
Multilinear Polynomials ModuloCompositesArkadev Chattopadhyay∗Abstra
tUnderstanding the power of 
onstant-depth 
ir
uits that are al-lowed to use MODm gates, where m is an arbitrary but �xed positiveinteger, is a fundamental and inviting problem in theoreti
al 
omputers
ien
e. Despite intensive e�orts for more than twenty �ve years, thisproblem remains wide open.In this 
olumn, we fo
us our attention on the related, but mu
h sim-pler, model of 
omputing a boolean fun
tion by multilinear polynomi-als over the ring Zm, when m is a 
omposite number. As widely known,it is essential to understand this model in order to make progress with
onstant-depth 
ir
uits with MOD gates. We survey some re
ent re-sults in this natural model that yield superpolynomial lower bounds onthe size of some restri
ted 
ir
uits with MODm gates. The ingredientsthat get used in these results are perhaps more interesting. Some nat-ural next steps emerge from these results that are also of independentmathemati
al interest. It is hoped that progress along these lines isfeasible and would provide further insight into the general problem.1 Introdu
tionEri
 Allender [2℄ starts his re
ent survey of the state-of-a�airs in provinglower bounds on 
ir
uit size by noting that his earlier survey [1℄ remainsdepressingly 
urrent. While it is true that we 
annot pitifully �nd a fun
-tion in EXP that 
annot be 
omputed by linear size depth-three 
ir
uits
omprising only MOD6 gates, the time honored George Polya prin
iple of
onsidering simpler problems seems to again provide ways to making mean-ingful progress. In this arti
le, we further argue that su
h 
onsiderations
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have raised (and sometimes solved) natural and appealing problems that 
anbe stated in pure mathemati
al terms. This holds the promise that toolsfrom mainstream mathemati
s 
an be further exploited in the 
ontext ofunderstanding the 
omputational power of mod 
ounting.A series of interesting works on 
onstant-depth 
ir
uits have re
ently ap-peared. Here, we just fo
us on the ones that are motivated by 
ir
uits havingMODm gates, where m is an arbitrary number. Note that MODm is a booleanfun
tion that is de�ned below:De�nition 1.1. Let A ⊆ Zm be some a

epting set. Then, for ea
h x ∈
{0, 1}n, MODA

m(x) = 1 if ∑n
i=1 xi ≡ a (mod m) for some a ∈ A, otherwisethe fun
tion outputs 0.By default, the a

epting set A is Zm −{0} and in this 
ase it is droppedfrom the supers
ript. The 
lass of fun
tions 
omputed by polynomial size and
onstant-depth 
ir
uits1 of unbounded fan-in having AND, OR and MODmgates is 
alled ACC0[m]. The union of these 
lasses over all �xed positiveinteger m is de�ned to be the 
omplexity 
lass ACC0. As is the 
onvention, weoverload these terms to also mean the underlying 
ir
uits with no restri
tionson size. Understanding the 
omputational limitations of ACC0 is a majorgoal of 
omputational 
omplexity that remains unful�lled.Smolesnky[40℄ in the late eighties, building upon the elegant work ofRazborov [39℄, showed that ACC0[pk] 
ir
uits require exponential size to
ompute MODq, if p is a prime and k any �xed positive number and q has aprime fa
tor di�erent from p. A simple exer
ise then shows that MAJORITY
annot be 
omputed in sub-exponential size by su
h 
ir
uits. Indeed, one 
anvery well imagine the ex
itement this generated ba
k at the time. Smolenskymade the following very tempting 
onje
ture:Conje
ture 1.2 (Smolensky). For any �xed positive integer m, ACC0[m]
ir
uits needs exponential size to 
ompute MODq, if m, q are 
o-prime num-bers.At the moment, we seem to be far from proving (or disproving) Smolen-sky's 
onje
ture. One may be in
lined to think that 
ir
uits that are re-stri
ted to have only MODm gates (and 
onstant depth, denoted by CC0[m])are easier to deal with? Su
h a thought is espe
ially appealing, given thefollowing fa
t about prime moduli: for any prime p, 
ir
uits of 
onstant-depth having only MODp gates 
annot 
ompute all fun
tions. In parti
ular,they 
annot 
ompute a high degree fun
tion (over Zp) like OR, AND and1The input layer of all boolean 
ir
uits 
onsidered in this arti
le have a

ess to ea
hvariable and its negation, in addition to boolean 
onstants 0 and 1.



MODq, no matter how mu
h size is allowed. Indeed, this is a very strong
omputational limitation and follows surprisingly easily from the fa
t that
Z∗

p is a group. In 
ontrast, depth-2 su
h 
ir
uits having only MODm gates
an 
ompute everything:Fa
t 1.3 (Folklore, (see [7℄)). Let m be any number that has at leasttwo distin
t prime fa
tors. Then, every n-variate boolean fun
tion f 
an be
omputed by a depth-two 
ir
uit of size 2n having only MODm gates.In a re
ent work, Hansen and Kou
ký [32℄ observe that one 
an 
om-bine Fa
t 1.3 with the Razborov-Smolensky idea of approximating AND/ORgates by low degree polynomials over any �nite �eld to yield the followinginteresting result:Theorem 1.4 (implied in [32℄). Every quasipolynomial size 
ir
uit C 
om-prising AND, OR and MODm gates of depth d 
an be approximated very wellby a quasipolynomial size 
ir
uit C ′ of depth O(d) 
omprising only MODmgates, i.e. Prx

[
C ′(x) 6= C(x)

]
≤ 1/qpoly(n).This hints that proving Smolensky's 
onje
ture for 
ir
uits with onlyMODm gates may be as hard as proving the general 
ase. Indeed, Smolen-sky obtains his result for ACC0[p] by showing the stronger result that they
annot even approximate well MODq. This strengthening is 
ru
ial to hisargument. Theorem 1.4, on the other hand, shows that su
h a strengthenedresult (against MODq) for the spe
ial 
ase of CC0[m] 
ir
uits is su�
ient todeal with general ACC0[m] 
ir
uits.Nevertheless, the intuition that CC0[m] 
ir
uits are weaker and hen
eeasier to deal with, may not be entirely lost. For a boolean fun
tion f , letthe support set of f , denoted by supp(f), be the set of points in the 
ubewhere f evaluates to 1. The support set of a MODm gate is large in sizeand is in some sense uniformly spread out in the 
ube. Can the following betrue?Conje
ture 1.5 (Large Support Set2, appears in [17℄). There existsa fun
tion h : N → N, su
h that any non-
onstant fun
tion 
omputed bya CC0[m] 
ir
uit of size s and depth d has a support set of size at least

2n

2Ω(log s)h(d) .2In the thesis [17℄, where this 
onje
ture originates, it is 
alled the Small Support SetConje
ture referring to the fa
t that fun
tions with a small support set are di�
ult forCC0[m] 
ir
uits.



Indeed, the Large Support Set Conje
ture is true in a very strong sensewhen m is a prime p (or a prime power). The argument goes through poly-nomials over Zp and we point this out in Se
tion 2 after the statement ofConje
ture 2.7.Note that in parti
ular, the Large Support Set Conje
ture implies thatAND (or OR) 
annot be 
omputed in small size by CC0[m] 
ir
uits. This isdual to the 
elebrated result that MODm 
annot be 
omputed easily by AC0
ir
uits. Su
h a possibility has long been 
onje
tured by M
Kenzie, Péladeauand Thérien [33℄. The relative hardness of Smolensky's Conje
ture and theLarge Support Set Conje
ture is not 
lear. Unfortunately, both seem out ofhand for the moment.In this arti
le, we fo
us our attention on a very basi
 and natural modelof 
omputation: that of multilinear polynomials over the ring Zm. It iswell known that understanding this model is absolutely ne
essary beforesigni�
ant progress on above 
onje
tures 
an be made. Indeed, Razborov[39℄ and Smolensky [40℄ introdu
ed 
omputation by polynomials over theprime �eld Zp as a key ingredient in their arguments for lower bounds on
onstant-depth 
ir
uits3. Unfortunately, as reviewed in the next se
tion,understanding polynomials over Z6 already presents signi�
ant di�
ultiesand several questions remain open. Our study of polynomials is motivated bySmolensky's Conje
ture and the Large Support Set Conje
ture. In parti
ular,we aim to prove sort of their analogs in the polynomial world.Before we pro
eed further, it is important to point out that polynomialsover reals are also a very natural and interesting model of 
omputing booleanfun
tions. It is indeed extremely relevant for understanding 
onstant-depth
ir
uits. For la
k of spa
e and the sake of fo
us, we leave out this topi
 here.The interested reader 
an 
onsult the ex
ellent survey by Beigel [8℄ to getpointers to the older literature and more re
ent works like [37℄. Beigel [8℄ alsodis
usses polynomials over �nite rings, but the survey is somewhat dated andbroader in s
ope than ours. Here we survey some re
ent (and some not sore
ent) works on polynomials over Zm and point out some of the 
hallengesthat lie ahead.2 Computation by PolynomialsAn interesting thing to observe is that every fun
tion f : {0, 1}n → Zm isexpressible as a multilinear polynomial over Zm. To see this one merely has toverify that ea
h so 
alled delta fun
tion is expressible by su
h a polynomial.3In fa
t their methods also work over the ring Zpk , where p is a prime and k is �xedpositive integer.



More pre
isely, for ea
h w ∈ {0, 1}n, de�ne the delta fun
tion δw : {0, 1}n →
Zm as δw(x) = 1 if w = x and otherwise δw(x) = 0. Consider the set offun
tions ∆ = {δw |w ∈ {0, 1}n}. It is easy to see that every fun
tion f 
anbe uniquely expressed as a Zm linear 
ombination of su
h fun
tions. On theother hand,

δw(x) =
( ∏

i:wi=1

xi

)( ∏

i:wi=0

(1 − xi)
)
.The simple identity above implies that every Zm-valued fun
tion overthe boolean 
ube is expressible as a multilinear polynomial over the ring Zm.Indeed, a simple 
ounting argument shows that the polynomial 
orrespondingto ea
h su
h fun
tion is unique. This enables us to view ea
h boolean fun
tionas an algebrai
 obje
t. Natural measures of the 
omplexity of this obje
tare its degree and the number of monomials appearing in it. Formalizingthings, let degm(f) denote the degree of the polynomial representing theboolean fun
tion f over Zm. In our dis
ussion, polylogarithmi
 degree willbe 
onsidered small and nΩ(1) degree will be high. Exhibiting a fun
tion ofhigh degree is not hard. For example,AND(x) = x1x2 · · ·xnOR(x) = 1 −

n∏

i=1

(1 − xi) (2.1)showing that degm(OR) = degm(AND) = n. On the other hand, demandinga polynomial P to satisfy P (x) = f(x) for ea
h point x in the 
ube seemstoo restri
tive. A more natural de�nition, at least from a 
omputationalperspe
tive, was introdu
ed in the very interesting work of Barrington, Beigeland Rudi
h [6℄. Let A ⊆ Zm be an a

epting set. Then P represents fw.r.t A if it satis�es the following property for ea
h x in the boolean 
ube:
P (x) ∈ A (mod m) i� f(x) = 1. The �rst thing to note about this model, isthat there is not a unique polynomial 
omputing f w.r.t some �xed a

eptingset A. A straightforward 
ounting argument shows that there are exa
tly
|A||supp(f)|(m−|A|)2n−|supp(f)| polynomials representing f w.r.t. the a

eptingset A.De�nition 2.1. Let degA

m(f) denote the minimal degree among degrees ofpolynomials representing f w.r.t a

epting set A. The generalized degree of
f , denoted by gen-degm(f), is then de�ned to be the degree of f w.r.t. tothe best a

epting set, i.e.gen-degm(f) = min{degA

m(f) : A ⊆ Zm}.



While it is immediate that gen-degm(f) ≤ degm(f) for every f , it is a
entral question in the theory of polynomial representations to determinehow mu
h degree savings 
an generalized representation a
hieve over exa
trepresentation in the ring Zm. For general m, it seems fairly non-trivial to getgood estimates of degA
m(f) for even a simple f like OR and AND. However,when m is a prime p (or a prime power), tight bounds 
an be obtained in asimple and elegant fashion. The fa
t that Z∗

p is a group turns out to be veryuseful:Fa
t 2.2 (Fermat's Gift). Let p be any prime. For every x 6≡ 0 (mod p),
xp−1 ≡ 1 (mod p).This gift is great for booleanization. Let P be any polynomial and A anya

epting set. Let Q(x) =

∑
a∈A 1 − (P (x) − a)p−1. Using Fermat's Gift, itis easy to verify that Q(x) is 0/1 valued modulo p and P (x) ∈ A (mod p) i�

Q(x) ≡ 1 (mod p). Thus, if P represented f w.r.t A, then Q is the uniquepolynomial 
orresponding to f . Noting that degree of Q is larger than P bya fa
tor of at most p − 1, one gets linear lower bounds on the degree of P ifthe fun
tion represented is a hard fun
tion like OR and AND (re
all equation(2.1)):Fa
t 2.3. For any prime p, gen-degp(f) ≥ degp(f)/(p − 1). In parti
ular,gen-degp(OR), gen-degp(AND) ≥
n

p − 1
.Unfortunately, when m 
ontains two distin
t prime fa
tors, Fermat's giftstops working. One 
ould hope that given any a

epting set A ⊂ Zm, thereis some univariate 0/1 valued polynomial R over Zm 
orresponding to the
hara
teristi
 fun
tion of the set A. Indeed, Fermat's gift yields su
h apolynomial when m is prime. Having some su
h R would be enough forproving lower bounds on the generalized degree of f over Zm. This hope getskilled for the following reason: let m = p1p2 be a produ
t of two distin
tprimes. Re
all, via 
hinese remaindering, the map a 7→ ((a mod p1), (a

mod p2)) forms a bije
tion between Zm and Zp1 × Zp2. Thus, 0 and 1 in Zm
orrespond to tuples (0, 0) and (1, 1) in Zp1 × Zp2.Fa
t 2.4. Let m = p1p2 be a produ
t of two distin
t primes. Then the
hara
teristi
 fun
tion of the set A = {1} (and the set A = {0}) has no(univariate) polynomial representation over Zm.Proof. Assume for the sake of 
ontradi
tion that R is su
h a polyno-mial. Applying the Chinese Remaindering Theorem, R gives rise to



two polynomials, Rp1 over Zp1 and Rp2 over Zp2 with the property that
R(x) 7→ (Rp1(x mod p1), Rp2(x mod p2)). Now R(0) ≡ 0 (mod m). Hen
e,
Rp1(0) ≡ 0 (mod p1). Similarly, Rp2(0) ≡ 0 (mod p2). Observing that
R(1) ≡ 1 (mod m) and applying a similar argument yields the following:
Rp1(1) ≡ 1 (mod p1) and Rp2(1) ≡ 1 (mod p2). Thus, 
ombining thingsba
k via 
hinese remaindering, R((0, 1)) ≡ (0, 1) (mod m) and R((1, 0)) ≡
(1, 0) (mod m). However, as R is the exa
t representation of the 
hara
ter-isti
 fun
tion of A = {1}, R((0, 1)) ≡ R((1, 0)) ≡ (0, 0) (mod m), leading usto the required 
ontradi
tion.Fa
t 2.4 has turned out to be somewhat of a serious blow to proving lowerbounds on the 
omposite degree of boolean fun
tions. To some extent, thisis explained by a surprising upper bound dis
overed by Barrington, Beigeland Rudi
h [6℄.Theorem 2.5 (Barrington, Beigel and Rudi
h). Let m have t distin
tprime fa
tors. Let A = {1} and A′ = Zm−{0}. Then, degA

m(AND) = O(n1/t)and degA′

m (OR) = O(n1/t).The above theorem shows that 
omposite moduli 
an obtain non-trivial
omputational advantage over their primal 
ounterparts when the a

eptingset is 
arefully 
hosen. Even more surprisingly, the above theorem has beenexploited in expli
it 
onstru
tions in 
ombinatori
s [29, 22℄ and very re
entlyin obtaining e�
ient lo
ally de
odable 
odes by Efremenko [20℄.Tardos and Barrington [42℄ obtained the following lower bound on thegeneralized degree of the OR fun
tion.Theorem 2.6 ([42℄). Let m have t ≥ 2 distin
t prime fa
tors, and let q bethe smallest maximal prime power divisor of m. Then, gen-degm(OR) is atleast ((
1

q−1
− o(1)

)
log n

) 1
t−1 .The above lower and upper bounds on the degree for OR and AND hasnot been improved in more than ten years and it is an important 
hallengeto narrow down the gap between them. On the other hand, we spe
ulate thefollowing:Conje
ture 2.7. Let P be a multilinear polynomial of degree d over Zm.Let a ∈ Zm be su
h that there exists an x0 ∈ {0, 1}n with P (x0) ≡

a (mod m).Then the number of points in the 
ube at whi
h P evaluates to ais at least 2n−O(dt), where m = p1 · · · pt and ea
h pi is a distin
t prime.It is simple to verify that this 
onje
ture implies that for su
h square-free
m, gen-degm(OR), gen-degm(AND) = nΩ(1/t). The 
onje
ture above admits



a natural modi�
ation to 
omposites with repeated prime fa
tors. We donot state that formally to keep the dis
ussion simple and fo
ussed on theessential problem that lies ahead. Before we end this se
tion, it is worthmentioning that the above 
onje
ture is known to be true for prime moduli(see for example [5℄). Using Ramsey Theory, Péladeau and Thérien [38℄prove a result that easily implies this 
onje
ture for arbitrary m as long asthe degree d is a 
onstant.2.1 Computing MODqThe advantage of 
omposites over primes is not limited to 
omputing ANDand OR. Among other things, Bhatnagar et.al.[19℄ showed that one 
an
ompute the THRESHOLDk fun
tion by polynomials of degree O(n1/t+ǫ)over Zm, if m has t distin
t prime fa
tors and k is a 
onstant. This isa generalization of the upper bound due to Barrington et.al. as OR isjust THRESHOLD1. Bhatnagar et.al. wondered if interesting degree up-per bounds 
ould be proved for the simple fun
tion MODq. Hansen [31℄,disproving a 
onje
ture of Bhatnagar et.al. [19℄, showed the following:Theorem 2.8 (Hansen). Assume m = p1 · · · pt and q are 
o-prime satisfy-ing the following 
ondition: there exists positive integers b1, . . . , bt su
h that∑t
i=1

1
bi

< 1 and pi ≥ qbi for all i. Then gen-degm(MODq) = O(n1/t).Tardos and Barrington's [42℄ te
hnique 
an be adapted (see for example[13℄) to prove an Ω
(
(log n)1/(t−1)

) lower bound on gen-degm(MODq). Su
hbounds degrade with the number of distin
t prime fa
tors of m. In a break-through work, Bourgain [11℄ proved an Ω(log n) lower bound on the gen-eralized MODm-degree of MODq. Bourgain's method is interesting due toseveral reasons. First, it proves something stronger, showing that the 
orre-lation between the boolean fun
tion 
omputed by a sub-logarithmi
 degreepolynomial over Zm, w.r.t. an a

epting set, and MODq is exponentiallysmall. Su
h a 
orrelation bound was not know even for polynomials moduloprimes, a model whi
h one typi
ally assumes we understand well. The re-sult, very signi�
antly, improves upon a long line of work (see, for example,[21, 12, 24, 4, 26℄). Se
ond, Bourgain's method boils down to estimating
ertain exponential sums. This is an elementary but powerful te
hnique thathas spawned more re
ent progress [15, 30, 18℄. Due to its importan
e, wein
lude a proof of Bourgain's result. Our treatment follows that of Chat-topadhyay [14, 16℄, that is very 
lose to the method of [11, 27℄ but is slightlysimpler and sharper.



De�nition 2.9. For any b ∈ {0, . . . , q − 1}, de�ne the bth MODq-residue
lass of {0, 1}n, denoted by Mq(b), as the following:
Mq(b) = {x = (x1, . . . , xn) ∈ {0, 1}n |

n∑

i=1

xi = b (mod q)} (2.2)De�nition 2.10. For any polynomial P over Zm and a ∈ Zm, let P−1(a)de�ne the set of points in {0, 1}n where P evaluates to a.An intuition about a random and uniform set is that ea
h of the Mq(b) residue
lasses are equally represented in su
h a set. Bourgain's result essentiallyshows that if P has low degree, then P−1(a) appears pseudorandom4 to theMODq fun
tion. In other words, either ea
h of the MODq residue 
lasses arealmost equally represented in P−1(a) or the set is a very small fra
tion of the
ube.Lemma 2.11 (Bourgain's Uniformity Lemma). For all positive 
o-prime integers m, q, there exists a positive 
onstant γ = γ(q) < 1 su
h thatfor every polynomial P of degree d over Zm and every a ∈ Zm, the followingholds:
∣∣∣∣ Pr

[
x ∈

(
P−1(a) ∩ Mq(b)

)]
−

1

q
Pr

[
x ∈ P−1(a)

]∣∣∣∣ ≤ exp( −
γn

(
m2m−1

)d

)
.(2.3)Before we start the proof, let us re
all an elementary fa
t about theprimitive roots of unity that we make repeated use of hen
eforth. Let em(y)denote the primitivem-th root of unity raised to the yth power, i.e. exp(2πjy

m
),where j is the 
omplex square root of −1. Then,Fa
t 2.12. If y = 0 then, 1

m

∑m−1
α=0 em(αy) is 1 and the expression is 0 other-wise.Armed with this basi
 fa
t, we prove the Uniformity Lemma below:Proof of Uniformity Lemma. We write Pr

[
x ∈

(
P−1(a) ∩ Mq(b)

)] as an ex-ponential sum. Thus,4The method employed by Bourgain to prove this result is 
losely related to methodemployed 
ommonly in 
ommuni
ation 
omplexity to estimate the dis
repan
y of a fun
-tion. Indeed, the quantity in the LHS of (2.3) is 
losely related to the dis
repan
y ofMODq fun
tion w.r.t. polynomial mappings modulo m . The interested reader 
an �ndmore details on this point of view in [16, 17℄



Pr
x

[
x ∈

(
P−1(a) ∩ Mq(b)

)]

= Ex∈{0,1}n

[(
1

m

m−1∑

α=0

em

(
α(P (x) − a)

))(
1

q

q−1∑

β=0

eq

(
β(x1 + · · ·+ xn − b)

))](2.4)Expanding the sum inside the se
ond multipli
and and treating the 
aseof β = 0 separately, one gets(2.4) =
1

q
Ex

[
1

m

m−1∑

α=0

em

(
α(P (x) − a)

)]

+
1

mq

∑

α∈[m],β∈[q]−{0}

Sm,q(α, β, P )em(−aα)eq(−bβ) (2.5)where,
Sm,q(α, β, P ) = Ex∈{0,1}n

[
em

(
αP (x)

)
· eq

(
β(x1 + · · · + xn)

)] (2.6)Observing that the �rst term in (2.5) is simply 1
q
Pr

[
x ∈ P−1(a)

] and
|em(−aα)| = |eq(−bβ)| = 1, we get :
∣∣∣∣ Pr

x

[
x ∈

(
P−1(a) ∩ Mq(b)

)
−

1

q
Pr
x

[
x ∈ P−1(a)

]∣∣∣∣ ≤
1

mq

∑

α∈[m],β∈[q]−{0}

|Sm,q(α, β, P )|(2.7)The Uniformity Lemma 2.11 gets proved by the bound on |Sm,q(α, β, P )|provided below. The bound below is the main te
hni
al 
ontribution ofBourgain.Lemma 2.13. For ea
h pair of 
o-prime integers m, q > 1 there exists a
onstant γ = γ(q) su
h that for every polynomial P of degree d > 0 in Zmand numbers α ∈ [m], β ∈ [q] − {0}, the following holds :
|Sm,q(α, β, P )| ≤ exp( −

γn

(m2m−1)d

)
. (2.8)



Before we begin our formal 
al
ulations, we note that a slightly weakerestimate of |Sm,q(α, β, P )| was �rst obtained by Bourgain [11℄ and later gen-eralized by Green et al [27℄. The 
ase when P is a linear polynomial wasessentially dealt with in [12℄ and forms our base 
ase5 just as in [11, 27℄.In order to explain the intuition behind our 
al
ulations, we develop somede�nitions and notations. Let f : {0, 1}n → Zm be any fun
tion. Considerany set I ⊆ [n]. Note that ea
h binary ve
tor v of length |I| 
an be thoughtof as a partial assignment to the input variables of f by assigning v to thevariables in I in a natural way. Let f I(v) be the subfun
tion of f on variablesnot indexed in I indu
ed by the partial assignment v to variables indexed in
I. For any sequen
e Y = {y1, . . . , yt} having t boolean ve
tors from {0, 1}n,let fY be the fun
tion de�ned by fY (x) = f(x) +

∑t
i=1 f(x ⊕ yi), where thesum is taken in Zm. Let I[Y ] ⊆ [n] be the set of those indi
es on whi
hevery ve
tor in Y is zero and J [Y ] be just the 
omplement of I[Y ]. Then,the following observation will be very useful in the ensuing 
al
ulation :Observation 2.14. Let P be a polynomial of degree d in n variables over

Zm. Then, for ea
h sequen
e Y of m − 1 boolean ve
tors in {0, 1}n, thepolynomial P
J [Y ](v)
Y is a polynomial of degree d− 1 in variables from I[Y ] forea
h ve
tor v ∈ {0, 1}|J [Y ]| .Proof of Lemma 2.13. We drop the supers
ript from Sm,q to avoid 
lutter inthe following dis
ussion.We shall indu
e on the degree d of the polynomial.Our IH is that there exists a positive real 
onstant µd−1 < 1 su
h thatfor all polynomials R of degree at most d − 1 and for all n ≥ 0 we have

|S(α, β, R)| ≤ 2nµn
d−1. The base 
ase of d = 0 is easily veri�ed and is dealtwith in earlier works on 
orrelation. Note that µ0 depends only on q. Ourindu
tive step will yield a relationship between µd−1 and µd that will alsogive us our desired expli
it bound of (2.8).As in [11, 27℄, we raise S to its mth power. Our point of departure fromthese work, is to write (S)m in a slightly di�erent way.

(S)m = Ey1,...,ym−1∈{0,1}nEx

[
em

(
P (x) +

m−1∑

j=1

P (x⊕ yj)

)
×

× eq

( n∑

i=1

xi +

n∑

i=1

(xi ⊕ y1
i ) + · · ·+

n∑

i=1

(xi ⊕ ym−1
i )

) ] (2.9)Let Y be the sequen
e of length m − 1 formed by a given set of ve
tors
y1, . . . , ym−1. We denote by u and v respe
tively the proje
tion of x to I[Y ]5We revisit this base 
ase later in Se
tion 3.4.1.



and J [Y ]. Let nI and nJ be the 
ardinality of I[Y ] and J [Y ] (note that
nI + nJ = n) . Then, one 
an verify

(2.9) = Ey1,...,ym−1∈{0,1}nEv∈{0,1}nJ

[
em

(
Qy1,...,ym−1

(v)
)
eq(nJ)×

× Eu∈{0,1}nI

[
em

(
P

I[Y ](v)
Y (u)

)
eq

(
m

nI∑

i=1

ui

)] ] (2.10)where Qy1,...,ym−1 is some polynomial that is determined by y1, . . . , ym−1 andpolynomial P .The key thing to note is that Observation 2.14 implies P
I[Y ](v)
Y to be apolynomial of degree at most d−1 over u for every sequen
e Y = y1, . . . , ym−1and every ve
tor v. Thus, the inside sum of (2.10) over the variable u 
anbe estimated using our indu
tive hypothesis. Noting that the number ofsequen
es Y for whi
h |IY | = k is exa
tly (

n
k

)
(2m−1 − 1)n−k and using thetriangle inequality with the binomial theorem, we get.

|S|m ≤

n∑

k=0

(
n

k

)
(2m−1 − 1)n−k2n−k2kµk

d−1 = 2nm

(
1 −

1 − µd−1

2m−1

)n (2.11)The rest of the 
al
ulation pro
eeds exa
tly as in Green et. al. [27℄. Werepeat it here for the sake of self-
ontainment. Taking the mth root of bothsides of (2.11), using the inequality (1 − x)1/m ≤ 1 − x/m if 0 ≤ x < 1 amd
m > 1 after rearranging, we obtain

1 − µd ≥
1 − µd−1

m2m−1
≥

1 − µ0(
m2m−1

)d
(2.12)Substituting γ = 1−µ0, one gets µd ≤ exp(

− γ
(m2m−1)d

). This immediatelyyields (2.8) in Lemma 2.13.3 Computation by a System of PolynomialsIt is natural to extend the notion of 
omputation of a boolean fun
tion by asingle polynomial to the notion of 
omputation by a system of polynomials.Apart from the fa
t that systems of polynomials are 
entral obje
ts of interestin bran
hes of pure mathemati
s like algebrai
 geometry, the study of their
omputational power is motivated from proving lower bounds in both boolean



and arithmeti
 
ir
uits. As before, the fa
t that our polynomials are overa ring Zm (rather than a �eld) and that we are interested in their behaviorover the boolean 
ube, presents di�
ultiesLet P be a system of polynomials P1, . . . , Ps, ea
h over Zm and let
A1, . . . , As be their respe
tive a

epting sets. The boolean fun
tion 
omputedby P, denoted by fP , is simply given by the following: for any x ∈ {0, 1}n,
fP(x) = 1 if Pi(x) ∈ Ai (mod m) for ea
h 1 ≤ i ≤ s, otherwise fP(x) = 0.The degree of the system P, denoted by deg(P), is the degree of a maximaldegree polynomial in P, i.e. max{deg(Pi) : i ≤ s}.De�nition 3.1. The s-simultaneous MODm-degree of a boolean fun
tion f ,denoted by degs

m(f), is the degree of a minimal degree system of s polyno-mials 
omputing f .Of 
ourse, making progress on proving degree lower bounds for a systemof polynomials in general is a harder problem than proving lower bounds onthe degree of a single polynomial. It may thus seem pointless to work withsystems of polynomials before resolving questions from the previous se
tion.However, 
onsider the following: we know that a linear polynomial over Zm
annot represent any of AND, OR and MODq fun
tion. In fa
t, from resultsin the previous se
tion, we know that one provably needs almost logarithmi
degree to represent them. Thus, one may hope to answer questions of thefollowing type: How large a lower bound on s 
an we prove so that degs
m(f) >

1? As we will see that even for this 
ase, proving strong lower bounds on s 
anbe non-trivial. Additionally, su
h lower bounds yield new lower bounds onthe size of some restri
ted 
ir
uits for whi
h no other methods are 
urrentlyknown.3.1 Linear SystemsLet L = {ℓ1, . . . , ℓt} be a set of n-variate linear forms over Zm. Su
h a setforms a linear map L : Zn
m → Zt

m. Conversely, given su
h a linear map, thereexists a 
orresponding set of linear forms. For v ∈ Zt
m, let KL(v) representthe set of points in {0, 1}n, that satisfy ℓi = vi for all 1 ≤ i ≤ t. Then, weshow the following:Theorem 3.2 (Chattopadhyay, Goyal, Pudlák and Thérien [15℄).For every positive integer m, there exists a positive 
onstant c su
h that thefollowing holds. Let L : Zn

m → Zt
m be a linear map. For any v ∈ Zt

m, if
KL(v) is non-empty, then

|KL(v)| ≥
2n

ct
. (3.1)



A simple averaging argument shows that for every L : Zn
m → Zt

m, thereexists a v ∈ Zt
m su
h that KL(v) has size at least 2n/mt. Theorem 3.2 is akind of 
on
entration result in the sense that it shows that every KL(v) is ofsize 
lose to the average size if it is non-empty. We note that the results in[43℄, based on methods introdu
ed in [7℄, imply a lower bound of ( α

α−1
)n · 1

αton the size of KL(v) when it is non-empty, and α is an in
reasing fun
tionof m. This is still exponentially weaker than what is given by (3.1).3.2 An Ex
ursionBefore we prove Theorem 3.2, we draw on a notion from 
ombinatorial grouptheory. Consider a �xed �nite abelian group G. The Davenport 
onstant of
G, denoted by s(G), is the smallest integer k su
h that every sequen
e ofelements of G of length at least k, has a non-empty subsequen
e that sumsto zero. The pigeon-hole-prin
iple shows that s(G) is �nite if G is �nite.This is be
ause if we have a sequen
e of length larger than |G|2, then someelement a of G is repeated at least |G| times. The sub-sequen
e formed bythe �rst |G| instan
es of a indeed sums to zero as the order of every elementin G divides |G|. Thus, s(G) ≤ |G|2, whi
h gives a quadrati
 upper boundon the Davenport 
onstant w.r.t. the size of the group.For spe
i�
 groups, one 
an show mu
h better bounds. For instan
e,if the group is Zp, then one 
an show, using the polynomial method, that
s(Zp) is p. Clearly, the lower bound follows by 
onsidering the sequen
e of
(p − 1) o

urren
es of the identity element. Su
h a sequen
e has no non-empty subsequen
e summing to zero. The upper bound 
an be establishedas follows: Let a1, . . . , ap be a sequen
e of elements from Zp. Assume that nozero-sum subsequen
e of it exists. In other words, the polynomial a1x1+· · ·+
apxp over Zp evaluates to zero only at one point in the boolean 
ube {0, 1}p,whi
h is the all zero point. Thus, applying Fermat's Gift, the polynomial
P ≡ 1 − (a1x1 + · · · + apxp)

p−1, is exa
tly the OR fun
tion of p booleanvariables over Zp. However, re
all that equation (2.1) shows that the degreeof the OR polynomial is p. This 
ontradi
tion �nishes the argument.Olson [35℄ showed a more general statement: Let G be an abelian p-groupof the form Zpk1 ⊕ Zpk2 ⊕ · · · ⊕ Zpkr , where ⊕ denotes dire
t sum. He showsthat s(G) = 1+
∑r

i=1

(
pki −1

) in this 
ase. We show a little later that s(Zt
m)is at most c(m)t, where c(m) is a 
onstant that just depends on m. Beforedoing that, we re
all another result by Olson [36℄ that 
onne
ts s(G) withthe set of boolean solutions to the equation g1x1 + . . . + gnxn = 0, denotedby K(G, n), where ea
h gi ∈ G.Theorem 3.3 (Olson's Theorem). |K(G, n)| ≥ max{1, 2n+1−s(G)}.



Proof adapted from [36℄. We prove this by indu
tion of n. For n ≤ s(G)−1,the theorem is va
uously true. Assuming it is true for n, we prove it for
n + 1. Let the equation be g1x1 + · · · + gn+1xn+1 = 0. By the de�nition of
s(G), there is a subsequen
e of g1, . . . , gs(G) that has a subsequen
e that sumsto zero. W.l.o.g., assume this subsequen
e to be g1, . . . , gt. Then 
onsiderthe equation (−g2)x2 + · · · + (−gt)xt + gt+1xt+1 + · · · + gn+1xn+1 = 0. Byour hypothesis, this equation on n variables has at least 2n+1−s(G) solutions.For ea
h su
h solution point u, we obtain a solution to the original equationover n + 1 variables in whi
h the value of x1 is set to 1 in the following way:
x1 = 1, for 2 ≤ i ≤ t, xi is set to the value that is the 
omplement of its valuein u, and for t < i ≤ n + 1, xi is set to its 
orresponding value in u. Finally,extend the solutions of g2x2 + · · ·+ gn+1xn+1 = 0 to our original equation bysimply �xing x1 = 0 to obtain at least another 2n+1−s(G) solutions. Thus, wehave at least 2n+2−s(G) solutions in total, proving the theorem.3.3 A Simple Fourier Analyti
 ArgumentThe usefulness of Olson's Theorem for our purpose is evident from its fol-lowing immediate 
orollary:Corollary 3.4. Let L : Zn

m → Zs
m be a linear map. Then, for all v ∈ Zs

msu
h that KL(v) is non-empty, we have |KL(v)| ≥ 2n+1−s(Zs
m).Proof. Let L ≡ {ℓ1, . . . , ℓt} be the underlying linear forms, where ℓi =

ai,1x1 + · · · + ai,nxn. As KL(v) is non-empty, there exists b ∈ {0, 1}n su
hthat ℓi(b) = vi. Consider ℓ′i = a′
i,1x1 + · · · + a′

i,nxn, where a′
i,j = −ai,j if

bj = 1 and otherwise a′
i,j = ai,j, for ea
h 1 ≤ j ≤ n and 1 ≤ i ≤ t. De-�ne L′ ≡ {ℓ′1, . . . , ℓ

′
t}. Then, it is straight-forward to verify that sets KL(v)and KL′

(0s) are in one-to-one 
orresponden
e with ea
h other. The resultfollows by observing that Olson's Theorem implies KL′

(0s) has size at least
2n+1−s(Zs

m).In view of Corollary 3.4, it is su�
ient to establish an O(t) upper boundon s(Zt
m) for proving Theorem 3.2. Although, to the best of our knowledge,determining the exa
t bound on s(Zt

m) is still open, the linear upper boundthat we seek follows from the independent work of Meshulam [34℄ and Therien[43℄. We inl
ude a proof of this, using simple Fourier analysis over groups ofthe form Zt
m. Re
all, from the proof of Bourgain's Theorem in Se
tion 2.1,

em(y) denotes the primitive m-th root of unity raised to the yth power.Theorem 3.5. If m is even, s(Zt
m) ≤ ct, where c = log m

log m−log(m−1)
is a
onstant.



Proof. Let L ≡ {ℓ1, . . . , ℓt} be a linear map from Zs
m to Zt

m, su
h that KL(0t)is a singleton set, i.e. 
ontains only the point 0s. Let λS : Zs
m → {0, 1} denotethe 
hara
teristi
 fun
tion for any set S ⊆ Zs

m. Then, using Fa
t 2.12, onewrites
λ{0,1}s(x) ≡

1

ms

s∏

j=1

[ m−1∑

a=0

em

(
axj

)
+

m−1∑

a=0

em

(
a(xj − 1)

)]

=
1

ms

s∏

j=1

[ m−1∑

a=0

(
1 + em(−a)

)
em

(
axj

)]
.Let m = 2ℓ. Then 
learly for a = ℓ, we have (1+em(a)) = 1+em(π) = 0 usinga basi
 trigonometri
 identity. Thus, noting that |supp(f̂ g)| ≤ |supp(f̂)| ·

|supp(ĝ)|, we see that |supp(λ̂{0,1}s)| ≤ (m − 1)s. Further,
λKL(0t)(x) ≡

[ t∏

j=1

(
1

m

m−1∑

a=0

em

(
aℓj(x)

))]
λ{0,1}s

(
x
)
.Thus, one 
on
ludes

∣∣∣∣supp(
λ̂KL(0t)

)∣∣∣∣ ≤ mt

∣∣∣∣supp(λ̂{0,1}s

)∣∣∣∣ ≤ mt(m − 1)s.Applying the Un
ertainty Prin
iple from Fourier Analysis, we get
mt(m − 1)s ≥ |Zs

m| = mswhen
e the result follows.The 
ase of an odd m 
an be dealt with by the following simple tri
k.Multiply ea
h linear form ℓi by 2. Viewing ea
h modi�ed linear form to beover Z2m (instead of over Zm), we obtain a new map L′ : Zs
2m → Zt

2m. It iseasily veri�ed that sets KL(0t) and KL′

(0t) are in one-to-one 
orresponden
ewith ea
h other. Hen
e, applying Theorem 3.5 to KL′

(0t) yields bounds on
KL(0t) as well, though with a very slight worsening of the 
onstant c.Corollary 3.6. For every m, s(Zt

m) ≤ ct, where c = log(2m)
log(2m)−log(2m−1)

is a
onstant that just depends on m.Combining Corollary 3.4 with bounds on s(Zt
m) as given above, we im-mediately derive Theorem 3.2 whi
h states that the size of ea
h non-empty

KL(v) is at least 2n

ct .



Remark 3.7. Here, we point out a 
onsequen
e of Theorem 3.2 for CC0[m]
ir
uits. It easily yields a linear lower bound on the size of su
h 
ir
uits6for 
omputing AND. Su
h a bound was �rst obtained by Thérien [43℄. Italso makes some progress toward the Large Support Set Conje
ture (seeConj. 1.5). While there it is 
onje
tured that the size of the support set of afun
tion 
omputed by a CC0[m] 
ir
uit de
ays polynomially w.r.t. the size ofthe 
ir
uit, Theorem 3.2 yields an exponential de
ay. Re
ently, Allender andKou
ký [3℄ have shown that a lower bound of the form n1+γ on the size of aCC0[m] 
ir
uit 
omputing AND (MODq), for any 
onstant γ > 0 that doesnot depend on the depth of the 
ir
uit, is enough to imply a superpolynomiallower bound on CC0[m] 
ir
uits 
omputing AND (MODq).3.4 Computing MODqUntil re
ently, it was not known if a linear system L = {ℓ1, . . . , ℓt} over Zmwith arbitrary a

epting sets {A1, . . . , At} 
ould 
ompute MODq, even for
t = o(n). A stronger result of [15℄ (and impli
it in the independent work ofHansen [30℄), showed that even polynomial systems of low degree and smallsize fail to 
orrelate well with MODq.De�nition 3.8. The Zq-dis
repan
y of a boolean fun
tion f , denoted bydis
q(f), is given by the following:dis
q(f) ≡

∣∣∣∣ Pr
[
f(x) = 1 ∧ x ∈ Mq(b)

]
−

1

q
Pr

[
[f(x) = 1

]∣∣∣∣The theorem below, �rst obtained in [15℄ and independently in [30℄, showsthat low-degree polynomial systems of small size have exponentially small
Zq-dis
repan
y.Theorem 3.9 (Polynomial Uniformity). For all positive 
o-prime inte-gers m, q, there exists a positive 
onstant γ = γ(m, q) < 1 su
h that thefollowing holds: let P = {P1, . . . , Pt} be a n-variate polynomial system ofdegree d over Zm, with a

epting sets {A1, . . . , At}. Then,dis
q

(
fP

)
≤ (m − 1)texp( − n/γd

)
. (3.2)The above result follows from a simple use of exponential sums, hintingat their untapped potential in this 
ontext.6In fa
t, as the bound is information theoreti
, one need not impose any restri
tion onthe depth of a 
ir
uit.



Remark 3.10. The spe
ial 
ase of the Polynomial Uniformity Theorem, ob-tained by restri
ting the system to be linear, already leads to an interest-ing 
onsequen
e for 
ir
uits with MODm gates. Using this, [15℄ shows that
ir
uits (of arbitrary depth) 
omprising only MODm gates 
annot 
omputeMODq in sub-linear size, if (m, q) are 
o-prime. This signi�
antly improvesupon the earlier result of Smolensky [41℄ that showed su
h 
ir
uits need
Ω(log n) size. Further, [15℄ 
ombine this spe
ial 
ase of the Polynomial Uni-formity Theorem with graph-theoreti
 arguments to prove that su
h 
ir
uitsof bounded depth need superlinear number of wires to 
ompute MODq. This,in some sense, is the strongest known lower bound for general CC0[m] 
ir-
uits.Very re
ently, Chattopadhyay and Wigderson [18℄ have been able to sig-ni�
antly improve Theorem 3.9 for the 
ase of linear systems under the 
on-dition that m is pre
isely a produ
t of two primes.Theorem 3.11 (Two-Prime Uniformity). Let m, q be 
oprime positiveintegers, with m = p1p2 and ea
h pi is a prime. There exists a positive
onstant γ = γ(m, q) < 1 su
h that the following holds: let L = {ℓ1, . . . , ℓt}be a n-variate linear system over Zm, with a

epting sets {A1, . . . , At}. Then,dis
q

(
fL

)
≤ exp( − γn

)
. (3.3)An interesting thing to note is that the 
onstant γ in equation (3.3) above isindependent of the size t of the system. The argument of [18℄ is 
ompli
atedand 
ombines ideas of using exponential sums from [15℄, estimates of Bour-gain (Lemma 2.13 in this arti
le) with the notion of matrix rigidity from theingenious work of Grigoriev and Razborov [28℄in arithmeti
 
ir
uits. Whilespa
e 
onstraints will not allow us to 
over the entire argument, we des
ribesome details of the main ideas involved in proving the Two-Prime UniformityTheorem.3.4.1 Singleton A

epting SetsTo begin with, let us assume that ea
h a

epting set is a singleton set. Inthis 
ase, w.l.o.g ea
h Ai ≡ {0}. Then, as before, one 
an write

Pr
x

[
fL(x) = 1 ∧ x ∈ Mq(b)

]

= Ex∈{0,1}n

[{ t∏

i=1

(
1

m

m−1∑

α=0

em

(
α(ℓi(x) − ai)

))}(
1

q

q−1∑

β=0

eq

(
β(x1 + · · · + xn − b)

)) ](3.4)



Mimi
king arguments used in the proof of Bourgain's Uniformity Lemmato go from (2.4) to (2.7), we obtain,dis
q

(
fL

)
≤

1

mt

mt∑

j=1

Ex∈{0,1}n

[
em(rj(x))eq

(
b(x1 + · · ·+ xn)

)]where, ea
h rj is a linear polynomial obtained by a Zm-linear 
ombinationof ℓi's. Writing rj(x) = aj,1x1 + · · · + aj,nxn , we 
an separate variables andobtain
∣∣∣∣Ex∈{0,1}n

[
em

(
rj(x)

)
eq

(
b(x1 + · · · + xn)

)]∣∣∣∣ =
n∏

i=1

∣∣∣∣Exi∈{0,1}

[
em

(
aj,ixi

)
eq

(
bxi

)]∣∣∣∣

≤ exp(
− αn

)for some 0 < α < 1, where the last inequality is a simple exer
ise to deriveusing the fa
t that m, q are 
o-prime. Thus, in the singleton 
ase there is nodependen
e on t the number of polynomials in L.For general a

epting sets, the �rst thing to do is to break down ouroriginal system into all possible singleton a

epting set systems: we write
fL ≡

∑s
j=1 fLj , where Lj is a singleton system verifying if x satis�es ℓi(x) =

ai,j for 1 ≤ i ≤ t and ai,j ∈ Ai. Here s ≤ (m − 1)t as we may assume thatea
h Ai is a proper subset of Zm. This de
omposition of fL, along with anappli
ation of triangle inequality allows us to deal with individual fLj in themanner pres
ribed above for singleton a

epting sets. It is straightforwardto verify that it proves Theorem 3.9 for the restri
ted 
ase of linear systems.Remark 3.12. The 
areful reader may have noted that forti�ed with Bour-gain's estimates from (2.8) in Lemma 2.13 for degree d polynomials, ea
hstep of the above argument readily adapts to polynomial systems of degree dyielding the Polynomial Uniformity Theorem. Further, it is worth pointingout that this te
hnique yields mu
h stronger results for singleton polyno-mial systems just as in the 
ase of singleton linear systems des
ribed above.These stronger bounds yield exponential lower bounds for depth-four 
ir
uitsof type MAJ ◦ AND ◦MOD{0}
m ◦ ANDo(log n) (see Theorem 6 in [18℄).3.4.2 Low Rank SystemsThe �rst thing to note is that arguments in the previous se
tion for linearsystems of small size almost instantaneously generalize to systems of lowrank. Of 
ourse, we have to de�ne rank properly as we are over the ring Zm



with zero divisors. The de�nition we need is simply the following: the Zm-rank of L is the smallest positive integer r su
h that there exists r linear formsin L that generate every other linear form in the system as some Zm-linear
ombination of them. W.l.o.g, let these basis forms be ℓ1, . . . , ℓr.Observation 3.13. Let L be a linear system of rank r. Then, dis
q

(
fL

)
≤

(m − 1)rexp( − γn
), where γ = γ(m, q) is a 
onstant.Proof. Assume w.l.o.g., that ℓ1, . . . , ℓr span the remaining t − r forms in L.Thus, the r-tuple (
ℓ1(x), . . . , ℓr(x)

) at any point x, determines ℓj(x) for any
ℓj ∈ L. Hen
e, we 
an write fL ≡

∑
j∈J fLj , as before, going over all possible

r-tuples of values of the singletons 
omposing Ai for i ≤ r, and keeping onlythose tuples for whi
h satisfying the �rst r equations implies satisfying theremaining t− r equations determined by them. Thus, |J | ≤ (m− 1)r and we
on
lude as in the proof of (linear sub
ase of) Theorem 3.9.Hen
e, if our system has sublinear rank we 
an prove very good boundson the dis
repan
y. A tempting intuition from linear algebra suggests thatsystems with high (i.e. linear) rank should be almost unsatis�able and hen
etheir solution set 
annot 
orrelate well with a nearly balan
ed fun
tion likeMODq. This may not be true be
ause our domain of interest is the boolean
ube and not Zn
m. Indeed, the following example 
on�rms this fear: let Lhave n linear forms, with the ith linear form being just xi. Ea
h a

eptingset Ai ≡ {0, 1}. Thus, the rank of this system is n, but every point in ourboolean domain satis�es it!On the other hand, this 
ounter example represents a natural 
lass ofsystems, those that are sparse. We say L is k-sparse if ea
h ℓi ∈ L hasat most k non-zero 
oe�
ients (out of the possible n) appearing in it. Thefollowing shows that sparse systems have low Zq dis
repan
y.Lemma 3.14. Let L be a k-sparse linear system in Zm. Then, dis
q

(
fL

)
≤exp( − n/γk

) for some 
onstant γ(m, q), if m, q are 
o-prime.Proof. Consider any linear form ℓi in the system, with its a

epting set Ai. As
L is k-sparse, the boolean fun
tion f ℓi depends on at most k variables. Hen
e,there is a polynomial Pi of degree at most k over Zm that exa
tly represents it,i.e. Pi(x) = f ℓi(x) for all x ∈ {0, 1}n. Repla
ing ea
h ℓi by its 
orresponding
Pi thus yields a singleton polynomial system P of degree at most k. Theargument gets �nished by mimi
king the arguments in Se
tion 3.4.1 (see alsoRemark 3.12 in that se
tion).



3.4.3 Low Rigid RankIt turns out that we 
an 
ombine low rank and sparsity su
h that we 
anhandle linear systems whi
h 
an be made to have low rank after a sparse
hange to ea
h linear form. This is inspired by Valiant's famous notion ofrigidity [45, 46℄, used to atta
k (so far unsu

essfully) size-depth trade-o�sfor 
omputing linear systems over �elds. We use the following de�nition:We say L is (k, r)-sparse if its asso
iated linear forms ℓ1, . . . , ℓt satisfythe following property: ea
h ℓi 
an be written as ℓ′i + Li su
h that the set
{Li|1 ≤ i ≤ t} has rank r and every ℓ′i is k-sparse.Lemma 3.15. Let L be a linear system that is (k, r)-sparse. Then, thereexists a 
onstant γ su
h that dis
q

(
fL

)
≤ mrexp( − n/γk

), when m, q are
o-prime numbers.Proof. As before, we look at the possible evaluations of the various linearforms. Let t be the size of L, and let ℓi = ℓ′i + Li. Wlog, assume that
L1, . . . , Lr are the linearly independent forms that span every other Li. Thenour idea is to split the sum into at most mr di�erent ones, 
orresponding tothe possible evaluations of L1, . . . , Lr. Let u be any su
h evaluation in Zr

m.Given u, we know what ea
h Li evaluates to in Zm, for all i ≤ t. Hen
e,we know the set of values in Zm, denoted by Au
i , that ℓ′i 
ould evaluate toso that ℓi evaluates to some element in Ai. Sin
e, ℓ′i depends on at most kvariables, there exists a multilinear polynomial P u
i over Zm of degree at most

k su
h that P u
i (x) = 0 (mod m) i� ℓ′i(x) ∈ Au

i . These observations allow usto write the following:dis
b
q

(
fL

)
=

∣∣∣∣
∑

u∈[m]r

Ex

[( r∏

j=1

1

m

m−1∑

a=0

em

(
a(Lj(x) − uj)

))
×

×

( t∏

i=1

1

m

m−1∑

a=0

em

(
aP u

i (x)
))

eq

(
b

n∑

i=1

xi

)] ∣∣∣∣Expanding out the produ
t of sums into sum of produ
ts,dis
b
q

(
fL

)
≤

∑

u∈[m]r

1

mr+t

mr∑

i=1

mt∑

j=1

∣∣∣∣Ex

[
em

(
Ru

i (x) + Qu
j (x)

)
eq

(
b

n∑

i=1

xi

)] ∣∣∣∣,where ea
h Qu
j (x) is a polynomial of degree at most k obtained by a Zm-linear 
ombination of the t polynomials P u

1 , . . . , P u
t , and ea
h Ru

i is a linearpolynomial obtained by the ith Zm-linear 
ombination of the Li's. Thus,applying the bounds from Bourgain's estimate (2.8), we are done.



At this point, 
ould we hope that systems that are not (k, r)-sparse, i.e.do not have low rigid rank are hardly satis�able over the 
ube? Indeed, su
ha hope is generated from a beautiful result of Grigoriev and Razborov [28℄:they manage to show that if a linear system L over a �eld Fq has high rigidrank, then an exponentially small fra
tion of the set of points in the boolean
ube satisfy the system. To show this, they introdu
e an ingenious notionof rank 
alled 
ommuni
ation rank. Porting their argument to our settingraises an obvious di�
ulty: they work over a �eld and we work over the ring
Zm.However, in [18℄, we show that their argument 
an be generalized to oursetting in the following sense: let m = p1 · · · ps be a produ
t of s distin
tprimes. Let L ≡ {ℓ1, . . . , ℓt} be a linear system having t linear forms in
Zm. Via 
hinese remaindering, any linear form ℓi proje
ts to s linear forms
ℓ1
i , . . . , ℓ

s
i , where ℓj

i is in the �eld Zpj
. Hen
e, L naturally proje
ts to s linearsystems L1, . . . ,Ls, with Lj in Zpj

. Indeed, one 
ould 
onsider the rank andsparsity of ea
h Lj in the �eld Zpj
. Motivated by this, we say L in Zm is

r-simple if the set of linear forms 
an be partitioned into s sets J1, . . . , Jswith the following property: the proje
tion of the set of linear forms in Jj to
Zpj

forms a (
sm, (sm + 1)r

)-sparse system.Theorem 3.16 (Chattopadhyay and Wigderson [18℄, extendingGrigoriev and Razborov [28℄). Let L = {ℓ1, . . . , ℓt} be a system of tlinear forms, in n variables, over Zm, where m is a �xed positive integer withno repeated prime fa
tors. If L is not r-simple, then
Pr

x∈R{0,1}n

[ t∧

i=1

ℓi(x) ∈ Ai

]
≤ exp( − Ω(r)

)
,where ea
h Ai ( Zm is an arbitrary set.We remark that the proof of the above theorem uses very di�erent te
h-niques than any that we have 
overed here. In parti
ular, it involves aninteresting 
ombination of elementary additive 
ombinatori
s and linear al-gebra. Theorem 3.16 provides a rank-sparsity 
ondition under whi
h thesystem be
omes highly unsatis�able. It is worth noting that apart from as-suming that m is square-free, it does not limit the number of prime fa
torsof m. Extending ideas from the proof of Lemma 3.15, [18℄ 
omplements theabove Theorem by the following:Lemma 3.17. Let L be a linear system over Zm with m = p1p2. Let linearforms in L admit a partition into sets J1 and J2 su
h that the set of linear



forms in Ji are (k, r)-sparse over Zpi
for ea
h i ≤ 2. Then, if m, q are
o-prime, dis
b

q

(
fL

)
≤ m2rexp( −

n

γk+m−1

)
.where γ = γ(m, q) is a 
onstant.Unfortunately, the argument in [18℄ for proving the above works only forthe 
ase when m is pre
isely a produ
t of two primes. It is not hard to
ombine Lemma 3.17 and Theorem 3.16 to prove the Two-Prime UniformityTheorem. We do not waste spa
e �lling in more details as the interestedreader 
an �nd the full argument in [18℄.4 Con
lusionWe argued that the world of low-degree multilinear polynomials modulo a
omposite is a very natural and fas
inating setting to explore the power ofmodular 
ounting. Fundamental questions on the degree needed to representsimple fun
tions remain wide open. No serious bottlene
k is known thatprevents us from making progress on them. We believe that with more e�ortsthese problems 
an be solved in the not too distant future.On the other hand, mysteriously log n 
omes up as a 
ommon barrier indi�erent settings. For instan
e, it shows up in the argument of Tardos andBarrington [42℄ seemingly for one reason and in Bourgain's [11℄ argumentfor seemingly another. Is it just 
oin
idental? More intriguingly, by the re-sult of Beigel and Tarui [10℄ (improving upon an earlier work of Yao [48℄),we know that every fun
tion in ACC0 
an be written as f

(
P (x1, . . . , xn)

),where f is a symmetri
 fun
tion and P is an integer polynomial of poly-logarithmi
 degree with 
oe�
ients of magnitude at most quasipolynomial.Again Ω(log n)-degree bounds 
an be proven for P (via multiparty 
ommu-ni
ation 
omplexity) to de
ompose a simple fun
tion like GIP that 
an betrivially 
omputed in ACC0[2]. Improving over log n is wide open! While itis 
on
eivable that going past log n degree is di�
ult for a general symmetri
fun
tion f , it is remarkable that we are stu
k, more or less, at the same pla
eeven when f is a very spe
ial symmetri
 fun
tion like MODA
m. Viola andWigderson [47℄, using the language of Gower's norm [23℄, try to suggest ananswer. In a related work, Chattopadhyay [16℄ argues that troubles on bothfronts emanate from the te
hnique of repeatedly raising the sum in questionto a �xed power, until the degree of the polynomial 
rashes to linear. Whilethese provide some 
lue, we feel that the mystery is not entirely solved.



Assuming that going past log n degree is a di�
ult task, we have exploredquestions about systems of polynomials of degree well below log n. Even un-derstanding linear systems over a modulus that is just a produ
t of twodistin
t primes has proved non-trivial and has generated interesting mathe-mati
s. It is hard to believe that this 
annot be pushed to three and moreprime fa
tors. Finally, 
an one generalize Bourgain's result to the setting of asystem of polynomials over Zm, where ea
h polynomial has appropriately lowdegree. We know this is true at least when m is a prime power by te
hniquesdis
ussed in this arti
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