EA26C7E6C7EA21378A2137C133C 133E131EA2131F7FA21480A3EB07C0A6EB03E0B2EB07C0A6EB0F80A31400A25B131EA213 3E133C137C1378A25BA2485A485AA2485A48C7FC120E5A5A5A5A5A13527CBD20>I<1530 1578B3A6007FB812F8B912FCA26C17F8C80078C8FCB3A6153036367BAF41>43 D<121C127FEAFF80A213C0A3127F121C1200A412011380A2120313005A1206120E5A5A5A 12600A19798817>II<121C127FEAFF80A5EA7F00121C09097988 17>I48 DIII<1538A2 157815F8A2140114031407A2140F141F141B14331473146314C313011483EB0303130713 06130C131C131813301370136013C01201EA038013005A120E120C5A123812305A12E0B7 12F8A3C73803F800AB4A7E0103B512F8A325397EB82A>I<0006140CD80780133C9038F0 03F890B5FC5D5D158092C7FC14FC38067FE090C9FCABEB07F8EB3FFE9038780F803907E0 07E090388003F0496C7E12066E7EC87EA28181A21680A4123E127F487EA490C71300485C 12E000605C12700030495A00385C6C1303001E495A6C6C485A3907E03F800001B5C7FC38 007FFCEB1FE0213A7CB72A>II<12301238123E003F B612E0A316C05A168016000070C712060060140E5D151800E01438485C5D5DC712014A5A 92C7FC5C140E140C141C5CA25CA214F0495AA21303A25C1307A2130FA3495AA3133FA513 7FA96DC8FC131E233B7BB82A>II I<121C127FEAFF80A5EA7F00121CC7FCB2121C127FEAFF80A5EA7F00121C092479A317> I<121C127FEAFF80A5EA7F00121CC7FCB2121C127F5A1380A4127F121D1201A412031300 A25A1206A2120E5A121812385A1260093479A317>I<007FB812F8B912FCA26C17F8CCFC AE007FB812F8B912FCA26C17F836167B9F41>61 D<1538A3157CA315FEA34A7EA34A6C7E A202077FEC063FA2020E7FEC0C1FA2021C7FEC180FA202387FEC3007A202707FEC6003A2 02C07F1501A2D901807F81A249C77F167FA20106810107B6FCA24981010CC7121FA2496E 7EA3496E7EA3496E7EA213E0707E1201486C81D80FFC02071380B56C90B512FEA3373C7D BB3E>65 DI<913A01FF800180020FEBE003027F13F8903A01FF807E 07903A03FC000F0FD90FF0EB039F4948EB01DFD93F80EB00FF49C8127F01FE153F120148 48151F4848150FA248481507A2485A1703123F5B007F1601A35B00FF93C7FCAD127F6DED 0180A3123F7F001F160318006C7E5F6C7E17066C6C150E6C6C5D00001618017F15386D6C 5CD91FE05C6D6CEB03C0D903FCEB0F80902701FF803FC7FC9039007FFFFC020F13F00201 1380313D7BBA3C>IIII72 DI76 DIIIIIII<003FB812E0A3D9C003EB001F273E0001FE130348 EE01F00078160000701770A300601730A400E01738481718A4C71600B3B0913807FF8001 1FB612E0A335397DB83C>II87 D91 D<3901800180000313033907000700000E130E485B001813180038133800 3013300070137000601360A200E013E0485BA400CE13CE39FF80FF806D13C0A3007F137F A2393F803F80390E000E001A1974B92A>II97 DIIII<147E903803FF8090380FC1E0 EB1F8790383F0FF0137EA213FCA23901F803C091C7FCADB512FCA3D801F8C7FCB3AB487E 387FFFF8A31C3B7FBA19>IIII107 DI<2703F00FF0EB1FE000 FFD93FFCEB7FF8913AF03F01E07E903BF1C01F83803F3D0FF3800FC7001F802603F70013 CE01FE14DC49D907F8EB0FC0A2495CA3495CB3A3486C496CEB1FE0B500C1B50083B5FCA3 40257EA445>I<3903F00FF000FFEB3FFCECF03F9039F1C01F803A0FF3800FC03803F700 13FE496D7EA25BA35BB3A3486C497EB500C1B51280A329257EA42E>I I<3903F01FE000FFEB7FF89038F1E07E9039F3801F803A07F7000FC0D803FEEB07E049EB 03F04914F849130116FC150016FEA3167FAA16FEA3ED01FCA26DEB03F816F06D13076DEB 0FE001F614C09039F7803F009038F1E07E9038F0FFF8EC1FC091C8FCAB487EB512C0A328 357EA42E>II<3807E01F00FFEB7FC09038E1E3E09038E387F0380FE707EA03E613EE 9038EC03E09038FC0080491300A45BB3A2487EB512F0A31C257EA421>II<1318A51338A31378A313 F8120112031207001FB5FCB6FCA2D801F8C7FCB215C0A93800FC011580EB7C03017E1300 6D5AEB0FFEEB01F81A347FB220>IIIIII<003FB512FCA2EB8003D83E0013F8003CEB07 F00038EB0FE012300070EB1FC0EC3F800060137F150014FE495AA2C6485A495AA2495A49 5A495AA290387F000613FEA2485A485A0007140E5B4848130C4848131CA24848133C48C7 127C48EB03FC90B5FCA21F247EA325>I124 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fu cmbx12 12 34 /Fu 34 122 df12 D49 DII<163FA25E5E5D5DA25D5D5D5D A25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E147E147C14F8EB01F0EB03E013 0714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48C7FC123E5A12FCB91280A5C8 000F90C7FCAC027FB61280A531417DC038>I<0007150301E0143F01FFEB07FF91B6FC5E 5E5E5E5E16804BC7FC5D15E092C8FC01C0C9FCAAEC3FF001C1B5FC01C714C001DF14F090 39FFE03FFC9138000FFE01FC6D7E01F06D13804915C0497F6C4815E0C8FC6F13F0A317F8 A4EA0F80EA3FE0487E12FF7FA317F05B5D6C4815E05B007EC74813C0123E003F4A1380D8 1FC0491300D80FF0495AD807FEEBFFFC6CB612F0C65D013F1480010F01FCC7FC010113C0 2D427BC038>I66 DIIII73 D76 D78 D<923807FFC092B512FE0207ECFFC0021F15F091267FFE0013FC902601FFF0EB1FFF0107 01C0010713C04990C700017F49486E7F49486F7E49486F7E49486F7E48496F7E48496F13 80A248496F13C0A24819E091C97E4819F0A248487013F8A3007F19FCA249177FA300FF19 FEAD007F19FCA36D17FF003F19F8A3001F19F06D5EA26C19E06E01FE5B6C912603FF8014 C06C6D486D4813804B13E06C9028E01F83F00F13006C903BF01E00F81FFE90267FF83E90 387C3FFC90263FFC3C6D485AD91FFE91381EFFF0D90FFF021F5B6D01FE5D010194C7FC6D 6D6CB45A023F90B512F8020703E0130202006F1307030713C792C7EA07F8716C130F7213 1F9538FF80FF96B5FC7114FEA3831AFCA27213F81AF0847213E07213C0721300F001FC48 587AC454>81 DI<003FBA12E0A59026FE000FEB8003D87FE09338003FF049171F90C71607A200 7E1803007C1801A300781800A400F819F8481978A5C81700B3B3A20107B8FCA545437CC2 4E>84 D<903801FFE0011F13FE017F6D7E48B612E03A03FE007FF84848EB1FFC6D6D7E48 6C6D7EA26F7FA36F7F6C5A6C5AEA00F090C7FCA40203B5FC91B6FC1307013F13F19038FF FC01000313E0000F1380381FFE00485A5B127F5B12FF5BA35DA26D5B6C6C5B4B13F0D83F FE013EEBFFC03A1FFF80FC7F0007EBFFF86CECE01FC66CEB8007D90FFCC9FC322F7DAD36 >97 D99 DIIII<137C48B4FC4813804813C0A24813E0A56C13 C0A26C13806C1300EA007C90C7FCAAEB7FC0EA7FFFA512037EB3AFB6FCA518467CC520> 105 D108 D<90277F8007FEEC0FFCB590263FFFC090387FFF8092B5D8F001B512E002816E4880913D 87F01FFC0FE03FF8913D8FC00FFE1F801FFC0003D99F009026FF3E007F6C019E6D013C13 0F02BC5D02F86D496D7EA24A5D4A5DA34A5DB3A7B60081B60003B512FEA5572D7CAC5E> I<90397F8007FEB590383FFF8092B512E0028114F8913987F03FFC91388F801F00039039 9F000FFE6C139E14BC02F86D7E5CA25CA35CB3A7B60083B512FEA5372D7CAC3E>II<90397FC00FF8B590B57E02C314 E002CF14F89139DFC03FFC9139FF001FFE000301FCEB07FF6C496D13804A15C04A6D13E0 5C7013F0A2EF7FF8A4EF3FFCACEF7FF8A318F017FFA24C13E06E15C06E5B6E4913806E49 13006E495A9139DFC07FFC02CFB512F002C314C002C091C7FCED1FF092C9FCADB67EA536 407DAC3E>I<90387F807FB53881FFE0028313F0028F13F8ED8FFC91389F1FFE000313BE 6C13BC14F8A214F0ED0FFC9138E007F8ED01E092C7FCA35CB3A5B612E0A5272D7DAC2E> 114 D<90391FFC038090B51287000314FF120F381FF003383FC00049133F48C7121F127E 00FE140FA215077EA27F01E090C7FC13FE387FFFF014FF6C14C015F06C14FC6C80000380 6C15806C7E010F14C0EB003F020313E0140000F0143FA26C141F150FA27EA26C15C06C14 1FA26DEB3F8001E0EB7F009038F803FE90B55A00FC5CD8F03F13E026E007FEC7FC232F7C AD2C>III 121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fv cmti9 9 37 /Fv 37 122 df44 DI<121C127F12FF A412FE12380808778718>I49 D<150E151FA2153F153EA3157E157CA215FC15F8A2140115F0A2EC03E0A3EC07C0A2EC0F 80A2EC1F00A2143EA25C147814F85C1301903803E0E0ECC1F0EB0781EB0F83EC03E0131E 133CEB7C0701F813C0EA01F0EA03E03807C00FD80F801380EA1FFC383FFFCF48EBFF82D8 F00313FF3860003FC7EA1FF8EC3F00143EA3147E147CA314FC5CA4146020417DB127>52 D57 D<161C163CA2167C16FCA21501821503A2ED077E150F150E151CA21538A2157015F015E0 EC01C0A2913803807F82EC0700A2140E141E141C5CA25CA25C49B6FCA25B913880003F49 C7EA1F80A2130E131E131C133C13385B13F05B12011203D80FF0EC3FC0D8FFFE903807FF FEA32F367BB539>65 D67 D<0107B612C04915F017FC903A003F8001FEEE007FEF1F8092C7EA0FC0EF07E05CEF03F0 147E170102FE15F8A25CA21301A25CA2130317035CA2130718F04A1407A2130F18E04A14 0F18C0011F151F18805CEF3F00133F177E91C85AA2494A5A4C5A017E4A5A4C5A01FE4A5A 047EC7FC49495A0001EC0FF8007FB612E0B7C8FC15F835337BB23A>I<0107B712F05B18 E0903A003F80001F1707170392C7FC17015C18C0147EA214FEA24A130EA20101EC1E0304 1C13804A91C7FC163C13035E9138F001F891B5FC5B5EECE0011500130F5E5C1707011F01 015BEEC00E0280141E92C7121C133F173C91C812381778495DA2017E14014C5A01FE1407 4C5A49141F00014AB45A007FB7FCB8FC94C7FC34337CB234>I<0107B712E05B18C0903A 003F80003F170F170792C7FC17035C1880147EA214FEA25C161C0101EC3C07043813004A 91C7FCA20103147816704A13F0150349B5FCA25EECE003130F6F5A14C0A2011F13035E14 80A2013F90C9FCA291CAFCA25BA2137EA213FEA25B1201387FFFFCB5FCA233337CB232> I<010FB51280A216009038003FC05DA292C7FCA25CA2147EA214FEA25CA21301A25CA213 03A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C8FCA25BA2137EA213FEA25B12 01B512F8A25C21337BB21E>73 D<91381FFFFE5C16FC9138003F80A31600A25D157EA315 FE5DA314015DA314035DA314075DA3140F5DA3141F5DA3143F92C7FCA2121C007E5B00FE 137EA214FE485BEAF80100E05B495A387007E038780FC06C48C8FCEA1FFCEA07F0273579 B228>I<902607FFC0ED7FFC4917FF81D9003F4B1300611803023BED077CA2027BED0EFC 610273151C1838DAF1F01439F071F014E118E10101ED01C36102C1EC0383EF0703010316 07050E5BEC80F8171C0107ED380F6102001470A249EDE01FDC01C090C7FC130EEE038001 1E017C5C933807003E011C140EA2013C4A137E187C01385C5E017816FC6F485B1370ED3F C001F0EC80016000011500D807F81503277FFF803E90B512C0B5EB3C01151C46337BB245 >77 D<0107B612C04915F883903A003F8001FEEE003FEF1F8092C713C0170F5C18E0147E A214FEEF1FC05CA201011680173F4A1500177E010315FE5F4AEB03F8EE07E00107EC3FC0 91B6C7FC16F802E0C9FC130FA25CA2131FA25CA2133FA291CAFCA25BA2137EA213FEA25B 1201387FFFF0B5FCA233337CB234>80 D<913901FC018091380FFF03023F13C791387E07 EF903A01F801FF0049487E4A7F495A4948133E131F91C7FC5B013E143CA3137E1638A293 C7FC137FA26D7E14E014FE90381FFFC06D13F86D7F01017F6D6C7E020F7F1400153F6F7E 150FA4120EA2001E5D121CA2151F003C92C7FCA2003E143E5D127E007F5C6D485A9038C0 07E039F3F80FC000F0B5C8FC38E03FFC38C00FF029377AB42B>83 D<0003B812C05A1880903AF800FC003F260FC001141F0180150F01005B001EEE07001403 121C003C4A5BA200380107140E127800705CA2020F141E00F0161CC74990C7FCA2141FA2 5DA2143FA292C9FCA25CA2147EA214FEA25CA21301A25CA21303A25CA21307A25C497E00 1FB512F05AA2323374B237>I97 D<137EEA0FFE121F5B1200A35BA21201A25B A21203A25BA21207A2EBC3E0EBCFF8380FDC3EEBF81F497E01E01380EA1FC0138015C013 005AA2123EA2007E131F1580127CA2143F00FC14005AA2147EA25CA2387801F85C495A6C 485A495A6C48C7FCEA0FFCEA03F01A3578B323>I<14FCEB07FF90381F078090383E03C0 EBFC013801F8033803F0073807E00F13C0120F391F80070091C7FC48C8FCA35A127EA312 FE5AA4007C14C0EC01E0A2EC03C06CEB0F80EC1F006C137C380F81F03803FFC0C648C7FC 1B2278A023>III<151FED7F C0EDF0E0020113F0EC03E3A2EC07C316E0EDC1C091380FC0005DA4141F92C7FCA45C143E 90381FFFFEA3D9007EC7FC147CA414FC5CA513015CA413035CA413075CA3130FA25CA313 1F91C8FCA35B133E1238EA7E3CA2EAFE7812FC485AEA78E0EA3FC0000FC9FC244582B418 >I<143FECFF80903803E1E6903807C0FF90380F807FEB1F00133E017E133F49133EA248 48137EA24848137CA215FC12074913F8A21401A2D80FC013F0A21403120715E01407140F 141F3903E03FC00001137FEBF0FF38007FCF90381F0F801300141FA21500A25C143E1238 007E137E5C00FE5B48485A387803E0387C0F80D81FFFC7FCEA07F820317CA023>III<133FEA07FF5A13FEEA007EA3137CA213FCA213F8 A21201A213F0A21203A213E0A21207A213C0A2120FA21380A2121FA21300A25AA2123EA2 127EA2127C1318EAFC1C133CEAF838A21378137012F013F0EAF8E01279EA3FC0EA0F0010 3579B314>108 D<2703C003F8137F3C0FF00FFE01FFC03C1E783C1F07C1E03C1C7CF00F 8F01F03B3C3DE0079E0026383FC001FC7FD97F805B007001005B5E137ED8F0FC90380FC0 0100E05FD860F8148012000001021F130360491400A200034A13076049013E130FF08180 0007027EEC83C0051F138049017C1403A2000F02FC1407053E130049495CEF1E0E001F01 015D183C010049EB0FF0000E6D48EB03E03A227AA03F>I<3903C007F0390FF01FFC391E 787C1E391C7CF01F393C3DE00F26383FC01380EB7F8000781300EA707EA2D8F0FC131F00 E01500EA60F8120000015C153E5BA20003147E157C4913FCEDF8180007153C0201133801 C013F0A2000F1578EDE070018014F016E0001FECE1C015E390C7EAFF00000E143E26227A A02B>I<14FCEB07FF90381F07C090383E03E09038FC01F0EA01F83903F000F8485A5B12 0F484813FCA248C7FCA214014814F8127EA2140300FE14F05AA2EC07E0A2007CEB0FC015 80141FEC3F006C137E5C381F01F0380F83E03803FF80D800FCC7FC1E2278A027>I<011E 137C90387F81FF9039F3C387C09039E3EF03E03901E1FE01D9C1FC13F0EBC3F8000313F0 018314F814E0EA07871307000313C01200010F130316F01480A2011F130716E01400A249 EB0FC0A2013EEB1F80A2017EEB3F00017F133E5D5D9038FF81F09038FDC3E09038F8FF80 027EC7FC000190C8FCA25BA21203A25BA21207A25BB5FCA325307FA027>I<3903C00FC0 390FF03FF0391E78F078391C7DE03C393C3FC0FC00381380EB7F00007814F8D8707E1370 1500EAF0FC12E0EA60F812001201A25BA21203A25BA21207A25BA2120FA25BA2121FA290 C8FC120E1E227AA020>114 DI<1303EB0F80A3131FA21400A25BA2133EA2137EA2137C387FFFF8A2B5FC3800F800A2 1201A25BA21203A25BA21207A25BA2120FA25B1460001F13F014E01300130114C0130300 1E1380EB07005BEA0F1EEA07F8EA01E015307AAE19>II<01F013 38D803FC13FCEA0F1E120E121C123C0038147CEA783E0070143CA2137ED8F07C1338EA60 FCC65A1578000114705BA215F0000314E05BA2EC01C0A2EBC003158014071500EBE00EA2 6C6C5A3800F878EB7FE0EB1F801E227AA023>I<13F0D803FC1307D80F1E130F000E141F 121C123C0038143FD8783E133E1270A2017E137ED8F07C137CEA60FCC65A15FC000114F8 5BA21401000314F013E0A2140315E0EA07C0A20003130715C0EBE00F141F0001133F9038 F07F8038007FEFEB1F8FEB001F1500A25C003E133E007E137E147C5C007C5BEA7001495A 38380780D83C1FC7FCEA0FFCEA07F020317AA025>121 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fw cmbx9 9 21 /Fw 21 117 df<120FEA3FC0EA7FE0EAFFF0A6EA7FE0EA3FC0EA0F000C0C7A8B19>46 D48 D<147814F81303131FEA03FFB5FCA3EAFC1F1200B3B2007FB512FEA41F317A B02C>III<151F5D5DA25D5C5C5C5CA25C 143D147D14F9EB01F114E1EB03C1EB0781130FEB1F01133E133C137813F01201EA03E0EA 07C01380EA0F00121E123E5A5AB712FEA4C700031300A80103B512FEA427317EB02C>I< 000C140ED80FE013FE90B5FC5D5D5D5D5D92C7FC14FC14F091C8FC1380A6EB87FE9038BF FFC090B512F09038FC0FF89038E003FE01C07F497E01001480000E6D13C0C8FCA216E0A3 121FEA7F807F487EA316C05B5CD87F801480D87C0014006C5B393F8007FE391FE01FFC00 07B512F06C14C0C691C7FCEB1FF823327CB02C>II<123C123F90B612F8A44815F016E016C01680 16005D007CC7127E00785C4A5A00F8495A48495A4A5A4A5AC7FC4AC7FC147E14FE5C1301 5C1303A2495AA2130FA2131FA25C133FA4137FA96D5AA2010FC8FC25337BB12C>III65 D70 D97 DI<903807FF80013F13F090B512FC3903FE01FE484848 7EEA0FF8EA1FF0EA3FE0A2007F6D5A496C5A153000FF91C7FCA9127F7FA2003FEC07807F 6C6C130F000FEC1F00D807FE133E3903FF80FCC6EBFFF8013F13E0010790C7FC21217DA0 27>I<16F890390FFC07FE90387FFF9F48B6127F3907FC0FFC380FF003001F14FED9E001 133E003FECFF1C1600A6001F5CEBF003000F5C3907FC0FF890B512E0486C1380D90FFCC7 FC48C9FCA37F7F90B512F015FE6CECFF8016E06C15F06C15F84815FC121F393F80001F48 C7EA03FE481401481400A46C14016C6CEB03FC6C6CEB07F86C6CEB0FF0D80FFCEB7FE000 03B61280C6ECFE00010F13E028327EA12C>103 D105 D<3901F81F8000FFEB7FF0ECFFF89038F9E3FC9038FBC7FE380FFF876C1307A213FEEC03 FCEC01F8EC0060491300B1B512F0A41F217EA024>114 D<9038FFE1C0000713FF5A383F 803F387E000F14075A14037EA26C6CC7FC13FCEBFFE06C13FC806CEBFF80000F14C06C14 E0C6FC010F13F0EB007F140F00F0130714037EA26C14E06C13076CEB0FC09038C01F8090 B5120000F913FC38E03FE01C217DA023>I<133CA5137CA313FCA21201A212031207001F B51280B6FCA3D807FCC7FCB0EC03C0A79038FE078012033901FF0F006C13FEEB3FFCEB0F F01A2F7EAE22>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fx cmcsc10 9 33 /Fx 33 119 df<123C127EB4FCA21380A2127F123D1201A4EA0300A35A1206120E120C5A 12385A12200917788718>44 D<13075B5B13FF120FB5FC133F12F01200B3B3A2497EB612 C0A31A3278B129>49 D<1230123C003FB61280A3481500A25D0070C7121C006014181538 5D485C5D1401C7485A4AC7FC1406140E5C141814385CA25C1301A2495AA213075CA2130F A2131FA291C8FC5BA55BA9131C21347BB129>55 D57 D<156015F0A34A7EA34A7EA24A7E1406A2EC 0EFFEC0C7FA202187F153FA24A6C7EA202707FEC600FA202C07F1507A249486C7EA34948 6C7EA2498001061300A2010FB6FCA30118C7EA3F80A3496E7EA20170810160140FA24981 16071201707E487ED80FF0EC0FFCD8FFFE91B512F0A334367CB53D>65 D67 D70 D73 D78 D80 D83 D86 D I<1418143CA3147EA214FFA39038019F80A201037F140FA201067F1407A2496C7EA2011C 7FEB1801A2496C7EA201707FEB7FFFA29038C0003FA20001158049131FA2000315C090C7 120F486C14E0120F486CEB1FF0D8FFF090B5FCA228277EA62E>97 DI<02FF13100107EBE03090391FC0787090397E001CF001F813074848 130348481301485A000F1400485A167048C8FCA2481530127EA200FE1500A8127E163012 7F7EA26C6C1460A26C7E000715C06C6CEB01806C6C13036C6CEB0700017E130E90381FC0 78903807FFE00100138024287DA62C>IIII<02FF13100107EBE03090391FC0787090397E001CF001 F813074848130348481301485A000F1400485A167048C8FCA2481530127EA200FE1500A6 4AB5FCA2007E90380007F8ED03F0127F7EA26C7EA26C7E12076C7E6C6C1307EA00FC017E 130C90391FC03870903907FFF0100100EB800028287DA630>II< B5FCA2EA0FF0EA07E0B3AEEA0FF0B5FCA210267DA517>I107 DIII<49B4FC010F13E090383F01F8 90387C007C4848133FD803E0EB0F80000715C04848EB07E0491303001F15F048C7EA01F8 A24815FCA2007E1400A200FE15FEA9007FEC01FCA36C15F86D1303001F15F06D1307000F 15E06C6CEB0FC06C6CEB1F806C6CEB3F006C6C137E90383F01F890380FFFE0010190C7FC 27287DA62F>II114 DI<007FB612F8A2397E00FC010078EC00780070153800601518A200 E0151C48150CA5C71400B3A4497E90387FFFF8A226267EA52C>III E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fy cmsy9 9 3 /Fy 3 107 df102 D<12FCEAFFC0EA07F0EA01FC6C7E137F7F80131FB3A580 130F6D7E6D7EEB01FC9038007FC0EC1FE0EC7FC0903801FC00EB03F0495A495A131F5CB3 A5133F91C7FC5B13FE485AEA07F0EAFFC000FCC8FC1B4B7BB726>I<126012F0B3B3B3B3 1260044B78B715>106 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fz cmr9 9 77 /Fz 77 128 df<91393FE00FE0903A01FFF83FF8903A07E01EF83C903A1F800FF07E903A 3F001FE0FE017E133F4914C0485A1738484890381F8000ACB812C0A33B03F0001F8000B3 A7486C497EB50083B5FCA32F357FB42D>11 DI14 D<147CEB01FEEB07C790380F8380EB1F0181EB3E00A213 7EA2137C137EA214015D140392C9FC5C140E6D5A1418143802F090380FFFF05C6D5A0401 1300EE00FC6D6C1470011F1560013F15E0D977F0495AD9E3F85CD801C31403260381FC91 C7FC00075D48C66C130E486D130C486D131C003E6D6C5A007EECC03091381FE07000FE01 0F5B6F5AEC07F96EB45A6C6D90C712306E5A157F6C6C6D6C13604B6C13E03A3FC001EFE0 3C1FE003C7F803C03C0FF01F83FE0F802707FFFE00B51200000101F8EB3FFE26003FC0EB 07F034387DB53C>38 D<123C127EB4FCA21380A2127F123D1201A412031300A25A120612 0E120C121C5A5A126009177AB315>I<14C01301EB0380EB0F00130E5B133C5B5BA2485A 485AA212075B120F90C7FC5AA2121E123EA3123C127CA55AB0127CA5123C123EA3121E12 1FA27E7F12077F1203A26C7E6C7EA213787F131C7F130FEB0380EB01C01300124A79B71E >I<12C07E1270123C121C7E120F6C7E6C7EA26C7E6C7EA27F1378137C133C133EA2131E 131FA37F1480A5EB07C0B0EB0F80A514005BA3131E133EA2133C137C137813F85BA2485A 485AA2485A48C7FC120E5A123C12705A5A124A7CB71E>I<123C127EB4FCA21380A2127F 123D1201A412031300A25A1206120E120C121C5A5A126009177A8715>44 DI<123C127E12FFA4127E123C08087A8715>I<1530157815F8A2 15F01401A215E01403A215C01407A21580140FA215005CA2143EA2143C147CA2147814F8 A25C1301A25C1303A25C1307A2495AA291C7FC5BA2131E133EA2133C137CA2137813F8A2 5B1201A25B1203A2485AA25B120FA290C8FC5AA2121E123EA2123C127CA2127812F8A25A 12601D4B7CB726>II<13 075B5B137FEA07FFB5FC13BFEAF83F1200B3B3A2497E007FB51280A319327AB126>IIII<000C14C0380FC00F90B5128015005C5C14F014C0D80C18C7FC90C8FCA9EB0F C0EB7FF8EBF07C380FC03F9038001F80EC0FC0120E000CEB07E0A2C713F01403A215F8A4 1218127E12FEA315F0140712F8006014E01270EC0FC06C131F003C14806CEB7F00380F80 FE3807FFF8000113E038003F801D347CB126>I<14FE903807FF80011F13E090383F00F0 017C13703901F801F8EBF003EA03E01207EA0FC0EC01F04848C7FCA248C8FCA35A127EEB 07F0EB1FFC38FE381F9038700F809038E007C039FFC003E0018013F0EC01F8130015FC14 00A24814FEA5127EA4127F6C14FCA26C1301018013F8000F14F0EBC0030007EB07E03903 E00FC03901F81F806CB51200EB3FFCEB0FE01F347DB126>I<1230123C003FB6FCA34814 FEA215FC0070C7123800601430157015E04814C01401EC0380C7EA07001406140E5C1418 14385CA25CA2495A1303A3495AA2130FA3131F91C7FCA25BA55BA9131C20347CB126>I< EB0FE0EB7FFC90B5FC3903F01F803907C007C0390F0003E0000EEB01F0001E1300001C14 F8003C1478A3123EA2003F14F86D13F0EBC001D81FF013E09038F803C0390FFE07803907 FF0F006C13DE6C13F87EEB3FFE8001F713C0D803E313E0D8078013F0390F007FF8001E13 1F003EEB07FC003C1303481301EC007E12F848143EA2151EA37E153C1278007C14787E6C 14F0390F8003E03907F01FC00001B5120038007FFCEB1FE01F347DB126>II< 123C127E12FFA4127E123C1200B0123C127E12FFA4127E123C08207A9F15>I<123C127E 12FFA4127E123C1200B0123C127E12FE12FFA3127F123F1203A412071206A3120E120C12 1C1238123012701260082F7A9F15>I<007FB812C0B912E0A26C17C0CCFCAC007FB812C0 B912E0A26C17C033147C9C3C>61 D64 D<15E0A34A7EA24A7EA34A7EA3EC0DFE140CA2EC187FA34A6C7EA202707FEC60 1FA202E07FECC00FA2D901807F1507A249486C7EA301066D7EA2010E80010FB5FCA24980 0118C77EA24981163FA2496E7EA3496E7EA20001821607487ED81FF04A7ED8FFFE49B512 E0A333367DB53A>III< B77E16F016FE3A01FE0001FF00009138003FC0EE0FE0707E707E707E707E177E177FEF3F 80A2EF1FC0A3EF0FE0A418F0AA18E0A3171F18C0A21880173F18005F17FE5F4C5AEE07F0 4C5AEE3FC000014AB45AB748C7FC16F8168034337EB23B>IIIIII<017F B5FCA39038003FE0EC1FC0B3B1127EB4FCA4EC3F805A0060140000705B6C13FE6C485A38 0F03F03803FFC0C690C7FC20357DB227>IIIIII I82 D<90381FE00390387FFC0748B5FC3907F01FCF390F 8003FF48C7FC003E80814880A200788000F880A46C80A27E92C7FC127F13C0EA3FF013FF 6C13F06C13FF6C14C06C14F0C680013F7F01037F9038003FFF140302001380157F153FED 1FC0150F12C0A21507A37EA26CEC0F80A26C15006C5C6C143E6C147E01C05B39F1FC03F8 00E0B512E0011F138026C003FEC7FC22377CB42B>I<007FB712FEA390398007F001D87C 00EC003E0078161E0070160EA20060160600E01607A3481603A6C71500B3AB4A7E011FB5 12FCA330337DB237>IIII89 D91 D93 D97 DII<153FEC0FFFA3EC007F81AEEB07F0EB3FFCEBFC0F3901F003 BF3907E001FF48487E48487F8148C7FCA25A127E12FEAA127E127FA27E6C6C5BA26C6C5B 6C6C4813803A03F007BFFC3900F81E3FEB3FFCD90FE0130026357DB32B>III<151F90391FC07F809039FFF8E3C03901F07FC73907E03F033A0FC01F 83809039800F8000001F80EB00074880A66C5CEB800F000F5CEBC01F6C6C48C7FCEBF07C 380EFFF8380C1FC0001CC9FCA3121EA2121F380FFFFEECFFC06C14F06C14FC4880381F00 01003EEB007F4880ED1F8048140FA56C141F007C15006C143E6C5C390FC001F83903F007 E0C6B51280D91FFCC7FC22337EA126>III107 DI<2703F01FE013FF00FF 90267FF80313C0903BF1E07C0F03E0903BF3803E1C01F02807F7003F387FD803FE147049 6D486C7EA2495CA2495CB3486C496C487EB53BC7FFFE3FFFF0A33C217EA041>I<3903F0 1FC000FFEB7FF09038F1E0FC9038F3807C3907F7007EEA03FE497FA25BA25BB3486CEB7F 80B538C7FFFCA326217EA02B>II<3903F03F8000FFEBFFE09038F3C0F89038F7007ED807FE7F6C48EB1F804914C049 130F16E0ED07F0A3ED03F8A9150716F0A216E0150F16C06D131F6DEB3F80160001FF13FC 9038F381F89038F1FFE0D9F07FC7FC91C8FCAA487EB512C0A325307EA02B>I<903807F0 0390383FFC07EBFC0F3901F8038F3807E001000F14DF48486CB4FC497F123F90C77E5AA2 5A5AA9127FA36C6C5B121F6D5B000F5B3907E003BF3903F0073F3800F81EEB3FF8EB0FE0 90C7FCAAED7F8091380FFFFCA326307DA029>I<3803E07C38FFE1FF9038E38F809038E7 1FC0EA07EEEA03ECA29038FC0F8049C7FCA35BB2487EB512E0A31A217FA01E>II<1330A51370A313F0A21201A2120312 07381FFFFEB5FCA23803F000AF1403A814073801F806A23800FC0EEB7E1CEB1FF8EB07E0 182F7FAD1E>IIIII<3A7FFF807FF8A33A07F8001FC00003EC0F8000 01EC070015066C6C5BA26D131C017E1318A26D5BA2EC8070011F1360ECC0E0010F5BA290 3807E180A214F3010390C7FC14FBEB01FEA26D5AA31478A21430A25CA214E05CA2495A12 78D8FC03C8FCA21306130EEA701CEA7838EA1FF0EA0FC025307F9F29>I<003FB512F0A2 EB000F003C14E00038EB1FC00030EB3F800070137F1500006013FE495A13035CC6485A49 5AA2495A495A49C7FC153013FE485A12035B48481370485A001F14604913E0485A387F00 0348130F90B5FCA21C207E9F22>II<001C1370387F01FC00FF13 FEA4007F13FC381C0070170879B226>127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: FA cmti10 10 49 /FA 49 123 df<04FFEB03F003039038E00FFC923A0FC0F01F1E923A3F00783E0F923A7E 01F87C3FDB7C03EBFC7F03FC14F8DA01F813F905F1137EDC01E1133C913B03F00003F000 A314074B130760A3140F4B130F60A3010FB812C0A3903C001F80001F8000A3023F143F92 C790C7FCA44A5C027E147EA402FE14FE4A5CA413014A13015FA313034A13035FA313074A 495AA44948495AA44948495AA3001CD9038090C8FC007E90380FC03F013E143E00FE011F 5B133C017C5C3AF8780F01E0D878F0EB07C0273FE003FFC9FC390F8000FC404C82BA33> 11 DI< DC7FC0EB1FFF922603FFF890B512E0923C0FC07C03F801F0923C1F001E0FC00078033E90 267E1F80137C4BD9FE3FC712FC03FC027E13015D02014A5A057815F84A48D901F8EB00E0 1B00A302074A5A5DA31707020F5D5DA3010FBA12C0A21B80903D001F80000FC0001FA21A 3F023F021F150092C75BA2621A7E4A143F027E92C7FC1AFE62A25F02FE027E13014A5FA3 05FE130301014B5C4A1870A219070401EDE0F001034B15E05CA2F2E1C0010714034D14C3 4A933803E380F101E7963800FF00010F4A48143C4A94C7FCA34A495A131F5F001CEB0380 007E90380FC01F013F92CAFC26FE3E1F133E013C5C5E3AF8780F01F0D878F0EB83E03A3F E003FF80270F8000FECBFC4E4C82BA49>14 D44 D<387FFFF8A2B5FCA214F0150579941E>I<120EEA3F80127F12FFA31300127E123C0909 778819>I<15181538157815F0140114031407EC0FE0141F147FEB03FF90383FEFC0148F EB1C1F13001580A2143FA21500A25CA2147EA214FEA25CA21301A25CA21303A25CA21307 A25CA2130FA25CA2131FA25CA2133FA291C7FC497EB61280A31D3877B72A>49 D65 D<0107B612FCEFFF8018C0903B000F F0001FF04BEB07F81703021F15FC17014B14FEA2023F1400A24B1301A2147F18FC92C712 0318F84A140718F04AEC0FE0EF1FC00101ED3F80EF7F004AEB01FEEE07F849B612E05F91 39F80007F0EE01FC01076E7E177F4AEC3F80A2010F16C0171F5CA2131F173F5CA2133FEF 7F805C1800017F5D4C5A91C7485A5F49140FEE1FE0494A5A00014AB45AB748C7FC16F816 C037397BB83A>II<0103B612FEEFFFC018F0903B0007F8000FF84BEB03FCEF00FE020F157FF0 3F804B141F19C0021F150F19E05D1807143F19F05DA2147FA292C8FCA25C180F5CA21301 19E04A151FA2130319C04A153FA201071780187F4A1600A2010F16FEA24A4A5A60011F15 034D5A4A5D4D5A013F4B5A173F4A4AC7FC17FC017FEC03F84C5A91C7EA1FC04949B45A00 7F90B548C8FCB712F016803C397CB83F>I<0107B8FCA3903A000FF000034BEB007F183E 141F181E5DA2143FA25D181C147FA29238000380A24A130718004A91C7FC5E13015E4A13 3E167E49B512FEA25EECF8000107147C163C4A1338A2010F147818E04A13701701011F16 C016004A14031880013F150718004A5CA2017F151E173E91C8123C177C4915FC4C5A4914 070001ED7FF0B8FCA25F38397BB838>I<0107B712FEA3903A000FF000074B1300187C02 1F153CA25DA2143FA25D1838147FA292C8FCEE03804A130718004A91C7FCA201015CA24A 131E163E010314FE91B5FC5EA2903807F800167C4A1378A2130FA24A1370A2011F14F0A2 4A90C8FCA2133FA25CA2137FA291CAFCA25BA25B487EB6FCA337397BB836>II<01 03B5D8F80FB512E0A390260007F8C7381FE0004B5DA2020F153F615DA2021F157F96C7FC 5DA2023F5D605DA2027F14016092C7FCA24A1403605CA249B7FC60A202FCC71207010315 0F605CA20107151F605CA2010F153F605CA2011F157F95C8FC5CA2013F5D5F5CA2017F14 015F91C7FC491403007FD9FE01B512F8B55BA243397CB83E>I<0103B512F8A390390007 F8005DA2140FA25DA2141FA25DA2143FA25DA2147FA292C7FCA25CA25CA21301A25CA213 03A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA291C8FC497EB6FCA25C 25397CB820>I<0103B500F890387FFFE0A21AC090260007F8C7380FFC004B15E061020F 4BC7FC183E4B5C18F0021F4A5A4D5A4BEB0F804DC8FC023F143C5F4B5B4C5A027FEB07C0 4CC9FCED001E5E4A5BED01FCECFE0315070101497E151FECFC7C4B7E903903FDE07FDAFF C07F1580ED003F49488014F84A131F83130F160F4A801607011F81A24A130383133F1601 4A80A2017F6E7EA291C8FC494A7F007F01FE011F13FCB55CA243397CB840>75 D<0107B512FCA25E9026000FF8C7FC5D5D141FA25DA2143FA25DA2147FA292C8FCA25CA2 5CA21301A25CA21303A25CA21307A25CA2130F170C4A141CA2011F153C17384A1478A201 3F157017F04A14E01601017F140317C091C71207160F49EC1F80163F4914FF0001020713 00B8FCA25E2E397BB834>I<902607FFF8923807FFF0614F13E0D9000FEFF0004F5AA202 1F167FF1EFC0141DDA1CFCEC01CF023C16DF9538039F800238ED071FA20278ED0E3F97C7 FC0270151CA202F04B5AF0707E14E0037E14E0010117FE4D485A02C0EC0380A20103ED07 01610280140EA20107ED1C0305385B14006F137049160705E05B010EEC01C0A2011E9138 03800F61011CEC0700A2013C020E131F4C5C1338ED1FB80178163F04F091C8FC01705CA2 01F04A5B187E00015DD807F816FEB500C09039007FFFFC151E150E4C397AB84A>I79 D<0107B612F817FF1880903B000FF0003FE04BEB0FF0EF03F8141FEF01FC5DA2023F15FE A25DA2147FEF03FC92C7FCA24A15F817074A15F0EF0FE01301EF1FC04AEC3F80EFFE0001 034A5AEE0FF091B612C04CC7FCD907F8C9FCA25CA2130FA25CA2131FA25CA2133FA25CA2 137FA291CAFCA25BA25B1201B512FCA337397BB838>II<0103B612F017FEEFFF80903B0007F8003FC04BEB0FF01707020FEC03F8EF01 FC5DA2021F15FEA25DA2143FEF03FC5DA2027FEC07F818F092C7120F18E04AEC1FC0EF3F 004A14FEEE01F80101EC0FE091B6128004FCC7FC9138FC003F0103EC0F80834A6D7E8301 071403A25C83010F14075F5CA2011F140FA25CA2133F161F4AECE007A2017F160F180E91 C7FC49020F131C007F01FE153CB5913807F078040313F0CAEAFFE0EF3F80383B7CB83D> I<92383FC00E913901FFF01C020713FC91391FC07E3C91393F001F7C027CEB0FF84A1307 49481303495A4948EB01F0A2495AA2011F15E091C7FCA34915C0A36E90C7FCA2806D7E14 FCECFF806D13F015FE6D6D7E6D14E0010080023F7F14079138007FFC150F15031501A215 00A2167C120EA3001E15FC5EA3003E4A5AA24B5AA2007F4A5A4B5A6D49C7FC6D133ED8F9 F013FC39F8FC03F839F07FFFE0D8E01F138026C003FCC8FC2F3D7ABA2F>I<0007B812E0 A25AD9F800EB001F01C049EB07C0485AD900011403121E001C5C003C1780140312380078 5C00701607140700F01700485CA2140FC792C7FC5DA2141FA25DA2143FA25DA2147FA292 C9FCA25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CEB3FF0007FB512F8B6FC A2333971B83B>I<14F8EB07FE90381F871C90383E03FE137CEBF801120148486C5A485A 120FEBC001001F5CA2EA3F801403007F5C1300A21407485C5AA2140F5D48ECC1C0A2141F 15831680143F1587007C017F1300ECFF076C485B9038038F8E391F0F079E3907FE03FC39 01F000F0222677A42A>97 D<133FEA1FFFA3C67E137EA313FE5BA312015BA312035BA312 07EBE0F8EBE7FE9038EF0F80390FFC07C013F89038F003E013E0D81FC013F0A21380A212 3F1300A214075A127EA2140F12FE4814E0A2141F15C05AEC3F80A215005C147E5C387801 F8007C5B383C03E0383E07C0381E1F80D80FFEC7FCEA01F01C3B77B926>I<147F903803 FFC090380FC1E090381F0070017E13784913383901F801F83803F003120713E0120FD81F C013F091C7FC485AA2127F90C8FCA35A5AA45AA3153015381578007C14F0007EEB01E000 3EEB03C0EC0F806CEB3E00380F81F83803FFE0C690C7FC1D2677A426>II<147F90 3803FFC090380FC1E090383F00F0017E13785B485A485A485A120F4913F8001F14F0383F 8001EC07E0EC1F80397F81FF00EBFFF891C7FC90C8FC5A5AA55AA21530007C1438157800 7E14F0003EEB01E0EC03C06CEB0F806CEB3E00380781F83803FFE0C690C7FC1D2677A426 >IIIII107 DIII<147F903803FFC090380FC1F090381F00F8017E137C5B4848 137E4848133E0007143F5B120F485AA2485A157F127F90C7FCA215FF5A4814FEA2140115 FC5AEC03F8A2EC07F015E0140F007C14C0007EEB1F80003EEB3F00147E6C13F8380F83F0 3803FFC0C648C7FC202677A42A>I<9039078007C090391FE03FF090393CF0787C903938 F8E03E9038787FC00170497EECFF00D9F0FE148013E05CEA01E113C15CA2D80003143FA2 5CA20107147FA24A1400A2010F5C5E5C4B5A131F5EEC80035E013F495A6E485A5E6E48C7 FC017F133EEC70FC90387E3FF0EC0F8001FEC9FCA25BA21201A25BA21203A25B1207B512 C0A3293580A42A>I<3903C003F0390FF01FFC391E783C0F381C7C703A3C3EE03F803838 3FC0EB7F800078150000701300151CD8F07E90C7FCEAE0FE5BA2120012015BA312035BA3 12075BA3120F5BA3121F5BA3123F90C9FC120E212679A423>114 D<14FE903807FF8090380F83C090383E00E04913F00178137001F813F00001130313F0A2 15E00003EB01C06DC7FC7FEBFFC06C13F814FE6C7F6D13807F010F13C01300143F141F14 0F123E127E00FE1480A348EB1F0012E06C133E00705B6C5B381E03E06CB45AD801FEC7FC 1C267AA422>II<13F8D8 03FEEB01C0D8078FEB03E0390E0F8007121E121C0038140F131F007815C01270013F131F 00F0130000E015805BD8007E133FA201FE14005B5D120149137EA215FE120349EBFC0EA2 0201131E161C15F813E0163CD9F003133814070001ECF07091381EF8F03A00F83C78E090 393FF03FC090390FC00F00272679A42D>I<01F0130ED803FC133FD8071EEB7F80EA0E1F 121C123C0038143F49131F0070140FA25BD8F07E140000E08013FEC6485B150E12015B15 1E0003141C5BA2153C000714385B5DA35DA24A5A140300035C6D48C7FC0001130E3800F8 3CEB7FF8EB0FC0212679A426>I<01F01507D803FC903903801F80D8071E903907C03FC0 D80E1F130F121C123C0038021F131F49EC800F00701607A249133FD8F07E168000E0ED00 0313FEC64849130718000001147E5B03FE5B0003160E495BA2171E00070101141C01E05B 173C1738A217781770020314F05F0003010713016D486C485A000190391E7C07802800FC 3C3E0FC7FC90393FF81FFE90390FE003F0322679A437>I<903907E007C090391FF81FF8 9039787C383C9038F03E703A01E01EE0FE3803C01F018013C0D8070014FC481480000E15 70023F1300001E91C7FC121CA2C75AA2147EA214FEA25CA21301A24A1370A2010314F016 E0001C5B007E1401010714C000FEEC0380010F1307010EEB0F0039781CF81E9038387C3C 393FF03FF03907C00FC027267CA427>I<13F0D803FCEB01C0D8071EEB03E0D80E1F1307 121C123C0038140F4914C01270A249131FD8F07E148012E013FEC648133F160012015B5D 0003147E5BA215FE00075C5BA214015DA314035D14070003130FEBF01F3901F87FE03800 7FF7EB1FC7EB000F5DA2141F003F5C48133F92C7FC147E147C007E13FC387001F8EB03E0 6C485A383C1F80D80FFEC8FCEA03F0233679A428>I<903903C0038090380FF007D91FF8 1300496C5A017F130E9038FFFE1E9038F83FFC3901F007F849C65A495B1401C7485A4A5A 4AC7FC141E5C5C5C495A495A495A49C8FC131E5B49131C5B4848133C4848133849137800 0714F8390FF801F0391FFF07E0383E1FFFD83C0F5B00785CD8700790C7FC38F003FC38E0 00F021267BA422>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: FB cmbx12 14.4 26 /FB 26 121 df<171F4D7E4D7EA24D7EA34C7FA24C7FA34C7FA34C7FA24C7FA34C808304 7F80167E8304FE804C7E03018116F8830303814C7E03078116E083030F814C7E031F8116 8083033F8293C77E4B82157E8403FE824B800201835D840203834B800207835D844AB87E A24A83A3DA3F80C88092C97E4A84A2027E8202FE844A82010185A24A820103854A820107 85A24A82010F855C011F717FEBFFFCB600F8020FB712E0A55B547BD366>65 D70 D<932601FFFCEC01C0047FD9FFC013 030307B600F81307033F03FE131F92B8EA803F0203DAE003EBC07F020F01FCC7383FF0FF 023F01E0EC0FF94A01800203B5FC494848C9FC4901F88249498249498249498249498249 90CA7E494883A2484983485B1B7F485B481A3FA24849181FA3485B1B0FA25AA298C8FC5C A2B5FCAE6C057FB712E0A280A36C94C7003FEBC000A36C7FA36C7FA27E6C7FA26C7F6C7F A26D7E6D7F6D7F6D6D5E6D7F6D01FC93B5FC6D13FF6D6C6D5C6E01F0EC07FB020F01FEEC 1FF10203903AFFF001FFE0020091B6EAC07F033FEE001F030703FC1307DB007F02E01301 040149CAFC5B5479D26A>I 73 D77 D<91260FFF80130791B500F85B010702FF5B011FEDC03F49EDF07F9026FFFC006D5A4801 E0EB0FFD4801800101B5FC4848C87E48488149150F001F824981123F4981007F82A28412 FF84A27FA26D82A27F7F6D93C7FC14C06C13F014FF15F86CECFF8016FC6CEDFFC017F06C 16FC6C16FF6C17C06C836C836D826D82010F821303010082021F16801400030F15C0ED00 7F040714E01600173F050F13F08383A200788200F882A3187FA27EA219E07EA26CEFFFC0 A27F6D4B13806D17006D5D01FC4B5A01FF4B5A02C04A5A02F8EC7FF0903B1FFFC003FFE0 486C90B65AD8FC0393C7FC48C66C14FC48010F14F048D9007F90C8FC3C5479D24B>83 D<003FBC1280A59126C0003F9038C0007F49C71607D87FF8060113C001E08449197F4919 3F90C8171FA2007E1A0FA3007C1A07A500FC1BE0481A03A6C994C7FCB3B3AC91B912F0A5 53517BD05E>I 97 D<913801FFF8021FEBFF8091B612F0010315FC010F9038C00FFE903A1FFE0001FFD9 7FFC491380D9FFF05B4817C048495B5C5A485BA2486F138091C7FC486F1300705A4892C8 FC5BA312FFAD127F7FA27EA2EF03E06C7F17076C6D15C07E6E140F6CEE1F806C6DEC3F00 6C6D147ED97FFE5C6D6CEB03F8010F9038E01FF0010390B55A01001580023F49C7FC0201 13E033387CB63C>99 D<913803FFC0023F13FC49B6FC010715C04901817F903A3FFC007F F849486D7E49486D7E4849130F48496D7E48178048497F18C0488191C7FC4817E0A24881 5B18F0A212FFA490B8FCA318E049CAFCA6127FA27F7EA218E06CEE01F06E14037E6C6DEC 07E0A26C6DEC0FC06C6D141F6C6DEC3F806D6CECFF00D91FFEEB03FE903A0FFFC03FF801 0390B55A010015C0021F49C7FC020113F034387CB63D>101 DIII<137F497E000313E0487F A2487FA76C5BA26C5BC613806DC7FC90C8FCADEB3FF0B5FCA512017EB3B3A6B612E0A51B 547BD325>I108 DII<913801FFE0021F13FE91B6 12C0010315F0010F9038807FFC903A1FFC000FFED97FF86D6C7E49486D7F48496D7F4849 6D7F4A147F48834890C86C7EA24883A248486F7EA3007F1880A400FF18C0AC007F1880A3 003F18006D5DA26C5FA26C5F6E147F6C5F6C6D4A5A6C6D495B6C6D495B6D6C495BD93FFE 011F90C7FC903A0FFF807FFC6D90B55A010015C0023F91C8FC020113E03A387CB643>I< 903A3FF001FFE0B5010F13FE033FEBFFC092B612F002F301017F913AF7F8007FFE0003D9 FFE0EB1FFFC602806D7F92C76C7F4A824A6E7F4A6E7FA2717FA285187F85A4721380AC1A 0060A36118FFA2615F616E4A5BA26E4A5B6E4A5B6F495B6F4990C7FC03F0EBFFFC9126FB FE075B02F8B612E06F1480031F01FCC8FC030313C092CBFCB1B612F8A5414D7BB54B>I< 912601FFE0EB0780021F01F8130F91B500FE131F0103ECFF80010F9039F03FC03F499039 800FE07F903A7FFE0003F04948903801F8FF4849EB00FD4849147F4A805A4849805A4A80 5AA291C87E5AA35B12FFAC6C7EA37EA2806C5EA26C6D5CA26C6D5C6C6D5C6C93B5FC6C6D 5B6D6C5B6DB4EB0FEF010F9038C07FCF6D90B5120F010114FED9003F13F80203138091C8 FCB1040FB61280A5414D7CB547>I<90397FE003FEB590380FFF80033F13E04B13F09238 FE1FF89139E1F83FFC0003D9E3E013FEC6ECC07FECE78014EF150014EE02FEEB3FFC5CEE 1FF8EE0FF04A90C7FCA55CB3AAB612FCA52F367CB537>I<903903FFF00F013FEBFE1F90 B7FC120348EB003FD80FF81307D81FE0130148487F4980127F90C87EA24881A27FA27F01 F091C7FC13FCEBFFC06C13FF15F86C14FF16C06C15F06C816C816C81C681013F1580010F 15C01300020714E0EC003F030713F015010078EC007F00F8153F161F7E160FA27E17E07E 6D141F17C07F6DEC3F8001F8EC7F0001FEEB01FE9039FFC00FFC6DB55AD8FC1F14E0D8F8 07148048C601F8C7FC2C387CB635>I<143EA6147EA414FEA21301A313031307A2130F13 1F133F13FF5A000F90B6FCB8FCA426003FFEC8FCB3A9EE07C0AB011FEC0F8080A26DEC1F 0015806DEBC03E6DEBF0FC6DEBFFF86D6C5B021F5B020313802A4D7ECB34>III<007FB500 F090387FFFFEA5C66C48C7000F90C7FC6D6CEC07F86D6D5C6D6D495A6D4B5A6F495A6D6D 91C8FC6D6D137E6D6D5B91387FFE014C5A6E6C485A6EEB8FE06EEBCFC06EEBFF806E91C9 FCA26E5B6E5B6F7E6F7EA26F7F834B7F4B7F92B5FCDA01FD7F03F87F4A486C7E4A486C7E 020F7FDA1FC0804A486C7F4A486C7F02FE6D7F4A6D7F495A49486D7F01076F7E49486E7E 49486E7FEBFFF0B500FE49B612C0A542357EB447>120 D E %EndDVIPSBitmapFont end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%PaperSize: a4 %%BeginPaperSize: a4 a4 %%EndPaperSize %%EndSetup %%Page: 1 1 1 0 bop Black Black Black Black 808 387 a FB(A)45 b(General)g(T)-11 b(ec)l(hnique)45 b(to)g(Impro)l(v)l(e)h(Filter)621 527 y(Algorithms)g(for)f(Appro)l(ximate)h(String)f(Matc)l(hing)1245 850 y FA(R)l(ob)l(ert)29 b(Gie)l(gerich)280 b(F)-6 b(r)l(ank)30 b(Hischke)1314 950 y(Stefan)g(Kurtz)315 b(Enno)30 b(Ohlebusch)1628 1123 y Fz(T)-6 b(ec)n(hnisc)n(he)26 b(F)-6 b(akult\177)-38 b(at)1621 1214 y(Univ)n(ersit\177)g(at)25 b(Bielefeld)1681 1305 y(P)n(ostfac)n(h)h(100)h(131)1712 1397 y(33501)g(Bielefeld)1810 1488 y(German)n(y)1017 1579 y(Email:)35 b Fy(f)p Fz(rob)r(ert,)26 b(kurtz,)g(enno)p Fy(g)p Fz(@T)-6 b(ec)n(hF)g(ak.Uni-Bielefeld.DE)1279 67 y Fx(In)28 b(Pr)n(oceedings)g(of)h(F)n(our)-5 b(th)29 b(South)f(American)f(W)n(orkshop)1169 158 y(on)i(String)e(Pr)n (ocessing,)i(V)-9 b(alp)k(araiso,)28 b(Chile,)f(No)n(vember)h(1997)p Black 759 1793 a Fw(Abstract.)p Black 43 w Fz(Appro)n(ximate)h(string)i (matc)n(hing)f(searc)n(hes)i(for)f(o)r(ccurrences)h(of)f(a)759 1884 y(pattern)19 b(in)g(a)h(text,)g(where)f(a)h(certain)g(n)n(um)n(b)r (er)d(of)j(c)n(haracter)g(di\013erences)f(\(errors\))759 1975 y(is)31 b(allo)n(w)n(ed.)49 b(F)-6 b(ast)30 b(metho)r(ds)f(use)i (\014lters:)43 b(A)30 b(fast)h(prepro)r(cessing)g(phase)f(deter-)759 2067 y(mines)18 b(regions)i(of)g(the)e(text)g(where)h(a)g(matc)n(h)e (cannot)i(o)r(ccur;)j(only)c(the)h(remaining)759 2158 y(text)j(regions)i(m)n(ust)e(b)r(e)g(scrutinized)h(b)n(y)f(the)g(slo)n (w)n(er)i(appro)n(ximate)e(matc)n(hing)g(al-)759 2249 y(gorithm.)34 b(Suc)n(h)24 b(\014lters)h(can)g(b)r(e)g(v)n(ery)f (e\013ectiv)n(e,)h(but)f(they)g(\(naturally\))h(degrade)759 2340 y(at)h(a)g(critical)h(error)g(threshold.)759 2464 y(W)-6 b(e)24 b(in)n(tro)r(duce)h(a)f(general)i(tec)n(hnique)d(to)i (impro)n(v)n(e)e(the)h(e\016ciency)h(of)g(\014lters)g(and)759 2555 y(hence)32 b(to)g(push)f(out)g(further)h(this)g(critical)h (threshold)f(v)l(alue.)53 b(Our)31 b(tec)n(hnique)759 2646 y(in)n(termitten)n(tly)f(reev)l(aluates)i(the)g(p)r(ossibilit)n(y) g(of)g(a)g(matc)n(h)f(in)g(a)h(giv)n(en)f(region.)759 2738 y(It)e(com)n(bines)f Fv(pr)l(e)l(cise)36 b Fz(information)30 b(ab)r(out)f(the)f(region)i(already)g(scanned)e(with)759 2829 y(\014ltering)d(information)h(ab)r(out)e(the)h(region)h(y)n(et)e (to)h(b)r(e)f(searc)n(hed.)35 b(W)-6 b(e)24 b(apply)h(this)759 2920 y(tec)n(hnique)h(to)g(four)h(appro)n(ximate)f(string)g(matc)n (hing)g(algorithms)h(published)f(b)n(y)759 3012 y(Chang)g(&)g(La)n (wler)h(and)e(Sutinen)g(&)g(T)-6 b(arhio.)523 3275 y Fu(1)112 b(In)m(tro)s(duction)523 3469 y Ft(The)28 b(problem)f(of)h (appro)n(ximate)d(string)i(matc)n(hing)h(is)f(stated)h(as)f(follo)n (ws:)36 b(giv)n(en)27 b(a)g(data-)523 3568 y(base)34 b(string)f Fs(T)12 b Ft(,)35 b(a)f(query)f(string)h Fs(P)12 b Ft(,)35 b(a)f(threshold)g Fs(k)s Ft(,)i(\014nd)e(all)g(appro)n (ximate)f(matc)n(hes,)523 3668 y(i.e.,)h(all)f(sub)n(w)n(ords)e Fs(v)36 b Ft(of)d Fs(T)44 b Ft(whose)32 b(edit)i(distance)e(to)h Fs(P)45 b Ft(is)32 b(at)h(most)g Fs(k)s Ft(.)52 b(The)33 b(dynamic)523 3768 y(programming)f(approac)n(h)f([8])j(pro)n(vides)e (the)i(general)f(solution,)i(and)e(is)h(still)g(un)n(b)r(eaten)523 3867 y(w.r.t.)d(its)g(v)n(ersatilit)n(y)-7 b(.)46 b(Its)31 b(running)g(time,)i(ho)n(w)n(ev)n(er,)d(is)h Fr(O)r Ft(\()p Fs(mn)p Ft(\),)h(where)f Fs(m)e Ft(=)f Fr(j)p Fs(P)12 b Fr(j)31 b Ft(and)523 3967 y Fs(n)23 b Ft(=)g Fr(j)p Fs(T)12 b Fr(j)p Ft(.)33 b(This)21 b(is)g(impractical)f(for)g (large-scale)e(applications)i(lik)n(e)g(biosequence)g(analysis,)523 4066 y(where)i(the)g(size)g(of)g(the)g(gene)f(and)h(protein)g (databases)e(\(i.e.)j Fs(T)12 b Ft(\))21 b(gro)n(ws)f(exp)r(onen)n (tially)i(due)523 4166 y(to)30 b(the)h(adv)-5 b(ances)29 b(in)i(sequencing)f(tec)n(hnology)-7 b(.)43 b(Recen)n(t)30 b(\014lter)h(tec)n(hniques)f(for)g(the)g(unit)523 4266 y(edit)j(distance)f(\(e.g.)g([14)o(,)h(12)o(,)f(2,)g(3,)g(11)o(,)h(9,)f (10)o(]\))h(reduce)f(the)h(a)n(v)n(erage)c(case)j(complexit)n(y)523 4365 y(to)i(at)f(least)h(linear)f(time.)56 b(Filter)34 b(algorithms)e(are)h(based)h(on)f(the)h(observ)-5 b(ation)33 b(that|)523 4465 y(giv)n(en)38 b(that)i Fs(k)i Ft(is)d(small)g(suc)n(h) g(that)h(appro)n(ximate)d(matc)n(hes)i(are)f(rare|the)g(dynamic)523 4565 y(programming)d(computation)i(sp)r(ends)g(most)g(of)g(its)h(time)f (v)n(erifying)f(that)i(there)f(is)g FA(no)523 4664 y Ft(appro)n(ximate)d(matc)n(h)h(in)h(a)f(giv)n(en)g(region)f(of)i Fs(T)12 b Ft(.)60 b(A)35 b(\014lter)h(rules)f(out)h(regions)e(of)h Fs(T)47 b Ft(in)523 4764 y(whic)n(h)36 b(appro)n(ximate)f(matc)n(hes)h FA(c)l(annot)44 b Ft(o)r(ccur,)38 b(and)f(then)g(a)f(dynamic)g (programming)523 4863 y(computation)27 b(is)h(applied)f(only)h(to)f (the)h(remaining)f(regions.)p Black Black eop %%Page: 2 2 2 1 bop Black Black 648 387 a Ft(By)19 b(static)i(\014lter)f(tec)n (hniques)g(w)n(e)f(refer)h(to)g(the)h(approac)n(h)d(as)h(describ)r(ed)h (b)r(efore.)35 b(There)523 487 y(is)f(a)f(strict)h(separation)e(b)r(et) n(w)n(een)i(the)h(\014ltering)e(phase)h(and)f(the)i(subsequen)n(t)e(c)n (hec)n(king)523 587 y(phase)19 b(via)g(a)g(dynamic)g(programming)e (computation.)34 b(Dynamic)19 b(\014ltering)h(as)e(in)n(tro)r(duced)523 686 y(in)28 b(this)h(pap)r(er)f FA(impr)l(oves)36 b Ft(on)28 b(this)g(b)n(y)g(merging)f(the)i(\014ltering)f(and)g(the)g(c)n(hec)n (king)f(phase.)523 786 y(It)k(ev)-5 b(aluates)29 b(the)i(statically)f (deriv)n(ed)f(\014lter)h(information)g(during)g(the)g(c)n(hec)n(king)f (phase,)523 886 y(strengthening)39 b(it)i(b)n(y)f(information)f (determined)i(dynamically)-7 b(.)73 b(Rather)40 b(than)g(using)523 985 y(static)27 b(information)f(once)g(to)h(decide)f(whether)h(a)f (\(complete\))i(region)d(m)n(ust)i(b)r(e)g(c)n(hec)n(k)n(ed,)523 1085 y(it)g(is)f(consulted)h(in)n(termitten)n(tly)-7 b(,)27 b(in)g(order)e(to)h(immediately)h(abandon)f(a)g(region)f(as)h (so)r(on)523 1184 y(it)32 b(b)r(ecomes)f(clear)g(that,)h(due)g(to)f(a)h (p)r(o)r(or)e(start,)i(an)g(appro)n(ximate)d(matc)n(h)j(is)f(no)g (longer)523 1284 y(p)r(ossible.)648 1384 y(T)-7 b(o)29 b(understand)g(ho)n(w)g(this)h(w)n(orks,)f(recall)g(that)h(a)f(dynamic) h(programming)d(compu-)523 1483 y(tation)f(giv)n(es)e(us)i(information) f(ab)r(out)h FA(actual)35 b Ft(di\013erences)25 b(of)h(the)g(sub)n(w)n (ords)e(of)i Fs(T)37 b Ft(and)25 b Fs(P)523 1583 y Ft(under)h (consideration.)35 b(As)26 b(opp)r(osed)g(to)f(this,)i(the)g (statically)e(deriv)n(ed)g(information)h(tells)523 1683 y(us)d(the)g(righ)n(tmost)g(p)r(ositions)f(where)h(actual)f (di\013erences)h(migh)n(t)g(o)r(ccur.)35 b(These)22 b(p)r(ositions)523 1782 y(are)27 b(referred)g(to)h(as)g(the)h(p)r(ositions)f(of)g(the)g FA(guar)l(ante)l(e)l(d)37 b Ft(di\013erences.)i(By)28 b(de\014nition,)h(the)523 1882 y(actual)k(di\013erences)h(o)r(ccur)f FA(b)l(efor)l(e)41 b Ft(or)33 b FA(at)42 b Ft(the)34 b(guaran)n(teed)e(di\013erences.)55 b(No)n(w)33 b(supp)r(ose)523 1981 y(w)n(e)26 b(ha)n(v)n(e)g(a)g(sub)n(w)n(ord)f Fs(s)i Ft(passing)e(the)i(static)f(\014lter,)h(and)g(w)n(e)f(kno)n(w)g(that,)h (after)f(reading)f(a)523 2081 y(pre\014x)31 b Fs(v)800 2093 y Fq(1)869 2081 y Ft(of)h Fs(s)p Ft(,)g Fs(d)g Ft(actual)f (di\013erences)g(ha)n(v)n(e)g(o)r(ccurred.)47 b(No)n(w,)32 b(if)h(the)e(remaining)g(su\016x)523 2181 y Fs(v)563 2193 y Fq(2)627 2181 y Ft(of)c Fs(s)g Ft(con)n(tains)f(more)g(than)h Fs(k)19 b Fr(\000)e Fs(d)27 b Ft(guaran)n(teed)e(di\013erences,)h(w)n (e)h(kno)n(w)f(that)h Fs(s)f Ft(cannot)523 2280 y(con)n(tain)h(an)g (appro)n(ximate)f(matc)n(h.)648 2380 y(T)-7 b(o)30 b(further)g(clarify) g(the)h(idea)f(of)g(dynamic)h(\014ltering,)g(let)f(us)h(sk)n(etc)n(h)f (ho)n(w)f(it)i(applies)523 2480 y(to)25 b(Chang)g(and)g(La)n(wler's)f (linear)h(exp)r(ected)g(time)h(algorithm)e(\(LET)h(for)g(short\))g ([2].)36 b(This)523 2579 y(algorithm)d(divides)i Fs(T)45 b Ft(=)34 b Fs(w)1447 2591 y Fq(1)1485 2579 y Fs(c)1521 2591 y Fq(1)1572 2579 y Fs(:)14 b(:)g(:)g(w)1742 2591 y Fp(r)1779 2579 y Fs(c)1815 2591 y Fp(r)1852 2579 y Fs(w)1911 2591 y Fp(r)r Fq(+1)2067 2579 y Ft(in)n(to)34 b(sub)n(w)n(ords)f Fs(w)2669 2591 y Fq(1)2706 2579 y Fs(;)14 b(:)g(:)g(:)g(;)g(w)2950 2591 y Fp(r)2987 2579 y Fs(;)g(w)3083 2591 y Fp(r)r Fq(+1)3239 2579 y Ft(of)34 b Fs(P)523 2679 y Ft(and)c(c)n(haracters)d Fs(c)1120 2691 y Fq(1)1157 2679 y Fs(;)14 b(:)g(:)g(:)g(;)g(c)1378 2691 y Fp(r)1414 2679 y Ft(.)44 b(The)29 b(sub)n(w)n(ords)f(are)h(of)h (maximal)f(length)h(\(i.e.)g Fs(w)3078 2691 y Fp(i)3106 2679 y Fs(c)3142 2691 y Fp(i)3199 2679 y Ft(is)g(not)523 2778 y(a)40 b(sub)n(w)n(ord)e(of)i Fs(P)12 b Ft(\),)44 b(and)c(so)f(the)i(c)n(haracters)d Fs(c)2104 2790 y Fq(1)2141 2778 y Fs(;)14 b(:)g(:)g(:)f(;)h(c)2361 2790 y Fp(r)2438 2778 y Ft(mark)39 b(the)i(p)r(ositions)f(of)g(the)523 2878 y(guaran)n(teed)30 b(di\013erences.)49 b(In)32 b(particular,)f (for)g(eac)n(h)g(sub)n(w)n(ord)f(of)i Fs(T)43 b Ft(b)r(eginning)31 b(within,)523 2978 y(sa)n(y)f Fs(w)729 2990 y Fp(h)772 2978 y Fs(c)808 2990 y Fp(h)851 2978 y Ft(,)i(the)g Fs(i)p Ft(th)f(di\013erence)g(is)g(guaran)n(teed)e(to)i(o)r(ccur)f(with)i(c)n (haracter)d Fs(c)3010 2990 y Fp(h)p Fq(+)p Fp(i)3127 2978 y Ft(,)j(or)e(left)523 3077 y(to)g(it.)46 b(Therefore,)30 b(an)h(appro)n(ximate)d(matc)n(h)j(con)n(tains)e(at)i(most)f(the)h (\014rst)f Fs(k)23 b Ft(+)d(1)30 b(of)h(the)523 3177 y(c)n(haracters)j Fs(c)963 3189 y Fp(h)1006 3177 y Fs(;)14 b(c)1079 3189 y Fp(h)p Fq(+1)1205 3177 y Fs(;)g(:)g(:)g(:)p Ft(,)38 b(i.e.,)h(it)d(is)g(a)f(sub)n(w)n(ord)g(of)h Fs(s)h Ft(=)f Fs(w)2504 3189 y Fp(h)2547 3177 y Fs(c)2583 3189 y Fp(h)2640 3177 y Fs(:)14 b(:)g(:)g(w)2810 3189 y Fp(h)p Fq(+)p Fp(k)2941 3177 y Fs(c)2977 3189 y Fp(h)p Fq(+)p Fp(k)3108 3177 y Fs(w)3167 3189 y Fp(h)p Fq(+)p Fp(k)q Fq(+1)3382 3177 y Ft(.)523 3277 y(Since)39 b(an)g(appro)n (ximate)f(matc)n(h)h(is)g(of)g(length)h Fr(\025)i Fs(m)26 b Fr(\000)g Fs(k)s Ft(,)42 b(LET)d(discards)f Fs(s)h Ft(if)h Fr(j)p Fs(s)p Fr(j)i Fs(<)523 3376 y(m)23 b Fr(\000)h Fs(k)s Ft(.)59 b(Otherwise,)36 b(LET)f(applies)g(a)g(dynamic)g (programming)e(computation)i(to)g(the)523 3476 y(en)n(tire)24 b(sub)n(w)n(ord)f Fs(s)p Ft(.)36 b(This)25 b(is)f(where)g(the)h (dynamic)g(v)n(ersion)e(of)h(LET)g(b)r(eha)n(v)n(es)g(di\013eren)n(tly) -7 b(.)523 3575 y(It)37 b(susp)r(ends)g(the)g(dynamic)g(programming)d (computation)j(at)f Fs(c)2638 3587 y Fp(h)p Fq(+)p Fp(i)2756 3575 y Ft(,)j(whenev)n(er)d Fs(d)i(>)g(i)523 3675 y Ft(di\013erences)e (ha)n(v)n(e)e(o)r(ccurred)h(already)-7 b(,)37 b(and)e(an)h(extension)f (up)i(to)e(length)h Fs(m)24 b Fr(\000)g Fs(k)38 b Ft(adds)523 3775 y(more)21 b(than)i Fs(k)10 b Fr(\000)e Fs(d)22 b Ft(guaran)n(teed)e(di\013erences.)35 b(This)22 b(is)h(the)f(in)n (tuitiv)n(e)g(idea|its)g(realization)523 3874 y(is)28 b(m)n(uc)n(h)f(more)g(complicated)g(since)g(partial)g(matc)n(hes)g(ma)n (y)g(o)n(v)n(erlap.)648 3974 y(One)j(of)h(the)g(main)g(c)n (haracteristics)e(of)h(a)h(\014lter)g(algorithm)e(is)i(its)g(critical)g (threshold)523 4074 y Fs(k)566 4094 y Fq(max)693 4074 y Ft(,)26 b(that)g(is,)h(the)f(maximal)f(v)-5 b(alue)26 b(of)g Fs(k)i Ft(suc)n(h)e(that)g(the)g(\014lter)g(algorithm)f(is)h (still)g(linear)523 4173 y(or)39 b(sublinear,)j(resp)r(ectiv)n(ely)-7 b(.)72 b(Strictly)40 b(sp)r(eaking,)i Fs(k)2278 4194 y Fq(max)2444 4173 y Ft(is)e(the)g(v)-5 b(alue)40 b(for)f(whic)n(h)g(w) n(e)523 4273 y(can)30 b FA(pr)l(ove)38 b Ft(the)31 b(\(sub\)linear)g (exp)r(ected)g(running)f(time.)47 b(Usually)-7 b(,)31 b(in)g(an)g(exp)r(ected)g(case)523 4372 y(analysis,)25 b Fs(k)900 4393 y Fq(max)1053 4372 y Ft(is)h(obtained)g(b)n(y)g (roughly)f(estimating)h(the)g(probabilit)n(y)g(of)g(appro)n(ximate)523 4472 y(matc)n(hes.)34 b(In)20 b(practice,)h(ho)n(w)n(ev)n(er,)e(one)h (observ)n(es)d(v)-5 b(alues)20 b(for)f Fs(k)2503 4493 y Fq(max)2650 4472 y Ft(whic)n(h)h(are)f(larger)f(than)523 4572 y(those)26 b(theoretically)f(obtained.)36 b(In)26 b(the)g(sequel,)g Fs(k)2143 4592 y Fq(max)2296 4572 y Ft(alw)n(a)n(ys)e(refers)h(to)h(the)g(practically)523 4671 y(obtained)h(v)-5 b(alues.)648 4771 y(In)30 b(this)g(pap)r(er,)g (w)n(e)g(dev)n(elop)f(the)i(tec)n(hnique)f(of)g(dynamic)g(\014ltering.) 44 b(Applying)30 b(this)p Black 1943 5112 a(2)p Black eop %%Page: 3 3 3 2 bop Black Black 523 387 a Ft(general)36 b(tec)n(hnique)i(to)g(a)f (giv)n(en)g(\014lter)h(algorithm)e(leads)h(to)h(an)f(impro)n(v)n(ed)g (v)n(ersion)f(of)523 487 y(that)26 b(algorithm)e(with)i(a)e(larger)g (critical)g(threshold)h Fs(k)2244 508 y Fq(max)2371 487 y Ft(.)36 b(In)26 b(particular,)e(w)n(e)h(sho)n(w)g(ho)n(w)523 587 y(dynamic)j(\014ltering)f(can)g(b)r(e)i(applied)e(to)h(the)g(w)n (ell-kno)n(wn)f(static)g(\014lter)h(algorithms)f(LET)523 686 y(and)20 b(SET)h(devised)f(b)n(y)g(Chang)g(and)h(La)n(wler)e([2)o (])i(and)g(the)g(more)e(sophisticated)h(algorithms)523 786 y(LEQ)36 b(and)h(LA)n(Q)f(recen)n(tly)h(presen)n(ted)f(b)n(y)h (Sutinen)g(and)g(T)-7 b(arhio)36 b(in)h([9,)g(10)o(].)65 b(F)-7 b(or)37 b(the)523 886 y(v)n(ersions)24 b(of)i(LET)f(and)g(SET)h (emplo)n(ying)f(dynamic)g(\014ltering,)h(w)n(e)f(presen)n(t)h(exp)r (erimen)n(tal)523 985 y(results)21 b(v)n(erifying)g(that)i(an)e(impro)n (v)n(ed)g(critical)g(threshold)h(v)-5 b(alue)21 b Fs(k)2640 1006 y Fq(max)2789 985 y Ft(is)h(ac)n(hiev)n(ed)f(for)g(all)523 1085 y(alphab)r(et)k(sizes)g(and)g(pattern)h(lengths.)36 b(The)25 b(\014rst)g(part)g(of)g(the)h(pap)r(er)f(extracts)f(the)i (core)523 1184 y(of)32 b(a)g(m)n(uc)n(h)g(wider)g(rep)r(ort)f([5],)i (where)f(w)n(e)g(clarify)f(the)i(pro)r(ofs)e(b)n(y)h(Chang)f(and)h(La)n (wler,)523 1284 y(describ)r(e)37 b(some)g(further)h(impro)n(v)n(emen)n (ts)e(also)h(for)g(static)h(\014lters,)i(giv)n(e)c(new)i(complete)523 1384 y(pro)r(ofs)23 b(for)h(exp)r(ected)g(time)g(complexit)n(y)-7 b(,)25 b(and)e(presen)n(t)h(extensiv)n(e)f(exp)r(erimen)n(tal)g (results.)523 1641 y Fu(2)112 b(Basic)37 b(Notions)f(and)i (De\014nitions)523 1829 y Ft(W)-7 b(e)25 b(assume)f(that)i(the)f (reader)e(is)i(familiar)f(with)i(the)f(standard)f(terminology)f(on)i (strings,)523 1929 y(as)i(used,)g(e.g.,)g(in)h([2)o(].)37 b(Let)28 b Fs(u)f Ft(and)g Fs(v)k Ft(b)r(e)c(strings.)36 b(An)28 b FA(alignment)36 b Fs(A)27 b Ft(of)h Fs(u)f Ft(and)g Fs(v)k Ft(is)c(a)g(list)523 2028 y([)p Fs(a)590 2040 y Fq(1)636 2028 y Fr(!)9 b Fs(b)764 2040 y Fq(1)802 2028 y Fs(;)14 b(:)g(:)g(:)f(;)h(a)1030 2040 y Fp(p)1078 2028 y Fr(!)9 b Fs(b)1206 2040 y Fp(p)1244 2028 y Ft(])24 b(of)g(edit)h(op)r(erations)e(\(i.e.,)j(deletions)e Fs(a)9 b Fr(!)g Fs(")p Ft(,)25 b(replacemen)n(ts)e Fs(a)9 b Fr(!)g Fs(b)p Ft(,)523 2128 y(and)21 b(insertions)g Fs(")9 b Fr(!)g Fs(b)21 b Ft(of)h(single)e(c)n(haracters\))g(suc)n(h)h(that)h Fs(u)g Ft(=)h Fs(a)2536 2140 y Fq(1)2587 2128 y Fs(:)14 b(:)g(:)g(a)2742 2140 y Fp(p)2801 2128 y Ft(and)22 b Fs(v)k Ft(=)c Fs(b)3146 2140 y Fq(1)3197 2128 y Fs(:)14 b(:)g(:)g(b)3344 2140 y Fp(p)3382 2128 y Ft(.)523 2227 y(If)34 b Fs(A)h Ft(is)e(an)h(alignmen)n(t,)h(then)f Fs(\016)s Ft(\()p Fs(A)p Ft(\))h(denotes)f(the)g(n)n(um)n(b)r(er)f(of)h (edit)g(op)r(erations)f Fs(a)20 b Fr(!)f Fs(b)p Ft(,)523 2327 y Fs(a)k Fr(6)p Ft(=)g Fs(b)p Ft(,)i(in)g Fs(A)p Ft(.)36 b Fs(edist)p Ft(\()p Fs(u;)14 b(v)s Ft(\))25 b(denotes)f(the)i FA(e)l(dit)h(distanc)l(e)32 b Ft(b)r(et)n(w)n(een)25 b Fs(u)f Ft(and)h Fs(v)j Ft(and)d(is)g(de\014ned)523 2427 y(b)n(y)30 b Fs(edist)p Ft(\()p Fs(u;)14 b(v)s Ft(\))28 b(=)g(min)p Fr(f)p Fs(\016)s Ft(\()p Fs(A)p Ft(\))g Fr(j)g Fs(A)g Ft(is)g(an)f(alignmen)n(t)g(of)h Fs(u)f Ft(and)g Fs(v)s Fr(g)p Ft(.)46 b(An)31 b(alignmen)n(t)f Fs(A)h Ft(of)523 2526 y Fs(u)c Ft(and)h Fs(v)j Ft(is)c FA(optimal)p Ft(,)i(if)f Fs(\016)s Ft(\()p Fs(A)p Ft(\))c(=)f Fs(edist)p Ft(\()p Fs(u;)14 b(v)s Ft(\).)648 2626 y(Supp)r(ose)27 b(w)n(e)g(are)g(giv)n(en)g(a)g FA(thr)l(eshold)k(value)j Fs(k)26 b Fr(2)e Fo(N)2308 2638 y Fq(0)2345 2626 y Ft(,)k(a)f FA(p)l(attern)i(string)35 b Fs(P)k Ft(of)28 b(length)523 2726 y Fs(m)p Ft(,)35 b(and)e(a)f FA(text)i(string)41 b Fs(T)j Ft(of)33 b(length)g Fs(n)p Ft(.)54 b(An)33 b FA(appr)l(oximate)k(match)j Ft(is)33 b(a)g(sub)n(w)n(ord)f Fs(v)k Ft(of)523 2825 y Fs(T)43 b Ft(s.t.)32 b Fs(edist)p Ft(\()p Fs(P)r(;)14 b(v)s Ft(\))31 b Fr(\024)f Fs(k)s Ft(.)50 b(The)32 b Fs(k)s Ft(-)p FA(di\013er)l(enc)l(es)i(pr)l(oblem)39 b Ft(is)32 b(to)g(en)n(umerate)f(all)g(p)r(ositions)523 2925 y(in)c Fs(T)38 b Ft(where)26 b(an)h(appro)n(ximate)e(matc)n(h)h (ends.)37 b(A)27 b(generalization)e(of)i(this)g(problem)f(is)h(the)523 3024 y FA(appr)l(oximate)c(string)f(matching)h(pr)l(oblem)j Ft(whic)n(h)19 b(additionally)f(asks)g(for)g(a)h(corresp)r(onding)523 3124 y(appro)n(ximate)34 b(matc)n(h.)63 b(Sellers')35 b(algorithm)g([8])h(solv)n(es)e(the)j Fs(k)s Ft(-di\013erences)e (problem)h(in)523 3224 y Fr(O)r Ft(\()p Fs(mn)p Ft(\))27 b(time)f(and)g Fr(O)r Ft(\()p Fs(m)p Ft(\))g(space)f(b)n(y)h(ev)-5 b(aluating)25 b(an)h(\()p Fs(m)15 b Ft(+)f(1\))h Fr(\002)f Ft(\()p Fs(n)h Ft(+)g(1\))25 b(table)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)523 3323 y(min)p Fr(f)p Fs(edist)p Ft(\()p Fs(P)12 b Ft([1)i Fs(:)g(:)g(:)f(i)p Ft(])p Fs(;)h(s)p Ft(\))31 b Fr(j)i Fs(s)27 b Ft(is)h(a)f(su\016x)g(of) h Fs(T)12 b Ft([1)i Fs(:)g(:)g(:)e(j)5 b Ft(])p Fr(g)33 b Ft(using)f(dynamic)h(programming.)523 3423 y(If)28 b Fs(D)r Ft(\()p Fs(m;)14 b(j)5 b Ft(\))23 b Fr(\024)g Fs(k)s Ft(,)28 b(then)g(there)f(is)h(an)f(appro)n(ximate)f(matc)n(h)h (ending)h(at)f(p)r(osition)h Fs(j)5 b Ft(.)648 3523 y(The)37 b(follo)n(wing)f(de\014nitions)h(are)f(motiv)-5 b(ated)37 b(b)n(y)g(Ehrenfeuc)n(h)n(t)g(and)f(Haussler's)g([4])523 3622 y(notion)h(of)h FA(c)l(omp)l(atible)i(markings)p Ft(.)67 b(A)38 b FA(p)l(artition)45 b Ft(of)37 b Fs(v)k Ft(w.r.t.)c Fs(u)g Ft(is)h(a)f(list)g([)p Fs(w)3086 3634 y Fq(1)3124 3622 y Fs(;)14 b(c)3197 3634 y Fq(1)3234 3622 y Fs(;)g(:)g(:)g(:)g(;)523 3722 y(w)582 3734 y Fp(r)619 3722 y Fs(;)g(c)692 3734 y Fp(r)729 3722 y Fs(;)g(w)825 3734 y Fp(r)r Fq(+1)946 3722 y Ft(])37 b(of)g(sub)n(w)n(ords)f Fs(w)1540 3734 y Fq(1)1578 3722 y Fs(;)14 b(:)g(:)g(:)f(;)h(w)1821 3734 y Fp(r)1858 3722 y Fs(;)g(w)1954 3734 y Fp(r)r Fq(+1)2113 3722 y Ft(of)37 b Fs(u)g Ft(and)g(c)n(haracters)e Fs(c)2914 3734 y Fq(1)2951 3722 y Fs(;)14 b(:)g(:)g(:)f(;)h(c)3171 3734 y Fp(r)3245 3722 y Ft(suc)n(h)523 3821 y(that)23 b Fs(v)k Ft(=)22 b Fs(w)911 3833 y Fq(1)949 3821 y Fs(c)985 3833 y Fq(1)1036 3821 y Fs(:)14 b(:)g(:)g(w)1206 3833 y Fp(r)1243 3821 y Fs(c)1279 3833 y Fp(r)1316 3821 y Fs(w)1375 3833 y Fp(r)r Fq(+1)1496 3821 y Ft(.)35 b(Let)23 b(\011)g(=)g([)p Fs(w)1956 3833 y Fq(1)1993 3821 y Fs(;)14 b(c)2066 3833 y Fq(1)2103 3821 y Fs(;)g(:)g(:)g(:)g(;)g(w)2347 3833 y Fp(r)2384 3821 y Fs(;)g(c)2457 3833 y Fp(r)2494 3821 y Fs(;)g(w)2590 3833 y Fp(r)r Fq(+1)2711 3821 y Ft(])23 b(b)r(e)h(a)e(partition)h(of)g Fs(v)523 3921 y Ft(w.r.t.)f Fs(u)p Ft(.)35 b(The)22 b(size)f(of)h(\011,)h(denoted)f (b)n(y)f Fr(j)p Ft(\011)p Fr(j)p Ft(,)i(is)f Fs(r)r Ft(.)36 b Fs(w)2170 3933 y Fq(1)2208 3921 y Fs(;)14 b(:)g(:)g(:)f(;)h(w)2451 3933 y Fp(r)2488 3921 y Fs(;)g(w)2584 3933 y Fp(r)r Fq(+1)2727 3921 y Ft(are)21 b(the)i FA(submatches)523 4021 y Ft(in)33 b(\011.)50 b Fs(c)799 4033 y Fq(1)837 4021 y Fs(;)14 b(:)g(:)g(:)f(;)h(c)1057 4033 y Fp(r)1126 4021 y Ft(are)32 b(the)g FA(marke)l(d)j(char)l(acters)41 b Ft(in)32 b(\011.)51 b(If)33 b(for)f(all)g Fs(h;)14 b Ft(1)30 b Fr(\024)h Fs(h)g Fr(\024)f Fs(r)r Ft(,)35 b Fs(w)3283 4033 y Fp(h)3326 4021 y Fs(c)3362 4033 y Fp(h)523 4120 y Ft(is)27 b(not)h(a)f(sub)n(w)n (ord)f(of)h Fs(u)p Ft(,)g(then)h(\011)f(is)g(the)h FA(left-to-right)i (p)l(artition)35 b Ft(of)27 b Fs(v)j Ft(w.r.t.)e Fs(u)p Ft(,)f(denoted)523 4220 y(b)n(y)e(\011)701 4232 y Fp(lr)758 4220 y Ft(\()p Fs(u;)14 b(v)s Ft(\).)37 b Fr(j)p Ft(\011)1098 4232 y Fp(lr)1156 4220 y Ft(\()p Fs(u;)14 b(v)s Ft(\))p Fr(j)25 b Ft(is)g(the)g FA(maximal)k(matches)f(distanc)l(e)k Ft(of)25 b Fs(u)f Ft(and)h Fs(v)s Ft(,)h(denoted)f(b)n(y)523 4320 y Fs(mmdist)p Ft(\()p Fs(u;)14 b(v)s Ft(\).)1025 4289 y Fq(1)1099 4320 y Ft(It)27 b(can)f(b)r(e)h(computed)g(in)g Fr(O)r Ft(\()p Fr(j)p Fs(u)p Fr(j)17 b Ft(+)f Fr(j)p Fs(v)s Fr(j)p Ft(\))27 b(time)g(and)g Fr(O)r Ft(\()p Fr(j)p Fs(u)p Fr(j)p Ft(\))g(space,)f(using)523 4419 y(the)i(su\016x)f(tree)g(for)f Fs(u)h Ft(\(see)g([7]\).)37 b(The)27 b(follo)n(wing)f(lemma)h(states)g(an)g(imp)r(ortan)n(t)g (relation)523 4519 y(b)r(et)n(w)n(een)33 b(alignmen)n(ts)f(and)h (partitions.)52 b(Using)33 b(this)g(lemma,)i(it)e(is)g(easy)f(to)h(sho) n(w)f(that)523 4619 y FA(mmdist)8 b Ft(\()p Fs(u;)14 b(v)s Ft(\))23 b Fr(\024)g Fs(edist)p Ft(\()p Fs(u;)14 b(v)s Ft(\).)p Black 523 4687 1153 4 v 627 4740 a Fn(1)661 4772 y Fz(Note)23 b(that)g Fv(mmdist)30 b Fz(is)24 b(not)e(a)i (distance)f(in)g(the)g(usual)g(mathematical)f(sense,)j(since)e(it)g(is) h(not)523 4863 y(symmetric,)g(see)j([4].)p Black Black 1943 5112 a Ft(3)p Black eop %%Page: 4 4 4 3 bop Black Black Black 523 387 a Fm(Lemma)14 b(1.)p Black 40 w FA(L)l(et)37 b Fs(A)g FA(b)l(e)f(an)h(alignment)g(of)g Fs(u)g FA(and)g Fs(v)s FA(.)59 b(Ther)l(e)38 b(is)f(an)g Fs(r)n(;)14 b Ft(0)35 b Fr(\024)g Fs(r)j Fr(\024)e Fs(\016)s Ft(\()p Fs(A)p Ft(\))p FA(,)523 487 y(and)26 b(a)g(p)l(artition)h Ft([)p Fs(w)1167 499 y Fq(1)1204 487 y Fs(;)14 b(c)1277 499 y Fq(1)1314 487 y Fs(;)g(:)g(:)g(:)g(;)g(w)1558 499 y Fp(r)1595 487 y Fs(;)g(c)1668 499 y Fp(r)1705 487 y Fs(;)g(w)1801 499 y Fp(r)r Fq(+1)1922 487 y Ft(])26 b FA(of)g Fs(v)j FA(w.r.t.)e Fs(u)e FA(such)g(that)h Fs(w)2835 499 y Fq(1)2898 487 y FA(is)g(a)g(pr)l(e\014x)f(and)523 587 y Fs(w)582 599 y Fp(r)r Fq(+1)733 587 y FA(is)30 b(a)g(su\016x)f(of)i Fs(u)p FA(.)523 841 y Fu(3)112 b(Dynamic)37 b(Filtering)e(applied)i(to)g(LET)523 1025 y Ft(The)g FA(line)l(ar)i(exp)l(e)l(cte)l(d)g(time)g(algorithm)45 b Ft(\(LET)37 b(for)f(short\))h(of)g(Chang)g(and)g(La)n(wler)e([2])523 1124 y(is)j(based)g(on)h(the)f(observ)-5 b(ation)38 b(that)g(an)h (appro)n(ximate)d(matc)n(h)j(is)f(at)g(least)g(of)h(length)523 1224 y Fs(m)10 b Fr(\000)g Fs(k)27 b Ft(and)c(con)n(tains)g(at)g(most)h Fs(k)13 b Ft(+)d(1)23 b(mark)n(ed)g(c)n(haracters)e(of)i(the)h (partition)f(\011)3042 1236 y Fp(lr)3100 1224 y Ft(\()p Fs(P)r(;)14 b(T)e Ft(\))23 b(=)523 1324 y([)p Fs(w)605 1336 y Fq(1)643 1324 y Fs(;)14 b(c)716 1336 y Fq(1)753 1324 y Fs(;)g(:)g(:)g(:)f(;)h(w)996 1336 y Fp(r)1034 1324 y Fs(;)g(c)1107 1336 y Fp(r)1143 1324 y Fs(;)g(w)1239 1336 y Fp(r)r Fq(+1)1360 1324 y Ft(].)37 b(Th)n(us,)25 b(a)g(sub)n(w)n(ord)f(of)i Fs(T)36 b Ft(whic)n(h)26 b(is)f(shorter)f (than)i Fs(m)14 b Fr(\000)g Fs(k)28 b Ft(and)523 1423 y(whic)n(h)35 b(con)n(tains)e Fs(k)26 b Ft(+)d(1)34 b(consecutiv)n(e)g (mark)n(ed)f(c)n(haracters)f(can)j(b)r(e)g(discarded)e(since)i(it)523 1523 y(do)r(es)28 b(not)h(con)n(tain)f(an)g(appro)n(ximate)f(matc)n(h.) 39 b(The)29 b(remaining)e(sub)n(w)n(ords)g(ma)n(y)h(con)n(tain)523 1622 y(appro)n(ximate)i(matc)n(hes.)47 b(Hence,)32 b(they)g(are)e (considered)g(as)h(in)n(teresting)g(sub)n(w)n(ords)e(and)523 1722 y(pro)r(cessed)d(b)n(y)i(a)f(dynamic)g(programming)f(computation.) p Black 523 1886 a Fm(Algorithm)k(LET.)p Black 41 w Ft(Compute)43 b(\011)1679 1898 y Fp(lr)1737 1886 y Ft(\()p Fs(P)r(;)14 b(T)e Ft(\))48 b(=)h([)p Fs(w)2198 1898 y Fq(1)2235 1886 y Fs(;)14 b(c)2308 1898 y Fq(1)2345 1886 y Fs(;)g(:)g(:)g(:)g(;)g(w) 2589 1898 y Fp(r)2626 1886 y Fs(;)g(c)2699 1898 y Fp(r)2736 1886 y Fs(;)g(w)2832 1898 y Fp(r)r Fq(+1)2953 1886 y Ft(].)83 b(F)-7 b(or)42 b(eac)n(h)523 1986 y Fs(h;)14 b Ft(1)22 b Fr(\024)h Fs(h)g Fr(\024)g Fs(r)7 b Ft(+)t(1,)21 b(let)g Fs(s)1270 1998 y Fp(h;p)1390 1986 y Ft(=)i Fs(w)1537 1998 y Fp(h)1580 1986 y Fs(c)1616 1998 y Fp(h)1673 1986 y Fs(:)14 b(:)g(:)g(w)1843 1998 y Fp(h)p Fq(+)p Fp(p)p Fl(\000)p Fq(1)2056 1986 y Fs(c)2092 1998 y Fp(h)p Fq(+)p Fp(p)p Fl(\000)p Fq(1)2306 1986 y Fs(w)2365 1998 y Fp(h)p Fq(+)p Fp(p)2493 1986 y Ft(.)35 b(If)21 b Fr(j)p Fs(s)2689 1998 y Fp(h;k)q Fq(+1)2872 1986 y Fr(j)i(\025)g Fs(m)t Fr(\000)t Fs(k)s Ft(,)f(then)523 2085 y Fs(s)562 2097 y Fp(h;k)q Fq(+1)765 2085 y Ft(is)d(an)g(in)n(teresting)g(sub)n(w)n (ord.)32 b(Merge)19 b(all)g(o)n(v)n(erlapping)e(in)n(teresting)h(sub)n (w)n(ords.)33 b(F)-7 b(or)523 2185 y(eac)n(h)23 b(in)n(teresting)g(sub) n(w)n(ord)g(obtained)g(in)h(suc)n(h)g(a)f(w)n(a)n(y)-7 b(,)24 b(solv)n(e)e(the)i Fs(k)s Ft(-di\013erences)g(problem)523 2284 y(using)j(a)g(dynamic)h(programming)d(computation.)648 2448 y(An)30 b(implemen)n(tation)h(of)f(algorithm)f(LET)h(represen)n (ts)f(the)h(partition)g(\011)3012 2460 y Fp(lr)3070 2448 y Ft(\()p Fs(P)r(;)14 b(T)e Ft(\))30 b(b)n(y)523 2548 y(some)i(in)n(tegers)f Fs(mp)1163 2560 y Fq(0)1200 2548 y Fs(;)14 b(mp)1352 2560 y Fq(1)1389 2548 y Fs(;)g(:)g(:)g(:)g(;)g(mp) 1689 2560 y Fp(r)1725 2548 y Fs(;)g(mp)1877 2560 y Fp(r)r Fq(+1)1997 2548 y Ft(,)34 b(where)e Fs(mp)2414 2560 y Fq(0)2482 2548 y Ft(=)f(0,)j Fs(mp)2792 2560 y Fp(r)r Fq(+1)2943 2548 y Ft(=)d Fs(n)22 b Ft(+)f(1)32 b(and)523 2648 y Fs(mp)638 2660 y Fp(h)708 2648 y Ft(is)c(the)g(p)r(osition)f(of) h(the)g(mark)n(ed)e(c)n(haracter)g Fs(c)2183 2660 y Fp(h)2253 2648 y Ft(in)i Fs(T)12 b Ft(,)27 b(1)c Fr(\024)f Fs(h)h Fr(\024)g Fs(r)r Ft(.)648 2747 y(In)f(our)f(terminology)-7 b(,)22 b(LET)f(is)h(a)g(static)g(\014lter)g(algorithm)f(b)r(ecause)h (the)g(prepro)r(cessing)523 2847 y(and)30 b(\014ltering)h(phase)f(is)g (strictly)g(separated)g(from)g(the)h(c)n(hec)n(king)e(phase.)46 b(As)30 b(describ)r(ed)523 2946 y(in)e(the)g(in)n(tro)r(duction,)f(the) h(basic)g(idea)f(of)g(dynamic)h(\014ltering)f(is)h(to)f(merge)g(these)h (phases)523 3046 y(in)g(order)e(to)i(obtain)f(a)g(more)g(sensitiv)n(e)g (\014lter.)648 3146 y(Besides)32 b(table)i Fs(D)r Ft(,)h(the)f(dynamic) f(v)n(ersion)f(of)h(LET)g(\(DLET)h(for)f(short\))g(main)n(tains)523 3245 y(parts)24 b(of)g(an)h(\()p Fs(m)12 b Ft(+)g(1\))g Fr(\002)g Ft(\()p Fs(n)g Ft(+)g(1\))25 b(table)g Fs(W)36 b Ft(of)25 b(strings)e(de\014ned)i(as)f(follo)n(ws:)35 b Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b Ft(\))24 b(is)h(the)523 3345 y(shortest)k(su\016x)i(of)f Fs(T)12 b Ft([1)i Fs(:)g(:)g(:)e(j)5 b Ft(])30 b(suc)n(h)g(that)g Fs(edist)p Ft(\()p Fs(P)12 b Ft([1)i Fs(:)g(:)g(:)f(i)p Ft(])p Fs(;)h(W)e Ft(\()p Fs(i;)i(j)5 b Ft(\)\))27 b(=)g Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\).)45 b Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b Ft(\))523 3445 y(is)30 b(called)g(the)h FA(shortest)h(witness)37 b Ft(for)30 b Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\).)45 b(T)-7 b(able)30 b Fs(W)43 b Ft(can)29 b(b)r(e)i(computed)g(in)f Fr(O)r Ft(\()p Fs(mn)p Ft(\))523 3544 y(time)e(according)e(to)h(the)h (follo)n(wing)f(recurrence:)646 3853 y Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b Ft(\))23 b(=)1016 3633 y Fk(8)1016 3707 y(>)1016 3732 y(>)1016 3757 y(<)1016 3907 y(>)1016 3932 y(>)1016 3957 y(:)1131 3703 y Fs(")734 b Ft(if)28 b Fs(i)23 b Ft(=)f(0)27 b(or)g Fs(j)h Ft(=)23 b(0)1131 3802 y Fs(W)12 b Ft(\()p Fs(i)18 b Fr(\000)g Ft(1)p Fs(;)c(j)5 b Ft(\))371 b(else)27 b(if)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)g Fs(D)r Ft(\()p Fs(i)18 b Fr(\000)g Ft(1)p Fs(;)c(j)5 b Ft(\))19 b(+)f(1)1131 3902 y Fs(W)12 b Ft(\()p Fs(i)18 b Fr(\000)g Ft(1)p Fs(;)c(j)23 b Fr(\000)18 b Ft(1\))p Fs(T)12 b Ft([)p Fs(j)5 b Ft(])82 b(else)27 b(if)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)g Fs(D)r Ft(\()p Fs(i)18 b Fr(\000)g Ft(1)p Fs(;)c(j)23 b Fr(\000)18 b Ft(1\))g(+)h Fs(\016)3153 3914 y Fp(i;j)1131 4001 y Fs(W)12 b Ft(\()p Fs(i;)i(j)23 b Fr(\000)18 b Ft(1\))p Fs(T)12 b Ft([)p Fs(j)5 b Ft(])225 b(else)27 b(if)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)g Fs(D)r Ft(\()p Fs(i;)14 b(j)23 b Fr(\000)18 b Ft(1\))h(+)f(1)523 4166 y(where)37 b Fs(\016)810 4178 y Fp(i;j)927 4166 y Ft(=)h(0)f(if)g Fs(P)12 b Ft([)p Fs(i)p Ft(])39 b(=)f Fs(T)12 b Ft([)p Fs(j)5 b Ft(])36 b(and)h Fs(\016)1866 4178 y Fp(i;j)1983 4166 y Ft(=)i(1)d(otherwise.)65 b(In)37 b(practice,)i(it)e(su\016ces) 523 4266 y(to)c(compute)g(the)g FA(length)40 b Ft(of)33 b(eac)n(h)f Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b Ft(\).)53 b(Eac)n(h)32 b(en)n(try)h Fr(j)p Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b Ft(\))p Fr(j)33 b Ft(can)f(b)r(e)i(computed)523 4365 y(together)23 b(with)i Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))24 b(in)g(a)g(single)f(dynamic)h(programming)e(step)i(at)g (virtually)g(no)f(cost.)523 4465 y(Note)c(that)f(if)h Fs(D)r Ft(\()p Fs(m;)14 b(j)5 b Ft(\))24 b Fr(\024)e Fs(k)s Ft(,)f(then)d Fs(W)12 b Ft(\()p Fs(m;)i(j)5 b Ft(\))19 b(is)g(the)f(shortest)g(appro)n(ximate)f(matc)n(h)h(ending)523 4565 y(at)30 b(p)r(osition)f Fs(j)5 b Ft(.)43 b(That)30 b(is,)g(DLET)g(and)f(the)h(subsequen)n(t)g(dynamic)f(\014lter)h (algorithms)e(do)523 4664 y(not)19 b(only)f(solv)n(e)g(the)h Fs(k)s Ft(-di\013erences)f(problem,)i(but)f(the)g(more)f(general)g (appro)n(ximate)f(string)523 4764 y(matc)n(hing)28 b(problem.)39 b(W)-7 b(e)29 b(p)r(oin)n(t)f(out)h(that)f(this)h(is)f(required)g(in)g (practical)g(applications,)523 4863 y(an)n(yho)n(w.)p Black 1943 5112 a(4)p Black eop %%Page: 5 5 5 4 bop Black Black 648 387 a Ft(Let)27 b(us)g(again)e(consider)h(the)i (partition)e(\011)1998 399 y Fp(lr)2056 387 y Ft(\()p Fs(P)r(;)14 b(T)e Ft(\))23 b(=)g([)p Fs(w)2466 399 y Fq(1)2504 387 y Fs(;)14 b(c)2577 399 y Fq(1)2614 387 y Fs(;)g(:)g(:)g(:)f(;)h(w)2857 399 y Fp(r)2894 387 y Fs(;)g(c)2967 399 y Fp(r)3004 387 y Fs(;)g(w)3100 399 y Fp(r)r Fq(+1)3221 387 y Ft(])27 b(and)523 487 y(de\014ne)41 b Fs(s)815 499 y Fp(h;p)958 487 y Ft(=)k Fs(w)1127 499 y Fp(h)1170 487 y Fs(c)1206 499 y Fp(h)1263 487 y Fs(:)14 b(:)g(:)g(w)1433 499 y Fp(h)p Fq(+)p Fp(p)p Fl(\000)p Fq(1)1646 487 y Fs(c)1682 499 y Fp(h)p Fq(+)p Fp(p)p Fl(\000)p Fq(1)1896 487 y Fs(w)1955 499 y Fp(h)p Fq(+)p Fp(p)2124 487 y Ft(for)41 b(eac)n(h)f Fs(h;)14 b Ft(1)45 b Fr(\024)g Fs(h)g Fr(\024)g Fs(r)31 b Ft(+)c(1.)77 b(Lik)n(e)523 587 y(algorithm)43 b(LET,)h(DLET)g(determines)f(in)n(teresting)h(sub)n (w)n(ords)e Fs(s)2708 599 y Fp(h)2747 608 y Fj(b)2778 599 y Fp(;k)q Fq(+1)2966 587 y Ft(b)n(y)i(c)n(hec)n(king)523 686 y(the)36 b(\\static")e(condition)i Fr(j)p Fs(s)1426 698 y Fp(h)1465 707 y Fj(b)1495 698 y Fp(;k)q Fq(+1)1640 686 y Fr(j)g(\025)g Fs(m)24 b Fr(\000)f Fs(k)s Ft(.)60 b(If)36 b(this)g(holds,)h(it)f(means)g(that)f(an)h(ap-)523 786 y(pro)n(ximate)e(matc)n(h)h(ma)n(y)f(b)r(egin)h(within)h(sub)n(w)n (ord)e Fs(w)2261 798 y Fp(h)2300 807 y Fj(b)2335 786 y Fs(c)2371 798 y Fp(h)2410 807 y Fj(b)2444 786 y Ft(.)60 b(Ho)n(w)n(ev)n(er,)35 b(instead)g(of)g(ap-)523 886 y(plying)d(a)g (dynamic)g(programming)e(computation)i(to)g(the)g(whole)g(in)n (teresting)f(sub)n(w)n(ord)523 985 y Fs(s)562 997 y Fp(h)601 1006 y Fj(b)631 997 y Fp(;k)q Fq(+1)776 985 y Ft(,)g(DLET)f(sequen)n (tially)f(c)n(hec)n(ks)g(whether)h(an)f(appro)n(ximate)g(matc)n(h)h (can)f(b)r(e)i(con-)523 1085 y(tin)n(ued)38 b(with)g Fs(w)1047 1097 y Fp(h)1091 1085 y Fs(c)1127 1097 y Fp(h)1207 1085 y Ft(for)f Fs(h)j(>)f(h)1584 1097 y Fp(b)1617 1085 y Ft(.)67 b(Thereb)n(y)37 b(it)h(exploits)f(the)h(follo)n(wing)e (observ)-5 b(ation:)523 1184 y(Supp)r(ose)42 b(there)h(are)e(appro)n (ximate)g(matc)n(hes)h(ending)g(at)g(p)r(osition)h Fs(e)f Ft(in)g Fs(T)12 b Ft(,)46 b(and)c(as-)523 1284 y(sume)c Fs(v)i Ft(is)e(the)f(shortest.)66 b(If)38 b(a)f(pre\014x)g Fs(v)1904 1296 y Fq(1)1979 1284 y Ft(of)g Fs(v)k Ft(ends)d(at)f(p)r (osition)g Fs(mp)2916 1296 y Fp(h)p Fl(\000)p Fq(1)3081 1284 y Ft(and)h(con-)523 1384 y(tains)i Fs(d)h Ft(di\013erences,)j (then)d(the)g(remaining)e(part)h Fs(v)2258 1396 y Fq(2)2336 1384 y Ft(of)h Fs(v)j Ft(con)n(tains)39 b(at)i(most)f Fs(k)30 b Fr(\000)d Fs(d)523 1483 y Ft(mark)n(ed)e(c)n(haracters)f(of)i (\011)1369 1495 y Fp(lr)1426 1483 y Ft(\()p Fs(P)r(;)14 b(T)e Ft([)p Fs(mp)1749 1495 y Fp(h)p Fl(\000)p Fq(1)1892 1483 y Ft(+)j(1)f Fs(:)g(:)g(:)g(n)p Ft(]\))23 b(=)f([)p Fs(w)2436 1495 y Fp(h)2480 1483 y Fs(;)14 b(c)2553 1495 y Fp(h)2596 1483 y Fs(;)g(:)g(:)g(:)f(;)h(w)2839 1495 y Fp(r)2876 1483 y Fs(;)g(c)2949 1495 y Fp(r)2986 1483 y Fs(;)g(w)3082 1495 y Fp(r)r Fq(+1)3203 1483 y Ft(],)27 b(i.e.,)523 1583 y Fr(j)p Fs(v)586 1595 y Fq(2)624 1583 y Fr(j)c(\024)f(j)p Fs(w)839 1595 y Fp(h)883 1583 y Fs(c)919 1595 y Fp(h)976 1583 y Fs(:)14 b(:)g(:)f(w)1145 1595 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)p Fl(\000)p Fq(1)1448 1583 y Fs(c)1484 1595 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)p Fl(\000)p Fq(1)1786 1583 y Fs(w)1845 1595 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)2063 1583 y Fr(j)p Ft(.)648 1683 y(This)22 b(observ)-5 b(ation)20 b(is)j(illustrated)e(in)i(Figure) e(1,)i(whic)n(h)g(sho)n(ws)e(an)g(optimal)h(alignmen)n(t)p Black 523 1802 2857 4 v 523 1976 a Fw(Fig.)15 b(1.)34 b Fz(An)24 b(appro)n(ximate)h(matc)n(h)g(with)h(a)g(pre\014x)e Fi(v)2083 1984 y Fn(1)2144 1976 y Fz(whic)n(h)i(ends)f(at)h(p)r (osition)h Fi(mp)3033 1985 y Fh(h)p Fg(\000)p Fn(1)p Black Black 565 2243 1038 4 v 1893 2243 1495 4 v 1710 2246 a Fi(:)13 b(:)h(:)p 604 2250 4 17 v 646 2250 V 687 2250 V 729 2250 V 770 2250 V 812 2250 V 853 2250 V 895 2250 V 936 2250 V 978 2250 V 1020 2250 V 1061 2250 V 1103 2250 V 1144 2250 V 1186 2250 V 1227 2250 V 1269 2250 V 1310 2250 V 1352 2250 V 1393 2250 V 1435 2250 V 1476 2250 V 1518 2250 V 1559 2250 V 1933 2250 V 1974 2250 V 2016 2250 V 2057 2250 V 2099 2250 V 2140 2250 V 2182 2250 V 2223 2250 V 2265 2250 V 2306 2250 V 2348 2250 V 2389 2250 V 2431 2250 V 2472 2250 V 2514 2250 V 2555 2250 V 2597 2250 V 2638 2250 V 2680 2250 V 2721 2250 V 2763 2250 V 2804 2250 V 2846 2250 V 2888 2250 V 2929 2250 V 2971 2250 V 3012 2250 V 3054 2250 V 3095 2250 V 3137 2250 V 3178 2250 V 3220 2250 V 3261 2250 V 3303 2250 V 3344 2250 V 3386 2250 V 1873 2033 a(v)565 2085 y Fk(z)p 602 2085 1254 10 v 1254 w(}|)p 1930 2085 V 1254 w({)720 2147 y Fh(v)751 2157 y Ff(1)565 2201 y Fk(z)p 602 2201 113 10 v 113 w(}|)p 789 2201 V 113 w({)2069 2147 y Fh(v)2100 2157 y Ff(2)980 2201 y Fk(z)p 1017 2201 1047 10 v 1047 w(}|)p 2138 2201 V 1047 w({)p 936 2989 4 748 v 3220 2989 V 938 2532 a Fe(r)p Fh(D)r Fn(\()p Fh(i;mp)1166 2544 y Fj(h)p Fd(\000)p Ff(1)1278 2532 y Fn(\)=)p Fh(d)3221 2989 y Fe(r)-340 b Fh(D)r Fn(\()p Fh(m;e)p Fn(\))p Fg(\024)p Fh(k)980 2276 y Fk(|)p 1017 2276 133 10 v 133 w({z)p 1224 2276 V 133 w(})1146 2305 y Fh(w)1190 2317 y Fj(h)1420 2313 y Fh(c)1448 2325 y Fj(h)2059 2276 y Fk(|)p 2096 2276 175 10 v 175 w({z)p 2345 2276 V 175 w(})2155 2305 y Fh(w)2199 2317 y Fj(h)p Ff(+)p Fj(k)q Fd(\000)p Fj(d)p Fd(\000)p Ff(1)2582 2309 y Fh(c)2610 2321 y Fj(h)p Ff(+)p Fj(k)q Fd(\000)p Fj(d)p Fd(\000)p Ff(1)2640 2276 y Fk(|)p 2677 2276 299 10 v 299 w({z)p 3050 2276 V 299 w(})2897 2305 y Fh(w)2941 2317 y Fj(h)p Ff(+)p Fj(k)q Fd(\000)p Fj(d)565 2325 y Fc(@)p 648 2326 84 4 v 730 2408 4 84 v 732 2409 84 4 v 816 2409 V 898 2491 4 84 v 900 2574 a(@)p 980 2575 416 4 v 1395 2575 84 4 v 1477 2657 4 84 v 1479 2658 84 4 v 1563 2658 V 1645 2740 4 84 v 1647 2741 831 4 v 2474 2823 a(@)p 2557 2824 84 4 v 2641 2824 V 2723 2906 4 84 v 2725 2907 416 4 v 3141 2989 a(@)p 523 3039 2882 4 v Black 523 3180 a Ft(of)25 b Fs(P)36 b Ft(and)25 b Fs(v)j Ft(as)c(a)g(path)h(in)f(the)h(distance)g(table)f Fs(D)r Ft(,)i(crossing)d(en)n(try)h Fs(D)r Ft(\()p Fs(i;)14 b(mp)2975 3192 y Fp(h)p Fl(\000)p Fq(1)3102 3180 y Ft(\).)36 b(It)25 b(can)523 3280 y(b)r(e)32 b(sho)n(wn)f(that)h(there)f(m)n(ust)h (b)r(e)g(an)f Fs(i;)14 b Ft(0)28 b Fr(\024)i Fs(i)f Fr(\024)g Fs(m)p Ft(,)k(suc)n(h)e(that)h Fs(D)r Ft(\()p Fs(i;)14 b(mp)2913 3292 y Fp(h)p Fl(\000)p Fq(1)3040 3280 y Ft(\))30 b(=)f Fs(d)j Ft(and)523 3379 y Fs(W)12 b Ft(\()p Fs(i;)i(mp)826 3391 y Fp(h)p Fl(\000)p Fq(1)953 3379 y Ft(\))36 b(=)e Fs(v)1160 3391 y Fq(1)1198 3379 y Ft(;)k(see)d(pro)r(of)f(of)h(Theorem) f(4.)58 b(With)36 b(the)f(ab)r(o)n(v)n(e)e(observ)-5 b(ation)34 b(this)523 3479 y(leads)27 b(to)h(the)g(follo)n(wing)e (\\dynamic")g(condition)i(for)f(appro)n(ximate)f(matc)n(hes:)544 3662 y Fr(9)p Fs(i;)14 b Ft(0)22 b Fr(\024)h Fs(i)f Fr(\024)h Fs(m)-5 b Ft(:)23 b Fs(D)r Ft(\()p Fs(i;)14 b(mp)1345 3674 y Fp(h)p Fl(\000)p Fq(1)1473 3662 y Ft(\))23 b Fr(\024)g Fs(k)30 b Ft(and)e Fr(j)p Fs(W)12 b Ft(\()p Fs(i;)i(mp)2177 3674 y Fp(h)p Fl(\000)p Fq(1)2304 3662 y Ft(\))p Fr(j)19 b Ft(+)f Fr(j)p Fs(s)2523 3677 y Fp(h;k)q Fl(\000)p Fp(D)r Fq(\()p Fp(i;mp)2888 3686 y Fj(h)p Fd(\000)p Ff(1)3000 3677 y Fq(\))3030 3662 y Fr(j)23 b(\025)g Fs(m)18 b Fr(\000)g Fs(k)523 3844 y Ft(If)32 b(this)f(condition)g(is)g(false,)h(the)f(c)n (hec)n(king)f(phase)h(for)f Fs(s)2333 3856 y Fp(h)2372 3865 y Fj(b)2402 3856 y Fp(;k)q Fq(+1)2578 3844 y Ft(is)h(stopp)r(ed)g (and)g(the)h(b)r(e-)523 3944 y(ginning)37 b(of)g(the)g(next)h(p)r(oten) n(tial)f(appro)n(ximate)e(matc)n(h)i(is)g(searc)n(hed)f(for.)65 b(Otherwise,)523 4044 y(a)34 b(p)r(oten)n(tial)h(appro)n(ximate)e(matc) n(h)h(can)h(b)r(e)g(con)n(tin)n(ued)f(with)h Fs(w)2622 4056 y Fp(h)2666 4044 y Fs(c)2702 4056 y Fp(h)2780 4044 y Ft(and)f(the)h(c)n(hec)n(king)523 4143 y(phase)27 b(pro)r(ceeds.)648 4243 y(In)32 b(order)e(to)i(a)n(v)n(oid)e(redundan)n(t)i(computations,) g Fs(T)43 b Ft(is)32 b(scanned)f(from)g(left)i(to)f(righ)n(t.)523 4343 y(F)-7 b(or)27 b(eac)n(h)h Fs(h;)14 b Ft(1)23 b Fr(\024)g Fs(h)g Fr(\024)h Fs(r)d Ft(+)d(1,)28 b(a)g(dynamic)f (programming)f(computation)i(is)g(sequen)n(tially)523 4442 y(applied)c(to)f Fs(w)966 4454 y Fp(h)1010 4442 y Fs(c)1046 4454 y Fp(h)1089 4442 y Ft(,)h(only)g(if)g(it)g(con)n (tains)f(the)h(b)r(eginning)f(or)g(the)h(con)n(tin)n(uation)f(of)h(a)f (p)r(oten-)523 4542 y(tial)29 b(appro)n(ximate)e(matc)n(h,)i(according) e(to)i(the)g(\\static")f(or)g(\\dynamic")f(condition.)41 b(F)-7 b(or)523 4641 y(this)28 b(reason,)e(eac)n(h)h Fs(w)1213 4653 y Fp(h)1256 4641 y Fs(c)1292 4653 y Fp(h)1363 4641 y Ft(is)g(c)n(hec)n(k)n(ed)g(at)g(most)h(once.)p Black 1943 5112 a(5)p Black eop %%Page: 6 6 6 5 bop Black Black Black 523 387 a Fm(Algorithm)30 b(DLET.)p Black 41 w Ft(De\014ne)f(t)n(w)n(o)d(predicates)h FA(BPM)43 b Ft(and)27 b FA(CPM)42 b Ft(as)27 b(follo)n(ws:)705 542 y FA(BPM)q Ft(\()p Fs(h)p Ft(\))i FA(i\013)56 b Fr(j)p Fs(s)1229 554 y Fp(h;k)q Fq(+1)1413 542 y Fr(j)23 b(\025)f Fs(m)d Fr(\000)f Fs(k)705 642 y FA(CPM)q Ft(\()p Fs(h)p Ft(\))28 b FA(i\013)g Fr(9)p Fs(i;)14 b Ft(0)23 b Fr(\024)f Fs(i)h Fr(\024)g Fs(m)g Ft(:)k Fs(D)r Ft(\()p Fs(i;)14 b(mp)1973 654 y Fp(h)p Fl(\000)p Fq(1)2101 642 y Ft(\))23 b Fr(\024)g Fs(k)30 b Ft(and)1689 741 y Fr(j)p Fs(W)12 b Ft(\()p Fs(i;)i(mp)2015 753 y Fp(h)p Fl(\000)p Fq(1)2143 741 y Ft(\))p Fr(j)19 b Ft(+)f Fr(j)p Fs(s)2362 756 y Fp(h;k)q Fl(\000)p Fp(D)r Fq(\()p Fp(i;mp)2727 765 y Fj(h)p Fd(\000)p Ff(1)2839 756 y Fq(\))2869 741 y Fr(j)23 b(\025)g Fs(m)18 b Fr(\000)g Fs(k)523 898 y Ft(P)n(erform)26 b(the)i(follo)n(wing)e(computations:)594 1053 y Fs(h)d Ft(:=)f(1)594 1153 y Fm(while)k Fs(h)d Fr(\024)g Fs(r)e Ft(+)d(1)27 b Fm(do)665 1252 y(if)g(not)g FA(BPM)r Ft(\()p Fs(h)p Ft(\))665 1352 y Fm(then)735 1451 y Fs(h)c Ft(:=)g Fs(h)18 b Ft(+)g(1)665 1552 y Fm(else)735 1652 y(for)28 b Fs(i)23 b Ft(:=)g(0)k Fm(to)g Fs(m)h Fm(do)f Fs(D)r Ft(\()p Fs(i;)14 b(mp)1736 1664 y Fp(h)p Fl(\000)p Fq(1)1864 1652 y Ft(\))23 b(:=)g Fs(i)p Ft(;)k Fs(W)12 b Ft(\()p Fs(i;)i(mp)2412 1664 y Fp(h)p Fl(\000)p Fq(1)2540 1652 y Ft(\))23 b(:=)g Fs(")735 1751 y Fm(rep)s(eat)806 1851 y(for)28 b Fs(j)g Ft(:=)23 b Fs(mp)1238 1863 y Fp(h)p Fl(\000)p Fq(1)1384 1851 y Ft(+)18 b(1)27 b Fm(to)h Fs(mp)1764 1863 y Fp(h)1834 1851 y Fm(do)877 1950 y(for)g Fs(i)23 b Ft(:=)f(0)28 b Fm(to)f Fs(m)h Fm(do)f Ft(compute)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))28 b(and)f Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b Ft(\))877 2050 y Fm(if)27 b Fs(D)r Ft(\()p Fs(m;)14 b(j)5 b Ft(\))24 b Fr(\024)f Fs(k)30 b Fm(then)e(output)k(\\)p Fs(W)12 b Ft(\()p Fs(m;)i(j)5 b Ft(\))28 b(is)f(appro)n(ximate)f(matc)n(h)h(at)h Fs(j)5 b Ft(")806 2150 y Fs(h)23 b Ft(:=)g Fs(h)18 b Ft(+)g(1)735 2249 y Fm(un)m(til)28 b(not)f FA(CPM)q Ft(\()p Fs(h)p Ft(\))648 2410 y FA(BPM)q Ft(\()p Fs(h)p Ft(\))22 b(indicates)g(that)g (there)g(is)g(a)g(b)r(eginning)f(of)h(a)g(p)r(oten)n(tial)g(appro)n (ximate)e(matc)n(h)523 2510 y(within)38 b Fs(w)850 2522 y Fp(h)893 2510 y Fs(c)929 2522 y Fp(h)972 2510 y Ft(.)66 b FA(CPM)q Ft(\()p Fs(h)p Ft(\))38 b(indicates)f(that)g Fs(w)2005 2522 y Fp(h)2048 2510 y Fs(c)2084 2522 y Fp(h)2165 2510 y Ft(is)g(the)g(con)n(tin)n(uation)f(of)h(a)g(p)r(oten)n(tial)523 2610 y(appro)n(ximate)27 b(matc)n(h.)41 b(In)29 b(order)e(to)i(c)n(hec) n(k)f FA(CPM)q Ft(\()p Fs(h)p Ft(\),)i(it)f(su\016ces)g(to)f(compute)h (table)g Fs(W)523 2709 y Ft(and)j Fs(D)j Ft(only)d(for)f(those)h(\()p Fs(i;)14 b(j)5 b Ft(\),)34 b(where)e Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))31 b Fr(\024)f Fs(k)s Ft(.)51 b(Th)n(us)32 b(Ukk)n(onen's)g(\\cuto\013)6 b(")32 b(tric)n(k)523 2809 y([13)o(])f(is)f(applicable)g(in)g(this)h(con)n(text.)45 b(It)30 b(is)h(easy)e(to)h(see)g(that)h(the)g(left-to-righ)n(t)e(scan)h (in)523 2908 y(DLET)d(only)h(needs)f Fr(O)r Ft(\()p Fs(m)p Ft(\))i(space.)648 3008 y(The)e(follo)n(wing)g(example)g(illustrates)g (ho)n(w)g(DLET)g(w)n(orks.)p Black 523 3156 a FA(Example)15 b(1.)p Black 43 w Ft(Let)30 b Fs(P)39 b Ft(=)26 b Fs(abbcccddddeeeee)p Ft(,)j Fs(T)38 b Ft(=)27 b FA(e)l(e)l(e)l(e)l(e)l(ddddc)l(c)l(cfbbfa)s Ft(,)k(and)f Fs(k)g Ft(=)c(3.)44 b(Then)523 3256 y(\011)588 3268 y Fp(lr)646 3256 y Ft(\()p Fs(P)r(;)14 b(T)e Ft(\))28 b(is)f(as)g(follo)n(ws:)1090 3403 y Fs(eeeee)1090 3438 y Fk(|)p 1127 3438 22 10 v 22 w({z)p 1223 3438 V 22 w(})1381 3403 y Fs(d)108 b(ddd)1523 3438 y Fk(|{z})1774 3403 y Fs(c)140 b(cc)1911 3438 y Fk(|{z})2155 3403 y Fs(f)j(bb)2300 3438 y Fk(|{z})2544 3403 y Fs(f)156 b(a)2689 3438 y Fk(|{z})1138 3511 y Fs(w)1197 3523 y Fq(1)1366 3511 y Fs(c)1402 3523 y Fq(1)1549 3511 y Fs(w)1608 3523 y Fq(2)1755 3511 y Fs(c)1791 3523 y Fq(2)1938 3511 y Fs(w)1997 3523 y Fq(3)2144 3511 y Fs(c)2180 3523 y Fq(3)2326 3511 y Fs(w)2385 3523 y Fq(4)2532 3511 y Fs(c)2568 3523 y Fq(4)2715 3511 y Fs(w)2774 3523 y Fq(5)523 3659 y Ft(Ob)n(viously)-7 b(,)38 b Fs(s)980 3671 y Fq(1)p Fp(;k)q Fq(+1)1196 3659 y Ft(=)g Fs(w)1358 3671 y Fq(1)1396 3659 y Fs(c)1432 3671 y Fq(1)1469 3659 y Fs(w)1528 3671 y Fq(2)1566 3659 y Fs(c)1602 3671 y Fq(2)1639 3659 y Fs(w)1698 3671 y Fq(3)1735 3659 y Fs(c)1771 3671 y Fq(3)1809 3659 y Fs(w)1868 3671 y Fq(4)1905 3659 y Fs(c)1941 3671 y Fq(4)1978 3659 y Fs(w)2037 3671 y Fq(5)2114 3659 y Ft(=)g Fs(T)12 b Ft(,)38 b(whic)n(h)f(is)f(of)h (length)g(17.)64 b(Since)523 3758 y Fs(m)5 b Fr(\000)g Fs(k)26 b Ft(=)c(15)5 b Fr(\000)g Ft(3)22 b(=)h(12,)e FA(BPM)q Ft(\(1\))g(is)g(true,)i(i.e.)e Fs(T)32 b Ft(is)21 b(an)f(in)n(teresting)h(sub)n(w)n(ord.)33 b(DLET)21 b(no)n(w)523 3858 y(computes)29 b(the)g(\014rst)f(7)g(columns)h(of)f(tables)h Fs(D)h Ft(and)f Fs(W)12 b Ft(.)40 b(Since)29 b Fs(D)r Ft(\()p Fs(i;)14 b Ft(5\))24 b(=)g Fr(j)p Fs(W)12 b Ft(\()p Fs(i;)i Ft(5\))p Fr(j)25 b Ft(=)f Fs(i)p Ft(,)523 3958 y(and)33 b Fs(i)22 b Ft(+)g Fr(j)p Fs(s)890 3970 y Fq(2)p Fp(;k)q Fl(\000)p Fp(i)1059 3958 y Fr(j)34 b(\024)e Ft(11,)i FA(CPM)q Ft(\(2\))g(is)g(false.)54 b(Hence)34 b(a)f(p)r(oten)n(tial)g (appro)n(ximate)f(matc)n(h)523 4057 y(cannot)22 b(b)r(e)h(con)n(tin)n (ued,)g(and)g(DLET)f(terminates.)35 b(Note)23 b(that)g(LET)f(w)n(ould)g (ha)n(v)n(e)f(to)i(com-)523 4157 y(pute)30 b(table)g Fs(D)h Ft(completely)f(\(i.e.)g(18)f(columns\))g(to)h(\014nd)g(that)g (there)f(is)g(no)h(appro)n(ximate)523 4256 y(matc)n(h)d(in)h Fs(T)12 b Ft(.)648 4404 y(T)-7 b(o)19 b(pro)n(v)n(e)f(correctness)g(of) i(DLET,)g(w)n(e)f(need)h(the)h(follo)n(wing)d(lemma)i(and)g(a)f(new)h (notion)523 4504 y(whic)n(h)28 b(is)f(giv)n(en)g(in)h(De\014nition)g (3.)p Black 523 4664 a Fm(Lemma)14 b(2.)p Black 40 w FA(L)l(et)36 b Fs(p)f Ft(=)g Fs(p)1330 4676 y Fq(1)1367 4664 y Fs(p)1409 4676 y Fq(2)1446 4664 y FA(,)j Fs(t)e Ft(=)e Fs(t)1704 4676 y Fq(1)1741 4664 y Fs(t)1771 4676 y Fq(2)1809 4664 y FA(,)k(and)f Fs(A)g FA(b)l(e)f(an)h(alignment)f(of)h Fs(p)2909 4676 y Fq(2)2983 4664 y FA(and)g Fs(t)3181 4676 y Fq(1)3254 4664 y FA(with)523 4764 y Fs(\016)s Ft(\()p Fs(A)p Ft(\))j Fr(\024)e Fs(d)p FA(.)66 b(Assume)37 b Fr(j)p Ft(\011)1372 4776 y Fp(lr)1430 4764 y Ft(\()p Fs(p;)14 b(t)p Ft(\))p Fr(j)39 b(\025)g Fs(d)f FA(and)h(let)g Fs(w)2205 4776 y Fq(1)2243 4764 y Fs(;)14 b(c)2316 4776 y Fq(1)2353 4764 y Fs(;)g(:)g(:)g(:)f(;)h(w)2596 4776 y Fp(d)2635 4764 y Fs(;)g(c)2708 4776 y Fp(d)2747 4764 y Fs(;)g(w)2843 4776 y Fp(d)p Fq(+1)3004 4764 y FA(b)l(e)39 b(the)g(\014rst)523 4863 y Ft(2)p Fs(d)18 b Ft(+)g(1)29 b FA(elements)h(of)h Ft(\011)1285 4875 y Fp(lr)1342 4863 y Ft(\()p Fs(p;)14 b(t)p Ft(\))p FA(.)39 b(Then)31 b Fr(j)p Fs(t)1849 4875 y Fq(1)1886 4863 y Fr(j)23 b(\024)g(j)p Fs(w)2102 4875 y Fq(1)2139 4863 y Fs(c)2175 4875 y Fq(1)2226 4863 y Fs(:)14 b(:)g(:)g(w)2396 4875 y Fp(d)2435 4863 y Fs(c)2471 4875 y Fp(d)2510 4863 y Fs(w)2569 4875 y Fp(d)p Fq(+1)2692 4863 y Fr(j)p FA(.)p Black 1943 5112 a Ft(6)p Black eop %%Page: 7 7 7 6 bop Black Black Black 523 387 a FA(Pr)l(o)l(of.)p Black 43 w Ft(By)31 b(Lemma)f(1,)h(there)f(is)h(a)f Fs(d)1729 357 y Fl(0)1753 387 y Fs(;)14 b Ft(0)27 b Fr(\024)h Fs(d)1995 357 y Fl(0)2047 387 y Fr(\024)f Fs(d)p Ft(,)32 b(and)f(a)f(partition)g (\011)e(=)f([)p Fs(x)3078 399 y Fq(1)3116 387 y Fs(;)14 b(a)3197 399 y Fq(1)3234 387 y Fs(;)g(:)g(:)g(:)g(;)523 487 y(x)570 499 y Fp(d)605 483 y Fd(0)632 487 y Fs(;)g(a)713 499 y Fp(d)748 483 y Fd(0)774 487 y Fs(;)g(x)858 499 y Fp(d)893 483 y Fd(0)915 499 y Fq(+1)1003 487 y Ft(])28 b(of)f Fs(t)1178 499 y Fq(1)1243 487 y Ft(w.r.t.)h Fs(p)1507 499 y Fq(2)1544 487 y Ft(,)g(hence)f(w.r.t.)h Fs(p)p Ft(.)37 b(W)-7 b(e)28 b(use)f(induction)h(on)f Fs(i)h Ft(to)f(sho)n(w)1489 663 y Fr(j)p Fs(x)1559 675 y Fq(1)1597 663 y Fs(a)1641 675 y Fq(1)1692 663 y Fs(:)14 b(:)g(:)f(x)1849 675 y Fp(i)1878 663 y Fr(j)23 b(\024)f(j)p Fs(w)2093 675 y Fq(1)2131 663 y Fs(c)2167 675 y Fq(1)2218 663 y Fs(:)14 b(:)g(:)g(w)2388 675 y Fp(i)2416 663 y Fr(j)p Black 860 w Ft(\(1\))p Black 523 840 a(for)30 b(all)g Fs(i;)14 b Ft(0)26 b Fr(\024)h Fs(i)g Fr(\024)g Fs(d)1188 810 y Fl(0)1232 840 y Ft(+)20 b(1.)44 b(If)31 b Fs(i)c Ft(=)g(0,)j(then)h(claim)f(\(1\))g(holds)g(trivially)-7 b(.)44 b(F)-7 b(or)30 b(a)g(pro)r(of)f(b)n(y)523 940 y(con)n(tradiction,)35 b(let)f(us)g(assume)g(that)g Fr(j)p Fs(x)1849 952 y Fq(1)1887 940 y Fs(a)1931 952 y Fq(1)1982 940 y Fs(:)14 b(:)g(:)g(x)2140 952 y Fp(i)2168 940 y Fs(a)2212 952 y Fp(i)2239 940 y Fs(x)2286 952 y Fp(i)p Fq(+1)2399 940 y Fr(j)34 b Fs(>)f Fr(j)p Fs(w)2636 952 y Fq(1)2674 940 y Fs(c)2710 952 y Fq(1)2761 940 y Fs(:)14 b(:)g(:)g(w)2931 952 y Fp(i)2959 940 y Fs(c)2995 952 y Fp(i)3023 940 y Fs(w)3082 952 y Fp(i)p Fq(+1)3194 940 y Fr(j)p Ft(,)36 b(i.e.,)523 1039 y Fs(x)570 1051 y Fp(i)p Fq(+1)707 1039 y Ft(ends)24 b(at)h Fs(c)1028 1051 y Fp(i)p Fq(+1)1164 1039 y Ft(or)f(righ)n(t)f(to)i(it.)36 b(By)24 b(the)h(induction)g(h)n(yp)r(othesis,)g(w)n(e)f(kno)n(w)g(that)h Fs(x)3293 1051 y Fp(i)p Fq(+1)523 1139 y Ft(starts)35 b(at)g(the)h(b)r(eginning)f(of)g Fs(w)1572 1151 y Fp(i)p Fq(+1)1720 1139 y Ft(or)f(left)i(to)g(it.)60 b(W)-7 b(e)36 b(conclude)f(that)h Fs(w)2977 1151 y Fp(i)p Fq(+1)3089 1139 y Fs(c)3125 1151 y Fp(i)p Fq(+1)3272 1139 y Ft(is)f(a)523 1238 y(sub)n(w)n(ord)28 b(of)h Fs(x)996 1250 y Fp(i)p Fq(+1)1108 1238 y Ft(,)g(hence)g(of)g Fs(p)p Ft(.)41 b(This,)29 b(ho)n(w)n(ev)n(er,)f(con)n(tradicts)f(the)j(fact)f(that)g Fs(w)3130 1250 y Fp(i)p Fq(+1)3271 1238 y Ft(and)523 1338 y Fs(c)559 1350 y Fp(i)p Fq(+1)698 1338 y Ft(are)e(elemen)n(ts)g (of)h(\011)1336 1350 y Fp(lr)1394 1338 y Ft(\()p Fs(p;)14 b(t)p Ft(\).)37 b(Th)n(us)27 b(\(1\))h(holds.)36 b(Consequen)n(tly)-7 b(,)27 b(w)n(e)h(infer)629 1515 y Fr(j)p Fs(t)682 1527 y Fq(1)719 1515 y Fr(j)c Ft(=)e Fr(j)p Fs(x)923 1527 y Fq(1)961 1515 y Fs(a)1005 1527 y Fq(1)1056 1515 y Fs(:)14 b(:)g(:)g(x)1214 1527 y Fp(d)1249 1510 y Fd(0)1275 1515 y Fs(a)1319 1527 y Fp(d)1354 1510 y Fd(0)1380 1515 y Fs(x)1427 1527 y Fp(d)1462 1510 y Fd(0)1485 1527 y Fq(+1)1573 1515 y Fr(j)23 b(\024)g(j)p Fs(w)1789 1527 y Fq(1)1826 1515 y Fs(c)1862 1527 y Fq(1)1913 1515 y Fs(:)14 b(:)g(:)g(w)2083 1527 y Fp(d)2118 1510 y Fd(0)2145 1515 y Fs(c)2181 1527 y Fp(d)2216 1510 y Fd(0)2242 1515 y Fs(w)2301 1527 y Fp(d)2336 1510 y Fd(0)2358 1527 y Fq(+1)2447 1515 y Fr(j)23 b(\024)f(j)p Fs(w)2662 1527 y Fq(1)2700 1515 y Fs(c)2736 1527 y Fq(1)2787 1515 y Fs(:)14 b(:)g(:)g(w)2957 1527 y Fp(d)2996 1515 y Fs(c)3032 1527 y Fp(d)3071 1515 y Fs(w)3130 1527 y Fp(d)p Fq(+1)3253 1515 y Fr(j)p Fs(:)p Black 523 1691 a Fm(De\014nition)h(3.)p Black 41 w Ft(F)-7 b(or)28 b(ev)n(ery)f Fs(i)h Ft(and)h Fs(j)k Ft(where)28 b(0)c Fr(\024)h Fs(i)f Fr(\024)g Fs(m)k Ft(and)h(0)24 b Fr(\024)g Fs(j)30 b Fr(\024)24 b Fs(n)p Ft(,)29 b(let)g Fs(A)p Ft(\()p Fs(i;)14 b(j)5 b Ft(\))29 b(b)r(e)523 1791 y(the)f(alignmen)n(t)f(de\014ned)h(b)n(y)f(the)h(follo)n(wing)f (recurrences:)535 2112 y Fs(A)p Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)877 1892 y Fk(8)877 1967 y(>)877 1992 y(>)877 2017 y(<)877 2166 y(>)877 2191 y(>)877 2216 y(:)992 1962 y Ft([)14 b(])1019 b(if)28 b Fs(i)22 b Ft(=)h(0)k(or)g Fs(j)h Ft(=)22 b(0)992 2061 y Fs(A)p Ft(\()p Fs(i)5 b Fr(\000)g Ft(1)p Fs(;)14 b(j)5 b Ft(\)+)-28 b(+)n([)p Fs(P)12 b Ft([)p Fs(i)p Ft(])d Fr(!)g Fs(")p Ft(])305 b(else)27 b(if)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)g Fs(D)r Ft(\()p Fs(i)5 b Fr(\000)g Ft(1)p Fs(;)14 b(j)5 b Ft(\))16 b(+)j(1)992 2161 y Fs(A)p Ft(\()p Fs(i)5 b Fr(\000)g Ft(1)p Fs(;)14 b(j)9 b Fr(\000)c Ft(1\)+)-28 b(+)m([)p Fs(P)12 b Ft([)p Fs(i)p Ft(])d Fr(!)g Fs(T)j Ft([)p Fs(j)5 b Ft(]])83 b(else)27 b(if)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)g Fs(D)r Ft(\()p Fs(i)5 b Fr(\000)g Ft(1)p Fs(;)14 b(j)9 b Fr(\000)c Ft(1\))16 b(+)i Fs(\016)3264 2173 y Fp(i;j)992 2261 y Fs(A)p Ft(\()p Fs(i;)c(j)9 b Fr(\000)c Ft(1\)+)-28 b(+)o([)p Fs(")9 b Fr(!)g Fs(T)j Ft([)p Fs(j)5 b Ft(]])299 b(else)27 b(if)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)g Fs(D)r Ft(\()p Fs(i;)14 b(j)9 b Fr(\000)c Ft(1\))17 b(+)i(1)523 2438 y(Here)27 b(the)h(sym)n(b)r(ol)f([)14 b(])28 b(denotes)f(the)h (empt)n(y)g(list)g(and)f(+)-28 b(+)27 b(denotes)h(list)f (concatenation.)648 2614 y(Note)42 b(that)i Fs(A)p Ft(\()p Fs(i;)14 b(j)5 b Ft(\))43 b(is)f(de\014ned)i(in)f(the)g(same)f(sc)n (heme)g(as)h Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b Ft(\).)82 b(It)43 b(is)g(clear,)523 2714 y(that)34 b Fs(A)p Ft(\()p Fs(i;)14 b(j)5 b Ft(\))33 b(is)h(an)f(optimal)g(alignmen)n(t)g(of)g Fs(P)12 b Ft([1)i Fs(:)g(:)g(:)f(i)p Ft(])33 b(and)g Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b Ft(\),)35 b(i.e.,)g Fs(\016)s Ft(\()p Fs(A)p Ft(\()p Fs(i;)14 b(j)5 b Ft(\)\))33 b(=)523 2814 y Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))23 b(=)g Fs(edist)p Ft(\()p Fs(P)12 b Ft([1)i Fs(:)g(:)g(:)e(i)p Ft(])p Fs(;)i(W)e Ft(\()p Fs(i;)i(j)5 b Ft(\)\).)p Black 523 2990 a Fm(Theorem)15 b(4.)p Black 40 w FA(A)n(lgorithm)28 b(DLET)g(c)l(orr)l(e)l(ctly)g(solves)g(the)f(appr)l(oximate)i(string)e (matching)523 3090 y(pr)l(oblem.)p Black 523 3251 a(Pr)l(o)l(of.)p Black 43 w Ft(Supp)r(ose)33 b(there)g(is)g(an)f(appro)n(ximate)f(matc)n (h)i(ending)g(at)g(p)r(osition)g Fs(e)f Ft(in)h Fs(T)12 b Ft(,)34 b(i.e.,)523 3351 y Fs(D)r Ft(\()p Fs(m;)14 b(e)p Ft(\))37 b Fr(\024)f Fs(k)s Ft(.)62 b(Let)36 b Fs(v)j Ft(b)r(e)e(the)f(shortest)f(appro)n(ximate)f(matc)n(h)i(ending)g (at)g(p)r(osition)f Fs(e)523 3450 y Ft(and)25 b(assume)g(that)h Fs(v)i Ft(b)r(egins)e(at)f(p)r(osition)g Fs(b)p Ft(.)36 b(Ob)n(viously)-7 b(,)25 b(there)g(are)f(in)n(tegers)g Fs(h)3080 3462 y Fp(b)3139 3450 y Ft(and)h Fs(h)3346 3462 y Fp(e)3382 3450 y Ft(,)523 3550 y(1)e Fr(\024)g Fs(h)724 3562 y Fp(b)781 3550 y Fr(\024)g Fs(h)917 3562 y Fp(e)976 3550 y Fr(\024)g Fs(r)e Ft(+)d(1,)28 b(suc)n(h)f(that)h Fs(mp)1780 3562 y Fp(h)1819 3571 y Fj(b)1849 3562 y Fl(\000)p Fq(1)1962 3550 y Fs(<)23 b(b)g Fr(\024)g Fs(mp)2312 3562 y Fp(h)2351 3571 y Fj(b)2413 3550 y Ft(and)28 b Fs(mp)2690 3562 y Fp(h)2729 3570 y Fj(e)2760 3562 y Fl(\000)p Fq(1)2873 3550 y Fs(<)23 b(e)g Fr(\024)g Fs(mp)3226 3562 y Fp(h)3265 3570 y Fj(e)3301 3550 y Ft(.)38 b Fs(v)523 3649 y Ft(will)25 b(b)r(e)h(detected)g(if)f(DLET)g(computes)g Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b Ft(\))25 b(for)g(all)g Fs(i;)14 b(j)29 b Ft(with)d(0)d Fr(\024)f Fs(i)h Fr(\024)g Fs(m)p Ft(,)i Fs(b)e Fr(\024)g Fs(j)28 b Fr(\024)22 b Fs(e)p Ft(.)523 3749 y(Therefore,)k(w)n(e)i(ha)n(v)n(e)e(to)i(sho)n(w:)p Black 583 3926 a(\(1\))p Black 42 w FA(BPM)q Ft(\()p Fs(h)1000 3938 y Fp(b)1033 3926 y Ft(\))g(is)g(true,)p Black 583 4089 a(\(2\))p Black 42 w FA(CPM)q Ft(\()p Fs(h)p Ft(\))g(is)f(true,)h(for)f(all)g Fs(h;)14 b(h)1718 4101 y Fp(b)1774 4089 y Fs(<)23 b(h)g Fr(\024)f Fs(h)2068 4101 y Fp(e)2104 4089 y Ft(.)648 4266 y(Clearly)-7 b(,)35 b(\(1\))f(holds,)i(due)e(to)h(the)f(correctness)f(of)h(algorithm)f (LET.)h(T)-7 b(o)34 b(pro)n(v)n(e)f(\(2\),)523 4365 y(consider)k(some)g Fs(h;)14 b(h)1208 4377 y Fp(b)1281 4365 y Fs(<)40 b(h)g Fr(\024)f Fs(h)1626 4377 y Fp(e)1662 4365 y Ft(,)h(arbitrary)c(but)i (\014xed.)68 b(Let)38 b Fs(v)2714 4377 y Fq(1)2791 4365 y Ft(=)i Fs(T)12 b Ft([)p Fs(b)i(:)g(:)g(:)e(mp)3254 4377 y Fp(h)p Fl(\000)p Fq(1)3382 4365 y Ft(])523 4465 y(and)41 b Fs(v)738 4477 y Fq(2)821 4465 y Ft(=)k Fs(T)12 b Ft([)p Fs(mp)1130 4477 y Fp(h)p Fl(\000)p Fq(1)1285 4465 y Ft(+)27 b(1)14 b Fs(:)g(:)g(:)f(e)p Ft(],)44 b(as)d(illustrated) g(in)g(Figure)f(1.)78 b(F)-7 b(urthermore,)43 b(note)523 4565 y(that)38 b Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\))38 b(is)g(an)g(optimal)f(alignmen)n(t)h(of)f Fs(P)50 b Ft(and)38 b Fs(v)s Ft(.)68 b(Hence,)40 b(there)e(is)g(an)f Fs(i;)14 b Ft(0)39 b Fr(\024)523 4664 y Fs(i)f Fr(\024)h Fs(m)p Ft(,)g(suc)n(h)e(that)g Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\))38 b(can)f(b)r(e)g(split)g(in)n(to)g(alignmen)n(ts)g Fs(A)2674 4676 y Fq(1)2748 4664 y Ft(and)g Fs(A)2981 4676 y Fq(2)3056 4664 y Ft(where)f Fs(A)3367 4676 y Fq(1)523 4764 y Ft(is)h(an)f(alignmen)n(t)g(of)h Fs(P)12 b Ft([1)i Fs(:)g(:)g(:)f(i)p Ft(])37 b(and)f Fs(v)1791 4776 y Fq(1)1829 4764 y Ft(,)j(and)d Fs(A)2123 4776 y Fq(2)2198 4764 y Ft(is)g(an)h(alignmen)n(t)f(of)h Fs(P)12 b Ft([)p Fs(i)24 b Ft(+)g(1)14 b Fs(:)g(:)g(:)f(m)p Ft(])523 4863 y(and)30 b Fs(v)727 4875 y Fq(2)764 4863 y Ft(.)44 b(By)29 b(construction,)h(w)n (e)g(ha)n(v)n(e)e Fs(A)1845 4875 y Fq(1)1910 4863 y Ft(=)e Fs(A)p Ft(\()p Fs(i;)14 b(mp)2276 4875 y Fp(h)p Fl(\000)p Fq(1)2404 4863 y Ft(\).)44 b(According)29 b(to)g(the)h(remark)p Black 1943 5112 a(7)p Black eop %%Page: 8 8 8 7 bop Black Black 523 387 a Ft(after)32 b(De\014nition)i(3)e(it)h (follo)n(ws)e(that)i Fs(v)1780 399 y Fq(1)1849 387 y Ft(=)e Fs(W)12 b Ft(\()p Fs(i;)i(mp)2248 399 y Fp(h)p Fl(\000)p Fq(1)2375 387 y Ft(\))33 b(and)g Fs(\016)s Ft(\()p Fs(A)2741 399 y Fq(1)2779 387 y Ft(\))e(=)g Fs(D)r Ft(\()p Fs(i;)14 b(mp)3222 399 y Fp(h)p Fl(\000)p Fq(1)3350 387 y Ft(\).)523 487 y(Since)34 b Fs(\016)s Ft(\()p Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\)\))33 b(=)f Fs(D)r Ft(\()p Fs(m;)14 b(e)p Ft(\))33 b Fr(\024)f Fs(k)s Ft(,)j(w)n(e)e(conclude)g Fs(D)r Ft(\()p Fs(i;)14 b(mp)2532 499 y Fp(h)p Fl(\000)p Fq(1)2659 487 y Ft(\))33 b Fr(\024)f Fs(k)s Ft(.)54 b(No)n(w)33 b(let)h Fs(d)e Ft(=)523 587 y Fs(D)r Ft(\()p Fs(i;)14 b(mp)807 599 y Fp(h)p Fl(\000)p Fq(1)935 587 y Ft(\).)38 b(By)28 b(de\014nition,)h Fs(s)1591 599 y Fp(h;k)q Fl(\000)p Fp(d)1800 587 y Ft(=)24 b Fs(w)1948 599 y Fp(h)1991 587 y Fs(c)2027 599 y Fp(h)2084 587 y Fs(:)14 b(:)g(:)f(w)2253 599 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)p Fl(\000)p Fq(1)2556 587 y Fs(c)2592 599 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)p Fl(\000)p Fq(1)2894 587 y Fs(w)2953 599 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)3171 587 y Ft(.)38 b(Note)523 686 y(that)21 b Fs(w)755 698 y Fp(h)798 686 y Fs(;)14 b(c)871 698 y Fp(h)914 686 y Fs(;)g(:)g(:)g(:)g(;)g(w) 1158 698 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)p Fl(\000)p Fq(1)1460 686 y Fs(;)g(c)1533 698 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)p Fl(\000)p Fq(1)1835 686 y Fs(;)g(w)1931 698 y Fp(h)p Fq(+)p Fp(k)q Fl(\000)p Fp(d)2169 686 y Ft(are)20 b(the)h(\014rst)f(2\()p Fs(k)7 b Fr(\000)t Fs(d)p Ft(\))t(+)t(1)22 b(elemen)n(ts)e(of)523 786 y(the)g(partition)f (\011)1061 798 y Fp(lr)1118 786 y Ft(\()p Fs(P)r(;)14 b(T)e Ft([)p Fs(mp)1441 798 y Fp(h)p Fl(\000)p Fq(1)1571 786 y Ft(+)r(1)i Fs(:)g(:)g(:)e(n)p Ft(]\).)34 b(Moreo)n(v)n(er,)19 b(w)n(e)g(ha)n(v)n(e)f Fs(\016)s Ft(\()p Fs(A)2778 798 y Fq(2)2816 786 y Ft(\))23 b(=)g Fs(\016)s Ft(\()p Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\)\))r Fr(\000)523 886 y Fs(\016)s Ft(\()p Fs(A)657 898 y Fq(1)695 886 y Ft(\))28 b Fr(\024)f Fs(k)d Fr(\000)19 b Fs(d)p Ft(.)46 b(Therefore,)30 b(Lemma)g(2)g(is)h (applicable)f(with)h Fs(p)2600 898 y Fq(2)2664 886 y Ft(=)d Fs(P)12 b Ft([)p Fs(i)20 b Ft(+)g(1)14 b Fs(:)g(:)g(:)f(m)p Ft(])30 b(and)523 985 y Fs(t)553 997 y Fq(1)613 985 y Ft(=)23 b Fs(v)741 997 y Fq(2)803 985 y Ft(and)h(w)n(e)h(conclude)f Fr(j)p Fs(s)1481 997 y Fp(h;k)q Fl(\000)p Fp(d)1667 985 y Fr(j)f(\025)f(j)p Fs(v)1863 997 y Fq(2)1901 985 y Fr(j)p Ft(.)36 b(This)25 b(implies)f Fr(j)p Fs(W)12 b Ft(\()p Fs(i;)i(mp)2774 997 y Fp(h)p Fl(\000)p Fq(1)2902 985 y Ft(\))p Fr(j)e Ft(+)g Fr(j)p Fs(s)3108 997 y Fp(h;k)q Fl(\000)p Fp(d)3294 985 y Fr(j)23 b(\025)523 1085 y(j)p Fs(v)586 1097 y Fq(1)624 1085 y Fr(j)18 b Ft(+)g Fr(j)p Fs(v)811 1097 y Fq(2)849 1085 y Fr(j)23 b Ft(=)f Fr(j)p Fs(v)s Fr(j)i(\025)e Fs(m)d Fr(\000)f Fs(k)s Ft(,)27 b(i.e.,)h FA(CPM)q Ft(\()p Fs(h)p Ft(\))g(is)g(true.)37 b Fb(2)523 1324 y Fm(3.1)95 b(F)-8 b(urther)32 b(Impro)m(v)m(emen)m(ts) 523 1480 y Ft(The)20 b(\014lter)f(applied)h(in)f(algorithm)g(LET)g(can) g(b)r(e)h(impro)n(v)n(ed)e(b)n(y)h(taking)g(in)n(to)h(consideration)523 1579 y(the)32 b(arrangemen)n(t)d(of)i(the)h(sub)n(w)n(ords)d(of)j Fs(P)43 b Ft(in)32 b(an)f(appro)n(ximate)e(matc)n(h.)48 b(That)31 b(is,)h(one)523 1679 y(can)21 b(apply)h(Lemma)f(1,)h (according)e(to)i(whic)n(h)f(an)g(appro)n(ximate)f(matc)n(h)i(has)f(a)g (partition)g(of)523 1779 y(size)k Fr(\024)d Fs(k)28 b Ft(b)r(eginning)d(with)g(a)f FA(pr)l(e\014x)35 b Ft(and)24 b(ending)h(with)g(a)g FA(su\016x)34 b Ft(of)25 b Fs(P)12 b Ft(.)36 b(This)24 b(means)h(that)523 1878 y(an)j(appro)n(ximate)e (matc)n(h)h(is)h(a)f(sub)n(w)n(ord)f(of)i Fs(y)1987 1890 y Fp(h)2030 1878 y Fs(c)2066 1890 y Fp(h)2109 1878 y Fs(w)2168 1890 y Fp(h)p Fq(+1)2309 1878 y Fs(:)14 b(:)g(:)g(w)2479 1890 y Fp(h)p Fq(+)p Fp(k)2610 1878 y Fs(c)2646 1890 y Fp(h)p Fq(+)p Fp(k)2777 1878 y Fs(z)2816 1890 y Fp(h)p Fq(+)p Fp(k)q Fq(+1)3030 1878 y Ft(,)28 b(where)f Fs(y)3362 1890 y Fp(h)523 1978 y Ft(is)g(the)h(longest)f(su\016x)g(of)h Fs(w)1404 1990 y Fp(h)1475 1978 y Ft(that)f(is)h(a)f(pre\014x)g(of)g Fs(P)12 b Ft(,)28 b(and)f Fs(z)2450 1990 y Fp(h)p Fq(+)p Fp(k)q Fq(+1)2692 1978 y Ft(is)g(the)h(longest)e(pre\014x)523 2077 y(of)f Fs(w)674 2089 y Fp(h)p Fq(+)p Fp(k)q Fq(+1)913 2077 y Ft(that)g(is)g(a)f(su\016x)g(of)h Fs(P)12 b Ft(.)36 b(An)25 b(impro)n(v)n(ed)e(\014lter)i(algorithm)e(whic)n(h)i(exploits)f (this)523 2177 y(prop)r(ert)n(y)h(additionally)h(has)f(to)h(compute)h (for)e(eac)n(h)h Fs(h;)14 b Ft(1)22 b Fr(\024)h Fs(h)g Fr(\024)f Fs(r)d Ft(+)c(1,)26 b(the)h(length)f(of)g Fs(y)3362 2189 y Fp(h)523 2277 y Ft(and)32 b Fs(z)728 2289 y Fp(h)771 2277 y Ft(.)50 b(This)33 b(w)n(orks)d(as)i(follo)n(ws:)45 b(let)32 b($)g(b)r(e)h(a)f(c)n(haracter)e(not)i(o)r(ccuring)f(in)i Fs(P)44 b Ft(and)32 b(let)523 2376 y Fs(S)5 b(T)12 b Ft(\()p Fs(P)g Ft($\))18 b(denote)h(the)h(su\016x)f(tree)g(of)g(the)h (string)e Fs(P)12 b Ft($)19 b(\(cf.)h([7)o(]\).)35 b(W)-7 b(e)20 b(assume)e(that)i(the)f(no)r(des)523 2476 y(in)33 b Fs(S)5 b(T)12 b Ft(\()p Fs(P)g Ft($\))31 b(are)g(annotated)h(suc)n(h) g(that)h(for)e(eac)n(h)h(sub)n(w)n(ord)f Fs(u)h Ft(of)g Fs(P)44 b Ft(w)n(e)32 b(can)g(decide)h(in)523 2576 y(constan)n(t)22 b(time)h(if)f Fs(u)g Ft(is)h(a)e(pre\014x)h(of)h Fs(P)34 b Ft(or)21 b(if)i Fs(u)f Ft(is)g(a)g(su\016x)h(of)f Fs(P)12 b Ft(.)35 b(Suc)n(h)22 b(annotations)g(can)g(b)r(e)523 2675 y(computed)j(b)n(y)g(a)g(single)f(tra)n(v)n(ersal)f(of)i Fs(S)5 b(T)12 b Ft(\()p Fs(P)g Ft($\))23 b(in)j Fr(O)r Ft(\()p Fs(m)p Ft(\))g(space)e(and)h(time,)h(as)e(describ)r(ed)523 2775 y(in)29 b([6)o(].)40 b(The)28 b(length)h(of)f(the)h(submatc)n(h)f Fs(w)1872 2787 y Fp(h)1944 2775 y Ft(is)g(determined)h(b)n(y)f (scanning)f Fs(S)5 b(T)12 b Ft(\()p Fs(P)g Ft($\))27 b(from)523 2874 y(the)f Fs(r)r(oot)p Ft(,)h(driv)n(en)e(b)n(y)g(the)h (c)n(haracters)d(in)j Fs(T)12 b Ft([)p Fs(mp)2056 2886 y Fp(h)p Fl(\000)p Fq(1)2197 2874 y Ft(+)i(1)g Fs(:)g(:)g(:)f(n)p Ft(].)36 b(F)-7 b(or)25 b(eac)n(h)g(pre\014x)g Fs(u)g Ft(of)g Fs(w)3361 2886 y Fp(h)523 2974 y Ft(one)g(c)n(hec)n(ks)f(in)i (constan)n(t)f(time)h(if)g Fs(u)f Ft(is)g(a)g(su\016x)g(of)h Fs(P)12 b Ft(.)36 b(The)25 b(longest)g(suc)n(h)g Fs(u)g Ft(is)g Fs(z)3097 2986 y Fp(h)3140 2974 y Ft(.)36 b(Th)n(us,)523 3074 y Fr(j)p Fs(z)585 3086 y Fp(h)628 3074 y Fr(j)27 b Ft(can)g(b)r(e)h(computed)g(at)f(virtually)g(no)g(cost.)36 b(The)27 b(length)h(of)f Fs(y)2641 3086 y Fp(h)2711 3074 y Ft(can)g(b)r(e)h(obtained)f(b)n(y)523 3173 y(c)n(hec)n(king)21 b(for)h(eac)n(h)g(su\016x)h Fs(u)f Ft(of)g Fs(w)1589 3185 y Fp(h)1655 3173 y Ft(in)h(constan)n(t)f(time)h(if)g Fs(u)f Ft(is)g(a)h(pre\014x)f(of)g Fs(P)12 b Ft(.)35 b(The)23 b(longest)523 3273 y(suc)n(h)28 b Fs(u)f Ft(is)h Fs(y)911 3285 y Fp(h)954 3273 y Ft(.)38 b(Eac)n(h)27 b(su\016x)h(of)g Fs(w)1596 3285 y Fp(h)1667 3273 y Ft(can)g(b)r(e)g (found)g(in)h(constan)n(t)e(time)h(\(on)g(the)h(a)n(v)n(erage\),)523 3373 y(using)i(the)h FA(su\016x)g(links)39 b Ft(of)32 b Fs(S)5 b(T)12 b Ft(\()p Fs(P)g Ft($\))30 b(\(see)h([7]\).)49 b(Ho)n(w)n(ev)n(er,)30 b(exp)r(erimen)n(tal)h(results)g(sho)n(w)523 3472 y(that)h(the)f(computation)g(of)h Fs(y)1481 3484 y Fp(h)1555 3472 y Ft(do)r(es)f(not)g(pa)n(y)g(o\013.)48 b(F)-7 b(ortunately)g(,)31 b(in)h(algorithm)e(DLET)523 3572 y(table)25 b Fs(W)37 b Ft(con)n(tains)24 b(all)h(information)f (necessary)g(to)g(determine)i(the)f(length)g(of)g(the)g(pre\014x)523 3671 y(of)c(a)g(p)r(oten)n(tial)h(appro)n(ximate)e(matc)n(h.)34 b(Therefore,)22 b(the)f(pre\014xes)g Fs(y)2643 3683 y Fp(h)2707 3671 y Ft(of)h Fs(P)33 b Ft(are)20 b(not)i(needed)523 3771 y(for)27 b(c)n(hec)n(king)g(the)g(dynamic)h(condition.)523 4010 y Fm(3.2)95 b(Dynamic)31 b(Filtering)f(Applied)h(to)h(SET)523 4166 y Ft(Our)g(concept)h(of)g(dynamic)g(\014ltering)g(also)f(applies)h (to)g(algorithm)e(SET,)i(the)h(sublinear)523 4266 y(exp)r(ected)e(time) f(algorithm)f(of)i(Chang)e(and)h(La)n(wler[2)n(].)48 b(The)32 b(approac)n(h)d(is)i(to)g(com)n(bine)523 4365 y(the)k(basic)e(idea)h(of)g(algorithm)g(SET)f(with)i(the)g(\\dynamic)e (comp)r(onen)n(t")h(of)g(algorithm)523 4465 y(DLET.)f(As)h(in)f (algorithm)g(SET,)g Fs(T)44 b Ft(is)33 b(divided)h(in)n(to)f(non-o)n(v) n(erlapping)e(regions)h Fs(R)3265 4477 y Fp(h)3340 4465 y Ft(=)523 4565 y Fs(T)12 b Ft([)p Fs(q)644 4577 y Fp(h)700 4565 y Fs(:)i(:)g(:)g(q)848 4577 y Fp(h)902 4565 y Ft(+)d Fs(l)h Fr(\000)f Ft(1],)23 b(where)g Fs(l)i Ft(=)d Fr(b)p Ft(\()p Fs(m)d Fr(\000)f Fs(k)s Ft(\))p Fs(=)p Ft(2)p Fr(c)23 b Ft(and)g Fs(q)2235 4577 y Fp(h)2301 4565 y Ft(=)g Fs(hl)12 b Ft(+)f(1.)35 b(In)24 b(analogy)d(to)j(DLET,)523 4664 y(a)36 b(dynamic)h(programming)d(computation)i(is)h(applied)f (only)g(to)h(those)f(regions,)h(whic)n(h)523 4764 y(con)n(tain)g(the)h (b)r(eginning)f(or)g(the)h(con)n(tin)n(uation)f(of)g(a)h(p)r(oten)n (tial)f(appro)n(ximate)f(matc)n(h.)523 4863 y(F)-7 b(or)27 b(more)g(details,)g(see)g([5].)p Black 1943 5112 a(8)p Black eop %%Page: 9 9 9 8 bop Black Black 523 387 a Fm(3.3)95 b(Exp)s(ected)31 b(Case)h(Analysis)523 553 y Ft(W)-7 b(e)23 b(assume)e(that)h Fs(T)34 b Ft(is)22 b(a)f(uniformly)h(random)g(string)f(o)n(v)n(er)f (the)j(\014nite)g(alphab)r(et)f Fr(A)g Ft(of)g(size)523 653 y Fs(b)27 b Ft(\(i.e.,)h(eac)n(h)e(c)n(haracter)g(of)h Fr(A)g Ft(o)r(ccurs)g(with)h(probabilit)n(y)e(1)p Fs(=b)g Ft(at)h(a)g(p)r(osition)g(in)h Fs(T)12 b Ft(\).)36 b(Our)523 753 y(results)25 b(are)f(consisten)n(t)h(with)h(those)f(of)g([2].)36 b(In)26 b(con)n(trast)e(to)h([2],)h(ho)n(w)n(ev)n(er,)e(our)g(pro)r (ofs)h(in)523 852 y([5])30 b(apply)g(to)g(ev)n(ery)f(alphab)r(et)h (size)g(\(not)g(only)g(to)g(the)g(case)f Fs(b)e Ft(=)g(2\).)45 b(In)30 b(particular,)f(w)n(e)523 952 y(are)24 b(able)g(to)g(explain)h (the)g(m)n(ysterious)e(constan)n(ts)h Fs(c)2169 964 y Fq(1)2231 952 y Ft(and)g Fs(c)2425 964 y Fq(2)2487 952 y Ft(of)h(the)g(Main)f(Lemma)g(in)h([2])523 1052 y(in)h(terms)f(of)g Fs(b)g Ft(and)g Fs(m)g Ft(b)n(y)g(simply)h(applying)e(a)h(v)-5 b(arian)n(t)24 b(of)i(the)f(w)n(ell-kno)n(wn)f(Tc)n(heb)n(yc)n(hev)523 1151 y(inequalit)n(y)h(instead)h(of)f(referring)f(to)i(\\the)f (Cherno\013)h(b)r(ound)g(tec)n(hnique")f(as)g(done)g(in)h([2].)523 1251 y(This)31 b(giv)n(es)e(more)h(general,)g(self-con)n(tained,)h(and) f(simpler)h(pro)r(ofs.)45 b(The)31 b(Main)f(Lemma)523 1350 y(in)e([2)o(])g(reads)f(as)g(follo)n(ws.)p Black 523 1533 a Fm(Lemma)14 b(5.)p Black 40 w FA(F)-6 b(or)30 b(suitably)g(chosen)g(c)l(onstants)f Fs(c)2091 1545 y Fq(1)2158 1533 y FA(and)g Fs(c)2354 1545 y Fq(2)2392 1533 y FA(,)h(and)f Fs(k)d Ft(=)2894 1500 y Fp(m)p 2774 1514 300 4 v 2774 1562 a Fq(log)2860 1577 y Fj(b)2902 1562 y Fp(m)p Fq(+)p Fp(c)3042 1570 y Ff(1)3101 1533 y Fr(\000)18 b Fs(c)3220 1545 y Fq(2)3257 1533 y FA(,)30 b(we)523 1653 y(have)h Fs(P)12 b(r)r Ft([)p Fr(j)p Fs(s)903 1665 y Fp(h;k)q Fq(+1)1087 1653 y Fr(j)23 b(\025)g Fs(m)18 b Fr(\000)g Fs(k)s Ft(])23 b Fs(<)g Ft(1)p Fs(=m)1732 1623 y Fq(3)1768 1653 y FA(.)648 1836 y Ft(In)35 b(the)i(string)e (searc)n(hing)f(literature,)j(this)f(result)f(is)h(often)g(cited)g(but) g(few)g(p)r(eople)523 1935 y(seem)26 b(to)g(kno)n(w)f(ho)n(w)g(these)h (constan)n(ts)f(can)g(actually)h(b)r(e)g(computed.)36 b(In)27 b([5)o(],)g(it)f(is)g(sho)n(wn)523 2035 y(ho)n(w)h Fs(c)732 2047 y Fq(1)797 2035 y Ft(and)g Fs(c)994 2047 y Fq(2)1059 2035 y Ft(can)g(b)r(e)h(obtained)g(from)f(the)h(theorem)f (b)r(elo)n(w.)p Black 523 2218 a Fm(Theorem)15 b(6.)p Black 40 w FA(If)36 b Fs(k)g Fr(\024)1357 2176 y Fp(m)p Fl(\000)p Fq(6)11 b(log)1598 2192 y Fj(b)1640 2176 y Fp(m)p Fq(+3)p 1308 2199 524 4 v 1308 2246 a(log)1394 2262 y Fj(b)1436 2246 y Fp(m)p Fq(+2+2)g(log)1760 2262 y Fj(b)1802 2246 y Fp(c)1864 2218 y Fr(\000)23 b Ft(2)p FA(,)36 b(wher)l(e)g Fs(c)e Ft(=)2463 2155 y Fk(P)2550 2174 y Fp(m)p Fl(\000)p Fq(log)2747 2189 y Fj(b)2789 2174 y Fp(m)2550 2243 y(d)p Fq(=0)2852 2218 y Ft(\()2920 2185 y Fq(1)p 2894 2199 84 4 v 2894 2207 a Fl(p)p 2949 2207 30 3 v 50 x Fp(b)2988 2218 y Ft(\))3020 2187 y Fp(d)3059 2218 y FA(,)j(then)f(we)523 2339 y(have)31 b Fs(P)12 b(r)r Ft([)p Fr(j)p Fs(s)903 2351 y Fp(h;k)q Fq(+1)1087 2339 y Fr(j)23 b(\025)g Fs(m)18 b Fr(\000)g Fs(k)s Ft(])23 b Fs(<)g Ft(1)p Fs(=m)1732 2309 y Fq(3)1768 2339 y FA(.)648 2521 y Ft(Using)e(Theorem)g(6,)h(it)g(is)g(p)r(ossible)f(to)h(sho)n(w)f (that)h(the)g(exp)r(ected)g(running)f(time)h(of)g(the)523 2621 y(c)n(hec)n(king)h(phase)h(of)g(LET)f(and)h(DLET)g(is)g Fr(O)r Ft(\()p Fs(n)p Ft(\).)37 b(Since)24 b(the)g(prepro)r(cessing)e (and)i(\014ltering)523 2721 y(phase)31 b(requires)e Fr(O)r Ft(\()p Fs(n)p Ft(\))j(time,)h(it)f(follo)n(ws)e(that)h(the)h(exp)r (ected)f(running)g(time)g(of)h(LET)e(is)523 2820 y Fr(O)r Ft(\()p Fs(n)p Ft(\).)37 b(The)25 b(same)g(holds)g(for)g(the)h(impro)n (v)n(ed)e(v)n(ersion)g(DLET,)h(but)h(the)g(b)r(ound)f(for)g Fs(k)j Ft(can)523 2920 y(b)r(e)g(w)n(eak)n(ened;)e(see)i([5)o(].)523 3169 y Fm(3.4)95 b(Exp)s(erimen)m(tal)30 b(Results)523 3335 y Ft(In)j(our)e(exp)r(erimen)n(ts)h(w)n(e)g(v)n(eri\014ed)f(that)i (our)f(dynamic)g(\014ltering)g(tec)n(hnique,)h(when)g(ap-)523 3435 y(plied)27 b(to)g(the)g(static)g(\014lter)g(algorithms)f(LET)g (and)h(SET,)f(leads)h(to)f(an)h(impro)n(v)n(ed)f(critical)523 3534 y(threshold)i Fs(k)932 3555 y Fq(max)1087 3534 y Ft(\(cf.)h(the)g(in)n(tro)r(duction\))f(for)g(all)g(alphab)r(et)h (sizes)f(and)g(pattern)g(lengths.)523 3634 y(In)j(a)f(\014rst)g(test)g (series)g(w)n(e)g(used)g(random)g(text)g(strings)g Fs(T)41 b Ft(of)31 b(length)f Fs(n)e Ft(=)f(500)p Fs(;)p Ft(000)h(o)n(v)n(er) 523 3733 y(alphab)r(ets)33 b(of)h(size)f(2)p Fs(;)14 b Ft(4)p Fs(;)g Ft(10)31 b(and)i(40.)54 b(W)-7 b(e)33 b(c)n(hose)g(patterns)g(of)g(a)g(\014xed)g(length)h Fs(m)f Ft(=)f(64)523 3833 y(o)n(v)n(er)25 b(the)i(same)f(alphab)r(ets.)36 b(Figures)26 b(2)g(and)g(3)g(sho)n(w)g(the)h(e\013ect)g(of)f(a)g(v)-5 b(arying)26 b(threshold)523 3933 y(v)-5 b(alue)31 b Fs(k)k Ft(on)c(the)g FA(\014ltr)l(ation)i(e\016ciency)41 b Fs(f)d Ft(=)28 b(\()p Fs(n)22 b Fr(\000)e Fs(n)2217 3945 y Fp(p)2255 3933 y Ft(\))p Fs(=n)p Ft(,)32 b(where)f Fs(n)2728 3945 y Fp(p)2798 3933 y Ft(is)g(the)h(n)n(um)n(b)r(er)f(of)523 4032 y(p)r(ositions)i(in)h Fs(T)44 b Ft(left)34 b(for)f(dynamic)h (programming.)52 b(It)34 b(can)f(b)r(e)g(seen)h(that)f(in)h(order)e(to) 523 4132 y(ac)n(hiev)n(e)c(a)i(particular)e(\014ltration)h(e\016ciency) -7 b(,)31 b(algorithms)d(DLET)i(and)f(DSET)h(allo)n(w)f(for)523 4232 y(a)f(larger)e(v)-5 b(alue)28 b(of)g Fs(k)i Ft(than)f(algorithms)d (LET)i(and)f(SET,)h(resp)r(ectiv)n(ely)-7 b(.)37 b(The)29 b(adv)-5 b(an)n(tage)523 4331 y(is)32 b(indep)r(enden)n(t)i(of)e(the)h (alphab)r(et)f(size.)51 b(Figure)32 b(4)g(sho)n(ws)f(the)i(e\013ect)g (of)f(the)h(alphab)r(et)523 4431 y(size)28 b(on)f Fs(k)839 4451 y Fq(max)966 4431 y Ft(.)38 b(All)29 b(algorithms)d(ac)n(hiev)n(e) h(a)h(larger)e(v)-5 b(alue)28 b(of)g Fs(k)2523 4451 y Fq(max)2677 4431 y Ft(with)h(gro)n(wing)d(alpha-)523 4530 y(b)r(et)33 b(size.)50 b(The)33 b(dynamic)f(\014lter)g(algorithms) f(are)g(alw)n(a)n(ys)f(sup)r(erior)h(to)h(the)h(static)f(\014lter)523 4630 y(algorithms.)p Black 1943 5112 a(9)p Black eop %%Page: 10 10 10 9 bop Black Black Black Black 653 374 a Fw(Fig.)30 b(2.)k Fz(Filtration)26 b(e\016ciency)g(for)h(\014xed)d(pattern)i (length)f Fi(m)c Fz(=)g(64)27 b(\(LET)f(and)f(DLET\))644 1278 y @beginspecial 50 @llx 50 @lly 914 @urx 403 @ury 3168 @rwi 992 @rhi @setspecial %%BeginDocument: AKlinear.plot %!PS-Adobe-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 914 403 %%Pages: (atend) %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 840 351 M 7569 0 V 840 351 M 0 3106 V LTb 840 351 M 63 0 V 7506 0 R -63 0 V 756 351 M (0) Rshow 840 972 M 63 0 V 7506 0 R -63 0 V 756 972 M (20) Rshow 840 1593 M 63 0 V 7506 0 R -63 0 V -7590 0 R (40) Rshow 840 2215 M 63 0 V 7506 0 R -63 0 V -7590 0 R (60) Rshow 840 2836 M 63 0 V 7506 0 R -63 0 V -7590 0 R (80) Rshow 840 3457 M 63 0 V 7506 0 R -63 0 V -7590 0 R (100) Rshow 840 351 M 0 63 V 0 3043 R 0 -63 V 840 211 M (0) Cshow 2192 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (5) Cshow 3543 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (10) Cshow 4895 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (15) Cshow 6246 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (20) Cshow 7598 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (25) Cshow 840 351 M 7569 0 V 0 3106 V -7569 0 V 840 351 L 140 1904 M currentpoint gsave translate 90 rotate 0 0 M (filtration efficiency in %) Cshow grestore 4624 71 M (number of differences k) Cshow 2056 3612 M (|A|=2) Cshow 3381 3612 M (|A|=4) Cshow 4733 3612 M (|A|=10) Cshow 6030 3612 M (|A|=40) Cshow LT0 LT1 7926 3254 M (LET) Rshow 8010 3254 M 252 0 V 1651 3457 M 270 -12 V 271 -417 V 2462 1193 L 2732 379 L 271 -28 V 270 0 V LT3 7926 3114 M (DLET) Rshow 8010 3114 M 252 0 V 1651 3457 M 270 0 V 271 -25 V 270 -475 V 2732 1305 L 3003 419 L 270 -68 V LT1 3003 3457 M 270 -6 V 270 -221 V 3814 1842 L 4084 497 L 4354 351 L 271 0 V 270 0 V LT3 3003 3457 M 270 0 V 270 -9 V 271 -230 V 4084 1991 L 4354 631 L 4625 360 L 270 -9 V LT1 4354 3457 M 271 -6 V 270 -131 V 5165 2311 L 5435 792 L 5706 367 L 270 -16 V 270 0 V LT3 4354 3457 M 271 0 V 270 -9 V 270 -156 V 270 -922 V 5706 941 L 5976 391 L 270 -40 V LT1 5706 3457 M 270 -12 V 270 -441 V 6517 1438 L 6787 519 L 7057 360 L 271 -9 V 270 0 V LT3 5706 3457 M 270 0 V 270 -47 V 271 -630 V 6787 1463 L 7057 624 L 7328 385 L 270 -31 V stroke grestore end showpage %%Trailer %%Pages: 1 %%EndDocument @endspecial 659 1378 a Fw(Fig.)k(3.)34 b Fz(Filtration)27 b(e\016ciency)e(for)i(\014xed)e(pattern)g(length)h Fi(m)21 b Fz(=)g(64)26 b(\(SET)g(and)f(DSET\))644 2282 y @beginspecial 50 @llx 50 @lly 914 @urx 403 @ury 3168 @rwi 992 @rhi @setspecial %%BeginDocument: AKsublinear.plot %!PS-Adobe-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 914 403 %%Pages: (atend) %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 840 351 M 7569 0 V 840 351 M 0 3106 V LTb 840 351 M 63 0 V 7506 0 R -63 0 V 756 351 M (0) Rshow 840 972 M 63 0 V 7506 0 R -63 0 V 756 972 M (20) Rshow 840 1593 M 63 0 V 7506 0 R -63 0 V -7590 0 R (40) Rshow 840 2215 M 63 0 V 7506 0 R -63 0 V -7590 0 R (60) Rshow 840 2836 M 63 0 V 7506 0 R -63 0 V -7590 0 R (80) Rshow 840 3457 M 63 0 V 7506 0 R -63 0 V -7590 0 R (100) Rshow 840 351 M 0 63 V 0 3043 R 0 -63 V 840 211 M (0) Cshow 1730 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (2) Cshow 2621 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (4) Cshow 3511 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (6) Cshow 4402 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (8) Cshow 5292 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (10) Cshow 6183 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (12) Cshow 7073 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (14) Cshow 7964 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (16) Cshow 840 351 M 7569 0 V 0 3106 V -7569 0 V 840 351 L 140 1904 M currentpoint gsave translate 90 rotate 0 0 M (filtration efficiency in %) Cshow grestore 4624 71 M (number of differences k) Cshow 1641 3612 M (|A|=2) Cshow 2977 3612 M (|A|=4) Cshow 4402 3612 M (|A|=10) Cshow 5827 3612 M (|A|=40) Cshow LT0 LT4 7926 3254 M (SET) Rshow 8010 3254 M 252 0 V 1285 3457 M 445 -37 V 2176 1808 L 2621 373 L 445 -22 V 445 0 V LT2 7926 3114 M (DSET) Rshow 8010 3114 M 252 0 V 1285 3457 M 445 0 V 446 -158 V 2621 1758 L 3066 388 L 445 -37 V LT4 2621 3457 M 445 -78 V 3511 2239 L 3957 391 L 445 -40 V 445 0 V LT2 2621 3457 M 445 -3 V 445 -112 V 3957 1867 L 4402 525 L 4847 351 L LT4 3957 3457 M 445 -25 V 445 -894 V 5292 829 L 5738 351 L 445 0 V 445 0 V LT2 3957 3457 M 445 0 V 445 -106 V 445 -702 V 5738 798 L 6183 376 L 445 -25 V LT4 5292 3457 M 446 -22 V 445 -481 V 6628 724 L 7073 376 L 446 -25 V 445 0 V LT2 5292 3457 M 446 0 V 445 -50 V 6628 2261 L 7073 1140 L 7519 435 L 445 -72 V stroke grestore end showpage %%Trailer %%Pages: 1 %%EndDocument @endspecial 1217 2381 a Fw(Fig.)30 b(4.)j Fi(k)1538 2394 y Fn(max)1681 2381 y Fz(for)26 b(\014xed)f(pattern)g(length)h Fi(m)21 b Fz(=)g(64)630 3285 y @beginspecial 50 @llx 50 @lly 914 @urx 403 @ury 3168 @rwi 992 @rhi @setspecial %%BeginDocument: AKmax.plot %!PS-Adobe-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 914 403 %%Pages: (atend) %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 840 351 M 0 3106 V LTb 840 351 M 63 0 V 7506 0 R -63 0 V 756 351 M (2) Rshow 840 662 M 63 0 V 7506 0 R -63 0 V 756 662 M (4) Rshow 840 972 M 63 0 V 7506 0 R -63 0 V 756 972 M (6) Rshow 840 1283 M 63 0 V 7506 0 R -63 0 V -7590 0 R (8) Rshow 840 1593 M 63 0 V 7506 0 R -63 0 V -7590 0 R (10) Rshow 840 1904 M 63 0 V 7506 0 R -63 0 V -7590 0 R (12) Rshow 840 2215 M 63 0 V 7506 0 R -63 0 V -7590 0 R (14) Rshow 840 2525 M 63 0 V 7506 0 R -63 0 V -7590 0 R (16) Rshow 840 2836 M 63 0 V 7506 0 R -63 0 V -7590 0 R (18) Rshow 840 3146 M 63 0 V 7506 0 R -63 0 V -7590 0 R (20) Rshow 840 3457 M 63 0 V 7506 0 R -63 0 V -7590 0 R (22) Rshow 840 351 M 0 63 V 0 3043 R 0 -63 V 840 211 M (0) Cshow 1786 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (5) Cshow 2732 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (10) Cshow 3678 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (15) Cshow 4625 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (20) Cshow 5571 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (25) Cshow 6517 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (30) Cshow 7463 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (35) Cshow 8409 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (40) Cshow 840 351 M 7569 0 V 0 3106 V -7569 0 V 840 351 L 140 1904 M currentpoint gsave translate 90 rotate 0 0 M (maximum number of differences) Cshow grestore 4624 71 M (alphabet size |A|) Cshow LT0 LT1 1500 3254 M (LET) Rshow 1584 3254 M 252 0 V 1218 972 M 379 777 V 1135 776 V 5677 621 V LT3 1500 3114 M (DLET) Rshow 1584 3114 M 252 0 V 1218 1128 M 379 776 V 1135 777 V 5677 621 V LT4 1500 2974 M (SET) Rshow 1584 2974 M 252 0 V 1218 506 M 379 466 V 1135 466 V 5677 466 V LT2 1500 2834 M (DSET) Rshow 1584 2834 M 252 0 V 1218 662 M 379 466 V 1135 465 V 5677 466 V stroke grestore end showpage %%Trailer %%Pages: 1 %%EndDocument @endspecial 648 3464 a Ft(In)34 b(a)f(second)g(test)i(series)e Fs(T)45 b Ft(w)n(as)32 b(an)i(English)f(text)h(of)g(length)g Fs(n)g Ft(=)f(500)p Fs(;)p Ft(000.)53 b(The)523 3564 y(alphab)r(et)20 b(size)g(w)n(as)f Fr(jAj)k Ft(=)g(80.)33 b(W)-7 b(e)21 b(c)n(hose)e(pattern)h(of)g(length)g Fs(m)j Fr(2)g(f)p Ft(16)p Fs(;)14 b Ft(32)p Fs(;)g Ft(64)p Fs(;)g Ft(128)p Fr(g)h Ft(o)n(v)n(er)523 3663 y(the)31 b(same)f(alphab)r(et.) 46 b(Figures)29 b(5)h(and)h(6)f(sho)n(w)f(ho)n(w)h(a)g(v)-5 b(arying)30 b(pattern)g(length)h(e\013ects)523 3763 y(the)39 b(\014ltration)f(e\016ciency)-7 b(.)70 b(It)39 b(can)g(b)r(e)g(seen)f (that)h(in)g(order)e(to)i(ac)n(hiev)n(e)e(a)h(particular)523 3862 y(\014ltration)33 b(e\016ciency)-7 b(,)36 b(algorithms)c(DLET)h (and)h(DSET)g(allo)n(w)e(for)i(a)f(larger)f(v)-5 b(alue)33 b(of)h Fs(k)523 3962 y Ft(than)28 b(algorithms)f(LET)h(and)g(SET,)g (resp)r(ectiv)n(ely)-7 b(.)38 b(The)29 b(larger)d(the)j(pattern,)f(the) h(larger)523 4062 y(the)h(impro)n(v)n(emen)n(t.)42 b(Figure)29 b(7)h(sho)n(ws)e(the)i(e\013ect)h(of)e(the)h(pattern)g(length)g(on)f Fs(k)3103 4082 y Fq(max)3230 4062 y Ft(.)44 b(All)523 4161 y(algorithms)23 b(ac)n(hiev)n(e)g(a)h(larger)f(v)-5 b(alue)24 b(of)h Fs(k)1861 4182 y Fq(max)2012 4161 y Ft(with)g Fs(m)g Ft(b)r(ecoming)f(larger.)34 b(The)24 b(dynamic)523 4261 y(\014lter)k(algorithms)e(are)g(alw)n(a)n(ys)g(sup)r (erior)h(to)g(the)h(static)f(\014lter)h(algorithms.)648 4361 y(There)23 b(is)h(virtually)f(no)h(time)g(p)r(enalt)n(y)g(for)g (the)g(complex)g(dynamic)f(\014lter)h(algorithms,)523 4460 y(if)i(the)g(\014ltration)f(e\016ciency)h(is)f(almost)g(100\045.) 35 b(When)26 b(the)g(static)g(\014lter)f(lo)r(oses)g(its)g(e\013ect,) 523 4560 y(while)g(the)h(dynamic)f(is)g(still)g(\014ltering,)g(the)h (latter)f(is)g(m)n(uc)n(h)g(faster)f(than)h(the)h(former.)35 b(Fi-)523 4659 y(nally)-7 b(,)23 b(if)f Fs(k)k(>)d(k)1010 4680 y Fq(max)1137 4659 y Ft(,)g(then)f(the)g(dynamic)g(\014lter)g(has) f(a)h(considerable)e(o)n(v)n(erhead.)33 b(Ho)n(w)n(ev)n(er,)523 4759 y(in)28 b(this)g(case,)f(pure)g(dynamic)g(programming)f(is)h (preferable)g(an)n(yw)n(a)n(y)-7 b(.)p Black 1922 5112 a(10)p Black eop %%Page: 11 11 11 10 bop Black Black Black Black 659 374 a Fw(Fig.)30 b(5.)j Fz(Filtration)27 b(e\016ciency)f(for)h(\014xed)d(alphab)r(et)i (size)h Fy(j)p Fi(A)p Fy(j)21 b Fz(=)g(80)27 b(\(LET)f(and)f(DLET\))644 1278 y @beginspecial 50 @llx 50 @lly 914 @urx 403 @ury 3168 @rwi 992 @rhi @setspecial %%BeginDocument: MKlinear.plot %!PS-Adobe-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 914 403 %%Pages: (atend) %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 840 351 M 7569 0 V 840 351 M 0 3106 V LTb 840 351 M 63 0 V 7506 0 R -63 0 V 756 351 M (0) Rshow 840 972 M 63 0 V 7506 0 R -63 0 V 756 972 M (20) Rshow 840 1593 M 63 0 V 7506 0 R -63 0 V -7590 0 R (40) Rshow 840 2215 M 63 0 V 7506 0 R -63 0 V -7590 0 R (60) Rshow 840 2836 M 63 0 V 7506 0 R -63 0 V -7590 0 R (80) Rshow 840 3457 M 63 0 V 7506 0 R -63 0 V -7590 0 R (100) Rshow 840 351 M 0 63 V 0 3043 R 0 -63 V 840 211 M (0) Cshow 1786 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (5) Cshow 2732 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (10) Cshow 3678 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (15) Cshow 4625 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (20) Cshow 5571 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (25) Cshow 6517 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (30) Cshow 7463 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (35) Cshow 8409 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (40) Cshow 840 351 M 7569 0 V 0 3106 V -7569 0 V 840 351 L 140 1904 M currentpoint gsave translate 90 rotate 0 0 M (filtration efficiency in %) Cshow grestore 4624 71 M (number of differences k) Cshow 935 3612 M (m=8) Cshow 1332 3612 M (m=16) Cshow 1938 3612 M (m=32) Cshow 3338 3612 M (m=64) Cshow 6063 3612 M (m=128) Cshow LT0 LT1 7926 3254 M (LET) Rshow 8010 3254 M 252 0 V 840 3454 M 189 -190 V 1218 1562 L 1408 363 L 189 -12 V LT3 7926 3114 M (DLET) Rshow 8010 3114 M 252 0 V 840 3457 M 189 -37 V 189 -826 V 1408 485 L 1597 351 L LT1 1218 3445 M 190 -196 V 1597 2193 L 1786 655 L 1975 357 L 190 -6 V LT3 1218 3454 M 190 -34 V 189 -392 V 1786 1609 L 1975 475 L 2165 351 L LT1 1786 3451 M 189 -22 V 190 -168 V 189 -720 V 2543 1255 L 2732 500 L 2921 360 L 190 -9 V 189 0 V LT3 1786 3457 M 189 -6 V 190 -25 V 189 -180 V 189 -708 V 2732 1314 L 2921 547 L 3111 370 L 189 -19 V LT1 3111 3451 M 189 -25 V 189 -84 V 189 -289 V 190 -680 V 189 -954 V 4246 696 L 4435 410 L 190 -56 V 189 -3 V 189 0 V LT3 3111 3457 M 189 -3 V 189 -16 V 189 -52 V 190 -193 V 189 -503 V 189 -839 V 189 -835 V 4625 534 L 4814 382 L 189 -28 V LT1 5760 3451 M 189 -22 V 189 -68 V 190 -168 V 189 -376 V 189 -624 V 189 -742 V 7084 857 L 7274 525 L 7463 394 L 189 -34 V 189 -9 V 190 0 V 189 0 V LT3 5760 3457 M 189 -3 V 189 -6 V 190 -28 V 189 -78 V 189 -196 V 189 -379 V 189 -580 V 190 -665 V 7463 966 L 7652 609 L 7841 438 L 190 -62 V 189 -19 V stroke grestore end showpage %%Trailer %%Pages: 1 %%EndDocument @endspecial 665 1378 a Fw(Fig.)k(6.)34 b Fz(Filtration)27 b(e\016ciency)e(for)i(\014xed)e(alphab)r(et)g(size)i Fy(j)p Fi(A)p Fy(j)22 b Fz(=)f(80)26 b(\(SET)g(and)f(DSET\))644 2282 y @beginspecial 50 @llx 50 @lly 914 @urx 403 @ury 3168 @rwi 992 @rhi @setspecial %%BeginDocument: MKsublinear.plot %!PS-Adobe-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 914 403 %%Pages: (atend) %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 840 351 M 7569 0 V 840 351 M 0 3106 V LTb 840 351 M 63 0 V 7506 0 R -63 0 V 756 351 M (0) Rshow 840 972 M 63 0 V 7506 0 R -63 0 V 756 972 M (20) Rshow 840 1593 M 63 0 V 7506 0 R -63 0 V -7590 0 R (40) Rshow 840 2215 M 63 0 V 7506 0 R -63 0 V -7590 0 R (60) Rshow 840 2836 M 63 0 V 7506 0 R -63 0 V -7590 0 R (80) Rshow 840 3457 M 63 0 V 7506 0 R -63 0 V -7590 0 R (100) Rshow 840 351 M 0 63 V 0 3043 R 0 -63 V 840 211 M (0) Cshow 2354 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (5) Cshow 3868 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (10) Cshow 5381 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (15) Cshow 6895 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (20) Cshow 8409 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (25) Cshow 840 351 M 7569 0 V 0 3106 V -7569 0 V 840 351 L 140 1904 M currentpoint gsave translate 90 rotate 0 0 M (filtration efficiency in %) Cshow grestore 4624 71 M (number of differences k) Cshow 991 3612 M (m=16) Cshow 1688 3612 M (m=32) Cshow 2929 3612 M (m=64) Cshow 5321 3612 M (m=128) Cshow LT0 LT4 7926 3254 M (SET) Rshow 8010 3254 M 252 0 V 840 3457 M 303 -71 V 303 -550 V 1748 528 L 2051 351 L 303 0 V LT2 7926 3114 M (DSET) Rshow 8010 3114 M 252 0 V 840 3457 M 303 -3 V 303 -103 V 1748 2149 L 2051 739 L 2354 351 L LT4 1143 3457 M 303 -3 V 302 -34 V 303 -230 V 2354 1597 L 2657 565 L 2959 351 L 303 0 V 303 0 V LT2 1143 3457 M 303 0 V 302 -6 V 303 -31 V 303 -420 V 303 -931 V 2959 621 L 3262 391 L 303 -40 V LT4 2354 3454 M 303 -3 V 302 -44 V 303 -152 V 303 -795 V 3868 1407 L 4170 463 L 4473 357 L 303 -6 V 303 0 V LT2 2354 3457 M 303 0 V 302 -9 V 303 -25 V 303 -180 V 303 -441 V 4170 1659 L 4473 885 L 4776 416 L 303 -56 V LT4 4776 3454 M 303 -9 V 302 -47 V 303 -137 V 303 -525 V 303 -745 V 6592 926 L 6895 519 L 7198 367 L 303 -16 V 302 0 V 303 0 V LT2 4776 3457 M 303 -3 V 302 -9 V 303 -25 V 303 -128 V 303 -257 V 302 -681 V 303 -671 V 7198 907 L 7501 584 L 7803 398 L 303 -35 V stroke grestore end showpage %%Trailer %%Pages: 1 %%EndDocument @endspecial 1223 2381 a Fw(Fig.)30 b(7.)j Fi(k)1544 2394 y Fn(max)1687 2381 y Fz(for)26 b(\014xed)f(alphab)r(et)g(size)i Fy(j)p Fi(A)p Fy(j)22 b Fz(=)f(80)630 3285 y @beginspecial 50 @llx 50 @lly 914 @urx 403 @ury 3168 @rwi 992 @rhi @setspecial %%BeginDocument: MKmax.plot %!PS-Adobe-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 914 403 %%Pages: (atend) %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 840 351 M 7569 0 V LTb 840 351 M 63 0 V 7506 0 R -63 0 V 756 351 M (0) Rshow 840 795 M 63 0 V 7506 0 R -63 0 V 756 795 M (5) Rshow 840 1238 M 63 0 V 7506 0 R -63 0 V -7590 0 R (10) Rshow 840 1682 M 63 0 V 7506 0 R -63 0 V -7590 0 R (15) Rshow 840 2126 M 63 0 V 7506 0 R -63 0 V -7590 0 R (20) Rshow 840 2570 M 63 0 V 7506 0 R -63 0 V -7590 0 R (25) Rshow 840 3013 M 63 0 V 7506 0 R -63 0 V -7590 0 R (30) Rshow 840 3457 M 63 0 V 7506 0 R -63 0 V -7590 0 R (35) Rshow 840 351 M 0 63 V 0 3043 R 0 -63 V 840 211 M (8) Cshow 2732 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (16) Cshow 4625 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (32) Cshow 6517 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (64) Cshow 8409 351 M 0 63 V 0 3043 R 0 -63 V 0 -3183 R (128) Cshow 840 351 M 7569 0 V 0 3106 V -7569 0 V 840 351 L 140 1904 M currentpoint gsave translate 90 rotate 0 0 M (maximum number of differences) Cshow grestore 4624 71 M (pattern length m) Cshow LT0 LT1 1500 3254 M (LET) Rshow 1584 3254 M 252 0 V 840 351 M 2732 617 L 1893 444 V 1892 710 V 8409 3191 L LT3 1500 3114 M (DLET) Rshow 1584 3114 M 252 0 V 840 351 M 2732 617 L 1893 533 V 1892 710 V 8409 3368 L LT4 1500 2974 M (SET) Rshow 1584 2974 M 252 0 V 840 351 M 2732 528 L 4625 706 L 1892 532 V 1892 710 V LT2 1500 2834 M (DSET) Rshow 1584 2834 M 252 0 V 840 351 M 2732 528 L 4625 795 L 1892 532 V 1892 799 V stroke grestore end showpage %%Trailer %%Pages: 1 %%EndDocument @endspecial 523 3522 a Fu(4)112 b(Dynamic)37 b(Filtering)e(applied)i (to)g(LEQ)523 3702 y Ft(Dynamic)30 b(\014ltering)g(is)g(a)g(general)f (idea)g(whic)n(h)i(can)e(b)r(e)i(applied)f(to)g(other)g(kno)n(wn)f (static)523 3802 y(\014lter)g(tec)n(hniques,)g(e.g.)f([14)o(,)h(12)o(,) g(3,)g(11)o(,)g(9,)g(10)o(].)40 b(W)-7 b(e)30 b(exemplify)f(this)g (claim)g(b)n(y)f(sho)n(wing)523 3901 y(ho)n(w)21 b(it)i(can)f(b)r(e)g (applied)g(to)g(Sutinen)h(and)f(T)-7 b(arhio's)21 b(algorithms)f(LEQ)h (and)h(LA)n(Q)g([9)o(,)h(10)o(].)3368 3871 y Fq(2)523 4001 y Ft(W)-7 b(e)27 b(\014rst)g(brie\015y)f(recall)g(the)h(basic)f (idea)g(of)h(LEQ)f(and)g(LA)n(Q.)g(Assume)h(that)g Fs(q)j Ft(and)c Fs(s)h Ft(are)523 4121 y(p)r(ositiv)n(e)g(in)n(tegers)g(and)g (de\014ne)h Fs(h)23 b Ft(=)1697 4029 y Fk(j)1751 4084 y Fp(m)p Fl(\000)p Fp(k)q Fl(\000)p Fp(q)r Fq(+1)p 1751 4102 316 4 v 1850 4149 a Fp(k)q Fq(+)p Fp(s)2077 4029 y Fk(k)2121 4121 y Ft(.)37 b(LEQ)27 b(and)g(LA)n(Q)g(tak)n(e)g Fs(q)s Ft(-samples)902 4337 y Fs(T)n(sam)p Ft(\()p Fs(j)5 b Ft(\))22 b(=)h Fs(T)12 b Ft([)p Fs(j)5 b(h)17 b Fr(\000)h Fs(q)k Ft(+)c(1)c Fs(:)g(:)g(:)f(j)5 b(h)p Ft(])27 b(for)g(all)h Fs(j)g Fr(2)2417 4245 y Fk(n)2472 4337 y Ft(1)p Fs(;)14 b Ft(2)p Fs(;)g(:)g(:)g(:)f(;)2777 4245 y Fk(j)2830 4281 y Fs(n)p 2830 4318 50 4 v 2831 4394 a(h)2890 4245 y Fk(k)h(o)3003 4337 y Fs(:)523 4523 y Ft(from)41 b(the)g(text)h Fs(T)12 b Ft(.)77 b(Supp)r(ose)41 b Fs(v)49 b Ft(=)c Fs(T)12 b Ft([)p Fs(b)i(:)g(:)g(:)f(e)p Ft(])41 b(is)g(an)g(appro)n(ximate)e (matc)n(h,)45 b(that)c(is,)523 4623 y Fs(edist)p Ft(\()p Fs(P)r(;)14 b(v)s Ft(\))32 b Fr(\024)f Fs(k)s Ft(.)52 b(If)32 b(for)g(the)h(sampling)f(step)h Fs(h)f Ft(the)h(inequalit)n(y)g Fs(h)e Fr(\025)g Fs(q)k Ft(holds,)f(then)f Fs(v)p Black 523 4687 1153 4 v 627 4740 a Fn(2)661 4772 y Fz(That)25 b(is,)h(it)e(also)i(applies)f(to)g(T)-6 b(ak)l(aok)l(a's)25 b(metho)r(d)e(with)i Fi(s)c(>)g Fz(1)k(instead)g(of)g Fi(s)c Fz(=)g(1)k Fi(q)s Fz(-samples)523 4863 y(tak)n(en)g(from)h(the)f (text.)p Black Black 1922 5112 a Ft(11)p Black eop %%Page: 12 12 12 11 bop Black Black 523 387 a Ft(con)n(tains)24 b(at)h(least)g Fs(k)16 b Ft(+)e Fs(s)25 b Ft(consecutiv)n(e)f Fs(q)s Ft(-samples.)35 b(Moreo)n(v)n(er,)23 b(at)i(least)g Fs(s)g Ft(of)g(these)g(m)n(ust)523 487 y(o)r(ccur)30 b(in)h Fs(P)12 b Ft(|in)32 b(the)f(same)f(order)g(as)g(in)h Fs(v)s Ft(.)47 b(This)31 b(ordering)e(is)i(tak)n(en)g(in)n(to)f(accoun) n(t)g(b)n(y)523 587 y(dividing)e Fs(P)39 b Ft(in)n(to)27 b(blo)r(c)n(ks)g Fs(Q)1422 599 y Fq(1)1459 587 y Fs(;)14 b(:)g(:)g(:)g(;)g(Q)1710 599 y Fp(k)q Fq(+)p Fp(s)1832 587 y Ft(,)28 b(where)1265 728 y Fs(Q)1331 740 y Fp(i)1381 728 y Ft(=)23 b Fs(P)12 b Ft([\()p Fs(i)18 b Fr(\000)g Ft(1\))p Fs(h)g Ft(+)g(1)c Fs(:)g(:)g(:)f(ih)18 b Ft(+)g Fs(q)k Fr(\000)c Ft(1)g(+)g Fs(k)s Ft(])p Fs(:)523 870 y Ft(LEQ)40 b(and)h(LA)n(Q)f(are)g(based)g(on)h(the)g(follo)n(wing)f (theorem)g(whic)n(h)h(w)n(e)f(cite)h(from)g([10)o(])523 970 y(\(cf.)36 b(also)f([9]\):)53 b(If)36 b Fs(T)n(sam)p Ft(\()p Fs(j)1407 982 y Fp(a)1447 970 y Ft(\))g(is)f(the)h(leftmost)h Fs(q)s Ft(-sample)e(of)g(the)h(appro)n(ximate)e(matc)n(h)523 1069 y Fs(v)39 b Ft(=)d Fs(T)12 b Ft([)p Fs(b)i(:)g(:)g(:)e(e)p Ft(],)37 b(then)f(there)f(is)g(an)g(in)n(teger)f Fs(t)p Ft(,)k(0)d Fr(\024)h Fs(t)f Fr(\024)h Fs(k)26 b Ft(+)d(1,)37 b(suc)n(h)e(that)h(the)f Fs(k)27 b Ft(+)c Fs(s)523 1169 y Ft(consecutiv)n(e)j Fs(q)s Ft(-samples)h Fs(T)n(sam)p Ft(\()p Fs(j)1608 1181 y Fp(a)1665 1169 y Ft(+)17 b(1)g(+)h Fs(t)p Ft(\))p Fs(;)c(:)g(:)g(:)g(;)g(T)n(sam)p Ft(\()p Fs(j)2405 1181 y Fp(a)2462 1169 y Ft(+)j Fs(k)k Ft(+)c Fs(s)h Ft(+)f Fs(t)p Ft(\))27 b(are)g(con)n(tained)523 1268 y(in)32 b Fs(v)j Ft(and)d Fs(T)n(sam)p Ft(\()p Fs(j)1134 1280 y Fp(a)1194 1268 y Ft(+)21 b Fs(l)i Ft(+)d Fs(t)p Ft(\))30 b Fr(2)h Fs(Q)1657 1280 y Fp(l)1714 1268 y Ft(holds)g(for)g (at)h(least)f Fs(s)h Ft(of)f(the)h(samples.)49 b(\(W)-7 b(e)32 b(write)523 1368 y Fs(u)e Fr(2)g Fs(v)s Ft(,)j(if)f(string)f Fs(u)g Ft(is)h(a)f(sub)n(w)n(ord)g(of)g(string)g Fs(v)s Ft(.\))50 b(De\014ning)32 b Fs(j)2533 1380 y Fp(b)2597 1368 y Ft(=)d Fs(j)2725 1380 y Fp(a)2787 1368 y Ft(+)21 b Fs(t)p Ft(,)33 b(LEQ)d(can)i(b)r(e)523 1468 y(form)n(ulated)27 b(as)g(follo)n(ws:)p Black 523 1609 a Fm(Algorithm)j(LEQ.)p Black 41 w Ft(If,)e(for)e Fs(k)c Ft(+)17 b Fs(s)28 b Ft(consecutiv)n(e)e Fs(q)s Ft(-samples)h Fs(T)n(sam)p Ft(\()p Fs(j)2776 1621 y Fp(b)2827 1609 y Ft(+)18 b(1\))p Fs(;)c(T)n(sam)p Ft(\()p Fs(j)3290 1621 y Fp(b)3340 1609 y Ft(+)523 1709 y(2\))p Fs(;)g(:)g(:)g(:)f(;)h(T)n(sam)p Ft(\()p Fs(j)1050 1721 y Fp(b)1107 1709 y Ft(+)24 b Fs(k)j Ft(+)d Fs(s)p Ft(\),)39 b(w)n(e)d(ha)n(v)n(e)f Fs(T)n(sam)p Ft(\()p Fs(j)2088 1721 y Fp(b)2145 1709 y Ft(+)24 b Fs(l)r Ft(\))37 b Fr(2)h Fs(Q)2489 1721 y Fp(l)2550 1709 y Ft(for)e(at)g (least)g Fs(s)g Ft(indices)g Fs(l)r Ft(,)523 1809 y(1)23 b Fr(\024)f Fs(l)j Fr(\024)d Fs(k)f Ft(+)16 b Fs(s)p Ft(,)28 b(then)f(apply)g(a)g(dynamic)f(programming)f(computation)i(to)g (the)g(sub)n(w)n(ord)523 1908 y Fs(T)12 b Ft([)p Fs(j)641 1920 y Fp(b)674 1908 y Fs(h)18 b Fr(\000)g Fs(q)j Ft(+)d(2)g Fr(\000)g Ft(2)p Fs(k)f(:)d(:)g(:)f Ft(\()p Fs(j)1385 1920 y Fp(b)1438 1908 y Ft(+)18 b(1\))p Fs(h)g Fr(\000)g Fs(q)j Ft(+)d Fs(m)h Ft(+)f Fs(k)s Ft(].)648 2050 y(This)28 b(correctly)f(solv)n(es)g(the)i Fs(k)j Ft(di\013erences)c(problem)g(b)r (ecause)h(the)g(range)e(of)h(the)h(dy-)523 2150 y(namic)k(programming)e (area)h(is)h(su\016cien)n(tly)g(large)e(\(see)i(Theorem)g(3)f(in)i([9)o (]\).)54 b(W)-7 b(e)34 b(next)523 2249 y(describ)r(e)40 b(the)g(dynamic)g(v)n(ersion)f(of)h(LEQ)f(whic)n(h)h(exploits)g(the)g (fact)h(that)f(whenev)n(er)523 2349 y Fs(T)n(sam)p Ft(\()p Fs(j)23 b Ft(+)18 b Fs(l)r Ft(\))k Fr(62)i Fs(Q)1124 2361 y Fp(l)1177 2349 y Ft(holds,)j(a)g(guaran)n(teed)f(di\013erence)h (has)h(b)r(een)g(detected.)p Black 523 2491 a Fm(Algorithm)i(DLEQ.)p Black 41 w Ft(Let)23 b(the)g(function)h Fs(')f Ft(:)g Fs(bool)i Fr(!)e(f)p Ft(0)p Fs(;)14 b Ft(1)p Fr(g)21 b Ft(b)r(e)i(de\014ned)h(b)n(y)e Fs(')p Ft(\()p Fs(tr)r(ue)p Ft(\))i(=)523 2590 y(1)j(and)h Fs(')p Ft(\()p FA(false)q Ft(\))c(=)e(0.)37 b(F)-7 b(or)27 b(eac)n(h)g Fs(j;)14 b Ft(1)23 b Fr(\024)f Fs(j)28 b Fr(\024)1955 2523 y Fk(\004)2004 2557 y Fp(n)p 2004 2571 42 4 v 2005 2619 a(h)2055 2523 y Fk(\005)2113 2590 y Fr(\000)18 b Ft(\()p Fs(k)j Ft(+)d Fs(s)p Ft(\))h(+)f(1)27 b(de\014ne)p Black 641 2723 a Fm({)p Black 42 w FA(GD)p Ft(\()p Fs(j;)14 b(l)r(;)g(r)r Ft(\))23 b(=)1207 2661 y Fk(P)1295 2682 y Fp(r)1295 2748 y(y)r Fq(=)p Fp(l)1435 2723 y Fs(')p Ft(\()p Fs(T)n(sam)p Ft(\()p Fs(j)g Ft(+)18 b Fs(y)s Ft(\))32 b Fs(=)-51 b Fr(2)23 b Fs(Q)2139 2735 y Fp(y)2179 2723 y Ft(\),)p Black 641 2873 a Fm({)p Black 42 w FA(BPM)q Ft(\()p Fs(j)5 b Ft(\))28 b FA(i\013)g Fs(GD)r Ft(\()p Fs(j;)14 b Ft(1)p Fs(;)g(k)22 b Ft(+)c Fs(s)p Ft(\))23 b Fr(\024)f Fs(k)s Ft(,)p Black 641 3023 a Fm({)p Black 42 w FA(CPM)q Ft(\()p Fs(j)5 b Ft(\))39 b FA(i\013)g Fr(9)p Fs(i;)14 b Ft(0)41 b Fr(\024)g Fs(i)h Fr(\024)f Fs(m)h Ft(:)f Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b(h)p Ft(\))26 b(+)g Fs(GD)r Ft(\()p Fs(j;)14 b Ft(1)p Fs(;)g(k)29 b Ft(+)c Fs(s)h Fr(\000)f Fs(l)r Ft(\))42 b Fr(\024)f Fs(k)s Ft(,)h(where)731 3147 y Fs(l)24 b Ft(=)868 3055 y Fk(j)921 3107 y Fl(j)p Fp(W)9 b Fq(\()p Fp(i;j)s(h)p Fq(\))p Fl(j\000)p Fp(q)p 921 3128 361 4 v 1082 3176 a(h)1310 3147 y Ft(+)18 b(1)1435 3055 y Fk(k)1478 3147 y Ft(.)523 3301 y(P)n(erform)26 b(the)i(follo)n(wing)e (computations:)618 3437 y Fs(j)i Ft(:=)23 b(1)618 3538 y Fm(while)j Fs(j)i Fr(\024)1014 3470 y Fk(\004)1063 3505 y Fp(n)p 1063 3519 42 4 v 1064 3566 a(h)1114 3470 y Fk(\005)1172 3538 y Fr(\000)18 b Ft(\()p Fs(k)j Ft(+)d Fs(s)p Ft(\))h(+)f(1)27 b Fm(do)689 3637 y(if)g(not)h FA(BPM)q Ft(\()p Fs(j)5 b Ft(\))689 3737 y Fm(then)760 3836 y Fs(j)28 b Ft(:=)22 b Fs(j)i Ft(+)18 b(1)689 3937 y Fm(else)760 4037 y FA(left)23 b Ft(:=)g Fs(j)5 b(h)18 b Fr(\000)g Fs(q)k Ft(+)c(2)g Fr(\000)g Ft(2)p Fs(k)760 4136 y Fm(for)28 b Fs(i)22 b Ft(:=)h(0)k Fm(to)h Fs(m)f Fm(do)h Fs(D)r Ft(\()p Fs(i;)14 b FA(left)k Fr(\000)g Ft(1\))23 b(:=)g Fs(i)p Ft(;)41 b Fs(W)12 b Ft(\()p Fs(i;)i FA(left)19 b Fr(\000)f Ft(1\))23 b(:=)f Fs(")760 4236 y Fm(rep)s(eat)831 4335 y(for)27 b Fs(p)c Ft(:=)g FA(left)28 b Fm(to)g Ft(\()p Fs(j)23 b Ft(+)18 b(1\))p Fs(h)28 b Fm(do)901 4435 y(for)g Fs(i)23 b Ft(:=)g(0)k Fm(to)g Fs(m)h Fm(do)f Ft(compute)h Fs(D)r Ft(\()p Fs(i;)14 b(p)p Ft(\))28 b(and)f Fs(W)12 b Ft(\()p Fs(i;)i(p)p Ft(\))901 4535 y Fm(if)28 b Fs(D)r Ft(\()p Fs(m;)14 b(p)p Ft(\))23 b Fr(\024)g Fs(k)30 b Fm(then)e(output)g Ft(\\)o Fs(W)12 b Ft(\()p Fs(i;)i(p)p Ft(\))28 b(is)f(appro)n(ximate)f(matc)n(h)h(at")g Fs(p)831 4634 y FA(left)c Ft(:=)g(\()p Fs(j)g Ft(+)18 b(1\))p Fs(h)g Ft(+)h(1)831 4734 y Fs(j)28 b Ft(:=)22 b Fs(j)i Ft(+)18 b(1)760 4834 y Fm(un)m(til)27 b(not)g FA(CPM)r Ft(\()p Fs(j)5 b Ft(\))p Black 1922 5112 a(12)p Black eop %%Page: 13 13 13 12 bop Black Black 648 387 a Ft(Notice)32 b(that)h(for)g Fs(i)e Ft(=)g(0)h(w)n(e)h(ha)n(v)n(e)e Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b(h)p Ft(\))32 b(=)f(0)h(and)h Fs(l)g Ft(=)2596 320 y Fk(\004)2635 387 y Fr(\000)2713 350 y Fp(q)p 2710 368 39 4 v 2710 416 a(h)2777 387 y Ft(+)18 b(1)2902 320 y Fk(\005)2973 387 y Ft(=)31 b(0.)52 b(Hence)523 487 y FA(BPM)q Ft(\()p Fs(j)5 b Ft(\))28 b(implies)g FA(CPM)q Ft(\()p Fs(j)5 b Ft(\).)p Black 523 670 a Fm(Theorem)15 b(7.)p Black 40 w FA(A)n(lgorithm)31 b(DLEQ)e(c)l(orr)l(e)l(ctly)h (solves)h(the)f Fs(k)s FA(-di\013er)l(enc)l(es)g(pr)l(oblem.)p Black 523 836 a(Pr)l(o)l(of.)p Black 43 w Ft(Supp)r(ose)d(there)g(is)g (an)g(appro)n(ximate)e(matc)n(h)i(ending)g(at)g(p)r(osition)g Fs(e)f Ft(in)i Fs(T)12 b Ft(.)36 b(Let)27 b Fs(v)523 935 y Ft(b)r(e)k(the)g(shortest)e(suc)n(h)i(appro)n(ximate)d(matc)n(h)j (and)f(assume)g(that)h(it)f(b)r(egins)h(at)f(p)r(osition)523 1035 y Fs(b)p Ft(,)e(i.e.,)h Fs(v)e Ft(=)d Fs(T)12 b Ft([)p Fs(b)i(:)g(:)g(:)f(e)p Ft(].)38 b Fs(v)32 b Ft(con)n(tains)27 b(at)i(least)e Fs(k)22 b Ft(+)d Fs(s)28 b Ft(consecutiv)n(e)f Fs(q)s Ft(-samples)h Fs(T)n(sam)p Ft(\()p Fs(j)3289 1047 y Fp(b)3340 1035 y Ft(+)523 1135 y(1\))p Fs(;)14 b(:)g(:)g(:)f(;)h(T)n (sam)p Ft(\()p Fs(j)1050 1147 y Fp(b)1102 1135 y Ft(+)k Fs(k)k Ft(+)c Fs(s)p Ft(\))29 b(suc)n(h)e(that)i Fs(T)n(sam)p Ft(\()p Fs(j)2070 1147 y Fp(b)2121 1135 y Ft(+)18 b Fs(l)r Ft(\))24 b Fr(2)g Fs(Q)2432 1147 y Fp(l)2486 1135 y Ft(holds)j(for)h (at)g(least)f Fs(s)i Ft(of)f(the)523 1234 y(samples.)34 b(T)-7 b(aking)18 b(the)j(maximal)e(width)h(of)g Fs(v)j Ft(in)n(to)c(accoun)n(t,)i(w)n(e)e(obtain)g Fs(j)2857 1246 y Fp(b)2891 1234 y Fs(h)s Fr(\000)s Fs(q)6 b Ft(+)s(2)s Fr(\000)s Ft(2)p Fs(k)21 b Fr(\024)523 1334 y Fs(b)33 b Fr(\024)f Ft(\()p Fs(j)755 1346 y Fp(b)811 1334 y Ft(+)22 b(1\))p Fs(h)g Fr(\000)g Fs(q)k Ft(+)c(1)33 b(and)g(\()p Fs(j)1587 1346 y Fp(b)1643 1334 y Ft(+)22 b Fs(k)j Ft(+)d Fs(s)p Ft(\))p Fs(h)33 b Fr(\024)g Fs(e)f Fr(\024)h Ft(\()p Fs(j)2370 1346 y Fp(b)2426 1334 y Ft(+)22 b(1\))p Fs(h)g Fr(\000)g Fs(q)j Ft(+)d Fs(m)h Ft(+)e Fs(k)s Ft(.)55 b Fs(v)37 b Ft(will)523 1433 y(b)r(e)c(detected)g(if)g(DLEQ)f(computes) g Fs(D)r Ft(\()p Fs(i;)14 b(r)r Ft(\))34 b(for)e(all)g Fs(i;)14 b(r)35 b Ft(with)e(0)e Fr(\024)f Fs(i)h Fr(\024)g Fs(m)p Ft(,)j Fs(b)d Fr(\024)f Fs(r)k Fr(\024)d Fs(e)p Ft(.)523 1533 y(Therefore)26 b(w)n(e)i(ha)n(v)n(e)e(to)i(sho)n(w:)p Black 596 1699 a(\()p Fs(i)p Ft(\))p Black 42 w FA(BPM)q Ft(\()p Fs(j)986 1711 y Fp(b)1020 1699 y Ft(\))g(is)f(true,)p Black 567 1865 a(\()p Fs(ii)p Ft(\))p Black 42 w FA(CPM)q Ft(\()p Fs(j)5 b Ft(\))28 b(ist)g(true)f(for)g(eac)n(h)g Fs(j;)14 b(j)1762 1877 y Fp(b)1814 1865 y Ft(+)k(1)23 b Fr(\024)g Fs(j)28 b Fr(\024)22 b Fs(j)2233 1877 y Fp(b)2285 1865 y Ft(+)c Fs(k)j Ft(+)d Fs(s)p Ft(.)p Black 539 2031 a(\()p Fs(iii)p Ft(\))p Black 41 w(If)28 b Fs(j)g(>)22 b(j)997 2043 y Fp(b)1049 2031 y Ft(+)c Fs(k)k Ft(+)c Fs(s)27 b Ft(and)h FA(CPM)q Ft(\()p Fs(j)5 b Ft(\))28 b(is)f(false)h(then)g Fs(e)23 b Fr(\024)f Fs(j)5 b(h)p Ft(.)523 2197 y(\()p Fs(i)p Ft(\))29 b(F)-7 b(or)29 b(at)g(least)f Fs(s)h Ft(indices)g Fs(l)r(;)14 b Ft(1)24 b Fr(\024)h Fs(l)i Fr(\024)e Fs(k)e Ft(+)c Fs(s)29 b Ft(w)n(e)f(ha)n(v)n(e)g Fs(T)n(sam)p Ft(\()p Fs(j)2601 2209 y Fp(b)2653 2197 y Ft(+)19 b Fs(l)r Ft(\))25 b Fr(2)h Fs(Q)2968 2209 y Fp(l)2993 2197 y Ft(.)41 b(Hence)30 b(for)523 2297 y(at)e(most)f Fs(k)j Ft(indices)e Fs(l)r(;)14 b Ft(1)22 b Fr(\024)h Fs(l)h Fr(\024)f Fs(k)e Ft(+)d Fs(s)p Ft(,)28 b Fs(T)n(sam)p Ft(\()p Fs(j)2033 2309 y Fp(b)2084 2297 y Ft(+)18 b Fs(l)r Ft(\))32 b Fs(=)-51 b Fr(2)23 b Fs(Q)2393 2309 y Fp(l)2418 2297 y Ft(,)28 b(i.e.,)g FA(BPM)q Ft(\()p Fs(j)2881 2309 y Fp(b)2915 2297 y Ft(\))g(is)f(true.)523 2397 y(\()p Fs(ii)p Ft(\))i(Consider)f(an)h(arbitrary)d(but)k(\014xed)f Fs(j;)14 b(j)1954 2409 y Fp(b)2007 2397 y Ft(+)19 b(1)25 b Fr(\024)g Fs(j)30 b Fr(\024)25 b Fs(j)2436 2409 y Fp(b)2489 2397 y Ft(+)19 b Fs(k)j Ft(+)d Fs(s)p Ft(.)41 b(By)29 b(construction)523 2496 y Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\))27 b(\(cf.)h(De\014nition)f(3\))g(is)g(an)f(optimal)h(alignmen)n (t)g(of)f Fs(P)39 b Ft(and)27 b Fs(v)s Ft(,)g(i.e.,)g Fs(\016)s Ft(\()p Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\)\))24 b(=)523 2596 y Fs(D)r Ft(\()p Fs(m;)14 b(e)p Ft(\))31 b Fr(\024)g Fs(k)s Ft(.)51 b(Let)33 b Fs(v)1248 2608 y Fq(1)1317 2596 y Ft(=)d Fs(T)12 b Ft([)p Fs(b)i(:)g(:)g(:)f(j)5 b(h)p Ft(])32 b(and)g Fs(v)2004 2608 y Fq(2)2073 2596 y Ft(=)f Fs(T)12 b Ft([)p Fs(j)5 b(h)20 b Ft(+)h(1)14 b Fs(:)g(:)g(:)g(e)p Ft(].)51 b(There)32 b(is)g(an)g Fs(i;)14 b Ft(0)30 b Fr(\024)523 2695 y Fs(i)23 b Fr(\024)f Fs(m)p Ft(,)k(suc)n(h)e(that)h Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\))25 b(can)g(b)r(e)g(split)g(in)n(to)g(alignmen)n(ts)f Fs(A)2530 2707 y Fq(1)2592 2695 y Ft(and)h Fs(A)2813 2707 y Fq(2)2875 2695 y Ft(where)f Fs(A)3174 2707 y Fq(1)3237 2695 y Ft(is)g(an)523 2795 y(alignmen)n(t)30 b(of)h Fs(P)12 b Ft([1)i Fs(:)g(:)g(:)e(i)p Ft(])31 b(and)f Fs(v)1549 2807 y Fq(1)1587 2795 y Ft(,)h(and)f Fs(A)1867 2807 y Fq(2)1935 2795 y Ft(is)h(an)f(alignmen)n(t)g(of)h Fs(P)12 b Ft([)p Fs(i)19 b Ft(+)h(1)14 b Fs(:)g(:)g(:)f(m)p Ft(])31 b(and)f Fs(v)3344 2807 y Fq(2)3382 2795 y Ft(.)523 2895 y(By)h(construction)f(w)n(e)h(ha)n(v)n(e)f Fs(A)1519 2907 y Fq(1)1586 2895 y Ft(=)f Fs(A)p Ft(\()p Fs(i;)14 b(j)5 b(h)p Ft(\))31 b(and)g Fs(\016)s Ft(\()p Fs(A)2289 2907 y Fq(1)2327 2895 y Ft(\))f(=)e Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b(h)p Ft(\).)48 b(Moreo)n(v)n(er,)30 b Fs(v)3274 2907 y Fq(1)3340 2895 y Ft(=)523 3019 y Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b(h)p Ft(\))27 b(whic)n(h)g(implies)g Fs(b)c Ft(=)f Fs(j)5 b(h)17 b Fr(\000)g(j)p Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b(h)p Ft(\))p Fr(j)17 b Ft(+)g(1.)36 b(Let)27 b Fs(l)e Ft(=)2546 2927 y Fk(j)2599 2979 y Fl(j)p Fp(W)9 b Fq(\()p Fp(i;j)s(h)p Fq(\))p Fl(j\000)p Fp(q)p 2599 3000 361 4 v 2760 3048 a(h)2988 3019 y Ft(+)18 b(1)3113 2927 y Fk(k)3156 3019 y Ft(.)37 b(Since)523 3177 y Fs(b)23 b Fr(\024)f Ft(\()p Fs(j)735 3189 y Fp(b)769 3177 y Ft(+1\))p Fs(h)p Fr(\000)p Fs(q)s Ft(+1,)e(w)n(e)e(ha)n(v)n(e)f Fs(l)24 b Ft(=)1643 3085 y Fk(j)1697 3140 y Fp(j)s(h)p Fl(\000)p Fp(b)p Fq(+1)p Fl(\000)p Fp(q)p 1697 3158 320 4 v 1837 3206 a(h)2045 3177 y Ft(+)18 b(1)2170 3085 y Fk(k)2236 3177 y Fr(\025)2324 3085 y Fk(j)2377 3137 y Fp(j)s(h)p Fl(\000)p Fq(\(\()p Fp(j)2577 3146 y Fj(b)2609 3137 y Fq(+1\))p Fp(h)p Fl(\000)p Fp(q)r Fq(+1\)+1)p Fl(\000)p Fp(q)p 2377 3158 744 4 v 2730 3206 a(h)3149 3177 y Ft(+)g(1)3274 3085 y Fk(k)3340 3177 y Ft(=)523 3243 y Fk(j)577 3294 y Fp(j)s(h)p Fl(\000)p Fq(\()p Fp(j)751 3303 y Fj(b)782 3294 y Fq(+1\))p Fp(h)p 577 3316 355 4 v 735 3363 a(h)960 3335 y Ft(+)g(1)1085 3243 y Fk(k)1156 3335 y Ft(=)27 b Fs(j)e Fr(\000)20 b Fs(j)1426 3347 y Fp(b)1460 3335 y Ft(.)45 b(Let)31 b Fs(d)d Ft(=)f Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b(h)p Ft(\).)45 b(No)n(w)30 b Fs(\016)s Ft(\()p Fs(A)2525 3347 y Fq(1)2563 3335 y Ft(\))21 b(+)f Fs(\016)s Ft(\()p Fs(A)2835 3347 y Fq(2)2873 3335 y Ft(\))28 b(=)f Fs(\016)s Ft(\()p Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\)\))523 3459 y(implies)36 b Fs(\016)s Ft(\()p Fs(A)947 3471 y Fq(2)985 3459 y Ft(\))g(=)g Fs(\016)s Ft(\()p Fs(A)p Ft(\()p Fs(m;)14 b(e)p Ft(\)\))24 b Fr(\000)g Fs(\016)s Ft(\()p Fs(A)1780 3471 y Fq(1)1817 3459 y Ft(\))37 b Fr(\024)f Fs(k)26 b Fr(\000)d Fs(d)p Ft(,)38 b(i.e.,)g Fs(A)2477 3471 y Fq(2)2550 3459 y Ft(con)n(tains)c(at)i(most)f Fs(k)26 b Fr(\000)e Fs(d)523 3559 y Ft(edit)k(op)r(erations)e Fs(a)9 b Fr(!)g Fs(b)p Ft(,)27 b Fs(a)c Fr(6)p Ft(=)g Fs(b)p Ft(.)37 b(Eac)n(h)26 b(of)h(these)g(can)g(prev)n(en)n(t)g(at)g (most)g(one)g Fs(q)s Ft(-sample)g(of)523 3658 y Fs(T)n(sam)p Ft(\()p Fs(j)18 b Ft(+)c(1\))p Fs(;)g(:)g(:)g(:)f(;)h(T)n(sam)p Ft(\()p Fs(j)k Ft(+)c Fs(k)j Ft(+)c Fs(s)h Fr(\000)g Ft(\()p Fs(j)19 b Fr(\000)14 b Fs(j)1981 3670 y Fp(b)2014 3658 y Ft(\)\))27 b(from)e(o)r(ccurring)f(in)h(the)h(corresp)r(onding) 523 3758 y(blo)r(c)n(k)33 b(of)g Fs(P)12 b Ft(.)53 b(That)33 b(is,)h(for)e(at)h(most)g Fs(k)25 b Fr(\000)d Fs(d)33 b Ft(indices)g Fs(y)s(;)14 b Ft(1)31 b Fr(\024)h Fs(y)j Fr(\024)c Fs(k)25 b Ft(+)d Fs(s)g Fr(\000)g Ft(\()p Fs(j)27 b Fr(\000)21 b Fs(j)3211 3770 y Fp(b)3245 3758 y Ft(\))33 b(w)n(e)523 3858 y(ha)n(v)n(e)h Fs(T)n(sam)p Ft(\()p Fs(j)28 b Ft(+)c Fs(y)s Ft(\))45 b Fs(=)-51 b Fr(2)37 b Fs(Q)1378 3870 y Fp(y)1418 3858 y Ft(.)61 b(In)35 b(other)g(w)n (ords,)i FA(GD)p Ft(\()p Fs(j;)14 b Ft(1)p Fs(;)g(k)26 b Ft(+)e Fs(s)f Fr(\000)h Ft(\()p Fs(j)29 b Fr(\000)23 b Fs(j)2945 3870 y Fp(b)2979 3858 y Ft(\)\))37 b Fr(\024)f Fs(k)26 b Fr(\000)e Fs(d)p Ft(.)523 3957 y(Since)30 b Fs(l)e Fr(\025)e Fs(j)f Fr(\000)19 b Fs(j)1063 3969 y Fp(b)1097 3957 y Ft(,)30 b(w)n(e)f(ha)n(v)n(e)g FA(GD)p Ft(\()p Fs(j;)14 b Ft(1)p Fs(;)g(k)22 b Ft(+)e Fs(s)g Fr(\000)f Ft(\()p Fs(j)25 b Fr(\000)19 b Fs(j)2279 3969 y Fp(b)2313 3957 y Ft(\)\))27 b Fr(\025)f FA(GD)p Ft(\()p Fs(j;)14 b Ft(1)p Fs(;)g(k)23 b Ft(+)c Fs(s)h Fr(\000)f Fs(l)r Ft(\).)43 b(Th)n(us)523 4057 y Fs(d)19 b Ft(+)f FA(GD)p Ft(\()p Fs(j;)c Ft(1)p Fs(;)g(k)21 b Ft(+)d Fs(s)g Fr(\000)g Fs(l)r Ft(\))23 b Fr(\024)g Fs(d)18 b Ft(+)g Fs(k)k Fr(\000)c Fs(d)23 b Ft(=)g Fs(k)s Ft(,)k(i.e.,)h FA(CPM)q Ft(\()p Fs(j)5 b Ft(\))28 b(holds.)523 4157 y(\()p Fs(iii)p Ft(\))33 b(Let)h Fs(j)k(>)33 b(j)1066 4169 y Fp(b)1122 4157 y Ft(+)22 b Fs(k)j Ft(+)d Fs(s)34 b Ft(and)f FA(CPM)q Ft(\()p Fs(j)5 b Ft(\))35 b(b)r(e)f(false.)54 b(W)-7 b(e)34 b(assume)f Fs(e)g(>)g(j)5 b(h)33 b Ft(and)h(deriv)n(e)523 4256 y(a)k(con)n(tradiction.)68 b(There)38 b(is)g(an)g Fs(i;)14 b Ft(0)40 b Fr(\024)h Fs(i)f Fr(\024)h Fs(m)d Ft(suc)n(h)g(that)h Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b(h)p Ft(\))41 b Fr(\024)f Fs(k)i Ft(and)c Fs(b)i Ft(=)523 4356 y Fs(j)5 b(h)24 b Fr(\000)g(j)p Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b(h)p Ft(\))p Fr(j)24 b Ft(+)g(1.)62 b(Ob)n(viously)-7 b(,)37 b Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b(h)p Ft(\))36 b(is)g(a)g(pre\014x)g(of)g Fs(v)s Ft(,)j(i.e.,)g(it)d(con)n(tains)g (the)523 4455 y Fs(q)s Ft(-samples)1077 4555 y Fs(T)n(sam)p Ft(\()p Fs(j)1346 4567 y Fp(b)1398 4555 y Ft(+)18 b(1\))p Fs(;)c(:)g(:)g(:)f(;)h(T)n(sam)p Ft(\()p Fs(j)2008 4567 y Fp(b)2059 4555 y Ft(+)k Fs(k)j Ft(+)d Fs(s)p Ft(\))p Fs(;)c(:)g(:)g(:)g(;)g(T)n(sam)p Ft(\()p Fs(j)5 b Ft(\))p Black 448 w(\(2\))p Black 523 4705 a(Since)35 b Fs(j)k(>)c(j)954 4717 y Fp(b)1010 4705 y Ft(+)23 b Fs(k)j Ft(+)d Fs(s)p Ft(,)36 b(the)f(sequence)f(\(2\))h(is)f(of)h(length)f(at)h(least)f Fs(k)26 b Ft(+)d Fs(s)g Ft(+)f(1.)58 b(Hence)523 4829 y Fr(j)p Fs(W)12 b Ft(\()p Fs(i;)i(j)5 b(h)p Ft(\))p Fr(j)26 b(\025)f Ft(\()p Fs(k)e Ft(+)c Fs(s)p Ft(\))p Fs(h)h Ft(+)f Fs(q)s Ft(.)42 b(Let)29 b Fs(l)f Ft(=)1795 4737 y Fk(j)1849 4789 y Fl(j)p Fp(W)9 b Fq(\()p Fp(i;j)s(h)p Fq(\))p Fl(j\000)p Fp(q)p 1849 4810 361 4 v 2010 4858 a(h)2237 4829 y Ft(+)18 b(1)2362 4737 y Fk(k)2406 4829 y Ft(.)42 b(Then)29 b Fs(l)f Fr(\025)d Fs(k)d Ft(+)e Fs(s)f Ft(+)g(1)29 b(whic)n(h)p Black 1922 5112 a(13)p Black eop %%Page: 14 14 14 13 bop Black Black 523 387 a Ft(implies)21 b FA(GD)p Ft(\()p Fs(j;)14 b Ft(1)p Fs(;)g(k)7 b Ft(+)e Fs(s)g Fr(\000)g Fs(l)r Ft(\))22 b(=)h(0.)34 b(Th)n(us)20 b(w)n(e)h(conclude)f Fs(D)r Ft(\()p Fs(i;)14 b(j)5 b(h)p Ft(\))g(+)g FA(GD)o Ft(\()p Fs(j;)14 b Ft(1)p Fs(;)g(k)7 b Ft(+)e Fs(s)g Fr(\000)g Fs(l)r Ft(\))22 b Fr(\024)h Fs(k)s Ft(,)523 487 y(whic)n(h)k(means)g(that)g FA(CPM)q Ft(\()p Fs(j)5 b Ft(\))28 b(holds.)37 b(This)27 b(is)g(a)f(con)n(tradiction,)g(i.e.,)i Fs(e)23 b Fr(\024)f Fs(j)5 b(h)27 b Ft(is)g(true.)37 b Fb(2)648 670 y Ft(Lik)n(e)19 b(LEQ)g(\(see)h([9]\),)i(an)e(e\016cien) n(t)g(implemen)n(tation)g(of)g(DLEQ)g(utilizes)g(the)h(shift-add)523 769 y(tec)n(hnique)28 b(of)f([1]:)37 b(for)27 b(eac)n(h)g Fs(j;)14 b Ft(0)22 b Fr(\024)h Fs(j)28 b Fr(\024)1826 702 y Fk(\004)1875 737 y Fp(n)p 1875 751 42 4 v 1876 798 a(h)1926 702 y Fk(\005)1993 769 y Ft(a)f(v)n(ector)f Fs(M)2392 781 y Fp(j)2454 769 y Ft(is)i(computed,)g(where)997 1015 y Fs(M)1078 1027 y Fp(j)1113 1015 y Ft(\()p Fs(i)p Ft(\))23 b(=)1316 898 y Fk(\032)1420 908 y(P)1508 928 y Fp(i)p Fl(\000)p Fq(1)1508 995 y Fp(l)p Fq(=0)1634 970 y Fs(')p Ft(\()p Fs(T)n(sam)p Ft(\()p Fs(j)g Fr(\000)18 b Fs(l)r Ft(\))23 b Fr(2)h Fs(Q)2322 982 y Fp(i)p Fl(\000)p Fp(l)2422 970 y Ft(\))83 b(if)29 b Fs(i)22 b Fr(\024)h Fs(j)1420 1069 y Ft(0)1075 b(otherwise)523 1253 y(One)40 b(easily)f(sho)n(ws)g(that)h Fs(M)1476 1265 y Fp(j)s Fq(+1)1595 1253 y Ft(\()p Fs(i)27 b Ft(+)f(1\))44 b(=)f Fs(M)2081 1265 y Fp(j)2115 1253 y Ft(\()p Fs(i)p Ft(\))27 b(+)g Fs(')p Ft(\()p Fs(T)n(sam)p Ft(\()p Fs(j)k Ft(+)c(1\))43 b Fr(2)h Fs(Q)3087 1265 y Fp(i)p Fq(+1)3199 1253 y Ft(\))c(and)523 1353 y FA(GD)p Ft(\()p Fs(j;)14 b Ft(1)p Fs(;)g(r)r Ft(\))24 b(=)f Fs(r)8 b Fr(\000)e Fs(M)1212 1365 y Fp(j)s Fq(+)p Fp(r)1330 1353 y Ft(\()p Fs(r)r Ft(\))23 b(hold.)35 b(As)21 b(a)g(consequence)g(\()p Fs(i)p Ft(\))g Fs(M)2508 1365 y Fp(j)s Fq(+1)2648 1353 y Ft(can)g(b)r(e)h(obtained)f(from)523 1452 y Fs(M)604 1464 y Fp(j)664 1452 y Ft(b)n(y)26 b(some)f(simple)g (bit)i(parallel)d(op)r(erations)g(\(pro)n(vided)h Fs(P)38 b Ft(is)25 b(suitably)h(prepro)r(cessed,)523 1552 y(see)18 b([9])g(for)g(details\),)i(\()p Fs(ii)p Ft(\))f FA(BPM)q Ft(\()p Fs(j)5 b Ft(\))19 b(can)f(b)r(e)h(decided)f(in)h(constan)n(t)e (time,)k(and)d(\()p Fs(iii)p Ft(\))g FA(CPM)q Ft(\()p Fs(j)5 b Ft(\))523 1651 y(can)32 b(b)r(e)i(decided)f(in)g Fr(O)r Ft(\()p Fs(m)p Ft(\))h(time.)53 b(Th)n(us,)34 b(the)f(dynamic)f(c)n(hec)n(king)g(in)h(DLEQ)f(requires)523 1751 y Fr(O)r Ft(\()p Fs(mn=h)p Ft(\))c(time)g(in)g(the)g(w)n(orst)e (case.)523 2000 y Fm(4.1)95 b(Dynamic)31 b(Filtering)f(Applied)h(to)h (LA)m(Q)523 2166 y Ft(A)40 b(dynamic)f(v)n(ersion)f(of)h(algorithm)f (LA)n(Q)h([10)o(])h(is)f(easily)g(obtained)g(from)g(the)g(ab)r(o)n(v)n (e)523 2266 y(algorithm.)45 b(Instead)31 b(of)f(coun)n(ting)g(one)h (di\013erence)f(whenev)n(er)g Fs(T)n(sam)p Ft(\()p Fs(j)25 b Ft(+)20 b Fs(l)r Ft(\))28 b Fr(62)g Fs(Q)3192 2278 y Fp(l)3248 2266 y Ft(\(lik)n(e)523 2365 y(LEQ)39 b(do)r(es\),)44 b(LA)n(Q)c(uses)g(the)g Fs(asm)g Ft(distance)g(in)n(tro)r(duced)g(b)n (y)g(Chang)g(and)g(Marr)f([3])523 2465 y(in)h(order)e(to)h(obtain)g(a)g (b)r(etter)g(lo)n(w)n(er)f(b)r(ound)i(for)f(the)g(guaran)n(teed)f (di\013erences.)72 b(Let)523 2565 y Fs(asm)p Ft(\()p Fs(u;)14 b(B)t Ft(\))29 b(denote)f(the)h(edit)g(distance)g(b)r(et)n(w)n (een)f(string)g Fs(u)g Ft(and)h(its)g(b)r(est)g(matc)n(h)f(with)h(a)523 2664 y(sub)n(w)n(ord)d(of)i(string)f Fs(B)t Ft(.)37 b(LA)n(Q)27 b(is)g(obtained)h(from)f(LEQ)g(b)n(y)g(simply)h(replacing)1284 2842 y FA(GD)p Ft(\()p Fs(j;)14 b(l)r(;)g(r)r Ft(\))28 b(=)1769 2779 y Fk(P)1857 2800 y Fp(r)1857 2866 y(y)r Fq(=)p Fp(l)1997 2842 y Fs(')p Ft(\()p Fs(T)n(sam)p Ft(\()p Fs(j)23 b Ft(+)18 b Fs(y)s Ft(\))32 b Fs(=)-51 b Fr(2)24 b Fs(Q)2702 2854 y Fp(y)2741 2842 y Ft(\))1095 2947 y(with)k FA(GD)p Ft(\()p Fs(j;)14 b(l)r(;)g(r)r Ft(\))28 b(=)1769 2885 y Fk(P)1857 2906 y Fp(r)1857 2972 y(y)r Fq(=)p Fp(l)1997 2947 y Fs(asm)p Ft(\()p Fs(T)n(sam)p Ft(\()p Fs(j)23 b Ft(+)18 b Fs(y)s Ft(\))p Fs(;)c(Q)2739 2959 y Fp(y)2778 2947 y Ft(\))p Fs(:)523 3137 y Ft(Since)24 b Fs(T)n(sam)p Ft(\()p Fs(j)13 b Ft(+)d Fs(y)s Ft(\))32 b Fs(=)-51 b Fr(2)23 b Fs(Q)1336 3149 y Fp(y)1399 3137 y Ft(implies)h Fs(asm)p Ft(\()p Fs(T)n(sam)p Ft(\()p Fs(j)14 b Ft(+)c Fs(y)s Ft(\))p Fs(;)k(Q)2402 3149 y Fp(y)2440 3137 y Ft(\))24 b Fr(\025)e Ft(1,)i(LA)n(Q)f(uses)g(a)g(stronger)523 3237 y(\014lter)i(than)g(LEQ.)f(The)i(price)e(to)h(b)r(e)h(paid,)f(ho)n (w)n(ev)n(er,)f(is)h(that)g(either)g(tables)g Fs(asm)p Ft(\()p Fs(u;)14 b(Q)3323 3249 y Fp(i)3350 3237 y Ft(\),)523 3337 y(1)33 b Fr(\024)g Fs(i)g Fr(\024)h Fs(k)25 b Ft(+)d Fs(s)p Ft(,)36 b(ha)n(v)n(e)d(to)g(b)r(e)i(precomputed)e(for)h(ev)n (ery)e(string)i Fs(u)f Ft(of)h(length)g Fs(q)s Ft(,)i(or)d(the)523 3436 y(required)27 b(en)n(tries)g(of)g(the)h(tables)f(ha)n(v)n(e)g(to)g (b)r(e)h(computed)g(on)f(demand.)523 3705 y Fu(5)112 b(Conclusion)523 3904 y Ft(Although)35 b(the)h(tec)n(hnical)f(details)g (are)f(di\013eren)n(t)i(in)f(eac)n(h)g(case,)h(w)n(e)f(ha)n(v)n(e)f (sho)n(wn)h(that)523 4004 y(our)g(approac)n(h)e(is)i(a)g(general)f(tec) n(hnique)h(for)g(the)h(impro)n(v)n(emen)n(t)e(of)h(\014ltering)g(metho) r(ds)523 4104 y(in)30 b(appro)n(ximate)d(string)i(matc)n(hing.)41 b(By)29 b(analogy)-7 b(,)28 b(w)n(e)h(ma)n(y)g(plan)g(a)g(car)f(route)h (through)523 4203 y(a)36 b(cro)n(wded)f(cit)n(y)-7 b(,)39 b(based)c(on)h(adv)-5 b(ance)36 b(information)g(of)g(tra\016c)g (congestion)f(at)h(v)-5 b(arious)523 4303 y(p)r(oin)n(ts.)38 b(There)28 b(is)g(alw)n(a)n(ys)e(a)i(c)n(hance)f(to)h(impro)n(v)n(e)e (our)i(routing)f(decisions)g(based)h(on)g(the)523 4403 y(tra\016c)h(w)n(e)f(ha)n(v)n(e)g(observ)n(ed)g(so)h(far,)g(still)g (using)g(adv)-5 b(ance)28 b(information)h(ab)r(out)g(the)h(route)523 4502 y(ahead.)53 b(This)33 b(do)r(es)g(not)g(mak)n(e)f(m)n(uc)n(h)h (di\013erence)g(in)h(v)n(ery)e(lo)n(w)g(tra\016c)h(\(practically)f(no) 523 4602 y(matc)n(hes\))23 b(or)f(in)i(times)f(of)h(an)f(o)n(v)n (erfull)f(tra\016c)g(o)n(v)n(erload)f(\(matc)n(hes)i(almost)g(ev)n (erywhere\).)523 4701 y(But)32 b(there)f(is)h(alw)n(a)n(ys)d(a)j (certain)f(lev)n(el)g(of)g(tra\016c)g(where)g(the)h(\015exibilit)n(y)g (added)f(b)n(y)h(our)523 4801 y(metho)r(d)c(mak)n(es)f(us)g(reac)n(h)g (the)h(destination)f(b)r(efore)g(our)g(date)h(has)f(gone.)p Black 1922 5112 a(14)p Black eop %%Page: 15 15 15 14 bop Black Black 523 387 a Fu(References)p Black 561 578 a Fz(1.)p Black 43 w(R.A.)28 b(Baeza-Y)-6 b(ates)30 b(and)e(G.H.)h(Gonnet.)44 b(A)28 b(New)h(Approac)n(h)f(to)h(T)-6 b(ext)28 b(Searc)n(hing.)44 b Fv(Com-)663 670 y(munic)l(ations)28 b(of)f(the)i(A)n(CM)p Fz(,)c Fw(35)p Fz(\(10\):74{82,)k(1992.)p Black 561 827 a(2.)p Black 43 w(W.I.)i(Chang)g(and)f(E.L.)i(La)n(wler.) 50 b(Sublinear)31 b(Appro)n(ximate)e(String)i(Matc)n(hing)g(and)f(Bio-) 663 919 y(logical)e(Applications.)35 b Fv(A)n(lgorithmic)l(a)p Fz(,)26 b Fw(12)p Fz(\(4/5\):327{344,)k(1994.)p Black 561 1076 a(3.)p Black 43 w(W.I.)e(Chang)g(and)f(T.G.)i(Marr.)41 b(Appro)n(ximate)27 b(String)g(Matc)n(hing)i(and)e(Lo)r(cal)i (Similarit)n(y.)663 1168 y(In)21 b Fv(Pr)l(o)l(c.)j(of)f(the)i(A)n (nnual)f(Symp)l(osium)g(on)g(Combinatorial)g(Pattern)i(Matching)e Fz(\(CPM'94\))p Fv(,)663 1259 y Fz(LNCS)h(807,)i(pages)g(259{273,)h (1994.)p Black 561 1417 a(4.)p Black 43 w(A.)f(Ehrenfeuc)n(h)n(t)f(and) h(D.)g(Haussler.)39 b(A)27 b(New)g(Distance)h(Metric)g(on)f(Strings)g (Computable)663 1508 y(in)e(Linear)h(Time.)35 b Fv(Discr)l(ete)29 b(Applie)l(d)e(Mathematics)p Fz(,)h Fw(20)p Fz(:191{203,)h(1988.)p Black 561 1666 a(5.)p Black 43 w(R.)24 b(Giegeric)n(h,)i(F.)e(Hisc)n (hk)n(e,)g(S.)g(Kurtz,)g(and)g(E.)h(Ohlebusc)n(h.)33 b(Static)24 b(and)g(Dynamic)e(Filter-)663 1757 y(ing)c(Metho)r(ds)h (for)f(Appro)n(ximate)f(String)h(Matc)n(hing.)32 b(Rep)r(ort)18 b(96-01,)j(T)-6 b(ec)n(hnisc)n(he)18 b(F)-6 b(akult\177)-38 b(at,)663 1849 y(Univ)n(ersit\177)g(at)21 b(Bielefeld,)k(1996.)34 b Fa(ftp://ftp.uni-)t(bielefeld.de/)q(pub/)q(paper)q(s/te)q(chfak)q(/) 663 1940 y(pi/Report96-)t(01.ps.gz)p Fz(.)p Black 561 2098 a(6.)p Black 43 w(S.)g(Kurtz.)59 b Fv(F)-6 b(undamental)36 b(A)n(lgorithms)g(for)g(a)f(De)l(clar)l(ative)i(Pattern)g(Matching)f (System)p Fz(.)663 2189 y(Dissertation,)23 b(T)-6 b(ec)n(hnisc)n(he)22 b(F)-6 b(akult\177)-38 b(at,)22 b(Univ)n(ersit\177)-38 b(at)21 b(Bielefeld,)k(a)n(v)l(ailable)d(as)g(Rep)r(ort)f(95-03,)663 2280 y(July)k(1995.)p Black 561 2438 a(7.)p Black 43 w(E.M.)i(McCreigh)n(t.)36 b(A)25 b(Space-Economical)h(Su\016x)f(T)-6 b(ree)26 b(Construction)g(Algorithm.)35 b Fv(Jour-)663 2529 y(nal)27 b(of)g(the)i(A)n(CM)p Fz(,)c Fw(23)p Fz(\(2\):262{272,)30 b(1976.)p Black 561 2687 a(8.)p Black 43 w(P)-6 b(.H.)32 b(Sellers.)55 b(The)33 b(Theory)f(and)g(Computation)g(of)i(Ev)n (olutionary)e(Distances:)49 b(P)n(attern)663 2778 y(Recognition.)35 b Fv(Journal)28 b(of)f(A)n(lgorithms)p Fz(,)g Fw(1)p Fz(:359{373,)i(1980.)p Black 561 2936 a(9.)p Black 43 w(E.)35 b(Sutinen)f(and)g(J.)i(T)-6 b(arhio.)62 b(On)35 b(Using)g Fi(q)s Fz(-Gram)f(Lo)r(cations)i(in)f(Appro)n(ximate)e (String)663 3027 y(Matc)n(hing.)41 b(In)27 b Fv(Pr)l(o)l(c)l(e)l(e)l (dings)k(of)e(the)h(Eur)l(op)l(e)l(an)h(Symp)l(osium)f(on)g(A)n (lgorithms)p Fz(,)f(pages)f(327{)663 3119 y(340.)f(Lecture)e(Notes)h (in)g(Computer)f(Science)h Fw(979)p Fz(,)g(Springer)g(V)-6 b(erlag,)26 b(1995.)p Black 523 3277 a(10.)p Black 43 w(E.)32 b(Sutinen)f(and)h(J.)g(T)-6 b(arhio.)54 b(Filtration)33 b(with)g Fi(q)s Fz(-Samples)e(in)h(Appro)n(ximate)e(Matc)n(hing.)663 3368 y(In)21 b Fv(Pr)l(o)l(c.)j(of)f(the)i(A)n(nnual)f(Symp)l(osium)g (on)g(Combinatorial)g(Pattern)i(Matching)e Fz(\(CPM'96\))p Fv(,)663 3459 y Fz(LNCS)h(1075,)i(pages)g(50{63,)h(1996.)p Black 523 3617 a(11.)p Black 43 w(T.)38 b(T)-6 b(ak)l(aok)l(a.)70 b(Appro)n(ximate)35 b(P)n(attern)j(Matc)n(hing)g(with)g(Samples.)69 b(In)37 b Fv(Pr)l(o)l(c)l(e)l(e)l(dings)j(of)663 3708 y(ISAA)n(C)33 b(1994)p Fz(,)i(pages)e(234{242.)i(Lecture)e(Notes)f(in)g (Computer)g(Science)g Fw(834)p Fz(,)j(Springer)663 3800 y(V)-6 b(erlag,)26 b(1994.)p Black 523 3957 a(12.)p Black 43 w(J.)33 b(T)-6 b(arhio)34 b(and)e(E.)h(Ukk)n(onen.)54 b(Appro)n(ximate)31 b(Bo)n(y)n(er-Mo)r(ore)j(String)e(Matc)n(hing.)56 b Fv(SIAM)663 4049 y(Journal)28 b(on)g(Computing)p Fz(,)e Fw(22)p Fz(\(2\):243{260,)k(1993.)p Black 523 4206 a(13.)p Black 43 w(E.)j(Ukk)n(onen.)56 b(Finding)33 b(Appro)n(ximate)f(P)n (atterns)h(in)g(Strings.)57 b Fv(Journal)36 b(of)e(A)n(lgorithms)p Fz(,)663 4298 y Fw(6)p Fz(:132{137,)29 b(1985.)p Black 523 4455 a(14.)p Black 43 w(E.)d(Ukk)n(onen.)34 b(Appro)n(ximate)25 b(String-Matc)n(hing)h(with)g Fi(q)s Fz(-Grams)g(and)f(Maximal)i(Matc)n (hes.)663 4547 y Fv(The)l(or)l(etic)l(al)i(Computer)f(Scienc)l(e)p Fz(,)f Fw(92)p Fz(\(1\):191{211,)j(1992.)p Black 1922 5112 a Ft(15)p Black eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF