
Researhing the Complexity ofBoolean Funtions with ComputersKazuyuki Amano ∗AbstratWith the rapid advanes in omputers, it beomes attrative to ex-plore the use of omputers to attak open problems in omputationalomplexity. In this artile, we onentrate on the problems of the om-plexity of Boolean funtions, and overview several reent attempts touse omputers in various ways to obtain onrete results on majorproblems in omputational omplexity. We disuss the problems onseveral omputational models inluding ordered binary deision dia-grams, Boolean iruits, and polynomial threshold representations ofBoolean funtions.1 IntrodutionDue to the rapid progress of omputers, we now have a personal omputerwhose omputational power is exeeding the power of the superomputer twoor three deades ago. My personal omputer an verify (the Robertson etal.'s version [45℄ of) the proof of the Four Color Theorem in less than �veminutes. The �elds of experimental mathematis in whih omputation playsa entral role of investigation have beome inreasingly wider.In ontrast, the progress of the researh on omputational omplexity,espeially on lower bound problems, is not so rapid. In spite of the ompu-tational omplexity studies the nature of omputation, the use of omputersin the researh of omputational omplexity seems not so ommon omparedto mathematis. The starting point of this artile is a simple thought: Canwe use omputers more seriously in the investigation of omputational om-plexity?In this artile, we onentrate on the problems onerning onrete modelsof omputations like Boolean iruits and overview several reent attempts to
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use omputers in various ways to obtain onrete results on major problemsin omplexity theory. The models we onsider in this artile inlude orderedbinary deision diagrams, Boolean iruits, and polynomial threshold repre-sentations of Boolean funtions. We are aware that many of them are stillin preliminary stages, and more work is needed to get an important result.However, we hope that these attempts inspire a new idea for attaking themajor and di�ult problems in omplexity theory; this is one of the mainpoints that we would like to o�er in this artile.An artile enouraging to use omputers in the researh of omputationalomplexity, whih has a similar spirit to this artile, was also presented byWilliams [54℄. In that artile, he reviewed several topis that pratial om-puting has made a noteworthy impat. The topis inlude the analysis ofthe omplexity of exponential time algorithms, onstruting gadgets usingomputers and more. This artile is more oriented to the problems of theomplexity of Boolean funtions. In addition, we give several open problemsthat we believe to be interesting, doable and fun.The organization of this artile is as follows: In Setion 2, we start withthe problem on the OBDDs as an illustrative example so that a large amountof omputations lead us to a better understanding of the omplexity. Thenin Setion 3, we onsider three topis on Boolean iruits and see how a-tual omputations an help to obtain theoretial results. In Setion 4, weonsider the problems on the expressive power of real valued polynomialsfor representing Boolean funtions inluding a new omputational methodfor getting an upper bound on the average density of polynomial thresholdrepresentations of Boolean funtions.2 Ordered Binary Deision DiagramsWe begin this artile by reviewing the problem on the expressive power ofordered binary deision diagrams (OBDDs) and how omputers are helping togive a better knowledge about the omplexity. The ordered binary deisiondiagram is one of the most well studied models for representing Booleanfuntions both in theory and in pratie.De�nition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A vari-able ordering π on Xn is a permutation from {1, . . . , n} to Xn leading to theordered list π(1), . . . , π(n) of the variables.A π-OBDD on Xn is a direted ayli graph whose sinks are labeled by aonstant 0 or 1 and whose inner nodes are labeled by Boolean variables from
Xn. Eah inner node has two outgoing edges, one of them labeled by 0, the



other by 1. The edges between inner nodes have to respet the variable order-ing π, i.e., if an edge leads from an xi-nodes to an xj-node, then π−1(xi) <
π−1(xj). A π − OBDD omputes a Boolean funtion f : {0, 1}n → {0, 1}in the following way: An assignment (a1, . . . , an) ∈ {0, 1}n to Xn de�nes auniquely determined path from the root to one of the sinks. The label of thereahed sink gives f(a). The size of a π-OBDD is de�ned as the number ofits nodes. The OBDD omplexity of f is the minimum size of a π-OBDDsthat omputes f . A π-OBDD for some unspei�ed variable order is simplyalled OBDD.The size of an OBDD for a given Boolean funtion is strongly depend-ing on the variable order. For example, onsider the funtion f(x1, . . . , x2n) =
(x1∨x2)∧(x3∨x4)∧· · ·∧(x2n−1∨x2n). If we use the ordering (x1x3 · · ·x2n−1x2x4 · · ·x2n),then we only need 2n + 2 nodes to represent f ; however we need 2n+1 nodesif the ordering (x1x2 · · ·x2n) is used.In the theory of OBDDs, one of the most investigated funtions is themiddle bit of integer multipliation. This is a 2n-variable Boolean funtionthat represents the n-th bit (the least signi�ant bit is ounted as the �rst) ofthe produt of two n bit numbers (xn−1 · · ·x0) and (yn−1 · · · y0) spei�ed byinputs. This funtion is the �rst pratial funtion for whih an exponentiallower bound has been proven for every variable order [12℄.The investigation of the OBDD size of the middle bit of integer multipli-ation as well as other bits has a long history. An exellent survey devoted tothis topi was presented by Bollig [11℄ in the BEATCS olumn. The newestvolume of the famous book of Knuth [31℄ also disusses this topi extensively.The urrent best lower bound is 2⌊n/2⌋/61 − 4 by Woelfel [55℄ and theurrent best upper bound is 2.8 · 26n/5 by the author and Maruoka [3℄.The upper bound is ahieved by the pairwise asending variable order π =
(x0, y0, . . . , xn−1, yn−1). In fat, we found this by omputer alulations. Be-low we desribe a short story explaining this.For an ease of exposition, we onsider a variant of OBDDs alled quasi-redued OBDDs (qOBDDs); OBDDs where all variables have to be testedon every path from the soure to the sinks. The size of π-qOBDD is atmost n + 1 times larger than the size of π-OBDD for a same π, i.e., bothare essentially the same (espeially when we onsider a funtion having anexponential omplexity like integer multipliation). By the following niefat, the size of π-OBDD for a given funtion f is fully haraterized by thenumber of di�erent subfuntions of f obtained by �xing appropriate variablesaording to π.Fat 1. Let f be a Boolean funtion over the variable set X = {x1, . . . , xn}.For I ⊆ X, let sub(f, I) denote the number of di�erent subfuntions of f



n 4 5 6 7 8 9 10 11 12Size of OBDD 31 63 136 315 756 1717 4026 9654 21931Size of qOBDD 39 72 156 348 797 1808 4106 9796 22151
26n/5 ≈ 28 64 147 338 776 1783 4096 9410 21619Figure 1: The minimum size of OBDD or qOBDD for the middle bit ofmultipliation. The data for qOBDD are from [3℄ and for OBDD are from[30, 47℄obtained by �xing all variables in X\I. Then, the number of π(i)-nodes inan optimal π-qOBDD for f is equal to sub(f, I) with I = {π(i+1), . . . , π(n)}.This immediately implies that the size of an optimal qOBDD for f isgiven by

min
I={I0,...,In}

∑

0≤i≤n

sub(f, Ii), (1)where the minimum ranges over all sequenes of sets φ = I0 ⊂ I1 ⊂ · · · ⊂
In = X with |Ii| = i. By a standard dynami programming, we an omputethe optimal size of qOBDD for a given n-variable funtion as well as anoptimal variable ordering in time O(n23n) [17℄. Note that we an similarlyompute an optimal OBDD by replaing the term sub(f, Ii) in Eq. (1) bysubx(f, Ii) denoting the number of di�erent subfuntions of f obtained by�xing {π(i + 1), . . . , π(n)} and essentially depends on x. Current omputersare fast enough to arry out these omputations for up to n ∼ 20.The empirial results shown in Fig. 1 are bit surprising. The OBDD (orqOBDD) omplexity of the middle bit of integer multipliation seems verywell proportional to 26n/5. For example, in the ase of qOBDD, the optimalvariable orderings for n = 10, 11, 12 are

(x3x4x5x6y3y4y5y6x2y2x1y1x7y7x8y8x0y9x9y0),

(x3x4x5x6x7y4y5y6y7y3x2y2x1y1x8y8x9y9x0y10x10y0),

(x2x3x4x5x6x7y4y5y6y7y3y2x1y1x8y8x9y9x10y10x0y11x11y0),See [3, 30, 47℄ for more optimal orderings. These are enough to inspirea hypothesis that the pairwise asending order (x0, y0, . . . , xn−1, yn−1) or itsslight modi�ation (x1, y1, . . . , xn−2, yn−2, x0, yn−1, xn−1, y0) is a good order-ing. One we have this, showing the O(26n/5) upper bound is an easy taskusing Fat 1. Note that very reently this upper bound is shown to beasymptotially optimal if we �x the ordering to the pairwise asending [47℄.



To see whether the true OBDD omplexity of the middle bit of integermultipliation is Θ(26n/5) seems to be an interesting open question, whihis also appeared as an �exerise" in the Knuth's book [31℄. In addition, thefollowing general question would also be interesting for understanding thenature of multipliation.Problem 1. For eah k, determine the asymptoti OBDD omplexity of the
k-th bit of integer multipliation and �nd an optimal variable ordering forrepresenting it.We believe that omputer experiments would also help to attak thisproblem sine we an obtain a atalog of optimal representations up to arelatively large number of inputs, say n ∼ 20. Again, onsult [11℄ for areent progress in this topi.3 Boolean CiruitsIn spite of a huge amount of e�ort, we have very little knowledge about theiruit omplexity. In 80's, exponential lower bounds have been shown onthe size of monotone iruits for the lique funtion as well as the size ofonstant depth iruits for the parity funtion. However, we should say thatthese two results are still the most important ahievement in this area so far.To this date, the largest lower bounds on the iruit size for a funtion inNP is 5n [26℄. We are eager to get a new idea for proving a stronger lowerbound.As we see in the last setion, it would be possible to get a new insight byexamining a atalog of optimal iruits for small funtions generated by om-puters. This was at least partially sueeded for OBDDs. Several attemptshave been made also for Boolean iruits using SAT solvers [54, 28℄.On a urrent tehnology, the maximum size of iruits that an feasiblybe enumerated by a omputer is around 10. For example, in the reentvolume of the famous Knuth's book [30, Chap. 7.1.2℄, he gave the ompletelassi�ation of all Boolean funtions on up to �ve variables in terms oftheir iruit omplexity. The hardest funtion among all 5-variable Booleanfuntions over the basis B2 (whih ontains all 2-input funtions) needs 12gates. Interestingly, suh a funtion is essentially unique. However, it wouldnot be feasible to enumerate all iruits with 20 gates, even in a near future.In this setion, we review three another approahes aiming to use om-puters in proving lower bounds. The �rst two are to redue the lower boundproblem to a polynomially solvable optimization problem, and the last one is



a graph theoreti approah based on the omputer searh. So far, these ap-proahes ould not deliver a signi�ant lower bound. However, we hope thatpushing them further would yield a new insight on how to prove a strongerlower bound on a stronger omputational model.3.1 Lower Bounds for Depth Two Threshold Ciruitsvia LPA major open problem in iruit omplexity is to give a superpolynomiallower bound on the size of depth-2 threshold iruits (with unrestritedweights) for an expliit Boolean funtion. Many exponential lower boundsare known for depth-2 threshold iruits with various restritions (see e.g.,[49℄ and the referenes therein). Among these restrited iruits, we onsiderin this setion depth-two iruits with a threshold gate at the top and sym-metri gates below. Suh iruits have been onsidered before in e.g., [15℄.Below we demonstrate that an exponential lower bound for this model anbe obtained by solving a large-sale linear program using LP solvers. Notethat the ontents of this setion is an updated version of [2℄ that was builton the work by Basu et al. [9℄.Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be two binary inputs of length
n. The inner produt mod 2 funtion, denoted by IPn(X, Y ), is de�ned as
⊕ixiyi where ⊕ denotes the exlusive-OR operation.A linear threshold funtion f(X) is a Boolean funtion on input X =
(x1, . . . , xn) ∈ {0, 1}n suh that

f(X) = sgn

(

w0 +
n
∑

i=1

wixi

)

,where w = (w0, . . . , wn) ∈ R
n+1 is alled the weights, and sgn stands for thesign funtion: sgn(x) = 1 if x > 0, and sgn(x) = 0 otherwise. A thresholdgate is a gate that omputes a threshold funtion. A funtion f : {0, 1}X → Ris alled symmetri if the value of f depends only on the number of inputs thatare 1. A symmetri gate is a gate that omputes a symmetri funtion. For aBoolean funtion f , the minimum number of symmetri gates in a depth-twoiruit of �threshold-of-symmetri gates" that omputes f is denoted by s(f).It is onvenient to onsider a polynomial P of the form

P (X, Y ) =
∑

S⊆X∪Y

wShS(X, Y ), (2)where wS ∈ R and hS denote a symmetri funtion over the variable set S.The support of P is de�ned as {S ⊆ X ∪ Y | wS 6= 0}. We say that P



sign-represents f if P (X) > 0 whenever f(x) = 1 and P (X) < 0 whenever
f(x) = 0. Obviously, s(f) is equal to the minimum size of the support of apolynomial that sign-represents f .Let f be a (not neessarily Boolean) funtion on a set of variables X and
ρ be a partial assignment of the variables, i.e., ρ is a map from X to the set
{0, 1, ∗}. The restrition of f by ρ, denoted by f |ρ, is the funtion obtainedfrom f by setting xi to be ρ(xi) if xi ∈ {0, 1} and leaving xi if xi = ∗. For apartial assignment ρ, let res(ρ) denote the set of variables that mapped to 0or 1 by ρ.We also de�ne the restrition of a polynomial P of the form (2) by ρ,denoted by P |ρ as follows: First, replae eah hS in P by hS|ρ. Note that
hS|ρ is a symmetri funtion on S\res(ρ). Then, for every S1 and S2 suh that
hS1

|ρ and hS2
|ρ are on the same set of variables S ′, then replae wS1

hS1
|ρ+

wS2
hS2

|ρ by an equivalent symmetri funtion h′
S′. This is always possiblesine the sum of two symmetri funtions is also a symmetri funtion.Suppose that P is an optimal polynomial that sign-represents IPn. Con-sider two assignments α : (x1, y1) = (0, 1) and β : (x1, y1) = (1, 1). Sine P |αsign-represents IPn−1 and P |β sign-represents the omplement of IPn−1, it isobvious that the polynomial P |α − P |β sign-represents IPn−1.We now divide P into two subformulas P0 and P1; P1 is onsisting of allterms inluding x1, and P0 is the rest. Let ♯(P ) denote the number of termsin P . We have

P |α − P |β = P0|α + P1|α − P0|β − P1|β = P1|α − P1|β,sine P0 is independent of x1. This implies ♯(P1) ≥ ♯(P1|α−P1|β) ≥ s(IPn−1).The �rst inequality follows from a simple observation. Sine s(IPn) = ♯(P0)+
♯(P1), if we ould similarly show that ♯(P0) ≥ s(IPn−1), then we would getthe reursion s(IPn) ≥ 2s(IPn−1) whih immediately gives a lower boundof s(IPn) ≥ 2n. However, we annot anel out P1|σ1

− P1|σ2
by any twoassignments σ1 and σ2 to {x1, y1}.Instead, we onsider assignments to four variables {x1, x2, y1, y2} and di-vide P into 24 = 16 parts depending on the intersetion of these four variablesand the support of monomials. For T ⊆ {x1, y1, x2, y2}, let PT be a subfor-mula of P onsisting of all terms wShS suh that S ∩ {x1, y1, x2, y2} = T .Consider two assignments α : (x1, y1, x2, y2) = (0, 1, 1, 0) and β : (x1, y1, x2, y2) =

(1, 1, 0, 0). Obviously, P |α − P |β sign-represents IPn−2. Here we have
P |α − P |β =

∑

T⊆{x1,y1,x2,y2}

(PT |α − PT |β) =
∑

T :|T∩{x1,x2}|=1

(PT |α − PT |β),sine polynomials PT |α − PT |β are aneling out when |T ∩ {x1, x2}| = 0 or
2.



We introdue new variables qT 's that represent ♯(PT )/s(IPn−2). Then theabove equation implies the linear inequality
∑

T :|T∩{x1,x2}|=1

qT ≥ 1. (3)Eight variables (out of 16) are appeared in the LHS of the above inequality.On the other hand, sine ♯(P ) =
∑

T ♯(PT ) we have
∑

T⊆{x1,y1,x2,y2}

qT =
s(IPn)

s(IPn−2)
.If we onsider another pair of assignments, then we get another inequal-ity similar to Ineq. (3). By onsidering four pairs of Type 1 assignments,and four pairs of Type 2 assignments desribed below, we get the system ofinequalities shown in Fat 2.Type 1 Choose i ∈ {1, 2} and v ∈ {xi, yi}. The unhosen variable in

{xi, yi} is denoted by u. Let α : (v, u) = (0, 1) and β : (v, u) = (1, 1).Type 2 Choose v1 ∈ {x1, y1} and v2 ∈ {x2, y2}. Let u1 and u2 bethe unhosen variables in {x1, y1} and in {x2, y2}, respetively. Let α :
(v1, u1, v2, u2) = (0, 1, 1, 0) and β : (v1, u1, v2, u2) = (1, 1, 0, 0).Fat 2. Let z be the minimum value of the objetive funtion of the followinglinear program. Then s(IPn) ≥ z · s(IPn−2).Minimize ∑

T⊆{x1,y1,x2,y2}

qTSubjet to ∑

T :v∈T

qT ≥ 1 (v ∈ {x1, y1, x2, y2})

∑

T :|{v1,v2}∩T |=1

qT ≥ 1 (v1 ∈ {x1, y1}, v2 ∈ {x2, y2}),

qT ≥ 0 (T ⊆ {x1, x2, y1, y2}).

(4)
LP (4) has 24 variables and 8 onstrains, and is easy to solve. The min-imum value of the objetive funtion is 1.5 whih implies s(IPn) ≥ 1.5n/2 ∼

1.2247n.Quite naturally, a lower bound is improved by onsidering more assign-ments. Let k ≥ 3 be an integer. We onsider a set of pairs of assignmentson {x1, y1, . . . , xk, yk} of the following two types.Type 1 Choose i ∈ {1, . . . , k} and v ∈ {xi, yi}. The unhosen variable in
{xi, yi} is denoted by u. Let α : (v, u) = (0, 1) and β : (v, u) = (1, 1).



Type 2 Choose i, j ∈ {1, . . . , k} with i 6= j. Choose v1 ∈ {xi, yi} and v2 ∈
{xj , yj}. Let u1 and u2 be the unhosen variables in {xi, yi} and in {xj , yj},respetively. Let α : (v1, u1, v2, u2) = (0, 1, 1, 0) and β : (v1, u1, v2, u2) =
(1, 1, 0, 0).Note that for two assignments α and β of Type i (i ∈ {1, 2}), P |α −
P |β sign-represents IPn−i. By dividing P into 22k parts and letting qT be
♯(PT )/s(IPn−k), we an show that:Fat 3. Suppose that k ≥ 3. Let zk−1 and zk−2 be real numbers suh that
s(IPn) ≥ zk−1 · s(IPn−(k−1)) and s(IPn) ≥ zk−2 · s(IPn−(k−2)) for every n. Let
zk be the minimum value of the objetive funtion of the following linearprogram. Then s(IPn) ≥ zk · s(IPn−k).Minimize ∑

T⊆{x1,y1,...,xk,yk}

qTSubjet to ∑

T :v∈T

qT ≥ zk−1 (v ∈ {x1, y1, . . . , xk, yk})

∑

T :|{v1,v2}∩T |=1

qT ≥ zk−2

(

i, j ∈ {1, . . . , k}, i 6= j
v1 ∈ {xi, yi}, v2 ∈ {xj , yj}

)

qT ≥ 0 (T ⊆ {x1, y1, . . . , xk, yk}).

(5)
Note that the onstraint matrix of LP (5) is a (2k + 4

(

k
2

)

) × 22k binarymatrix and easy to generate by a simple omputer program. In addition, ifthe value of k is relatively small, then we an solve this by an LP solver.Solving LP (5) for k = 3 with z1 = 1 and z2 = 1.5 yields z3 = 2. Thisimplies s(IPn) ≥ 2n/3 ∼ 1.2599n, whih is slightly better than the lowerbound obtained by solving LP (4). Solving LP (5) again for k = 4 with
z2 = 1.5 and z3 = 2 yields z4 ∼ 2.8333, whih implies better lower bound of
s(IPn) ≥ 2.8333n/4 ∼ 1.2974n. By repeating this proedure, we an obtain
z5 ∼ 4.0277, z6 ∼ 5.7500, z7 ∼ 8.2541, z8 ∼ 11.9700 and z9 ∼ 17.3350. Theseimply the lower bounds on s(IPn) of 1.3213n, 1.3384n, 1.3519n, 1.3638n and
1.3729n, respetively. We have not sueeded to ompute the value of zk for
k ≥ 10 at the time of writing this artile (beause GLPK solver [35℄ is killedby the out of memory).Note that the best known lower bound on s(IPn) isΩ(2n/2/n) = Ω(1.4142n)by Forster et al. [15℄ and the upper bound is s(IPn) ≤ 2n. The lower boundis proved by onsidering the rank of a ommuniation matrix that sign-represents IPn [15℄ (see also [49℄ for a generalization). The upper bound fol-lows from the onstrution IPn(X, Y ) = sign(

∑

S⊆[n](−2)|S|+1XSYS), where
XS and YS denote ∏i∈S xi and ∏i∈S yi, respetively.



At this moment, we don't know whether our method an beat Ω(1.4142n).However, we think that there is a hane. By examining LP (5) with k = 8under the assumption s(IPn) ≥
√

2·s(IPn−1) for every n, we obtain somewhaturious fat saying that the lower bound would be enhaned by onsideringa large LP.Fat 4. Suppose that, for every su�iently large n, s(IPn) ≥
√

2 · s(IPn−1)holds. Then s(IPn) = Ω(1.4198n).3.2 Lower Bounds on Formula Size via SDPA Boolean formula is a binary tree where eah internal node is labeled with
∧ or ∨, and eah leaf is labeled with a literal, i.e., a variable or its negation.A Boolean formula omputes a Boolean funtion in an obvious way. The sizeof a formula is the number of leaves in the tree. For a Boolean funtion f ,the formula omplexity, denoted by L(f), is de�ned as the size of a smallestformula that omputes f . The famous result of Khraphenko [27℄ says thatthe formula omplexity of the parity of n variables is at least n2. The urrentbest lower bound for an expliitly de�ned funtion is n3−o(1) due to Håstad[21℄.The quantum adversary method ([5℄,[8℄,[33℄,[56℄) has originally been de-veloped for proving lower bounds on quantum query omplexity. Laplante,Lee and Szegedy [32℄ revealed that this method is also very useful for lowerbounding the formula size. In this framework, a lower bound on the formulasize of an n-variable Boolean funtion an be obtained by solving an SDP(semide�nite program) of the order n2n.Let Γ be a 2n × 2n be a Hermitian matrix with rows and olumns labeledby elements of {0, 1}n suh that Γ[x, y] = 0 whenever f(x) = f(y). Let
||M || denote the spetral norm of the matrix M . For a Boolean funtion
f : {0, 1}n → {0, 1}, the adversary bound for f is de�ned as

ADV(f) = max
Γ≥0,Γ6=0

||Γ||
maxi ||Γ ◦ Di||

,where the maximum is taken over nonnegative symmetri matries Γ, and
Di is a zero-one matrix where Di[x, y] = 1 i� xi 6= yi. Γ ◦ Di denotes theentry-wise produt of Γ and Di.Laplante, Lee and Szegedy [32℄ proved that ADV(f)2 is a lower boundon the formula omplexity of f . This parameter an be formulated as SDP[52℄: Let F be a 2n × 2n binary matrix suh that F [x, y] = 1 i� f(x) 6= f(y),and let Di be de�ned as above. The parameter ADV(f) is given by 1/µmin,



where µmin is the minimal solution of the following semide�nite program:Minimize µ = tr∆Subjet to ∆ is diagonal,
Z ≥ 0,

Z · F = 1,
∀i : ∆ − Z ◦ Di � 0,

(6)Here tr∆ denotes the trae of a matrix ∆.This parameter enjoys a nie omposition property. For two Booleanfuntions f on n variables and g on m variables, let f ⊗g denote a ompositefuntion on nm variables: (f ⊗ g)(x1, . . . , xmn) = f(g(x̃1), . . . , g(x̃n)) where
x̃i = (x(i−1)m+1, . . . , xim).Theorem 1. ([5, 22℄) For every Boolean funtions f and g, ADV(f ⊗ g) =
ADV(f) · ADV(g).This theorem says that if L(f) = ADV(f)2 and L(g) = ADV(g)2, then
L(f ⊗ g) = L(f) · L(g). This gives a nie generalization of the result ofKhraphenko [27℄. The parity funtion on n = 2k variables an be written as
(x1⊕x2)⊗· · ·⊗(x1⊕x2). The optimal formula for x1⊕x2 is (x1∧x2)∨(x1∧x2),whih has size 4. By using this reursively, we get a formula for the parityon 2k variables whose size is 4k = n2. Khraphenko's n2 lower bound for theparity funtion guarantees the exat optimality of suh a naive onstrution.Note that, reently, Tarui [53℄ proved that the formulas onstruted in thisway are essentially unique smallest ones.Theorem 1 shows a similar optimality an be established for any basefuntions f with the property L(f) = ADV(f)2. We all suh a funtiontight. By using an SDP solver, we an enumerate all tight funtions onup to �ve variables. We say that two Boolean funtions are in the sameNPN-equivalene lass if they an be equivalent by negating of output andinput variables and permuting of input variables. The number of NPN-equivalene lasses of 2, 3, 4 and 5 or fewer variables are 2, 14, 222 and 616126,respetively. Out of them, 4, 8, 20 and 55 lasses are tight [23, 18℄. Exampleof suh funtions are MUX(x1, x2, x3) and MUX(x1 ⊕ x2, x3 ⊕ x4, x3 ⊕ x5),where MUX(x1, x2, x3) denotes the multiplexer funtion x1x2 ∨ x1x3. At thismoment, we don't know whether the tightness is a neessary ondition forsuh an optimality result.It should be noted that unfortunately, it is known that ADV(f)2 is upperbounded by n2. See also [24℄ for another explanation of the limit of thismethod. So we should in mind that this method an not yield a super-quadrati lower bound on the formula size.



Note also that Høyer, Lee and S�palek [23℄ strengthen this method. Theyintrodued new parameter
ADV±(f) = max

Γ6=0

||Γ||
maxi ||Γ ◦ Di||

,in whih the ondition Γ ≥ 0 in ADV(f) is removed, and proved that
ADV±(f)2 is also a lower bound on formula size. The omputational re-sults for this parameter as well as the program for MatLab an be found onthe web page in the referene of [23℄.In the preeding two setions, we reviewed lower bound problems on twoomputational models an be formulated as linear program and semide�niteprogram. Thus, an interesting question is:Problem 2. Can we formulate a lower bound problem on a stronger modelas a polynomial time solvable optimization problem?3.3 Linear Lower Bounds on Ciruit SizeLet B2 denote the set of all (sixteen) Boolean funtions over two variables,and let U2 denote B2\{⊕,≡}, i.e., B2 exluding the parity and its negation.For a Boolean funtion f , the B2-iruit omplexity (U2-iruit omplexity,resp) of f is the minimum size of a iruit over B2 (U2, resp.) that omputes
f . After a long line of researh for improving a onstant fator of linearlower bounds on iruit omplexity, the urrent best lower bound on B2-iruit omplexity for a funtion in NP is 3n [10℄ and that on U2-iruit is
5n [26℄ (see also [34, 25℄). Essentially, all linear lower bounds are proved byso alled the gate-elimination method.A typial proof using the gate-elimination method is as follows: First wede�ne some property of n-variable Boolean funtions Q(n). Then we showthat, for an optimal iruit for a funtion having Q(n), a spei� numberof gates, say α, an be eliminated by �xing some variable to a onstant 0or 1 and the resulting funtion has the property Q(n − 1). Applying thisindutively gives an αn lower bound on a iruit size for a funtion having
Q(n).The ore of the proof is typially by the ase analysis on the �loal pattern"of iruits near the input terminals. That beame more and more ompliatedas the onstant fator inreases; the proof of 5n lower bounds by Iwama etal. [26℄ needs to analyze several dozen of ases in whih the deepest one islike Case 2.3.3.3.4.Suh an analysis would be automated by omputers. To examine thepossibility of this approah, we brie�y review their lower bound proof.



Let C be a iruit over Xn = {x1, . . . , xn}. Reall that a partial assign-ment σ is a mapping from Xn to {0, 1, ∗}. We say that the set of variables�xed to a onstant by σ the support of σ. For a Boolean funtion f on Xnand a partial assignment σ, let f |σ denote the funtion obtained from f byapplying σ. We use the similar notation C|σ for a Boolean iruit C.The proof by Iwama et al. [26℄ (as well as 4.5n bound by Lahish andRaz [34℄) uses the following property of Boolean funtions:De�nition 2. A Boolean funtion f over Xn = {x1, . . . , xn} is k-mixed if forevery V ⊆ Xn suh that |V | = k and for any two distint partial assignments
α and β with support V , the funtions obtained from f by applying α and βare distint, i.e., f |α 6= f |β.Note that they originally used the property alled strongly-two-dependent;but the property of k-mixed is stronger than this.The main portion of their proof is the following lemma.Lemma 1. Let f be a t-mixed n-variable Boolean funtion with n − t = k.Suppose that n ≥ 2k + 4 and a iruit C omputes f . Then, there exists apartial assignment σ that satis�es the following: |σ| ≤ 2, and there exist aBoolean iruit C ′ ≡ C|σ suh that SD(C) ≥ SD(C ′)+5|σ|. Here SD(C) is ameasure of a iruit size whih is a slight modi�ation of the normal "numberof gates" measure (see [26℄ for the de�nition).By using above lemma indutively we an obtain the lower bound of
5n − o(n) for every k-mixed funtion with k = n − o(n).Suh a method an be reformulated as follows: In order to show the αnlower bound on a iruit omplexity of f , it is su�ient to give a lass ofloal iruit patterns D that satis�es the following.(C1) For every optimal iruit C that omputes f , some pattern D ∈ Dappears in C.(C2) For every iruit C and every D ∈ D, if D appears in C, then thereexists a partial assignment σ and a iruit C ′ ≡ C|σ suh that

[the size of C] − [the size of C ′] ≥ α|σ|.Interestingly, this formulation of the gate-elimination method is quiteresemble to the famous proof of the Four Color Theorem [6, 7, 45℄. Theomputer assisted proof of this theorem has given by Appel and Haken threedeades ago. A simpli�ed but still omputer assisted proof has then givenby Robertson et al. [45℄ whih proeeds as follows.



Suppose for the ontrary that there exists a ounterexample to the FourColor Theorem. Let P be some easily desribable graph theoreti propertythat a minimal ounterexample to the Four Color Theorem has. Then, theyexhibited a set D of 633 "on�gurations", that onsists of small graphs withsome additional information, satisfying the following:(F1) For every planar graph G with property P , some on�guration D ∈ Dappears in G.(F2) If a on�guration D ∈ D appears in G, then G is not a minimal oun-terexample to Four Color Theorem.By verifying above two statements using omputers, we an onlude thatno minimal ounterexample exists, and hene Four Color Theorem is true.We now review the propositions (C1) and (C2). Suppose that a iruit Cis a minimal ounterexample to a lower bound, i.e., C is an optimal iruitthat omputes f and the size of it is less than αn. Reall that a iruit isde�ned as a graph in whih nodes represent gates and edges represent wires.We an put some graph theoreti properties for a iruit C by its optimality,whih we onsider as the property P in (F1). Then (C2) says that if Contains D ∈ D then, C is not a minimal ounterexample (sine if C is aounterexample, then a smaller iruit C|σ is also).It would be interesting to give a (minimal) set of iruit patterns thatyield a lower bound of 5n or even higher. We have in fat tried to pursuitthis approah for getting a higher lower bound, but failed. However, duringthe experiments, the author and Tarui [4℄ have sueeded(?) to �nd thereason why we have failed.In fat, there exists a k-mixed Boolean funtion with k = n − o(n) thatan be omputed by a U2-iruit of size 5n + o(n). The 5n lower bounds forthis lass of funtions have already been tight.Below we sketh the onstrution of the funtion, whih is a modi�ationof a funtion introdued by Saviký and �ák [48℄.Let p be a prime suh that n ≤ p < 2n. De�ne wn : {0, 1, . . .} →
{1, . . . , n} so that wn(s) is the residue of s modulo p, if this residue liesin {1, . . . , n}, and is 1 otherwise. Put b = ⌈ n

⌈log n2⌉
⌉. We split the inter-val {1, . . . , n} into b bloks D1, . . . , Db of equal size. For every n ∈ N,

fn(x1, . . . , xn) outputs one of its input xz where an index is given by
z = wn

(

b
∑

i=1

(

i ·
⊕

j∈Di

xj

))

.



Theorem 2. [4℄ The funtion fn de�ned above is k-mixed with k = n −
ω(

√
n log2 n) and an be omputed by a U2 iruit of size 5n + o(n).This result means that every lower bounds method that applies to arbi-trary k-mixed funtions annot show a lower bound higher than 5n. So theproblem we should takle �rst is:Problem 3. Find a property of Boolean funtions that an be used to derivea lower bound higher than 5n.We still believe that a graph theoreti approah desribed above helps toinspire suh a property.4 Polynomial Representation of Boolean Fun-tionsIn this setion, we onsider two problems both are on the expressive powerof real polynomials for representing Boolean funtions. This is one of themost ative subjets in the researh of omputational omplexity. See e.g.,[50, 51℄ for a reent progress on this topi.4.1 Degree of Full-Sensitive FuntionsThere have been developed many omplexity measures for Boolean fun-tions, and investigated the relation among them. See e.g., a good surveyby Buhrman and de Wolf [13℄. In this setion, we onsider the relation-ship between two major measures; the sensitivity and the degree of Booleanfuntions.Let f be an n-variable Boolean funtion. The sensitivity of f on x is thenumber of bit positions i suh that f(x) 6= f(xi), where xi denotes x withits i-th bit �ipped. The sensitivity of f is s(f) = maxx sx(f).An n-variable polynomial p : R

n → R represents f is p(x) = f(x) forevery x ∈ {0, 1}n. Note that eah Boolean funtion an be represented by aunique multivariate polynomial (see e.g., Lemma 1 in [13℄). The degree of fis the degree of this multivariate polynomial that represents f .De�nition 3. An n-variable Boolean funtion f is fully sensitive if the sen-sitivity of f is n.We onsider the following simple question.Problem 4. What is the minimum degree of an n-variable Boolean funtionthat is fully sensitive?



The urrent best lower bound is√n/2 and the upper bound isO(nlog6 3) =
O(n0.613). One of the importane of the problem of �nding a fully sensitiveand low degree funtion is that it gives the largest known gap between thedeision tree omplexity and the "log-rank" of the ommuniation matrix(see e.g., [29℄ and [39℄).The lower bound is proved by Nisan and Szegedy [38℄. Note that if weallow some approximation, this lower bound is asymptotially tight. There isa polynomial p of degree O(

√
n) suh that |p(x1, . . . , xn)−OR(x1, . . . , xn)| ≤

1/3 for every x, where OR denotes the OR funtion that is apparently fullysensitive at the origin x = 00 · · ·0 (see [38, Example 3.11℄ for the onstrutionusing Chebyshev polynomials). Note also that the degree of the OR funtionis exatly n.Nisan and Szegedy [38℄ have also gave the onstrution of a fully sensitivefuntion whose degree is nlog3 2 ∼ n0.631. Let E2 denote the Boolean funtionon three variables given by
E2(x1, x2, x3) = x1 + x2 + x3 − x1x2 − x1x3 − x2x3.It outputs 1 i� one or two of its inputs are 1. De�ne E

(k)
2 as the funtionon n = 3k variables obtained by building a omplete ternary tree of depth k,where the 3k leaves are the variables and eah node is the E2-funtion of itsthree hildren. Then E

(k)
2 is represented by E2(E

(k−1)
2 , E

(k−1)
2 , E

(k−1)
2 ), andso by a polynomial of degree 2k = nlog3 2. It is easy to hek that E(k) is fullysensitive at the origin.It is notieable that, in the above onstrution, we an use any "base"funtion if it is fully sensitive at the origin. If we use an n-variable funtionof degree k, then we an get a fully sensitive N-variable funtion of degree

N logn k.Along to this line, Kushilevits has improved the exponent to log6 3 =
0.613..., whih is the urrent best, by exhibiting suh a funtion on 6 variablesof degree 3 (see [39, footnote 1 on p.560℄).Let S(6) be a family of 3-sets on {1, 2, . . . , 6} de�ned as

S(6) = {(1, 2, 3), (1, 2, 4), (3, 4, 5), (3, 4, 6), (1, 5, 6),

(2, 5, 6), (1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5)}.Let F3 be a polynomial on 6 variables de�ned as
F3(x1, . . . , x6) =

∑

i:1≤i≤6

xi −
∑

(i,j):1≤i<j≤6

xixj +
∑

(i,j,k)∈S(6)

xixjxk.Interestingly, S(6) is also appeared in a major open question in extremalgraph theory.



Given an r-graph F on a vertex set V , i.e., a hypergraph whose edge setonsists of r-sets of V , the Turán number ex(n,F) is the maximum number ofedges in an n-vertex r-graph not ontaining a opy of F . The Turán densityof F is de�ned as
π(F) = lim

n→∞

ex(n,F)
(

n
r

) .Determining π(F) for a given F is a notoriously hard problem (see e.g.,[36, 44℄ and the referenes therein). One of the most well-investigated asesis π(K−
4 ), where K−

4 = {abc, abd, acd} is the omplete 3-graph on 4 vertieswith one edge removed. It is known that π(K−
4 ) ≥ 2/7, and this lower boundis strongly believed to be tight.Obtaining an upper bound on the density is very di�ult. Reently,Razborov [43, 44℄ developed an intriguing tehnique alled "Flag Algebra"that an be used to attak this problem. Very roughly speaking, in thisframework, the problem of upper bounding the Turán density is reduedto the feasibility of some well-designed semide�nite programming problems.Designing a good problem is typially relying on a omputer alulation. Thisseems to be another domain that omputers an help in obtaining theoretialresults. In [44℄, it is desribed that the urrent best upper bound π(K−

4 ) ≤
0.2978 an be obtained by this method.The lower bound π(K−

4 ) ≥ 2/7 follows from the onstrution due to Frankland Füredi [16℄ that "blow-ups" the system S(6) (see [16℄ for the detail). Thisonstrution gives a sequene of K−
4 -free 3-graphs with asymptoti density

2/7. In fat, the problem to �nd an extremal K−
4 -free graph is formulated as a0-1 integer programming problem on the variable set {xS | S ⊆ V and |S| =

3}: Maximize ∑

S xSSubjet to ∑

S⊆T xS ≤ 2 (∀T ⊆ V with |T | = 4),It is easy to hek that S(6) is the unique solution of this problem for
n = 6. Markström and Talbot [36℄ onduted a systemati searh usinga omputer and provided all extremal K−

4 -free 3-graphs on n verties for
n ≤ 19. Quite interestingly, for every 11 ≤ n ≤ 19, the unique extremalgraph is this blow-up onstrution. Motivating by this, they onjeturedthat this is true for every n ≥ 11, i.e., the reursive use of a small gadgetwould always give an optimal onstrution.Similar to this problem, our problem an also be written as an integerprogramming problem. Note that every oe�ient of a polynomial that rep-resents a Boolean funtion must be an integer. The variable set is {xS |



S ⊆ {1, . . . , n} and |S| ≤ k}, and the existene of a fully sensitive degree
k funtion on n variables is given by the feasibility of the following system(without objetive funtion):Subjet to 0 ≤

∑

S⊆T xS ≤ 1, (∀T ⊆ V ),
xS = 1, (∀S with |S| = 1),
xφ = 0.

(7)It is natural to expet that a good formula an be obtained by solving thisproblem by IP solvers. A simple examination an verify that F3 is the uniquepolynomial (up to a permutation and negation of variables) of degree 3 thatrepresents a fully sensitive Boolean funtion on 6 variables. In addition, thereare no suh polynomials of degree 3 on 7 variables.We start with the ase of degree 4. We already have suh a onstrutionfor n = 9, whih is E
(2)
2 . Again, this onstrution is optimal. We below givea (fully theoretial) proof verifying this sine it says a bit more than whatthe well-known symmetrization tehnique (Fat 5) introdued by Minsky andPapert [37℄ an say. In the sequel, we denote the number of ones in a binaryvetor x by |x|.Fat 5. Let f be a Boolean funtion on n variables, and p be a polynomialthat represents f . Then there exists a univariate polynomial p̃ suh that (i)for every k ∈ {0, 1, . . . , n},

p̃(k) = a0 + a1

(

k

1

)

+ a2

(

k

2

)

+ · · · + an

(

k

n

)

, (8)where ai = αi/
(

n
i

) and αi is the sum of the oe�ients of all degree i mono-mials in p, (ii) p̃(k) is equal to the probability that f(x) outputs 1 when x ishosen uniformly from all input vetors with Hamming weight k.Proof. Consider a real valued polynomial
psym(x1, . . . , xn) =

∑

π p(xπ(1), . . . , xπ(n))

n!
,where the summation is over all permutations π on {1, . . . , n}. Sine psumonly depends on the number of ones in inputs, there exist a unique univariatepolynomial p̃ suh that

p̃(x1 + · · ·+ xn) = psym(x1, . . . , xn).It is easy to hek that p̃ satis�es the onditions in the fat.



Theorem 3. There are no Boolean funtions f on 10 variables suh that fis fully sensitive and the degree of f is at most 4.Proof. Suppose for the ontrary that a multilinear polynomial p of degree 4on X = {x1, . . . , x10} represents a f suh that f is fully sensitive. W.l.o.g.,this happens at the origin. This immediately implies that (i) every monomialof degree 1 in p has the oe�ient 1, and (ii) every monomial of degree 2 hasthe oe�ient −1 or −2. By applying the symmetrization (Eq. (8)), we have
p̃(k) = k + a2

(

k

2

)

+ a3

(

k

3

)

+ a4

(

k

4

)

.for some a2, a3 and a4. By (ii) of Fat 5, 0 ≤ p̃(k) ≤ 1 for every k = 0, . . . , 10.It is easy to hek that this linear system has a unique feasible solution;
a2 = −1, a3 = 7/12 and a4 = 1/6. This gives p̃(2) = 1, p̃(5) = 0 and
p̃(8) = 1 implying that p(x) = 1 for every x with |x| = 2 or 8, and p(x) = 0for every x with |x| = 5.Now we onsider a multilinear polynomial p′ on {x1, . . . , x8} obtainedfrom p by �xing x9 = x10 = 0. We have that p′(x) = 0 for every x with
|x| = 0 or 5, and p′(x) = 1 for every x with |x| = 1, 2 or 8 beause p isso. Sine we have 5 �xed points for a degree 4 polynomial p̃′, it is uniquelydetermined to

p̃′(k) = k −
(

k

2

)

+
7

12

(

k

3

)

− 1

6

(

k

4

)

. (9)Sine the oe�ient of every degree 3 monomial of p′ is 0 or 1, Fat 5 (i)implies that the oe�ient 7/12 of the term (k
3

) in Eq.(9) must be a multipleof 1/
(

10
3

)

= 1/56, a ontradition.We now proeed to the ase of degree 5. Sine the minimum value of nthat satis�es logn 5 < log6 3 is 14, we seek a funtion on 14 variables. Wehave tried to solve IP (7) for (n, k) = (14, 5) by the IP solver in GLPKpakage [35℄, but it never ame bak. So far, we ould only obtain a partialresult like the following:De�nition 4. We say that a multilinear polynomial p is bounded if theoe�ient of a monomial t in p is 0 or 1 whenever the degree of t is odd, andis 0 or −1 whenever the degree is even.Note that any polynomial obtained by a reursive use of E2 or F3 arebounded.Fat 6. There are no Boolean funtions f on 14 variables suh that (i) fis fully sensitive at the origin, and (ii) f an be represented by a boundedpolynomial of degree 5.



The proof is by heking the infeasiblity of IP (7) with additional on-straints that xS ∈ {0, 1} when |S| is odd and xS ∈ {−1, 0} when |S| is even.We also use the result that the maximum number of edges in a K−
4 - free

3-graph on 14 verties is 126 that were reently shown by Markström andTalbot [36℄ using a omputer veri�ation to redue the searh spae.Through the experiments, we now feel that the following problem, whihis easier than Problem 4, is already very hard.Problem 5. Is there a fully sensitive funtion whose degree is smaller thanthe degree of funtion obtained by the reursion of F3?4.2 Average Density of Sign-Representing PolynomialsThe �nal topi in this artile is on the "density" of sign-representing polyno-mials of Boolean funtions. Reently, we found a new method for obtainingan improved bound on the average density of Boolean funtions by omputeralulations [1℄.In most of this setion, we use {1,−1} to represent Boolean values. Thefalse or 0 is represented by 1, and the true or 1 is represented by −1. Let f :
{1,−1}n → {1,−1} be a Boolean funtion on n variables and let p : R

n → Rbe a real polynomial. Reall that p sign-represents f if sgn(p(x)) = f(x) forall x ∈ {1,−1}n (i.e., sgn(p(x)) > 0 if f(x) = 1 and sgn(p(x)) < 0 if f(x) =
−1). The expressive power of suh a representation has been extensivelyinvestigated espeially in omplexity theory and in learning theory (see e.g.,[37, 46, 40, 50, 51℄ and the referenes therein). The PTF density of a givenBoolean funtion f is the minimum number of monomials with non-zerooe�ient in a polynomial that sign-represents f . Note that the PTF densityis depending on the hoie of the domain of funtions. In this setion, weexlusively onsider the ase {1,−1}n.It is lassially known that every Boolean funtion on n variables an besign-represented by a polynomial with 2n monomials. However, in general,less monomials are enough. For example, it is easy exerise to show thatevery two-variable Boolean funtion an be sign-represented by a polynomialwith at most three monomials, not four.In spite of a long history of investigations, there still is a large gap betweenthe upper and lower bounds on the worst/average PTF density of Booleanfuntions. For the lower bounds, Saks [46, Theorem 2.27℄ noted that theresult of Cover [14℄ implies that almost all Boolean funtions on n variableshave PTF density at least (0.11)2n. To this date, this is the best knownlower bound on the PTF density even for the worst ase.Reently, Oztop [41℄ (see also [42℄) gave an elegant proof of the result



Lower Bound Upper BoundAll Funtions (0.11)2n (0.75)2nAlmost All Funtions (0.11)2n (0.617)2nTable 1: The known bounds on the PTF density of Boolean funtions on
{1,−1}n. The right bottom is shown here.that the PTF density of every n-variable funtion is at most (0.75)2n. Thisimproves the previously known bound of (1 − 1

O(n)
)2n by O'Donnell andServedio [40℄ and is the �rst result saying that a onstant ratio, namely, 3/4,of all monomials are always enough to represent a Boolean funtion.In this setion, we brie�y sketh the Oztop's method and see that a gener-alization of this method an yield a better bound if we onsider the averagease. Intuitively, we show that the problem of upper bounding the aver-age density of n-variable Boolean funtions an be redued to a problem ofomputing (some modi�ed version of) average density of k-variable Booleanfuntions for small k. Interestingly, an upper bound is improved just byinreasing the omputational e�ort. The best bound we have obtained sofar is (0.617)2n and it is quite oneivable that this bound will further beimproved. The known bounds on the PTF density of Boolean funtions aresummarized in Table 1.4.2.1 BasisLet p be a real valued polynomial that sign-represents a Boolean funtion

f : {1,−1}n → {1,−1}. Sine x2 = 1 for x ∈ {1,−1}, we an assumewithout loss of generality that p is a linear ombination of all 2n multilinearmonomials over x1, . . . , xn. The support of p is a set of monomials withnon-zero oe�ient in p and the density of p is the size of the support of p.For a Boolean funtion f , the PTF density of f is the smallest density of apolynomial that sign-represents f .It is very useful to writing this in vetor notations. We follow the notationby Oztop [41, 42℄.For n ≥ 1, let D
n be a Hadamard matrix of order 2n de�ned as

D
1 =

(

1 1
1 −1

)

, D
n =

(

D
n−1

D
n−1

D
n−1 −D

n−1

)

(for n ≥ 2).The well known identities D
n
D

n = 2n
I and (Dn)−1 = 2−n

D
n are veryuseful. Eah olumn of D

n is indexed by a monomial in Mn in the orderingof 1, x1, x2, x2x1, x3, x3x1, x3x2, x3x2x1, . . . , xnxn−1 . . . x1. For a polynomial



p =
∑2n

i=1 aimi where mi =
∏

j∈Si
xj with Si ⊆ {1, . . . , n}, the olumn vetor

a = (a1, . . . , a2n)T is alled the oe�ient vetor of p where we use the sameordering for monomials as above.Then the olumn vetor D
n
a represents the values of p(x) where the as-signments to (xn, xn−1, . . . , x1) are ordered as 00 . . . 00, 00 · · ·01, 00 · · ·10, 00 · · ·11,

. . . , 11 · · ·11 (where 0's represent 1 and 1's represent −1). For a Booleanfuntion f on n variables, let f denote the olumn vetor of length 2n whoseelements are the values of f(x) for all x. We all f as the vetor representationof f .In this notation, p sign-represents f i� YD
n
a > 0, where Y = diag(f). Ifthis is the ase, we are allowed to say that a sign-represents f . The densityof p is the number of non-zero elements of a.Below we brie�y sketh the proof of the (0.75)2n upper bound on thePTF density of every n-variable Boolean funtion by Oztop [41, 42℄.The following simple fat is extremely useful.Fat 7. ([42, Theorem 1℄) Let f be the vetor representation of a Booleanfuntion on n variables. The set of solutions of the inequality diag(f)Dn

a > 0is all positive linear ombinations of the olumns of D
ndiag(f).Proof. diag(f)Dn

a > 0 i� ∃k > 0[diag(f)Dn
a = k] i� ∃k > 0[a = 1

2n D
ndiag(f)k].Theorem 4. [41℄ For any Boolean funtion on n variables, there exists asign-representing polynomial with at most 2n − 2n/4 monomials.Proof. (sketh) For an n-variable Boolean funtion f , let a denote the oef-�ient vetor of a polynomial that sign-represents f . Let f denote the vetorrepresentation of f . We partition a and f into a0, a1 and f0, f1 of equallength, respetively. We an write asdiag( f0

f1

)(

D
n−1

D
n−1

D
n−1 −D

n−1

)(

a0

a1

)

> 0.This is equivalent to diag(f0)Dn−1(a0 + a1) > 0,diag(f1)Dn−1(a0 − a1) > 0. (10)By Fat 7, this is equivalent to
(a0 + a1)

T = 2k0Y0,

(a0 − a1)
T = 2k1Y1. (11)



for some row vetors k0 > 0 and k1 > 0, where Yi (i = 0, 1) denotes
2n−1 × 2n−1 matrix diag(fi)Dn−1.Let Z0 (resp, Z1) be a matrix onsisting of all rows of Y0 indexed by
x ∈ {0, 1}n−1 suh that f0(x) = f1(x) (f0(x) 6= f1(x), resp). Then Eq. (11)an be written as

(a0 + a1)
T = 2k0,0Z0 + 2k0,1Z1,

(a0 − a1)
T = 2k1,0Z0 − 2k1,1Z1. (12)where ki,j > 0 (i, j = 0, 1) is a suitable partition of ki (i = 0, 1). By solvingthis for a0 and a1, we have

a
T
0 = (k0,0 + k1,0)Z0 + (k0,1 − k1,1)Z1,

a
T
1 = (k0,0 − k1,0)Z0 + (k0,1 + k1,1)Z1.Let z0 and z1 denote the number of rows in Z0 and Z1, respetively. Notethat z0 + z1 = 2n−1. If z1 ≥ 2n−2, then for any k0,0 and k1,0, we an zero

z1 omponents of a0 by an appropriate setting of k0,1 and k1,1 sine Z1 hasfull rank (this is beause every rows in D
n−1 are linearly independent). If

z1 < 2n−2, whih implies z0 > 2n−2, then for any k0,1 and k1,1, we an zero
z0 omponents of a1 by an appropriate setting of k0,0 and k1,0. This meansthat a polynomial given by oe�ient a = (a0, a1) sign-represents f and hasat most 2n − 2n/4 non-zero elements.As we see, this proof is based on a deomposition of f into two sub-funtions f |xn=1 and f |xn=−1. It is quite natural to ask what happens if wedeompose f by �xing two or more variables. We below see that this givesan improved bound for the average ase.4.2.2 Finer Deompositions yield Better BoundsLet's see what happens if we onsider two-variable deompositions in theproof of Theorem 4 instead of one. We partition f into four parts of equallength f00, f01, f10 and f11. Note that fi,j is the vetor representation ofthe funtion f |xn=i,xn−1=j (here we onsider the input is {0, 1} instead of
{+1,−1}), whih we will denote fi,j. Similarly the oe�ient vetor a ispartitioned into four vetors of equal length a00, a01, a10 and a11. In plaeof Eq. (12), we should introdue 23 submatries Zp for p ∈ {0, 1}3 these arede�ned aording to the values of (f00(x), f01(x), f10(x), f11(x)). Then by asimilar argument to the proof of Theorem 4, we an make zero using thefreedom of k's. Note that in this ase we an use another freedom to enlargethe number of zeros in a. We an onsider any ordering of the partitions of
a, e.g., a10 → a11 → a01 → a00.



By taking all of them into aount, the number of zeros we an guar-antee by this proedure is formulated as follows: Let Mk denote the all 2kmonomials on k variables and π be a mapping from {1, . . . , 2k} to Mk. Themapping π represents the ordering of the monomials {π(1), π(2), . . . , π(2k)}.For a Boolean funtion f and an ordering of monomials π, the freedomof f with respet to π, denoted by free(f, π) is de�ned as the maximum
t suh that f an be sing-represented by a polynomial with monomials
Mk − {π(1), π(2), . . . , π(t)}. For a positive integer k and an ordering π of
Mk, let d(k, π) denote the average of free(f, π)/2k over all k-variable Booleanfuntions f with f(1, 1, . . . , 1) = 1 whih we all the average freedom withrespet to π. Note that the last ondition (f(1, 1, . . . , 1) = 1) an be removedwithout hanging the value of d(k, π) by symmetry.The generalization of Theorem 4 an be stated as follows (see [1℄ for theproof).Theorem 5. [1℄ Let ǫ > 0 an arbitrary onstant. Let k ≥ 1 be an integerand π be an ordering of Mk. Then, there is a onstant c > 0 (depending on
ǫ and k) suh that all but a 2−c2n fration of n-variable Boolean funtionshave PTF density at most (1 − d(k, π) + ǫ)2n.It is a bit tedious but easy to verify (by hand) that d(2, π) = 5/16 forevery π ofM2; this gives (0.688)2n upper bounds on the average PTF densityof n-variable funtions. The omputation of d(k, π) for k ≥ 3 is done bya omputer (it takes double exponential time in k). Note that we an seewhether a given k-variable funtion f has a sign-representing polynomial withsupport S by heking the feasibility of the linear system diag(f)Dk

a > 0where ai = 0 for every i 6∈ S, whih is an easy task for any linear programmingsolver when k is small.The omputation of d(3, π) for every possible π is quite feasible by astandard PC. By using the GLPK pakage [35℄, we found that
d(3, {1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3}) = 316/(27 × 8) = 0.3085 · · · ,

d(3, {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}) = 360/(27 × 8) = 0.3515 · · · ,and that all orderings of M3 are ategorized into one of the above two. Thisgives the upper bound on the average PTF density of (0.649)2n.The omputation of d(4, π) for all π seems out of reah. However, theresult for k = 3 inspires the ordering
π4 = {1, x1, . . . , x4, x1x2, . . . , x3x4, x1x2x3, . . . , x2x3x4, x1x2x3x4},would be a good andidate. We ompute d(4, π4) (again by a omputer) to�nd

d(4, π4) = 195804/(215 × 16) = 0.3734 · · · , (13)



whih gives the upper bound of (0.627)2n. However, this is not the best.We then omputed the average freedom of 2000 randomly hosen order-ings of M4, whih took about two days on a standard PC. The best orderingwe have found is
π′

4 = {1, x1x2x3, x1x4, x1x3x4, x1x2x3x4, x3x4, x2x4, x3, x1x3,

x1, x1x2, x2x3x4, x2x3, x2, x4},whih has the average freedom of
d(4, π′

4) = 200964/(215 × 16) = 0.3833 · · · . (14)Note that 8 (out of 2000) orderings have the same value. This immediatelygives the following upper bound, whih is the best we have obtained so far.Corollary 1. [1℄ Almost all Boolean funtions on n variables have PTFdensity at most (0.617)2n.We provide veri�able data for Eqs. (13) and (14) on the web page [1℄.These are the lists of polynomial representations of all 4-variable funtionswith maximum freedom with respet to the designated ordering. The or-retness of Eqs. (13) and (14) an be veri�ed by hand in a several weeks, orby a omputer in a few seonds. At the time of writing this artile, we don'tknow whether π′
4 is the best among all orderings of M4 or not.Apparently, our method would yield a better upper bound if we have moreomputational resoure (or more sophistiated algorithm for omputing theaverage freedom). A random sampling experiment suggests that 1− d(5, π5)is around 0.598 where π5 is an obvious extension of π4. A natural questionis:Problem 6. What is the best ahievable bound obtained by this method?5 Conluding RemarksIn this artile, we review several reent attempts to use omputers in variousways to obtain onrete results for the problems in omputational omplexity.Some of them are (at least partially) sueeded and some of them are not.We strongly hope that these approahes inspire a new idea on how to attakthe di�ult problems, espeially the lower bound problems, in omputationalomplexity.The last thing we mention is that the feasibility of heking the omputerproofs. If a proof is "NP-type", i.e., a witness of an upper or lower bound isgenerated (like the one in Setion 4.2), then it seems no problems. However, if



a proof is "o-NP-type", i.e., the non-existene is veri�ed by heking a hugenumber of ases (like the one in Setion 3.3), this may be a problemati. Onepossible approah is to translate a omputer proof into a formal proof. A Coqproof of the Four Color Theorem by Gonthier [19℄ or an ongoing "Flyspek"projet [20℄ for the Kepler Conjeture is a nie example. However this wouldneed a huge amount of work in general, and we do not have a good solutionto this meta-problem.Referenes[1℄ K. Amano, New Upper Bounds on the Average PTF Density of BooleanFuntions, Manusript, 2010 (available at http://www.s.gunma-u.a.jp/�amano/poly/index.html).[2℄ K. Amano and A. Maruoka. On the Complexity of Depth-2 Ciruits withThreshold Gates, Pro. of MFCS '05, LNCS 3618, 107-118, 2005.[3℄ K. Amano and A. Maruoka. Better Upper Bounds on the QOBDD Size ofInteger Multipliation, Dis. Appl. Math., 155(10): 1224�1232, 2007.[4℄ K. Amano and J. Tarui. A Well-Mixed Funtion with Ciruit Complexity
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