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Eric Allender [2] starts his recent survey of the state-of-affairs in proving
lower bounds on circuit size by noting that his earlier survey [I] remains
depressingly current. While it is true that we cannot pitifully find a func-
tion in EXP that cannot be computed by linear size depth-three circuits
comprising only MODg gates, the time honored George Polya principle of
considering simpler problems seems to again provide ways to making mean-

ingful progress. In this article, we further argue that such considerations
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sults in this natural model that yield superpolynomial lower bounds on
the size of some restricted circuits with MOD,,, gates. The ingredients
that get used in these results are perhaps more interesting. Some nat-
ural next steps emerge from these results that are also of independent
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have raised (and sometimes solved) natural and appealing problems that can
be stated in pure mathematical terms. This holds the promise that tools
from mainstream mathematics can be further exploited in the context of
understanding the computational power of mod counting.

A series of interesting works on constant-depth circuits have recently ap-
peared. Here, we just focus on the ones that are motivated by circuits having
MOD,, gates, where m is an arbitrary number. Note that MOD,,, is a boolean
function that is defined below:

Definition 1.1. Let A C Z,, be some accepting set. Then, for each = €
{0,1}", MOD2 (x) = 1if 2", 2; = a (mod m) for some a € A, otherwise
the function outputs 0.

By default, the accepting set A is Z,, — {0} and in this case it is dropped
from the superscript. The class of functions computed by polynomial size and
constant-depth circuitd] of unbounded fan-in having AND, OR and MOD,,
gates is called ACC%m]. The union of these classes over all fixed positive
integer m is defined to be the complexity class ACC. Asis the convention, we
overload these terms to also mean the underlying circuits with no restrictions
on size. Understanding the computational limitations of ACC® is a major
goal of computational complexity that remains unfulfilled.

Smolesnky[0| in the late eighties, building upon the elegant work of
Razborov [39], showed that ACCP[p*] circuits require exponential size to
compute MODy, if p is a prime and k any fixed positive number and ¢ has a
prime factor different from p. A simple exercise then shows that MAJORITY
cannot be computed in sub-exponential size by such circuits. Indeed, one can
very well imagine the excitement this generated back at the time. Smolensky
made the following very tempting conjecture:

Conjecture 1.2 (Smolensky). For any fized positive integer m, ACC"[m]
circuits needs exponential size to compute MOD,, if m,q are co-prime num-
bers.

At the moment, we seem to be far from proving (or disproving) Smolen-
sky’s conjecture. One may be inclined to think that circuits that are re-
stricted to have only MOD,, gates (and constant depth, denoted by CC°[m))
are easier to deal with? Such a thought is especially appealing, given the
following fact about prime moduli: for any prime p, circuits of constant-
depth having only MOD,, gates cannot compute all functions. In particular,
they cannot compute a high degree function (over Z,) like OR, AND and

'The input layer of all boolean circuits considered in this article have access to each
variable and its negation, in addition to boolean constants 0 and 1.



MODy, no matter how much size is allowed. Indeed, this is a very strong
computational limitation and follows surprisingly easily from the fact that
Z, is a group. In contrast, depth-2 such circuits having only MOD,, gates
can compute everything:

Fact 1.3 (Folklore, (see [7])). Let m be any number that has at least
two distinct prime factors. Then, every n-variate boolean function f can be
computed by a depth-two circuit of size 2™ having only MOD,, gates.

In a recent work, Hansen and Koucky [32] observe that one can com-
bine Fact [[3 with the Razborov-Smolensky idea of approximating AND/OR
gates by low degree polynomials over any finite field to yield the following
interesting result:

Theorem 1.4 (implied in [32]). Every quasipolynomial size circuit C com-
prising AND, OR and MOD,, gates of depth d can be approximated very well
by a quasipolynomial size circuit C" of depth O(d) comprising only MOD,,
gates, i.e. Pr, [C'(x) # C(z)] < 1/qpoly(n).

This hints that proving Smolensky’s conjecture for circuits with only
MOD,, gates may be as hard as proving the general case. Indeed, Smolen-
sky obtains his result for ACC"[p] by showing the stronger result that they
cannot even approximate well MOD,. This strengthening is crucial to his
argument. Theorem [C4] on the other hand, shows that such a strengthened
result (against MOD,) for the special case of CC°[m] circuits is sufficient to
deal with general ACC°[m] circuits.

Nevertheless, the intuition that CC°[m] circuits are weaker and hence
easier to deal with, may not be entirely lost. For a boolean function f, let
the support set of f, denoted by supp(f), be the set of points in the cube
where f evaluates to 1. The support set of a MOD,,, gate is large in size
and is in some sense uniformly spread out in the cube. Can the following be
true?

Conjecture 1.5 (Large Support SetH, appears in [I7]). There exists

a function h : N — N, such that any non-constant function computed by

a CC°lm)| circuit of size s and depth d has a support set of size at least
2n

29Q(log s)h(d) ’

2In the thesis [I7], where this conjecture originates, it is called the Small Support Set
Conjecture referring to the fact that functions with a small support set are difficult for
CC°[m] circuits.



Indeed, the Large Support Set Conjecture is true in a very strong sense
when m is a prime p (or a prime power). The argument goes through poly-
nomials over Z, and we point this out in Section Bl after the statement of
Conjecture 271

Note that in particular, the Large Support Set Conjecture implies that
AND (or OR) cannot be computed in small size by CC°[m] circuits. This is
dual to the celebrated result that MOD,,, cannot be computed easily by AC®
circuits. Such a possibility has long been conjectured by McKenzie, Péladeau
and Thérien [33]. The relative hardness of Smolensky’s Conjecture and the
Large Support Set Conjecture is not clear. Unfortunately, both seem out of
hand for the moment.

In this article, we focus our attention on a very basic and natural model
of computation: that of multilinear polynomials over the ring Z,,. It is
well known that understanding this model is absolutely necessary before
significant progress on above conjectures can be made. Indeed, Razborov
[39] and Smolensky [0 introduced computation by polynomials over the
prime field Z, as a key ingredient in their arguments for lower bounds on
constant-depth circuitdl, Unfortunately, as reviewed in the next section,
understanding polynomials over Zg already presents significant difficulties
and several questions remain open. Our study of polynomials is motivated by
Smolensky’s Conjecture and the Large Support Set Conjecture. In particular,
we aim to prove sort of their analogs in the polynomial world.

Before we proceed further, it is important to point out that polynomials
over reals are also a very natural and interesting model of computing boolean
functions. Tt is indeed extremely relevant for understanding constant-depth
circuits. For lack of space and the sake of focus, we leave out this topic here.
The interested reader can consult the excellent survey by Beigel [8] to get
pointers to the older literature and more recent works like [87]. Beigel [8] also
discusses polynomials over finite rings, but the survey is somewhat dated and
broader in scope than ours. Here we survey some recent (and some not so
recent) works on polynomials over Z,, and point out some of the challenges
that lie ahead.

2 Computation by Polynomials

An interesting thing to observe is that every function f : {0,1}" — 7Z,, is
expressible as a multilinear polynomial over Z,,. To see this one merely has to
verify that each so called delta function is expressible by such a polynomial.

3In fact their methods also work over the ring Z
positive integer.

pk> Where p is a prime and k is fixed



More precisely, for each w € {0, 1}", define the delta function 4, : {0,1}" —
L as Op(z) = 1 if w = x and otherwise §,,(z) = 0. Consider the set of
functions A = {d,,|w € {0,1}"}. It is easy to see that every function f can
be uniquely expressed as a Z,, linear combination of such functions. On the
other hand,

Su(@)=( T =) J] (@ —=).
iw=1 ;=0

The simple identity above implies that every Z,,-valued function over
the boolean cube is expressible as a multilinear polynomial over the ring Z,,.
Indeed, a simple counting argument shows that the polynomial corresponding
to each such function is unique. This enables us to view each boolean function
as an algebraic object. Natural measures of the complexity of this object
are its degree and the number of monomials appearing in it. Formalizing
things, let deg,,(f) denote the degree of the polynomial representing the
boolean function f over Z,,. In our discussion, polylogarithmic degree will
be considered small and n*™) degree will be high. Exhibiting a function of
high degree is not hard. For example,

AND(z) = zyx9 - - -

OR(z) =1—JJ(1 — ) (2.1)

i=1

showing that deg,,(OR) = deg,,(AND) = n. On the other hand, demanding
a polynomial P to satisfy P(x) = f(z) for each point x in the cube seems
too restrictive. A more natural definition, at least from a computational
perspective, was introduced in the very interesting work of Barrington, Beigel
and Rudich [6]. Let A C Z,, be an accepting set. Then P represents f
w.r.t A if it satisfies the following property for each x in the boolean cube:
P(z) € A (mod m) iff f(x) = 1. The first thing to note about this model, is
that there is not a unique polynomial computing f w.r.t some fixed accepting
set A. A straightforward counting argument shows that there are exactly
| A|lswpp(Nl (7, — | A]) 2"~ Isupp(Hl polynomials representing f w.r.t. the accepting
set A.

Definition 2.1. Let deg’ (f) denote the minimal degree among degrees of
polynomials representing f w.r.t accepting set A. The generalized degree of
f, denoted by gen-deg,,(f), is then defined to be the degree of f w.r.t. to
the best accepting set, i.e.

gen-deg,,(f) = min{deg\(f) : A C Zy}.



While it is immediate that gen-deg,,(f) < deg,,(f) for every f, it is a
central question in the theory of polynomial representations to determine
how much degree savings can generalized representation achieve over exact
representation in the ring Z,,. For general m, it seems fairly non-trivial to get
good estimates of deg? (f) for even a simple f like OR and AND. However,
when m is a prime p (or a prime power), tight bounds can be obtained in a
simple and elegant fashion. The fact that Z; is a group turns out to be very
useful:

Fact 2.2 (Fermat’s Gift). Let p be any prime. For every x #Z 0 (mod p),
2?1 =1 (mod p).

This gift is great for booleanization. Let P be any polynomial and A any
accepting set. Let Q(z) = >, .41 — (P(z) — a)P~'. Using Fermat’s Gift, it
is easy to verify that Q(z) is 0/1 valued modulo p and P(z) € A (mod p) iff
Q(z) = 1 (mod p). Thus, if P represented f w.r.t A, then @ is the unique
polynomial corresponding to f. Noting that degree of () is larger than P by
a factor of at most p — 1, one gets linear lower bounds on the degree of P if
the function represented is a hard function like OR and AND (recall equation

E1):
Fact 2.3. For any prime p, gen-deg,(f) > deg,(f)/(p —1). In particular,

gen-deg,(OR), gen-deg,(AND) > %

Unfortunately, when m contains two distinct prime factors, Fermat’s gift
stops working. One could hope that given any accepting set A C Z,,, there
is some univariate 0/1 valued polynomial R over Z,, corresponding to the
characteristic function of the set A. Indeed, Fermat’s gift yields such a
polynomial when m is prime. Having some such R would be enough for
proving lower bounds on the generalized degree of f over Z,,. This hope gets
killed for the following reason: let m = p;py be a product of two distinct
primes. Recall, via chinese remaindering, the map a — ((a¢ mod py), (a
mod p,)) forms a bijection between Z,, and Z,, x Z,,. Thus, 0 and 1 in Z,,
correspond to tuples (0,0) and (1,1) in Z,, X Z,,.

Fact 2.4. Let m = pips be a product of two distinct primes. Then the
characteristic function of the set A = {1} (and the set A = {0}) has no
(univariate) polynomial representation over Zy,.

Proof. Assume for the sake of contradiction that R is such a polyno-
mial.  Applying the Chinese Remaindering Theorem, R gives rise to



two polynomials, R, over Z, and R,, over Z,, with the property that
R(z) — (R,,(zr mod py), Ry,(x mod py)). Now R(0) =0 (mod m). Hence,
R, (0) = 0 (mod p;). Similarly, R,,(0) = 0 (mod py). Observing that
R(1) = 1 (mod m) and applying a similar argument yields the following:
R, (1) = 1 (mod py) and R,,(1) = 1 (mod py). Thus, combining things
back via chinese remaindering, R((0,1)) = (0,1) (mod m) and R((1,0)) =
(1,0) (mod m). However, as R is the exact representation of the character-
istic function of A = {1}, R((0,1)) = R((1,0)) = (0,0) (mod m), leading us
to the required contradiction. O

Fact Z4 has turned out to be somewhat of a serious blow to proving lower
bounds on the composite degree of boolean functions. To some extent, this

is explained by a surprising upper bound discovered by Barrington, Beigel
and Rudich [6].

Theorem 2.5 (Barrington, Beigel and Rudich). Let m have t distinct
prime factors. Let A= {1} and A’ = Z,,—{0}. Then, deg’(AND) = O(n'/*)
and deg (OR) = O(n*/").

The above theorem shows that composite moduli can obtain non-trivial
computational advantage over their primal counterparts when the accepting
set is carefully chosen. Even more surprisingly, the above theorem has been
exploited in explicit constructions in combinatorics [29, 22] and very recently
in obtaining efficient locally decodable codes by Efremenko [20].

Tardos and Barrington [d2] obtained the following lower bound on the
generalized degree of the OR function.

Theorem 2.6 ([42]). Let m have t > 2 distinct prime factors, and let q be
the smallest mazimal prime power divisor of m. Then, gen-deg,,(OR) is at

least ((q%l — 0(1)) log n) %.

The above lower and upper bounds on the degree for OR and AND has
not been improved in more than ten years and it is an important challenge
to narrow down the gap between them. On the other hand, we speculate the
following:

Conjecture 2.7. Let P be a multilinear polynomial of degree d over Z,,.
Let a € Z,, be such that there exists an xy € {0,1}" with P(xy) =
a (mod m).Then the number of points in the cube at which P evaluates to a
is at least 279 where m = py -+ p; and each p; is a distinct prime.

It is simple to verify that this conjecture implies that for such square-free
m, gen-deg, (OR), gen-deg, (AND) = n(/t). The conjecture above admits



a natural modification to composites with repeated prime factors. We do
not state that formally to keep the discussion simple and focussed on the
essential problem that lies ahead. Before we end this section, it is worth
mentioning that the above conjecture is known to be true for prime moduli
(see for example [B]). Using Ramsey Theory, Péladeau and Thérien [38]
prove a result that easily implies this conjecture for arbitrary m as long as
the degree d is a constant.

2.1 Computing MOD,

The advantage of composites over primes is not limited to computing AND
and OR. Among other things, Bhatnagar et.al.[T9] showed that one can
compute the THRESHOLD;, function by polynomials of degree O(n!/**)
over Z,,, if m has t distinct prime factors and k is a constant. This is
a generalization of the upper bound due to Barrington et.al. as OR is
just THRESHOLD;. Bhatnagar et.al. wondered if interesting degree up-
per bounds could be proved for the simple function MOD,. Hansen [31],
disproving a conjecture of Bhatnagar et.al. [I9], showed the following:

Theorem 2.8 (Hansen). Assume m = p;---p; and q are co-prime satisfy-
ing the following condition: there exists positive integers by, ..., by such that
25:11,% <1 and p; > qb; for all i. Then gen-deg,,(MOD,) = O(n!/*).

Tardos and Barrington’s [A2] technique can be adapted (see for example
[T3]) to prove an Q((logn)"=) lower bound on gen-deg,,(MOD,). Such
bounds degrade with the number of distinct prime factors of m. In a break-
through work, Bourgain [IT] proved an Q(logn) lower bound on the gen-
eralized MOD,,-degree of MOD,. Bourgain’s method is interesting due to
several reasons. First, it proves something stronger, showing that the corre-
lation between the boolean function computed by a sub-logarithmic degree
polynomial over Z,,, w.r.t. an accepting set, and MOD, is exponentially
small. Such a correlation bound was not know even for polynomials modulo
primes, a model which one typically assumes we understand well. The re-
sult, very significantly, improves upon a long line of work (see, for example,
21, T2, 24, @ 26]). Second, Bourgain’s method boils down to estimating
certain exponential sums. This is an elementary but powerful technique that
has spawned more recent progress [15, B0, [8]. Due to its importance, we
include a proof of Bourgain’s result. Our treatment follows that of Chat-
topadhyay [T4), [[6], that is very close to the method of [T 7] but is slightly
simpler and sharper.



Definition 2.9. For any b € {0,...,¢ — 1}, define the bth MOD,-residue
class of {0,1}", denoted by M,(b), as the following:

M,(b) = {x = (21,...,2,) € {0,1}" | Za: = b (mod ¢)} (2.2)

Definition 2.10. For any polynomial P over Z,, and a € Z,,, let P~'(a)
define the set of points in {0, 1}" where P evaluates to a.

An intuition about a random and uniform set is that each of the A, () residue
classes are equally represented in such a set. Bourgain’s result essentially
shows that if P has low degree, then P~!(a) appears pseudorandomﬂ to the
MOD, function. In other words, either each of the MOD, residue classes are
almost equally represented in P~1(a) or the set is a very small fraction of the
cube.

Lemma 2.11 (Bourgain’s Uniformity Lemma). For all positive co-
prime integers m, q, there exists a positive constant v = v(q) < 1 such that
for every polynomial P of degree d over Z,, and every a € Z,,, the following
holds:

q m2m-—1

Pr [z € (P~ (a) N M,(b))] — 1Pr [z € Pl(a)}' < exp( — %)
(2.3)

Before we start the proof, let us recall an elementary fact about the
primitive roots of unity that we make repeated use of henceforth. Let e, (y)
denote the primitive m-th root of unity raised to the yth power, i.e. exp(%%),
where j is the complex square root of —1. Then,

Fact 2.12. Ify =0 then,% ZZZOI em(ay) is 1 and the expression is 0 other-
wise.

Armed with this basic fact, we prove the Uniformity Lemma below:

Proof of Uniformity Lemma. We write Pr [z € (P~ (a) N M,(b))] as an ex-
ponential sum. Thus,

4The method employed by Bourgain to prove this result is closely related to method
employed commonly in communication complexity to estimate the discrepancy of a func-
tion. Indeed, the quantity in the LHS of (Z3) is closely related to the discrepancy of
MOD, function w.r.t. polynomial mappings modulo m . The interested reader can find
more details on this point of view in [I6, [I7]



Pr [x € (Pfl(a) N Mq(b))]

T

—_

m—1 q—

= Epefoyr K% > em(a(P(z) - a))> (

2 3 eq(ﬁ(ler---ern—b)))]

(2.4)

0

T

Expanding the sum inside the second multiplicand and treating the case
of # = 0 separately, one gets

@D =15, Y enlaPla) - )
+ mi Z S™ (e, B, P)ey(—aa)e,(—b3) (2.5)
? netml oela— (0}

where,

S™(a, 3, P) = Eyeqo,13n [em (aP(z)) - eq(Blzr + -+ xn))] (2.6)

Observing that the first term in ([Z3) is simply ; Pr[z € P~'(a)] and
lem(—aa)| = leg(=bB)| = 1, we get :

1 1
Prioe (P~(@) N M) — Prloe P‘l(a)]' < > 8™a, 8, P)|
aclm],gelal—{0}
(2.7)

The Uniformity Lemma EZTT gets proved by the bound on |S™%(«, 3, P)|
provided below. The bound below is the main technical contribution of
Bourgain. 0

Lemma 2.13. For each pair of co-prime integers m,q > 1 there exists a
constant v = 7(q) such that for every polynomial P of degree d > 0 in Zy,,
and numbers a € [m], B € [q] — {0}, the following holds :

5™9(a, 8, P)| < exp( . L) (2.8)

(m2m-1)d



Before we begin our formal calculations, we note that a slightly weaker
estimate of |S™4(«a, 3, P)| was first obtained by Bourgain [IT] and later gen-
eralized by Green et al [27]. The case when P is a_linear polynomial was
essentially dealt with in [I2] and forms our base casel just as in [T, 2.

In order to explain the intuition behind our calculations, we develop some
definitions and notations. Let f : {0,1}" — Z,, be any function. Consider
any set I C [n]. Note that each binary vector v of length || can be thought
of as a partial assignment to the input variables of f by assigning v to the
variables in I in a natural way. Let f/(*) be the subfunction of f on variables
not indexed in [ induced by the partial assignment v to variables indexed in
I. For any sequence Y = {y1,...,y;} having ¢ boolean vectors from {0, 1}",
let fy be the function defined by fy(z) = f(z) + 3.i_, f(x @ y;), where the
sum is taken in Z,,. Let I[Y] C [n] be the set of those indices on which
every vector in Y is zero and J[Y] be just the complement of /[Y]. Then,
the following observation will be very useful in the ensuing calculation :

Observation 2.14. Let P be a polynomial of degree d in n variables over
L. Then, for each sequence Y of m — 1 boolean vectors in {0,1}", the
polynomial P{/I[Y}(v) is a polynomial of degree d — 1 in variables from I1Y] for
each vector v € {0, 1}

Proof of Lemma[ZT13 We drop the superscript from S to avoid clutter in
the following discussion.We shall induce on the degree d of the polynomial.
Our IH is that there exists a positive real constant pz_; < 1 such that
for all polynomials R of degree at most d — 1 and for all n > 0 we have
|S(av, B, R)| < 2"u” ;. The base case of d = 0 is easily verified and is dealt
with in earlier works on correlation. Note that p depends only on g. Our
inductive step will yield a relationship between py 1 and pg that will also
give us our desired explicit bound of (ZF]).

As in |1l 27, we raise S to its mth power. Our point of departure from
these work, is to write (S)” in a slightly different way.

m—1
(5)™ =By, ym-reo, 1y Ea {em (P(x) * Z Pz yj)) )

» (Zx . z@; &) + + Z(m o )| o

Let Y be the sequence of length m — 1 formed by a given set of vectors

y',...,y™ 1. We denote by u and v respectively the projection of z to I[Y]

5We revisit this base case later in Section BZ11



and J[Y]. Let n; and ny be the cardinality of I[Y] and J[Y] (note that
ny+ny =n) . Then, one can verify

1

1 m—
(m} = Eyl,...,ym_lG{O,l}”EUE{O,l}"J |:em (Qy el (U))eq<nJ)X

X Bucio1yer [em (PO () ey (3 ui)] ] (2.10)

i=1

where le’“"ym_l is some polynomial that is determined by y!,...,y™ ! and
polynomial P.

The key thing to note is that Observation ZT4] implies PQY](U) to be a
polynomial of degree at most d—1 over u for every sequence Y = y!, ... y™ !
and every vector v. Thus, the inside sum of ([ZIO) over the variable u can
be estimated using our inductive hypothesis. Noting that the number of
sequences Y for which |Iy| = k is exactly (7)(2™~' — 1)"7* and using the
triangle inequality with the binomial theorem, we get.

m - n m— n—kon— nm 1 - Hd—1 "
SIm <y (k) (21— 1)nkgnokok k= 9 (1 - W) (2.11)
k=0

The rest of the calculation proceeds exactly as in Green et. al. [27]. We
repeat it here for the sake of self-containment. Taking the mth root of both
sides of (ZT]), using the inequality (1 —2)/™ <1 —2/mif 0 < < 1 amd
m > 1 after rearranging, we obtain

1 — pg— 1—
1— g > Hd—1 > Ho .
m2m-1 (m2m-1)

(2.12)

Substituting v = 1— g, one gets pg < exp(—m). This immediately
yields () in Lemma 213 O

3 Computation by a System of Polynomials

It is natural to extend the notion of computation of a boolean function by a
single polynomial to the notion of computation by a system of polynomials.
Apart from the fact that systems of polynomials are central objects of interest
in branches of pure mathematics like algebraic geometry, the study of their
computational power is motivated from proving lower bounds in both boolean



and arithmetic circuits. As before, the fact that our polynomials are over
a ring Z,, (rather than a field) and that we are interested in their behavior
over the boolean cube, presents difficulties

Let P be a system of polynomials P,..., P, each over Z,, and let
Ay, ..., Ag be their respective accepting sets. The boolean function computed
by P, denoted by f7, is simply given by the following: for any = € {0,1}",
fP(z) = 1if P(x) € A; (mod m) for each 1 < i < s, otherwise f7(x) = 0.
The degree of the system P, denoted by deg(P), is the degree of a maximal
degree polynomial in P, i.e. maz{deg(P;) :i < s}.

Definition 3.1. The s-simultaneous MOD,,,-degree of a boolean function f,
denoted by deg’ (f), is the degree of a minimal degree system of s polyno-
mials computing f.

Of course, making progress on proving degree lower bounds for a system
of polynomials in general is a harder problem than proving lower bounds on
the degree of a single polynomial. It may thus seem pointless to work with
systems of polynomials before resolving questions from the previous section.
However, consider the following: we know that a linear polynomial over Z,,
cannot represent any of AND, OR and MOD,, function. In fact, from results
in the previous section, we know that one provably needs almost logarithmic
degree to represent them. Thus, one may hope to answer questions of the
following type: How large a lower bound on s can we prove so that deg’ (f) >
1?7 As we will see that even for this case, proving strong lower bounds on s can
be non-trivial. Additionally, such lower bounds yield new lower bounds on
the size of some restricted circuits for which no other methods are currently
known.

3.1 Linear Systems

Let £ = {l1,...,4} be a set of n-variate linear forms over Z,,. Such a set
forms a linear map £ : Z" — Z! . Conversely, given such a linear map, there
exists a corresponding set of linear forms. For v € Z! | let K*(v) represent
the set of points in {0, 1}", that satisfy ¢; = v; for all 1 < ¢ < t. Then, we
show the following:

Theorem 3.2 (Chattopadhyay, Goyal, Pudlak and Thérien [15]).
For every positive integer m, there exists a positive constant ¢ such that the
following holds. Let L : Z — 7L be a linear map. For any v € Zt  if
K*(v) is non-empty, then

n

K > 2 (3.1)



A simple averaging argument shows that for every £ : Z"" — Z! . there
exists a v € Z! such that K*(v) has size at least 2"/m!. Theorem B2 is a
kind of concentration result in the sense that it shows that every K*(v) is of
size close to the average size if it is non-empty. We note that the results in
[43], based on methods introduced in [7], imply a lower bound of (=%<)" - =
on the size of K*(v) when it is non-empty, and « is an increasing function
of m. This is still exponentially weaker than what is given by (BI]).

3.2 An Excursion

Before we prove Theorem B2 we draw on a notion from combinatorial group
theory. Consider a fixed finite abelian group G. The Davenport constant of
G, denoted by s(G), is the smallest integer k such that every sequence of
elements of G of length at least k, has a non-empty subsequence that sums
to zero. The pigeon-hole-principle shows that s(G) is finite if G is finite.
This is because if we have a sequence of length larger than |G|?, then some
element a of G is repeated at least |G| times. The sub-sequence formed by
the first |G| instances of a indeed sums to zero as the order of every element
in G divides |G|. Thus, s(G) < |G|? which gives a quadratic upper bound
on the Davenport constant w.r.t. the size of the group.

For specific groups, one can show much better bounds. For instance,
if the group is Z,, then one can show, using the polynomial method, that
s(Zy) is p. Clearly, the lower bound follows by considering the sequence of
(p — 1) occurrences of the identity element. Such a sequence has no non-
empty subsequence summing to zero. The upper bound can be established
as follows: Let a4, ..., a, be a sequence of elements from Z,. Assume that no
zero-sum subsequence of it exists. In other words, the polynomial a;xq+-- -+
a,x, over Z, evaluates to zero only at one point in the boolean cube {0, 1}?,
which is the all zero point. Thus, applying Fermat’s Gift, the polynomial
P =1- (a2 + -+ apx,)P ', is exactly the OR function of p boolean
variables over Z,. However, recall that equation (ZI]) shows that the degree
of the OR polynomial is p. This contradiction finishes the argument.

Olson [35] showed a more general statement: Let G be an abelian p-group
of the form Zx, ® Z,r, © - -+ © Zyr,, where @ denotes direct sum. He shows
that s(G) = 1+>;_, (p" —1) in this case. We show a little later that s(Z!,)
is at most ¢(m)t, where c¢(m) is a constant that just depends on m. Before
doing that, we recall another result by Olson [36] that connects s(G) with
the set of boolean solutions to the equation gz + ... + g,x, = 0, denoted
by K(G,n), where each g; € G.

Theorem 3.3 (Olson’s Theorem). |K(G,n)| > max{1, 2"+ =@},



Proof adapted from [36]. We prove this by induction of n. For n < s(G) —1,
the theorem is vacuously true. Assuming it is true for n, we prove it for
n + 1. Let the equation be g1z + -+ + gny12,41 = 0. By the definition of
s(G), there is a subsequence of g1, . . ., gy that has a subsequence that sums
to zero. W.l.o.g., assume this subsequence to be ¢gq,...,g;. Then consider
the equation (—g2)xs + -+ + (—g1)Tr + Gre1®is1 + -+ + Gnr1Tns1 = 0. By
our hypothesis, this equation on n variables has at least 2"t1=5(©) solutions.
For each such solution point u, we obtain a solution to the original equation
over n + 1 variables in which the value of z; is set to 1 in the following way:
x1 =1, for 2 < i <, x; is set to the value that is the complement of its value
in u, and for t <7 < n -+ 1, x; is set to its corresponding value in u. Finally,
extend the solutions of goxy + - - -+ gp112,4+1 = 0 to our original equation by
simply fixing 2; = 0 to obtain at least another 2"+1=5(%) solutions. Thus, we
have at least 2"7275(%) solutions in total, proving the theorem. O

3.3 A Simple Fourier Analytic Argument

The usefulness of Olson’s Theorem for our purpose is evident from its fol-
lowing immediate corollary:

Corollary 3.4. Let L : Z — Z3, be a linear map. Then, for all v € Z3,
such that K*(v) is non-empty, we have |K*(v)| > 2n+i=sZn),

Proof. Let L = {{q,...,4;} be the underlying linear forms, where ¢; =
a1y + o+ apz,. As K*(v) is non-empty, there exists b € {0,1}" such
that (;(b) = v;. Consider (] = aj 71 + -+ + a; ,z,, where a;; = —a;; if
b; = 1 and otherwise a;j = a;j, foreach 1 < j <nand1 <i <t De-
fine L' = {¢},...,0;}. Then, it is straight-forward to verify that sets K*(v)
and K*'(0%) are in one-to-one correspondence with each other. The result

follows by observing that Olson’s Theorem implies K*'(0°) has size at least
2n+lfs(an). O

In view of Corollary B4l it is sufficient to establish an O(¢) upper bound
on s(Zt)) for proving Theorem B2l Although, to the best of our knowledge,
determining the exact bound on s(Z!)) is still open, the linear upper bound
that we seek follows from the independent work of Meshulam [34] and Therien
[#3]. We inlcude a proof of this, using simple Fourier analysis over groups of
the form Z! . Recall, from the proof of Bourgain’s Theorem in Section ]
em(y) denotes the primitive m-th root of unity raised to the yth power.

logm

Theorem 3.5. If m is even, s(Z!) < ct, where ¢ = o et s SR

constant.



Proof. Let L ={(,...,4} be alinear map from Z3, to Z! , such that K*(0¢)
is a singleton set, i.e. contains only the point 0°. Let A\g : Z, — {0, 1} denote
the characteristic function for any set S C Z: . Then, using Fact EXI2 one
writes

Afoays () = mi]f[l {T:Z:em (azx;) +§em(a(xj _ }
- %:1 [m;l (1+ en ))em(ax])]

Let m = 2¢. Then clearly for a = ¢, we have (1+e¢,,(a)) = 1+e,,(7) = 0 using
a basic trigonometric identity. Thus, noting that |[supp(fg)| < [supp(f)] -
< (m — 1)*. Further,

|supp(g)|, we see that |supp(Ago1}s)

)\KL(Ot E |:H ( Z a€ ( ))):|)\{071}s (.T)
J=1 a=0
Thus, one concludes
SUPp(@))’ < mt{supp(Ajo.1p-) | < m'(m — 1)%,

Applying the Uncertainty Principle from Fourier Analysis, we get
mt(m = 1)* > |23, = m
whence the result follows. O

The case of an odd m can be dealt with by the following simple trick.
Multiply each linear form ¢; by 2. Viewing each modified linear form to be
over Zs, (instead of over Z,,), we obtain a new map L' : Z5,, — Z5,.. Tt is
casily verified that sets K*(0) and K*'(0') are in one-to-one correspondence
with each other. Hence, applying Theorem to K*'(0) yields bounds on
K*(0) as well, though with a very slight worsening of the constant c.

log(2m)

log(2m)—log(2m—1) 5 @

Corollary 3.6. For every m, s(Z') < ct, where ¢ =
constant that just depends on m.

Combining Corollary B4 with bounds on s(Z!,) as given above, we im-
mediately derive Theorem which states that the size of each non-empty
K*(v) is at least 2.



Remark 3.7. Here, we point out a consequence of Theorem for CC°[m
circuits. It easily yields a linear lower bound on the size of such circuit
for computing AND. Such a bound was first obtained by Thérien [A3]. Tt
also makes some progress toward the Large Support Set Conjecture (see
Conj. [LH). While there it is conjectured that the size of the support set of a
function computed by a CC"[m] circuit decays polynomially w.r.t. the size of
the circuit, Theorem B2 yields an exponential decay. Recently, Allender and
Koucky [3] have shown that a lower bound of the form n'™ on the size of a
CC°[m] circuit computing AND (MOD,), for any constant > 0 that does
not depend on the depth of the circuit, is enough to imply a superpolynomial
lower bound on CC°[m)] circuits computing AND (MOD,).

3.4 Computing MOD,

Until recently, it was not known if a linear system £ = {{,..., ¢} over Z,,
with arbitrary accepting sets {A;,..., A;} could compute MOD,, even for
t = o(n). A stronger result of [T5] (and implicit in the independent work of
Hansen [30]), showed that even polynomial systems of low degree and small
size fail to correlate well with MOD,,.

Definition 3.8. The Z,-discrepancy of a boolean function f, denoted by
disc,(f), is given by the following:

discy(f) = |Pr[f(a) = LAz € M, ()] - éPr (1f(z) = 1]

The theorem below, first obtained in [T5] and independently in [30], shows
that low-degree polynomial systems of small size have exponentially small
Z4-discrepancy.

Theorem 3.9 (Polynomial Uniformity). For all positive co-prime inte-
gers m,q, there exists a positive constant v = ~y(m,q) < 1 such that the
following holds: let P = {Py,..., P} be a n-variate polynomial system of
degree d over Z,,, with accepting sets {Aq, ..., Ay}. Then,

discy(f7) < (m —1)'exp( —n/~?). (3.2)

The above result follows from a simple use of exponential sums, hinting
at their untapped potential in this context.

6Tn fact, as the bound is information theoretic, one need not impose any restriction on
the depth of a circuit.



Remark 3.10. The special case of the Polynomial Uniformity Theorem, ob-
tained by restricting the system to be linear, already leads to an interest-
ing consequence for circuits with MOD,,, gates. Using this, [I5] shows that
circuits (of arbitrary depth) comprising only MOD,,, gates cannot compute
MOD, in sub-linear size, if (m, q) are co-prime. This significantly improves
upon the earlier result of Smolensky [4I] that showed such circuits need
Q(logn) size. Further, [I5] combine this special case of the Polynomial Uni-
formity Theorem with graph-theoretic arguments to prove that such circuits
of bounded depth need superlinear number of wires to compute MOD,. This,
in some sense, is the strongest known lower bound for general CC°[m)] cir-
cuits.

Very recently, Chattopadhyay and Wigderson [T8] have been able to sig-
nificantly improve Theorem for the case of linear systems under the con-
dition that m is precisely a product of two primes.

Theorem 3.11 (Two-Prime Uniformity). Let m,q be coprime positive
integers, with m = pipo and each p; is a prime. There exists a positive
constant v = vy(m,q) < 1 such that the following holds: let L = {{1,...,{;}
be a n-variate linear system over Z,,, with accepting sets {Ay, ..., Ay}. Then,

discy () < exp(—n). (3.3)

An interesting thing to note is that the constant 7 in equation ([B3) above is
independent of the size ¢ of the system. The argument of [I8] is complicated
and combines ideas of using exponential sums from [T5], estimates of Bour-
gain (Lemma in this article) with the notion of matrix rigidity from the
ingenious work of Grigoriev and Razborov [28|in arithmetic circuits. While
space constraints will not allow us to cover the entire argument, we describe
some details of the main ideas involved in proving the Two-Prime Uniformity
Theorem.

3.4.1 Singleton Accepting Sets

To begin with, let us assume that each accepting set is a singleton set. In
this case, w.l.o.g each A; = {0}. Then, as before, one can write

P;r [fe(z) =1Axz € M b)]

B { { ﬁ ( jzolem (ou(l;(z) — ai))) } (

i=1

—

q—

| =
»
Il

S=

0 (3.4)

eq(Blzr+ -+ x, — b))) ]



Mimicking arguments used in the proof of Bourgain’s Uniformity Lemma
to go from (ZA4) to (1), we obtain,

mt

discy (/) < 3 > Bacqoyo [emm(x))eq (bas 4+ x»»)]

j=1

where, each r; is a linear polynomial obtained by a Z,,-linear combination
of ¢;’s. Writing r;(z) = aj 21 + - -+ + a; %, , we can separate variables and
obtain

’Eze{oJ}n [em (rj (;U))eq (b(:cl I xn))} ’ — H

i=1

Ezcf0,1) {em (aj,ixi)eq (bxz)} '
< exp( — om)

for some 0 < a < 1, where the last inequality is a simple exercise to derive
using the fact that m, ¢ are co-prime. Thus, in the singleton case there is no
dependence on t the number of polynomials in L.

For general accepting sets, the first thing to do is to break down our
original system into all possible singleton accepting set systems: we write
fr= > =1 f%i, where L; is a singleton system verifying if z satisfies ¢;(x) =
a;; for 1 <i <tanda;; € A;. Here s < (m — 1)" as we may assume that
each A; is a proper subset of Z,,. This decomposition of f*, along with an
application of triangle inequality allows us to deal with individual f% in the
manner prescribed above for singleton accepting sets. It is straightforward
to verify that it proves Theorem for the restricted case of linear systems.

Remark 3.12. The careful reader may have noted that fortified with Bour-
gain’s estimates from () in Lemma for degree d polynomials, each
step of the above argument readily adapts to polynomial systems of degree d
yielding the Polynomial Uniformity Theorem. Further, it is worth pointing
out that this technique yields much stronger results for singleton polyno-
mial systems just as in the case of singleton linear systems described above.

These stronger bounds yield exponential lower bounds for depth-four circuits
of type MAJ o AND o MOD,{?S} 0 AND,(10gn) (see Theorem 6 in [I§]).

3.4.2 Low Rank Systems

The first thing to note is that arguments in the previous section for linear
systems of small size almost instantaneously generalize to systems of low
rank. Of course, we have to define rank properly as we are over the ring Z,,



with zero divisors. The definition we need is simply the following: the Z,,-
rank of £ is the smallest positive integer r such that there exists r linear forms
in £ that generate every other linear form in the system as some Z,,-linear
combination of them. W.l.o.g, let these basis forms be /1, ..., ¢,.

Observation 3.13. Let L be a linear system of rank r. Then, disc, (fﬁ) <
(m —1)"exp( — yn), where v = v(m, q) is a constant.

Proof. Assume w.l.o.g., that ¢, ..., /. span the remaining ¢ — r forms in L.
Thus, the r-tuple (61 (x),... ,ﬁr(:c)) at any point z, determines ¢;(z) for any
{; € L. Hence, we can write £ = ZjeJ f*i, as before, going over all possible
r-tuples of values of the singletons composing A; for i« < r, and keeping only
those tuples for which satisfying the first r equations implies satisfying the
remaining ¢t — r equations determined by them. Thus, |J| < (m—1)" and we
conclude as in the proof of (linear subcase of) Theorem B O

Hence, if our system has sublinear rank we can prove very good bounds
on the discrepancy. A tempting intuition from linear algebra suggests that
systems with high (i.e. linear) rank should be almost unsatisfiable and hence
their solution set cannot correlate well with a nearly balanced function like
MOD,. This may not be true because our domain of interest is the boolean
cube and not Z7 . Indeed, the following example confirms this fear: let £
have n linear forms, with the ith linear form being just x;. Each accepting
set A; = {0,1}. Thus, the rank of this system is n, but every point in our
boolean domain satisfies it!

On the other hand, this counter example represents a natural class of
systems, those that are sparse. We say L is k-sparse if each ¢; € L has
at most k non-zero coefficients (out of the possible n) appearing in it. The
following shows that sparse systems have low Z, discrepancy.

Lemma 3.14. Let L be a k-sparse linear system in Z,,. Then, disc, (f‘:) <
exp( — n/'yk) for some constant y(m,q), if m,q are co-prime.

Proof. Consider any linear form ¢; in the system, with its accepting set A;. As
L is k-sparse, the boolean function f% depends on at most k variables. Hence,
there is a polynomial P; of degree at most k over Z,, that exactly represents it,
i.e. Pj(z) = f%(x) for all z € {0,1}". Replacing each /; by its corresponding
P; thus yields a singleton polynomial system P of degree at most k. The
argument gets finished by mimicking the arguments in Section BT (see also
Remark in that section). O



3.4.3 Low Rigid Rank

It turns out that we can combine low rank and sparsity such that we can
handle linear systems which can be made to have low rank after a sparse
change to each linear form. This is inspired by Valiant’s famous notion of
rigidity [45), 6], used to attack (so far unsuccessfully) size-depth trade-offs
for computing linear systems over fields. We use the following definition:

We say L is (k,r)-sparse if its associated linear forms /1, ..., ¢; satisfy
the following property: each ¢; can be written as ¢, + L; such that the set
{L;|]1 < i <t} has rank r and every ¢, is k-sparse.

Lemma 3.15. Let L be a linear system that is (k,r)-sparse. Then, there
exrists a constant v such that dz’scq(f‘:) < m”exp( — n/vk), when m,q are
co-prime numbers.

Proof. As before, we look at the possible evaluations of the various linear
forms. Let ¢ be the size of £, and let ¢; = ¢, + L;. Wlog, assume that
Ly, ..., L, are the linearly independent forms that span every other ;. Then
our idea is to split the sum into at most m” different ones, corresponding to
the possible evaluations of L,...,L,. Let u be any such evaluation in Z .
Given u, we know what each L, evaluates to in Z,,, for all + < ¢. Hence,
we know the set of values in Z,,, denoted by A¥, that ¢; could evaluate to
so that ¢; evaluates to some element in A;. Slnce, ¢ depends on at most k
variables, there exists a multilinear polynomial P over Z,, of degree at most
k such that P!(x) =0 (mod m) iff ¢;(x) € A¥. These observations allow us
to write the following:

i) =] T (113 S enatry (o)) )
(T2 S entarrton )3

Expanding out the product of sums into sum of products,

m’ t

diseh(F5) < 3 S|

u€lm]” =1 j=1

)

[em Ri(z) + Q;(x))eq(bzn:xi)]

i=1

where each Q}(z) is a polynomial of degree at most k obtained by a Z,,-
linear combination of the ¢ polynomials P, ..., P, and each R} is a linear
polynomial obtained by the ith Z,,-linear combination of the L;’s. Thus,
applying the bounds from Bourgain’s estimate (ZF), we are done. O



At this point, could we hope that systems that are not (k,r)-sparse, i.e.
do not have low rigid rank are hardly satisfiable over the cube? Indeed, such
a hope is generated from a beautiful result of Grigoriev and Razborov [28]:
they manage to show that if a linear system L over a field F, has high rigid
rank, then an exponentially small fraction of the set of points in the boolean
cube satisfy the system. To show this, they introduce an ingenious notion
of rank called communication rank. Porting their argument to our setting
raises an obvious difficulty: they work over a field and we work over the ring
/.

However, in [I8)], we show that their argument can be generalized to our
setting in the following sense: let m = p;---ps be a product of s distinct
primes. Let £ = {{1,...,4;} be a linear system having ¢ linear forms in
Ly, Via chinese remaindering, any linear form £; projects to s linear forms
0, ... 03, where EJ is in the field Z, . Hence, £ naturally projects to s linear
systems L', ..., L%, with £/ in Z, . Indeed, one could consider the rank and
sparsity of each £ in the field Z,,. Motivated by this, we say L in Z,, is
r-simple if the set of linear forms can be partitioned into s sets Jp,..., Js
with the following property: the projection of the set of linear forms in J; to
Zy, forms a (sm, (sm + 1)r)-sparse system.

Theorem 3.16 (Chattopadhyay and Wigderson [18], extending
Grigoriev and Razborov [28]). Let L = {{,...,¢;} be a system of t
linear forms, in n variables, over Z,,, where m is a fixed positive integer with
no repeated prime factors. If L is not r-simple, then

xeR{o 1 {/\g ] < exp(—Q(r)),

where each A; C Zy, is an arbitrary set.

We remark that the proof of the above theorem uses very different tech-
niques than any that we have covered here. In particular, it involves an
interesting combination of elementary additive combinatorics and linear al-
gebra. Theorem provides a rank-sparsity condition under which the
system becomes highly unsatisfiable. It is worth noting that apart from as-
suming that m is square-free, it does not limit the number of prime factors
of m. Extending ideas from the proof of Lemma BIH, [I8] complements the
above Theorem by the following:

Lemma 3.17. Let L be a linear system over Z,, with m = p1ps. Let linear
forms in L admit a partition into sets J, and Jy such that the set of linear



forms in J; are (k,r)-sparse over Z,, for each i < 2. Then, if m,q are
co-prime,

‘ . n
dzscg(fﬁ) < m? exp( — W)
where v = v(m, q) is a constant.

Unfortunately, the argument in [I8] for proving the above works only for
the case when m is precisely a product of two primes. It is not hard to
combine Lemma BT7 and Theorem BTGl to prove the Two-Prime Uniformity
Theorem. We do not waste space filling in more details as the interested
reader can find the full argument in [I§].

4 Conclusion

We argued that the world of low-degree multilinear polynomials modulo a
composite is a very natural and fascinating setting to explore the power of
modular counting. Fundamental questions on the degree needed to represent
simple functions remain wide open. No serious bottleneck is known that
prevents us from making progress on them. We believe that with more efforts
these problems can be solved in the not too distant future.

On the other hand, mysteriously logn comes up as a common barrier in
different settings. For instance, it shows up in the argument of Tardos and
Barrington [A2]| seemingly for one reason and in Bourgain’s [II] argument
for seemingly another. Is it just coincidental? More intriguingly, by the re-
sult of Beigel and Tarui [T0] (improving upon an earlier work of Yao [A§]),
we know that every function in ACC® can be written as f(P(xl, o ,xn)),
where f is a symmetric function and P is an integer polynomial of poly-
logarithmic degree with coefficients of magnitude at most quasipolynomial.
Again Q(logn)-degree bounds can be proven for P (via multiparty commu-
nication complexity) to decompose a simple function like GIP that can be
trivially computed in ACC"[2]. Improving over logn is wide open! While it
is conceivable that going past logn degree is difficult for a general symmetric
function f, it is remarkable that we are stuck, more or less, at the same place
even when f is a very special symmetric function like MODﬁL. Viola and
Wigderson [A7], using the language of Gower’s norm [23], try to suggest an
answer. In a related work, Chattopadhyay [I6] argues that troubles on both
fronts emanate from the technique of repeatedly raising the sum in question
to a fixed power, until the degree of the polynomial crashes to linear. While
these provide some clue, we feel that the mystery is not entirely solved.



Assuming that going past log n degree is a difficult task, we have explored
questions about systems of polynomials of degree well below logn. Even un-
derstanding linear systems over a modulus that is just a product of two
distinct primes has proved non-trivial and has generated interesting mathe-
matics. It is hard to believe that this cannot be pushed to three and more
prime factors. Finally, can one generalize Bourgain’s result to the setting of a
system of polynomials over Z,,, where each polynomial has appropriately low
degree. We know this is true at least when m is a prime power by techniques
discussed in this article.
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