
Resear
hing the Complexity ofBoolean Fun
tions with ComputersKazuyuki Amano ∗Abstra
tWith the rapid advan
es in 
omputers, it be
omes attra
tive to ex-plore the use of 
omputers to atta
k open problems in 
omputational
omplexity. In this arti
le, we 
on
entrate on the problems of the 
om-plexity of Boolean fun
tions, and overview several re
ent attempts touse 
omputers in various ways to obtain 
on
rete results on majorproblems in 
omputational 
omplexity. We dis
uss the problems onseveral 
omputational models in
luding ordered binary de
ision dia-grams, Boolean 
ir
uits, and polynomial threshold representations ofBoolean fun
tions.1 Introdu
tionDue to the rapid progress of 
omputers, we now have a personal 
omputerwhose 
omputational power is ex
eeding the power of the super
omputer twoor three de
ades ago. My personal 
omputer 
an verify (the Robertson etal.'s version [45℄ of) the proof of the Four Color Theorem in less than �veminutes. The �elds of experimental mathemati
s in whi
h 
omputation playsa 
entral role of investigation have be
ome in
reasingly wider.In 
ontrast, the progress of the resear
h on 
omputational 
omplexity,espe
ially on lower bound problems, is not so rapid. In spite of the 
ompu-tational 
omplexity studies the nature of 
omputation, the use of 
omputersin the resear
h of 
omputational 
omplexity seems not so 
ommon 
omparedto mathemati
s. The starting point of this arti
le is a simple thought: Canwe use 
omputers more seriously in the investigation of 
omputational 
om-plexity?In this arti
le, we 
on
entrate on the problems 
on
erning 
on
rete modelsof 
omputations like Boolean 
ir
uits and overview several re
ent attempts to
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use 
omputers in various ways to obtain 
on
rete results on major problemsin 
omplexity theory. The models we 
onsider in this arti
le in
lude orderedbinary de
ision diagrams, Boolean 
ir
uits, and polynomial threshold repre-sentations of Boolean fun
tions. We are aware that many of them are stillin preliminary stages, and more work is needed to get an important result.However, we hope that these attempts inspire a new idea for atta
king themajor and di�
ult problems in 
omplexity theory; this is one of the mainpoints that we would like to o�er in this arti
le.An arti
le en
ouraging to use 
omputers in the resear
h of 
omputational
omplexity, whi
h has a similar spirit to this arti
le, was also presented byWilliams [54℄. In that arti
le, he reviewed several topi
s that pra
ti
al 
om-puting has made a noteworthy impa
t. The topi
s in
lude the analysis ofthe 
omplexity of exponential time algorithms, 
onstru
ting gadgets using
omputers and more. This arti
le is more oriented to the problems of the
omplexity of Boolean fun
tions. In addition, we give several open problemsthat we believe to be interesting, doable and fun.The organization of this arti
le is as follows: In Se
tion 2, we start withthe problem on the OBDDs as an illustrative example so that a large amountof 
omputations lead us to a better understanding of the 
omplexity. Thenin Se
tion 3, we 
onsider three topi
s on Boolean 
ir
uits and see how a
-tual 
omputations 
an help to obtain theoreti
al results. In Se
tion 4, we
onsider the problems on the expressive power of real valued polynomialsfor representing Boolean fun
tions in
luding a new 
omputational methodfor getting an upper bound on the average density of polynomial thresholdrepresentations of Boolean fun
tions.2 Ordered Binary De
ision DiagramsWe begin this arti
le by reviewing the problem on the expressive power ofordered binary de
ision diagrams (OBDDs) and how 
omputers are helping togive a better knowledge about the 
omplexity. The ordered binary de
isiondiagram is one of the most well studied models for representing Booleanfun
tions both in theory and in pra
ti
e.De�nition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A vari-able ordering π on Xn is a permutation from {1, . . . , n} to Xn leading to theordered list π(1), . . . , π(n) of the variables.A π-OBDD on Xn is a dire
ted a
y
li
 graph whose sinks are labeled by a
onstant 0 or 1 and whose inner nodes are labeled by Boolean variables from
Xn. Ea
h inner node has two outgoing edges, one of them labeled by 0, the



other by 1. The edges between inner nodes have to respe
t the variable order-ing π, i.e., if an edge leads from an xi-nodes to an xj-node, then π−1(xi) <
π−1(xj). A π − OBDD 
omputes a Boolean fun
tion f : {0, 1}n → {0, 1}in the following way: An assignment (a1, . . . , an) ∈ {0, 1}n to Xn de�nes auniquely determined path from the root to one of the sinks. The label of therea
hed sink gives f(a). The size of a π-OBDD is de�ned as the number ofits nodes. The OBDD 
omplexity of f is the minimum size of a π-OBDDsthat 
omputes f . A π-OBDD for some unspe
i�ed variable order is simply
alled OBDD.The size of an OBDD for a given Boolean fun
tion is strongly depend-ing on the variable order. For example, 
onsider the fun
tion f(x1, . . . , x2n) =
(x1∨x2)∧(x3∨x4)∧· · ·∧(x2n−1∨x2n). If we use the ordering (x1x3 · · ·x2n−1x2x4 · · ·x2n),then we only need 2n + 2 nodes to represent f ; however we need 2n+1 nodesif the ordering (x1x2 · · ·x2n) is used.In the theory of OBDDs, one of the most investigated fun
tions is themiddle bit of integer multipli
ation. This is a 2n-variable Boolean fun
tionthat represents the n-th bit (the least signi�
ant bit is 
ounted as the �rst) ofthe produ
t of two n bit numbers (xn−1 · · ·x0) and (yn−1 · · · y0) spe
i�ed byinputs. This fun
tion is the �rst pra
ti
al fun
tion for whi
h an exponentiallower bound has been proven for every variable order [12℄.The investigation of the OBDD size of the middle bit of integer multipli-
ation as well as other bits has a long history. An ex
ellent survey devoted tothis topi
 was presented by Bollig [11℄ in the BEATCS 
olumn. The newestvolume of the famous book of Knuth [31℄ also dis
usses this topi
 extensively.The 
urrent best lower bound is 2⌊n/2⌋/61 − 4 by Woelfel [55℄ and the
urrent best upper bound is 2.8 · 26n/5 by the author and Maruoka [3℄.The upper bound is a
hieved by the pairwise as
ending variable order π =
(x0, y0, . . . , xn−1, yn−1). In fa
t, we found this by 
omputer 
al
ulations. Be-low we des
ribe a short story explaining this.For an ease of exposition, we 
onsider a variant of OBDDs 
alled quasi-redu
ed OBDDs (qOBDDs); OBDDs where all variables have to be testedon every path from the sour
e to the sinks. The size of π-qOBDD is atmost n + 1 times larger than the size of π-OBDD for a same π, i.e., bothare essentially the same (espe
ially when we 
onsider a fun
tion having anexponential 
omplexity like integer multipli
ation). By the following ni
efa
t, the size of π-OBDD for a given fun
tion f is fully 
hara
terized by thenumber of di�erent subfun
tions of f obtained by �xing appropriate variablesa

ording to π.Fa
t 1. Let f be a Boolean fun
tion over the variable set X = {x1, . . . , xn}.For I ⊆ X, let sub(f, I) denote the number of di�erent subfun
tions of f



n 4 5 6 7 8 9 10 11 12Size of OBDD 31 63 136 315 756 1717 4026 9654 21931Size of qOBDD 39 72 156 348 797 1808 4106 9796 22151
26n/5 ≈ 28 64 147 338 776 1783 4096 9410 21619Figure 1: The minimum size of OBDD or qOBDD for the middle bit ofmultipli
ation. The data for qOBDD are from [3℄ and for OBDD are from[30, 47℄obtained by �xing all variables in X\I. Then, the number of π(i)-nodes inan optimal π-qOBDD for f is equal to sub(f, I) with I = {π(i+1), . . . , π(n)}.This immediately implies that the size of an optimal qOBDD for f isgiven by

min
I={I0,...,In}

∑

0≤i≤n

sub(f, Ii), (1)where the minimum ranges over all sequen
es of sets φ = I0 ⊂ I1 ⊂ · · · ⊂
In = X with |Ii| = i. By a standard dynami
 programming, we 
an 
omputethe optimal size of qOBDD for a given n-variable fun
tion as well as anoptimal variable ordering in time O(n23n) [17℄. Note that we 
an similarly
ompute an optimal OBDD by repla
ing the term sub(f, Ii) in Eq. (1) bysubx(f, Ii) denoting the number of di�erent subfun
tions of f obtained by�xing {π(i + 1), . . . , π(n)} and essentially depends on x. Current 
omputersare fast enough to 
arry out these 
omputations for up to n ∼ 20.The empiri
al results shown in Fig. 1 are bit surprising. The OBDD (orqOBDD) 
omplexity of the middle bit of integer multipli
ation seems verywell proportional to 26n/5. For example, in the 
ase of qOBDD, the optimalvariable orderings for n = 10, 11, 12 are

(x3x4x5x6y3y4y5y6x2y2x1y1x7y7x8y8x0y9x9y0),

(x3x4x5x6x7y4y5y6y7y3x2y2x1y1x8y8x9y9x0y10x10y0),

(x2x3x4x5x6x7y4y5y6y7y3y2x1y1x8y8x9y9x10y10x0y11x11y0),See [3, 30, 47℄ for more optimal orderings. These are enough to inspirea hypothesis that the pairwise as
ending order (x0, y0, . . . , xn−1, yn−1) or itsslight modi�
ation (x1, y1, . . . , xn−2, yn−2, x0, yn−1, xn−1, y0) is a good order-ing. On
e we have this, showing the O(26n/5) upper bound is an easy taskusing Fa
t 1. Note that very re
ently this upper bound is shown to beasymptoti
ally optimal if we �x the ordering to the pairwise as
ending [47℄.



To see whether the true OBDD 
omplexity of the middle bit of integermultipli
ation is Θ(26n/5) seems to be an interesting open question, whi
his also appeared as an �exer
ise" in the Knuth's book [31℄. In addition, thefollowing general question would also be interesting for understanding thenature of multipli
ation.Problem 1. For ea
h k, determine the asymptoti
 OBDD 
omplexity of the
k-th bit of integer multipli
ation and �nd an optimal variable ordering forrepresenting it.We believe that 
omputer experiments would also help to atta
k thisproblem sin
e we 
an obtain a 
atalog of optimal representations up to arelatively large number of inputs, say n ∼ 20. Again, 
onsult [11℄ for are
ent progress in this topi
.3 Boolean Cir
uitsIn spite of a huge amount of e�ort, we have very little knowledge about the
ir
uit 
omplexity. In 80's, exponential lower bounds have been shown onthe size of monotone 
ir
uits for the 
lique fun
tion as well as the size of
onstant depth 
ir
uits for the parity fun
tion. However, we should say thatthese two results are still the most important a
hievement in this area so far.To this date, the largest lower bounds on the 
ir
uit size for a fun
tion inNP is 5n [26℄. We are eager to get a new idea for proving a stronger lowerbound.As we see in the last se
tion, it would be possible to get a new insight byexamining a 
atalog of optimal 
ir
uits for small fun
tions generated by 
om-puters. This was at least partially su

eeded for OBDDs. Several attemptshave been made also for Boolean 
ir
uits using SAT solvers [54, 28℄.On a 
urrent te
hnology, the maximum size of 
ir
uits that 
an feasiblybe enumerated by a 
omputer is around 10. For example, in the re
entvolume of the famous Knuth's book [30, Chap. 7.1.2℄, he gave the 
omplete
lassi�
ation of all Boolean fun
tions on up to �ve variables in terms oftheir 
ir
uit 
omplexity. The hardest fun
tion among all 5-variable Booleanfun
tions over the basis B2 (whi
h 
ontains all 2-input fun
tions) needs 12gates. Interestingly, su
h a fun
tion is essentially unique. However, it wouldnot be feasible to enumerate all 
ir
uits with 20 gates, even in a near future.In this se
tion, we review three another approa
hes aiming to use 
om-puters in proving lower bounds. The �rst two are to redu
e the lower boundproblem to a polynomially solvable optimization problem, and the last one is



a graph theoreti
 approa
h based on the 
omputer sear
h. So far, these ap-proa
hes 
ould not deliver a signi�
ant lower bound. However, we hope thatpushing them further would yield a new insight on how to prove a strongerlower bound on a stronger 
omputational model.3.1 Lower Bounds for Depth Two Threshold Cir
uitsvia LPA major open problem in 
ir
uit 
omplexity is to give a superpolynomiallower bound on the size of depth-2 threshold 
ir
uits (with unrestri
tedweights) for an expli
it Boolean fun
tion. Many exponential lower boundsare known for depth-2 threshold 
ir
uits with various restri
tions (see e.g.,[49℄ and the referen
es therein). Among these restri
ted 
ir
uits, we 
onsiderin this se
tion depth-two 
ir
uits with a threshold gate at the top and sym-metri
 gates below. Su
h 
ir
uits have been 
onsidered before in e.g., [15℄.Below we demonstrate that an exponential lower bound for this model 
anbe obtained by solving a large-s
ale linear program using LP solvers. Notethat the 
ontents of this se
tion is an updated version of [2℄ that was builton the work by Basu et al. [9℄.Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be two binary inputs of length
n. The inner produ
t mod 2 fun
tion, denoted by IPn(X, Y ), is de�ned as
⊕ixiyi where ⊕ denotes the ex
lusive-OR operation.A linear threshold fun
tion f(X) is a Boolean fun
tion on input X =
(x1, . . . , xn) ∈ {0, 1}n su
h that

f(X) = sgn

(

w0 +
n
∑

i=1

wixi

)

,where w = (w0, . . . , wn) ∈ R
n+1 is 
alled the weights, and sgn stands for thesign fun
tion: sgn(x) = 1 if x > 0, and sgn(x) = 0 otherwise. A thresholdgate is a gate that 
omputes a threshold fun
tion. A fun
tion f : {0, 1}X → Ris 
alled symmetri
 if the value of f depends only on the number of inputs thatare 1. A symmetri
 gate is a gate that 
omputes a symmetri
 fun
tion. For aBoolean fun
tion f , the minimum number of symmetri
 gates in a depth-two
ir
uit of �threshold-of-symmetri
 gates" that 
omputes f is denoted by s(f).It is 
onvenient to 
onsider a polynomial P of the form

P (X, Y ) =
∑

S⊆X∪Y

wShS(X, Y ), (2)where wS ∈ R and hS denote a symmetri
 fun
tion over the variable set S.The support of P is de�ned as {S ⊆ X ∪ Y | wS 6= 0}. We say that P



sign-represents f if P (X) > 0 whenever f(x) = 1 and P (X) < 0 whenever
f(x) = 0. Obviously, s(f) is equal to the minimum size of the support of apolynomial that sign-represents f .Let f be a (not ne
essarily Boolean) fun
tion on a set of variables X and
ρ be a partial assignment of the variables, i.e., ρ is a map from X to the set
{0, 1, ∗}. The restri
tion of f by ρ, denoted by f |ρ, is the fun
tion obtainedfrom f by setting xi to be ρ(xi) if xi ∈ {0, 1} and leaving xi if xi = ∗. For apartial assignment ρ, let res(ρ) denote the set of variables that mapped to 0or 1 by ρ.We also de�ne the restri
tion of a polynomial P of the form (2) by ρ,denoted by P |ρ as follows: First, repla
e ea
h hS in P by hS|ρ. Note that
hS|ρ is a symmetri
 fun
tion on S\res(ρ). Then, for every S1 and S2 su
h that
hS1

|ρ and hS2
|ρ are on the same set of variables S ′, then repla
e wS1

hS1
|ρ+

wS2
hS2

|ρ by an equivalent symmetri
 fun
tion h′
S′. This is always possiblesin
e the sum of two symmetri
 fun
tions is also a symmetri
 fun
tion.Suppose that P is an optimal polynomial that sign-represents IPn. Con-sider two assignments α : (x1, y1) = (0, 1) and β : (x1, y1) = (1, 1). Sin
e P |αsign-represents IPn−1 and P |β sign-represents the 
omplement of IPn−1, it isobvious that the polynomial P |α − P |β sign-represents IPn−1.We now divide P into two subformulas P0 and P1; P1 is 
onsisting of allterms in
luding x1, and P0 is the rest. Let ♯(P ) denote the number of termsin P . We have

P |α − P |β = P0|α + P1|α − P0|β − P1|β = P1|α − P1|β,sin
e P0 is independent of x1. This implies ♯(P1) ≥ ♯(P1|α−P1|β) ≥ s(IPn−1).The �rst inequality follows from a simple observation. Sin
e s(IPn) = ♯(P0)+
♯(P1), if we 
ould similarly show that ♯(P0) ≥ s(IPn−1), then we would getthe re
ursion s(IPn) ≥ 2s(IPn−1) whi
h immediately gives a lower boundof s(IPn) ≥ 2n. However, we 
annot 
an
el out P1|σ1

− P1|σ2
by any twoassignments σ1 and σ2 to {x1, y1}.Instead, we 
onsider assignments to four variables {x1, x2, y1, y2} and di-vide P into 24 = 16 parts depending on the interse
tion of these four variablesand the support of monomials. For T ⊆ {x1, y1, x2, y2}, let PT be a subfor-mula of P 
onsisting of all terms wShS su
h that S ∩ {x1, y1, x2, y2} = T .Consider two assignments α : (x1, y1, x2, y2) = (0, 1, 1, 0) and β : (x1, y1, x2, y2) =

(1, 1, 0, 0). Obviously, P |α − P |β sign-represents IPn−2. Here we have
P |α − P |β =

∑

T⊆{x1,y1,x2,y2}

(PT |α − PT |β) =
∑

T :|T∩{x1,x2}|=1

(PT |α − PT |β),sin
e polynomials PT |α − PT |β are 
an
eling out when |T ∩ {x1, x2}| = 0 or
2.



We introdu
e new variables qT 's that represent ♯(PT )/s(IPn−2). Then theabove equation implies the linear inequality
∑

T :|T∩{x1,x2}|=1

qT ≥ 1. (3)Eight variables (out of 16) are appeared in the LHS of the above inequality.On the other hand, sin
e ♯(P ) =
∑

T ♯(PT ) we have
∑

T⊆{x1,y1,x2,y2}

qT =
s(IPn)

s(IPn−2)
.If we 
onsider another pair of assignments, then we get another inequal-ity similar to Ineq. (3). By 
onsidering four pairs of Type 1 assignments,and four pairs of Type 2 assignments des
ribed below, we get the system ofinequalities shown in Fa
t 2.Type 1 Choose i ∈ {1, 2} and v ∈ {xi, yi}. The un
hosen variable in

{xi, yi} is denoted by u. Let α : (v, u) = (0, 1) and β : (v, u) = (1, 1).Type 2 Choose v1 ∈ {x1, y1} and v2 ∈ {x2, y2}. Let u1 and u2 bethe un
hosen variables in {x1, y1} and in {x2, y2}, respe
tively. Let α :
(v1, u1, v2, u2) = (0, 1, 1, 0) and β : (v1, u1, v2, u2) = (1, 1, 0, 0).Fa
t 2. Let z be the minimum value of the obje
tive fun
tion of the followinglinear program. Then s(IPn) ≥ z · s(IPn−2).Minimize ∑

T⊆{x1,y1,x2,y2}

qTSubje
t to ∑

T :v∈T

qT ≥ 1 (v ∈ {x1, y1, x2, y2})

∑

T :|{v1,v2}∩T |=1

qT ≥ 1 (v1 ∈ {x1, y1}, v2 ∈ {x2, y2}),

qT ≥ 0 (T ⊆ {x1, x2, y1, y2}).

(4)
LP (4) has 24 variables and 8 
onstrains, and is easy to solve. The min-imum value of the obje
tive fun
tion is 1.5 whi
h implies s(IPn) ≥ 1.5n/2 ∼

1.2247n.Quite naturally, a lower bound is improved by 
onsidering more assign-ments. Let k ≥ 3 be an integer. We 
onsider a set of pairs of assignmentson {x1, y1, . . . , xk, yk} of the following two types.Type 1 Choose i ∈ {1, . . . , k} and v ∈ {xi, yi}. The un
hosen variable in
{xi, yi} is denoted by u. Let α : (v, u) = (0, 1) and β : (v, u) = (1, 1).



Type 2 Choose i, j ∈ {1, . . . , k} with i 6= j. Choose v1 ∈ {xi, yi} and v2 ∈
{xj , yj}. Let u1 and u2 be the un
hosen variables in {xi, yi} and in {xj , yj},respe
tively. Let α : (v1, u1, v2, u2) = (0, 1, 1, 0) and β : (v1, u1, v2, u2) =
(1, 1, 0, 0).Note that for two assignments α and β of Type i (i ∈ {1, 2}), P |α −
P |β sign-represents IPn−i. By dividing P into 22k parts and letting qT be
♯(PT )/s(IPn−k), we 
an show that:Fa
t 3. Suppose that k ≥ 3. Let zk−1 and zk−2 be real numbers su
h that
s(IPn) ≥ zk−1 · s(IPn−(k−1)) and s(IPn) ≥ zk−2 · s(IPn−(k−2)) for every n. Let
zk be the minimum value of the obje
tive fun
tion of the following linearprogram. Then s(IPn) ≥ zk · s(IPn−k).Minimize ∑

T⊆{x1,y1,...,xk,yk}

qTSubje
t to ∑

T :v∈T

qT ≥ zk−1 (v ∈ {x1, y1, . . . , xk, yk})

∑

T :|{v1,v2}∩T |=1

qT ≥ zk−2

(

i, j ∈ {1, . . . , k}, i 6= j
v1 ∈ {xi, yi}, v2 ∈ {xj , yj}

)

qT ≥ 0 (T ⊆ {x1, y1, . . . , xk, yk}).

(5)
Note that the 
onstraint matrix of LP (5) is a (2k + 4

(

k
2

)

) × 22k binarymatrix and easy to generate by a simple 
omputer program. In addition, ifthe value of k is relatively small, then we 
an solve this by an LP solver.Solving LP (5) for k = 3 with z1 = 1 and z2 = 1.5 yields z3 = 2. Thisimplies s(IPn) ≥ 2n/3 ∼ 1.2599n, whi
h is slightly better than the lowerbound obtained by solving LP (4). Solving LP (5) again for k = 4 with
z2 = 1.5 and z3 = 2 yields z4 ∼ 2.8333, whi
h implies better lower bound of
s(IPn) ≥ 2.8333n/4 ∼ 1.2974n. By repeating this pro
edure, we 
an obtain
z5 ∼ 4.0277, z6 ∼ 5.7500, z7 ∼ 8.2541, z8 ∼ 11.9700 and z9 ∼ 17.3350. Theseimply the lower bounds on s(IPn) of 1.3213n, 1.3384n, 1.3519n, 1.3638n and
1.3729n, respe
tively. We have not su

eeded to 
ompute the value of zk for
k ≥ 10 at the time of writing this arti
le (be
ause GLPK solver [35℄ is killedby the out of memory).Note that the best known lower bound on s(IPn) isΩ(2n/2/n) = Ω(1.4142n)by Forster et al. [15℄ and the upper bound is s(IPn) ≤ 2n. The lower boundis proved by 
onsidering the rank of a 
ommuni
ation matrix that sign-represents IPn [15℄ (see also [49℄ for a generalization). The upper bound fol-lows from the 
onstru
tion IPn(X, Y ) = sign(

∑

S⊆[n](−2)|S|+1XSYS), where
XS and YS denote ∏i∈S xi and ∏i∈S yi, respe
tively.



At this moment, we don't know whether our method 
an beat Ω(1.4142n).However, we think that there is a 
han
e. By examining LP (5) with k = 8under the assumption s(IPn) ≥
√

2·s(IPn−1) for every n, we obtain somewhat
urious fa
t saying that the lower bound would be enhan
ed by 
onsideringa large LP.Fa
t 4. Suppose that, for every su�
iently large n, s(IPn) ≥
√

2 · s(IPn−1)holds. Then s(IPn) = Ω(1.4198n).3.2 Lower Bounds on Formula Size via SDPA Boolean formula is a binary tree where ea
h internal node is labeled with
∧ or ∨, and ea
h leaf is labeled with a literal, i.e., a variable or its negation.A Boolean formula 
omputes a Boolean fun
tion in an obvious way. The sizeof a formula is the number of leaves in the tree. For a Boolean fun
tion f ,the formula 
omplexity, denoted by L(f), is de�ned as the size of a smallestformula that 
omputes f . The famous result of Khrap
henko [27℄ says thatthe formula 
omplexity of the parity of n variables is at least n2. The 
urrentbest lower bound for an expli
itly de�ned fun
tion is n3−o(1) due to Håstad[21℄.The quantum adversary method ([5℄,[8℄,[33℄,[56℄) has originally been de-veloped for proving lower bounds on quantum query 
omplexity. Laplante,Lee and Szegedy [32℄ revealed that this method is also very useful for lowerbounding the formula size. In this framework, a lower bound on the formulasize of an n-variable Boolean fun
tion 
an be obtained by solving an SDP(semide�nite program) of the order n2n.Let Γ be a 2n × 2n be a Hermitian matrix with rows and 
olumns labeledby elements of {0, 1}n su
h that Γ[x, y] = 0 whenever f(x) = f(y). Let
||M || denote the spe
tral norm of the matrix M . For a Boolean fun
tion
f : {0, 1}n → {0, 1}, the adversary bound for f is de�ned as

ADV(f) = max
Γ≥0,Γ6=0

||Γ||
maxi ||Γ ◦ Di||

,where the maximum is taken over nonnegative symmetri
 matri
es Γ, and
Di is a zero-one matrix where Di[x, y] = 1 i� xi 6= yi. Γ ◦ Di denotes theentry-wise produ
t of Γ and Di.Laplante, Lee and Szegedy [32℄ proved that ADV(f)2 is a lower boundon the formula 
omplexity of f . This parameter 
an be formulated as SDP[52℄: Let F be a 2n × 2n binary matrix su
h that F [x, y] = 1 i� f(x) 6= f(y),and let Di be de�ned as above. The parameter ADV(f) is given by 1/µmin,



where µmin is the minimal solution of the following semide�nite program:Minimize µ = tr∆Subje
t to ∆ is diagonal,
Z ≥ 0,

Z · F = 1,
∀i : ∆ − Z ◦ Di � 0,

(6)Here tr∆ denotes the tra
e of a matrix ∆.This parameter enjoys a ni
e 
omposition property. For two Booleanfun
tions f on n variables and g on m variables, let f ⊗g denote a 
ompositefun
tion on nm variables: (f ⊗ g)(x1, . . . , xmn) = f(g(x̃1), . . . , g(x̃n)) where
x̃i = (x(i−1)m+1, . . . , xim).Theorem 1. ([5, 22℄) For every Boolean fun
tions f and g, ADV(f ⊗ g) =
ADV(f) · ADV(g).This theorem says that if L(f) = ADV(f)2 and L(g) = ADV(g)2, then
L(f ⊗ g) = L(f) · L(g). This gives a ni
e generalization of the result ofKhrap
henko [27℄. The parity fun
tion on n = 2k variables 
an be written as
(x1⊕x2)⊗· · ·⊗(x1⊕x2). The optimal formula for x1⊕x2 is (x1∧x2)∨(x1∧x2),whi
h has size 4. By using this re
ursively, we get a formula for the parityon 2k variables whose size is 4k = n2. Khrap
henko's n2 lower bound for theparity fun
tion guarantees the exa
t optimality of su
h a naive 
onstru
tion.Note that, re
ently, Tarui [53℄ proved that the formulas 
onstru
ted in thisway are essentially unique smallest ones.Theorem 1 shows a similar optimality 
an be established for any basefun
tions f with the property L(f) = ADV(f)2. We 
all su
h a fun
tiontight. By using an SDP solver, we 
an enumerate all tight fun
tions onup to �ve variables. We say that two Boolean fun
tions are in the sameNPN-equivalen
e 
lass if they 
an be equivalent by negating of output andinput variables and permuting of input variables. The number of NPN-equivalen
e 
lasses of 2, 3, 4 and 5 or fewer variables are 2, 14, 222 and 616126,respe
tively. Out of them, 4, 8, 20 and 55 
lasses are tight [23, 18℄. Exampleof su
h fun
tions are MUX(x1, x2, x3) and MUX(x1 ⊕ x2, x3 ⊕ x4, x3 ⊕ x5),where MUX(x1, x2, x3) denotes the multiplexer fun
tion x1x2 ∨ x1x3. At thismoment, we don't know whether the tightness is a ne
essary 
ondition forsu
h an optimality result.It should be noted that unfortunately, it is known that ADV(f)2 is upperbounded by n2. See also [24℄ for another explanation of the limit of thismethod. So we should in mind that this method 
an not yield a super-quadrati
 lower bound on the formula size.



Note also that Høyer, Lee and S�palek [23℄ strengthen this method. Theyintrodu
ed new parameter
ADV±(f) = max

Γ6=0

||Γ||
maxi ||Γ ◦ Di||

,in whi
h the 
ondition Γ ≥ 0 in ADV(f) is removed, and proved that
ADV±(f)2 is also a lower bound on formula size. The 
omputational re-sults for this parameter as well as the program for MatLab 
an be found onthe web page in the referen
e of [23℄.In the pre
eding two se
tions, we reviewed lower bound problems on two
omputational models 
an be formulated as linear program and semide�niteprogram. Thus, an interesting question is:Problem 2. Can we formulate a lower bound problem on a stronger modelas a polynomial time solvable optimization problem?3.3 Linear Lower Bounds on Cir
uit SizeLet B2 denote the set of all (sixteen) Boolean fun
tions over two variables,and let U2 denote B2\{⊕,≡}, i.e., B2 ex
luding the parity and its negation.For a Boolean fun
tion f , the B2-
ir
uit 
omplexity (U2-
ir
uit 
omplexity,resp) of f is the minimum size of a 
ir
uit over B2 (U2, resp.) that 
omputes
f . After a long line of resear
h for improving a 
onstant fa
tor of linearlower bounds on 
ir
uit 
omplexity, the 
urrent best lower bound on B2-
ir
uit 
omplexity for a fun
tion in NP is 3n [10℄ and that on U2-
ir
uit is
5n [26℄ (see also [34, 25℄). Essentially, all linear lower bounds are proved byso 
alled the gate-elimination method.A typi
al proof using the gate-elimination method is as follows: First wede�ne some property of n-variable Boolean fun
tions Q(n). Then we showthat, for an optimal 
ir
uit for a fun
tion having Q(n), a spe
i�
 numberof gates, say α, 
an be eliminated by �xing some variable to a 
onstant 0or 1 and the resulting fun
tion has the property Q(n − 1). Applying thisindu
tively gives an αn lower bound on a 
ir
uit size for a fun
tion having
Q(n).The 
ore of the proof is typi
ally by the 
ase analysis on the �lo
al pattern"of 
ir
uits near the input terminals. That be
ame more and more 
ompli
atedas the 
onstant fa
tor in
reases; the proof of 5n lower bounds by Iwama etal. [26℄ needs to analyze several dozen of 
ases in whi
h the deepest one islike Case 2.3.3.3.4.Su
h an analysis would be automated by 
omputers. To examine thepossibility of this approa
h, we brie�y review their lower bound proof.



Let C be a 
ir
uit over Xn = {x1, . . . , xn}. Re
all that a partial assign-ment σ is a mapping from Xn to {0, 1, ∗}. We say that the set of variables�xed to a 
onstant by σ the support of σ. For a Boolean fun
tion f on Xnand a partial assignment σ, let f |σ denote the fun
tion obtained from f byapplying σ. We use the similar notation C|σ for a Boolean 
ir
uit C.The proof by Iwama et al. [26℄ (as well as 4.5n bound by La
hish andRaz [34℄) uses the following property of Boolean fun
tions:De�nition 2. A Boolean fun
tion f over Xn = {x1, . . . , xn} is k-mixed if forevery V ⊆ Xn su
h that |V | = k and for any two distin
t partial assignments
α and β with support V , the fun
tions obtained from f by applying α and βare distin
t, i.e., f |α 6= f |β.Note that they originally used the property 
alled strongly-two-dependent;but the property of k-mixed is stronger than this.The main portion of their proof is the following lemma.Lemma 1. Let f be a t-mixed n-variable Boolean fun
tion with n − t = k.Suppose that n ≥ 2k + 4 and a 
ir
uit C 
omputes f . Then, there exists apartial assignment σ that satis�es the following: |σ| ≤ 2, and there exist aBoolean 
ir
uit C ′ ≡ C|σ su
h that SD(C) ≥ SD(C ′)+5|σ|. Here SD(C) is ameasure of a 
ir
uit size whi
h is a slight modi�
ation of the normal "numberof gates" measure (see [26℄ for the de�nition).By using above lemma indu
tively we 
an obtain the lower bound of
5n − o(n) for every k-mixed fun
tion with k = n − o(n).Su
h a method 
an be reformulated as follows: In order to show the αnlower bound on a 
ir
uit 
omplexity of f , it is su�
ient to give a 
lass oflo
al 
ir
uit patterns D that satis�es the following.(C1) For every optimal 
ir
uit C that 
omputes f , some pattern D ∈ Dappears in C.(C2) For every 
ir
uit C and every D ∈ D, if D appears in C, then thereexists a partial assignment σ and a 
ir
uit C ′ ≡ C|σ su
h that

[the size of C] − [the size of C ′] ≥ α|σ|.Interestingly, this formulation of the gate-elimination method is quiteresemble to the famous proof of the Four Color Theorem [6, 7, 45℄. The
omputer assisted proof of this theorem has given by Appel and Haken threede
ades ago. A simpli�ed but still 
omputer assisted proof has then givenby Robertson et al. [45℄ whi
h pro
eeds as follows.



Suppose for the 
ontrary that there exists a 
ounterexample to the FourColor Theorem. Let P be some easily des
ribable graph theoreti
 propertythat a minimal 
ounterexample to the Four Color Theorem has. Then, theyexhibited a set D of 633 "
on�gurations", that 
onsists of small graphs withsome additional information, satisfying the following:(F1) For every planar graph G with property P , some 
on�guration D ∈ Dappears in G.(F2) If a 
on�guration D ∈ D appears in G, then G is not a minimal 
oun-terexample to Four Color Theorem.By verifying above two statements using 
omputers, we 
an 
on
lude thatno minimal 
ounterexample exists, and hen
e Four Color Theorem is true.We now review the propositions (C1) and (C2). Suppose that a 
ir
uit Cis a minimal 
ounterexample to a lower bound, i.e., C is an optimal 
ir
uitthat 
omputes f and the size of it is less than αn. Re
all that a 
ir
uit isde�ned as a graph in whi
h nodes represent gates and edges represent wires.We 
an put some graph theoreti
 properties for a 
ir
uit C by its optimality,whi
h we 
onsider as the property P in (F1). Then (C2) says that if C
ontains D ∈ D then, C is not a minimal 
ounterexample (sin
e if C is a
ounterexample, then a smaller 
ir
uit C|σ is also).It would be interesting to give a (minimal) set of 
ir
uit patterns thatyield a lower bound of 5n or even higher. We have in fa
t tried to pursuitthis approa
h for getting a higher lower bound, but failed. However, duringthe experiments, the author and Tarui [4℄ have su

eeded(?) to �nd thereason why we have failed.In fa
t, there exists a k-mixed Boolean fun
tion with k = n − o(n) that
an be 
omputed by a U2-
ir
uit of size 5n + o(n). The 5n lower bounds forthis 
lass of fun
tions have already been tight.Below we sket
h the 
onstru
tion of the fun
tion, whi
h is a modi�
ationof a fun
tion introdu
ed by Savi
ký and �ák [48℄.Let p be a prime su
h that n ≤ p < 2n. De�ne wn : {0, 1, . . .} →
{1, . . . , n} so that wn(s) is the residue of s modulo p, if this residue liesin {1, . . . , n}, and is 1 otherwise. Put b = ⌈ n

⌈log n2⌉
⌉. We split the inter-val {1, . . . , n} into b blo
ks D1, . . . , Db of equal size. For every n ∈ N,

fn(x1, . . . , xn) outputs one of its input xz where an index is given by
z = wn

(

b
∑

i=1

(

i ·
⊕

j∈Di

xj

))

.



Theorem 2. [4℄ The fun
tion fn de�ned above is k-mixed with k = n −
ω(

√
n log2 n) and 
an be 
omputed by a U2 
ir
uit of size 5n + o(n).This result means that every lower bounds method that applies to arbi-trary k-mixed fun
tions 
annot show a lower bound higher than 5n. So theproblem we should ta
kle �rst is:Problem 3. Find a property of Boolean fun
tions that 
an be used to derivea lower bound higher than 5n.We still believe that a graph theoreti
 approa
h des
ribed above helps toinspire su
h a property.4 Polynomial Representation of Boolean Fun
-tionsIn this se
tion, we 
onsider two problems both are on the expressive powerof real polynomials for representing Boolean fun
tions. This is one of themost a
tive subje
ts in the resear
h of 
omputational 
omplexity. See e.g.,[50, 51℄ for a re
ent progress on this topi
.4.1 Degree of Full-Sensitive Fun
tionsThere have been developed many 
omplexity measures for Boolean fun
-tions, and investigated the relation among them. See e.g., a good surveyby Buhrman and de Wolf [13℄. In this se
tion, we 
onsider the relation-ship between two major measures; the sensitivity and the degree of Booleanfun
tions.Let f be an n-variable Boolean fun
tion. The sensitivity of f on x is thenumber of bit positions i su
h that f(x) 6= f(xi), where xi denotes x withits i-th bit �ipped. The sensitivity of f is s(f) = maxx sx(f).An n-variable polynomial p : R

n → R represents f is p(x) = f(x) forevery x ∈ {0, 1}n. Note that ea
h Boolean fun
tion 
an be represented by aunique multivariate polynomial (see e.g., Lemma 1 in [13℄). The degree of fis the degree of this multivariate polynomial that represents f .De�nition 3. An n-variable Boolean fun
tion f is fully sensitive if the sen-sitivity of f is n.We 
onsider the following simple question.Problem 4. What is the minimum degree of an n-variable Boolean fun
tionthat is fully sensitive?



The 
urrent best lower bound is√n/2 and the upper bound isO(nlog6 3) =
O(n0.613). One of the importan
e of the problem of �nding a fully sensitiveand low degree fun
tion is that it gives the largest known gap between thede
ision tree 
omplexity and the "log-rank" of the 
ommuni
ation matrix(see e.g., [29℄ and [39℄).The lower bound is proved by Nisan and Szegedy [38℄. Note that if weallow some approximation, this lower bound is asymptoti
ally tight. There isa polynomial p of degree O(

√
n) su
h that |p(x1, . . . , xn)−OR(x1, . . . , xn)| ≤

1/3 for every x, where OR denotes the OR fun
tion that is apparently fullysensitive at the origin x = 00 · · ·0 (see [38, Example 3.11℄ for the 
onstru
tionusing Chebyshev polynomials). Note also that the degree of the OR fun
tionis exa
tly n.Nisan and Szegedy [38℄ have also gave the 
onstru
tion of a fully sensitivefun
tion whose degree is nlog3 2 ∼ n0.631. Let E2 denote the Boolean fun
tionon three variables given by
E2(x1, x2, x3) = x1 + x2 + x3 − x1x2 − x1x3 − x2x3.It outputs 1 i� one or two of its inputs are 1. De�ne E

(k)
2 as the fun
tionon n = 3k variables obtained by building a 
omplete ternary tree of depth k,where the 3k leaves are the variables and ea
h node is the E2-fun
tion of itsthree 
hildren. Then E

(k)
2 is represented by E2(E

(k−1)
2 , E

(k−1)
2 , E

(k−1)
2 ), andso by a polynomial of degree 2k = nlog3 2. It is easy to 
he
k that E(k) is fullysensitive at the origin.It is noti
eable that, in the above 
onstru
tion, we 
an use any "base"fun
tion if it is fully sensitive at the origin. If we use an n-variable fun
tionof degree k, then we 
an get a fully sensitive N-variable fun
tion of degree

N logn k.Along to this line, Kushilevits has improved the exponent to log6 3 =
0.613..., whi
h is the 
urrent best, by exhibiting su
h a fun
tion on 6 variablesof degree 3 (see [39, footnote 1 on p.560℄).Let S(6) be a family of 3-sets on {1, 2, . . . , 6} de�ned as

S(6) = {(1, 2, 3), (1, 2, 4), (3, 4, 5), (3, 4, 6), (1, 5, 6),

(2, 5, 6), (1, 3, 5), (1, 4, 6), (2, 3, 6), (2, 4, 5)}.Let F3 be a polynomial on 6 variables de�ned as
F3(x1, . . . , x6) =

∑

i:1≤i≤6

xi −
∑

(i,j):1≤i<j≤6

xixj +
∑

(i,j,k)∈S(6)

xixjxk.Interestingly, S(6) is also appeared in a major open question in extremalgraph theory.



Given an r-graph F on a vertex set V , i.e., a hypergraph whose edge set
onsists of r-sets of V , the Turán number ex(n,F) is the maximum number ofedges in an n-vertex r-graph not 
ontaining a 
opy of F . The Turán densityof F is de�ned as
π(F) = lim

n→∞

ex(n,F)
(

n
r

) .Determining π(F) for a given F is a notoriously hard problem (see e.g.,[36, 44℄ and the referen
es therein). One of the most well-investigated 
asesis π(K−
4 ), where K−

4 = {abc, abd, acd} is the 
omplete 3-graph on 4 verti
eswith one edge removed. It is known that π(K−
4 ) ≥ 2/7, and this lower boundis strongly believed to be tight.Obtaining an upper bound on the density is very di�
ult. Re
ently,Razborov [43, 44℄ developed an intriguing te
hnique 
alled "Flag Algebra"that 
an be used to atta
k this problem. Very roughly speaking, in thisframework, the problem of upper bounding the Turán density is redu
edto the feasibility of some well-designed semide�nite programming problems.Designing a good problem is typi
ally relying on a 
omputer 
al
ulation. Thisseems to be another domain that 
omputers 
an help in obtaining theoreti
alresults. In [44℄, it is des
ribed that the 
urrent best upper bound π(K−

4 ) ≤
0.2978 
an be obtained by this method.The lower bound π(K−

4 ) ≥ 2/7 follows from the 
onstru
tion due to Frankland Füredi [16℄ that "blow-ups" the system S(6) (see [16℄ for the detail). This
onstru
tion gives a sequen
e of K−
4 -free 3-graphs with asymptoti
 density

2/7. In fa
t, the problem to �nd an extremal K−
4 -free graph is formulated as a0-1 integer programming problem on the variable set {xS | S ⊆ V and |S| =

3}: Maximize ∑

S xSSubje
t to ∑

S⊆T xS ≤ 2 (∀T ⊆ V with |T | = 4),It is easy to 
he
k that S(6) is the unique solution of this problem for
n = 6. Markström and Talbot [36℄ 
ondu
ted a systemati
 sear
h usinga 
omputer and provided all extremal K−

4 -free 3-graphs on n verti
es for
n ≤ 19. Quite interestingly, for every 11 ≤ n ≤ 19, the unique extremalgraph is this blow-up 
onstru
tion. Motivating by this, they 
onje
turedthat this is true for every n ≥ 11, i.e., the re
ursive use of a small gadgetwould always give an optimal 
onstru
tion.Similar to this problem, our problem 
an also be written as an integerprogramming problem. Note that every 
oe�
ient of a polynomial that rep-resents a Boolean fun
tion must be an integer. The variable set is {xS |



S ⊆ {1, . . . , n} and |S| ≤ k}, and the existen
e of a fully sensitive degree
k fun
tion on n variables is given by the feasibility of the following system(without obje
tive fun
tion):Subje
t to 0 ≤

∑

S⊆T xS ≤ 1, (∀T ⊆ V ),
xS = 1, (∀S with |S| = 1),
xφ = 0.

(7)It is natural to expe
t that a good formula 
an be obtained by solving thisproblem by IP solvers. A simple examination 
an verify that F3 is the uniquepolynomial (up to a permutation and negation of variables) of degree 3 thatrepresents a fully sensitive Boolean fun
tion on 6 variables. In addition, thereare no su
h polynomials of degree 3 on 7 variables.We start with the 
ase of degree 4. We already have su
h a 
onstru
tionfor n = 9, whi
h is E
(2)
2 . Again, this 
onstru
tion is optimal. We below givea (fully theoreti
al) proof verifying this sin
e it says a bit more than whatthe well-known symmetrization te
hnique (Fa
t 5) introdu
ed by Minsky andPapert [37℄ 
an say. In the sequel, we denote the number of ones in a binaryve
tor x by |x|.Fa
t 5. Let f be a Boolean fun
tion on n variables, and p be a polynomialthat represents f . Then there exists a univariate polynomial p̃ su
h that (i)for every k ∈ {0, 1, . . . , n},

p̃(k) = a0 + a1

(

k

1

)

+ a2

(

k

2

)

+ · · · + an

(

k

n

)

, (8)where ai = αi/
(

n
i

) and αi is the sum of the 
oe�
ients of all degree i mono-mials in p, (ii) p̃(k) is equal to the probability that f(x) outputs 1 when x is
hosen uniformly from all input ve
tors with Hamming weight k.Proof. Consider a real valued polynomial
psym(x1, . . . , xn) =

∑

π p(xπ(1), . . . , xπ(n))

n!
,where the summation is over all permutations π on {1, . . . , n}. Sin
e psumonly depends on the number of ones in inputs, there exist a unique univariatepolynomial p̃ su
h that

p̃(x1 + · · ·+ xn) = psym(x1, . . . , xn).It is easy to 
he
k that p̃ satis�es the 
onditions in the fa
t.



Theorem 3. There are no Boolean fun
tions f on 10 variables su
h that fis fully sensitive and the degree of f is at most 4.Proof. Suppose for the 
ontrary that a multilinear polynomial p of degree 4on X = {x1, . . . , x10} represents a f su
h that f is fully sensitive. W.l.o.g.,this happens at the origin. This immediately implies that (i) every monomialof degree 1 in p has the 
oe�
ient 1, and (ii) every monomial of degree 2 hasthe 
oe�
ient −1 or −2. By applying the symmetrization (Eq. (8)), we have
p̃(k) = k + a2

(

k

2

)

+ a3

(

k

3

)

+ a4

(

k

4

)

.for some a2, a3 and a4. By (ii) of Fa
t 5, 0 ≤ p̃(k) ≤ 1 for every k = 0, . . . , 10.It is easy to 
he
k that this linear system has a unique feasible solution;
a2 = −1, a3 = 7/12 and a4 = 1/6. This gives p̃(2) = 1, p̃(5) = 0 and
p̃(8) = 1 implying that p(x) = 1 for every x with |x| = 2 or 8, and p(x) = 0for every x with |x| = 5.Now we 
onsider a multilinear polynomial p′ on {x1, . . . , x8} obtainedfrom p by �xing x9 = x10 = 0. We have that p′(x) = 0 for every x with
|x| = 0 or 5, and p′(x) = 1 for every x with |x| = 1, 2 or 8 be
ause p isso. Sin
e we have 5 �xed points for a degree 4 polynomial p̃′, it is uniquelydetermined to

p̃′(k) = k −
(

k

2

)

+
7

12

(

k

3

)

− 1

6

(

k

4

)

. (9)Sin
e the 
oe�
ient of every degree 3 monomial of p′ is 0 or 1, Fa
t 5 (i)implies that the 
oe�
ient 7/12 of the term (k
3

) in Eq.(9) must be a multipleof 1/
(

10
3

)

= 1/56, a 
ontradi
tion.We now pro
eed to the 
ase of degree 5. Sin
e the minimum value of nthat satis�es logn 5 < log6 3 is 14, we seek a fun
tion on 14 variables. Wehave tried to solve IP (7) for (n, k) = (14, 5) by the IP solver in GLPKpa
kage [35℄, but it never 
ame ba
k. So far, we 
ould only obtain a partialresult like the following:De�nition 4. We say that a multilinear polynomial p is bounded if the
oe�
ient of a monomial t in p is 0 or 1 whenever the degree of t is odd, andis 0 or −1 whenever the degree is even.Note that any polynomial obtained by a re
ursive use of E2 or F3 arebounded.Fa
t 6. There are no Boolean fun
tions f on 14 variables su
h that (i) fis fully sensitive at the origin, and (ii) f 
an be represented by a boundedpolynomial of degree 5.



The proof is by 
he
king the infeasiblity of IP (7) with additional 
on-straints that xS ∈ {0, 1} when |S| is odd and xS ∈ {−1, 0} when |S| is even.We also use the result that the maximum number of edges in a K−
4 - free

3-graph on 14 verti
es is 126 that were re
ently shown by Markström andTalbot [36℄ using a 
omputer veri�
ation to redu
e the sear
h spa
e.Through the experiments, we now feel that the following problem, whi
his easier than Problem 4, is already very hard.Problem 5. Is there a fully sensitive fun
tion whose degree is smaller thanthe degree of fun
tion obtained by the re
ursion of F3?4.2 Average Density of Sign-Representing PolynomialsThe �nal topi
 in this arti
le is on the "density" of sign-representing polyno-mials of Boolean fun
tions. Re
ently, we found a new method for obtainingan improved bound on the average density of Boolean fun
tions by 
omputer
al
ulations [1℄.In most of this se
tion, we use {1,−1} to represent Boolean values. Thefalse or 0 is represented by 1, and the true or 1 is represented by −1. Let f :
{1,−1}n → {1,−1} be a Boolean fun
tion on n variables and let p : R

n → Rbe a real polynomial. Re
all that p sign-represents f if sgn(p(x)) = f(x) forall x ∈ {1,−1}n (i.e., sgn(p(x)) > 0 if f(x) = 1 and sgn(p(x)) < 0 if f(x) =
−1). The expressive power of su
h a representation has been extensivelyinvestigated espe
ially in 
omplexity theory and in learning theory (see e.g.,[37, 46, 40, 50, 51℄ and the referen
es therein). The PTF density of a givenBoolean fun
tion f is the minimum number of monomials with non-zero
oe�
ient in a polynomial that sign-represents f . Note that the PTF densityis depending on the 
hoi
e of the domain of fun
tions. In this se
tion, weex
lusively 
onsider the 
ase {1,−1}n.It is 
lassi
ally known that every Boolean fun
tion on n variables 
an besign-represented by a polynomial with 2n monomials. However, in general,less monomials are enough. For example, it is easy exer
ise to show thatevery two-variable Boolean fun
tion 
an be sign-represented by a polynomialwith at most three monomials, not four.In spite of a long history of investigations, there still is a large gap betweenthe upper and lower bounds on the worst/average PTF density of Booleanfun
tions. For the lower bounds, Saks [46, Theorem 2.27℄ noted that theresult of Cover [14℄ implies that almost all Boolean fun
tions on n variableshave PTF density at least (0.11)2n. To this date, this is the best knownlower bound on the PTF density even for the worst 
ase.Re
ently, Oztop [41℄ (see also [42℄) gave an elegant proof of the result



Lower Bound Upper BoundAll Fun
tions (0.11)2n (0.75)2nAlmost All Fun
tions (0.11)2n (0.617)2nTable 1: The known bounds on the PTF density of Boolean fun
tions on
{1,−1}n. The right bottom is shown here.that the PTF density of every n-variable fun
tion is at most (0.75)2n. Thisimproves the previously known bound of (1 − 1

O(n)
)2n by O'Donnell andServedio [40℄ and is the �rst result saying that a 
onstant ratio, namely, 3/4,of all monomials are always enough to represent a Boolean fun
tion.In this se
tion, we brie�y sket
h the Oztop's method and see that a gener-alization of this method 
an yield a better bound if we 
onsider the average
ase. Intuitively, we show that the problem of upper bounding the aver-age density of n-variable Boolean fun
tions 
an be redu
ed to a problem of
omputing (some modi�ed version of) average density of k-variable Booleanfun
tions for small k. Interestingly, an upper bound is improved just byin
reasing the 
omputational e�ort. The best bound we have obtained sofar is (0.617)2n and it is quite 
on
eivable that this bound will further beimproved. The known bounds on the PTF density of Boolean fun
tions aresummarized in Table 1.4.2.1 Basi
sLet p be a real valued polynomial that sign-represents a Boolean fun
tion

f : {1,−1}n → {1,−1}. Sin
e x2 = 1 for x ∈ {1,−1}, we 
an assumewithout loss of generality that p is a linear 
ombination of all 2n multilinearmonomials over x1, . . . , xn. The support of p is a set of monomials withnon-zero 
oe�
ient in p and the density of p is the size of the support of p.For a Boolean fun
tion f , the PTF density of f is the smallest density of apolynomial that sign-represents f .It is very useful to writing this in ve
tor notations. We follow the notationby Oztop [41, 42℄.For n ≥ 1, let D
n be a Hadamard matrix of order 2n de�ned as

D
1 =

(

1 1
1 −1

)

, D
n =

(

D
n−1

D
n−1

D
n−1 −D

n−1

)

(for n ≥ 2).The well known identities D
n
D

n = 2n
I and (Dn)−1 = 2−n

D
n are veryuseful. Ea
h 
olumn of D

n is indexed by a monomial in Mn in the orderingof 1, x1, x2, x2x1, x3, x3x1, x3x2, x3x2x1, . . . , xnxn−1 . . . x1. For a polynomial



p =
∑2n

i=1 aimi where mi =
∏

j∈Si
xj with Si ⊆ {1, . . . , n}, the 
olumn ve
tor

a = (a1, . . . , a2n)T is 
alled the 
oe�
ient ve
tor of p where we use the sameordering for monomials as above.Then the 
olumn ve
tor D
n
a represents the values of p(x) where the as-signments to (xn, xn−1, . . . , x1) are ordered as 00 . . . 00, 00 · · ·01, 00 · · ·10, 00 · · ·11,

. . . , 11 · · ·11 (where 0's represent 1 and 1's represent −1). For a Booleanfun
tion f on n variables, let f denote the 
olumn ve
tor of length 2n whoseelements are the values of f(x) for all x. We 
all f as the ve
tor representationof f .In this notation, p sign-represents f i� YD
n
a > 0, where Y = diag(f). Ifthis is the 
ase, we are allowed to say that a sign-represents f . The densityof p is the number of non-zero elements of a.Below we brie�y sket
h the proof of the (0.75)2n upper bound on thePTF density of every n-variable Boolean fun
tion by Oztop [41, 42℄.The following simple fa
t is extremely useful.Fa
t 7. ([42, Theorem 1℄) Let f be the ve
tor representation of a Booleanfun
tion on n variables. The set of solutions of the inequality diag(f)Dn

a > 0is all positive linear 
ombinations of the 
olumns of D
ndiag(f).Proof. diag(f)Dn

a > 0 i� ∃k > 0[diag(f)Dn
a = k] i� ∃k > 0[a = 1

2n D
ndiag(f)k].Theorem 4. [41℄ For any Boolean fun
tion on n variables, there exists asign-representing polynomial with at most 2n − 2n/4 monomials.Proof. (sket
h) For an n-variable Boolean fun
tion f , let a denote the 
oef-�
ient ve
tor of a polynomial that sign-represents f . Let f denote the ve
torrepresentation of f . We partition a and f into a0, a1 and f0, f1 of equallength, respe
tively. We 
an write asdiag( f0

f1

)(

D
n−1

D
n−1

D
n−1 −D

n−1

)(

a0

a1

)

> 0.This is equivalent to diag(f0)Dn−1(a0 + a1) > 0,diag(f1)Dn−1(a0 − a1) > 0. (10)By Fa
t 7, this is equivalent to
(a0 + a1)

T = 2k0Y0,

(a0 − a1)
T = 2k1Y1. (11)



for some row ve
tors k0 > 0 and k1 > 0, where Yi (i = 0, 1) denotes
2n−1 × 2n−1 matrix diag(fi)Dn−1.Let Z0 (resp, Z1) be a matrix 
onsisting of all rows of Y0 indexed by
x ∈ {0, 1}n−1 su
h that f0(x) = f1(x) (f0(x) 6= f1(x), resp). Then Eq. (11)
an be written as

(a0 + a1)
T = 2k0,0Z0 + 2k0,1Z1,

(a0 − a1)
T = 2k1,0Z0 − 2k1,1Z1. (12)where ki,j > 0 (i, j = 0, 1) is a suitable partition of ki (i = 0, 1). By solvingthis for a0 and a1, we have

a
T
0 = (k0,0 + k1,0)Z0 + (k0,1 − k1,1)Z1,

a
T
1 = (k0,0 − k1,0)Z0 + (k0,1 + k1,1)Z1.Let z0 and z1 denote the number of rows in Z0 and Z1, respe
tively. Notethat z0 + z1 = 2n−1. If z1 ≥ 2n−2, then for any k0,0 and k1,0, we 
an zero

z1 
omponents of a0 by an appropriate setting of k0,1 and k1,1 sin
e Z1 hasfull rank (this is be
ause every rows in D
n−1 are linearly independent). If

z1 < 2n−2, whi
h implies z0 > 2n−2, then for any k0,1 and k1,1, we 
an zero
z0 
omponents of a1 by an appropriate setting of k0,0 and k1,0. This meansthat a polynomial given by 
oe�
ient a = (a0, a1) sign-represents f and hasat most 2n − 2n/4 non-zero elements.As we see, this proof is based on a de
omposition of f into two sub-fun
tions f |xn=1 and f |xn=−1. It is quite natural to ask what happens if wede
ompose f by �xing two or more variables. We below see that this givesan improved bound for the average 
ase.4.2.2 Finer De
ompositions yield Better BoundsLet's see what happens if we 
onsider two-variable de
ompositions in theproof of Theorem 4 instead of one. We partition f into four parts of equallength f00, f01, f10 and f11. Note that fi,j is the ve
tor representation ofthe fun
tion f |xn=i,xn−1=j (here we 
onsider the input is {0, 1} instead of
{+1,−1}), whi
h we will denote fi,j. Similarly the 
oe�
ient ve
tor a ispartitioned into four ve
tors of equal length a00, a01, a10 and a11. In pla
eof Eq. (12), we should introdu
e 23 submatri
es Zp for p ∈ {0, 1}3 these arede�ned a

ording to the values of (f00(x), f01(x), f10(x), f11(x)). Then by asimilar argument to the proof of Theorem 4, we 
an make zero using thefreedom of k's. Note that in this 
ase we 
an use another freedom to enlargethe number of zeros in a. We 
an 
onsider any ordering of the partitions of
a, e.g., a10 → a11 → a01 → a00.



By taking all of them into a

ount, the number of zeros we 
an guar-antee by this pro
edure is formulated as follows: Let Mk denote the all 2kmonomials on k variables and π be a mapping from {1, . . . , 2k} to Mk. Themapping π represents the ordering of the monomials {π(1), π(2), . . . , π(2k)}.For a Boolean fun
tion f and an ordering of monomials π, the freedomof f with respe
t to π, denoted by free(f, π) is de�ned as the maximum
t su
h that f 
an be sing-represented by a polynomial with monomials
Mk − {π(1), π(2), . . . , π(t)}. For a positive integer k and an ordering π of
Mk, let d(k, π) denote the average of free(f, π)/2k over all k-variable Booleanfun
tions f with f(1, 1, . . . , 1) = 1 whi
h we 
all the average freedom withrespe
t to π. Note that the last 
ondition (f(1, 1, . . . , 1) = 1) 
an be removedwithout 
hanging the value of d(k, π) by symmetry.The generalization of Theorem 4 
an be stated as follows (see [1℄ for theproof).Theorem 5. [1℄ Let ǫ > 0 an arbitrary 
onstant. Let k ≥ 1 be an integerand π be an ordering of Mk. Then, there is a 
onstant c > 0 (depending on
ǫ and k) su
h that all but a 2−c2n fra
tion of n-variable Boolean fun
tionshave PTF density at most (1 − d(k, π) + ǫ)2n.It is a bit tedious but easy to verify (by hand) that d(2, π) = 5/16 forevery π ofM2; this gives (0.688)2n upper bounds on the average PTF densityof n-variable fun
tions. The 
omputation of d(k, π) for k ≥ 3 is done bya 
omputer (it takes double exponential time in k). Note that we 
an seewhether a given k-variable fun
tion f has a sign-representing polynomial withsupport S by 
he
king the feasibility of the linear system diag(f)Dk

a > 0where ai = 0 for every i 6∈ S, whi
h is an easy task for any linear programmingsolver when k is small.The 
omputation of d(3, π) for every possible π is quite feasible by astandard PC. By using the GLPK pa
kage [35℄, we found that
d(3, {1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3}) = 316/(27 × 8) = 0.3085 · · · ,

d(3, {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}) = 360/(27 × 8) = 0.3515 · · · ,and that all orderings of M3 are 
ategorized into one of the above two. Thisgives the upper bound on the average PTF density of (0.649)2n.The 
omputation of d(4, π) for all π seems out of rea
h. However, theresult for k = 3 inspires the ordering
π4 = {1, x1, . . . , x4, x1x2, . . . , x3x4, x1x2x3, . . . , x2x3x4, x1x2x3x4},would be a good 
andidate. We 
ompute d(4, π4) (again by a 
omputer) to�nd

d(4, π4) = 195804/(215 × 16) = 0.3734 · · · , (13)



whi
h gives the upper bound of (0.627)2n. However, this is not the best.We then 
omputed the average freedom of 2000 randomly 
hosen order-ings of M4, whi
h took about two days on a standard PC. The best orderingwe have found is
π′

4 = {1, x1x2x3, x1x4, x1x3x4, x1x2x3x4, x3x4, x2x4, x3, x1x3,

x1, x1x2, x2x3x4, x2x3, x2, x4},whi
h has the average freedom of
d(4, π′

4) = 200964/(215 × 16) = 0.3833 · · · . (14)Note that 8 (out of 2000) orderings have the same value. This immediatelygives the following upper bound, whi
h is the best we have obtained so far.Corollary 1. [1℄ Almost all Boolean fun
tions on n variables have PTFdensity at most (0.617)2n.We provide veri�able data for Eqs. (13) and (14) on the web page [1℄.These are the lists of polynomial representations of all 4-variable fun
tionswith maximum freedom with respe
t to the designated ordering. The 
or-re
tness of Eqs. (13) and (14) 
an be veri�ed by hand in a several weeks, orby a 
omputer in a few se
onds. At the time of writing this arti
le, we don'tknow whether π′
4 is the best among all orderings of M4 or not.Apparently, our method would yield a better upper bound if we have more
omputational resour
e (or more sophisti
ated algorithm for 
omputing theaverage freedom). A random sampling experiment suggests that 1− d(5, π5)is around 0.598 where π5 is an obvious extension of π4. A natural questionis:Problem 6. What is the best a
hievable bound obtained by this method?5 Con
luding RemarksIn this arti
le, we review several re
ent attempts to use 
omputers in variousways to obtain 
on
rete results for the problems in 
omputational 
omplexity.Some of them are (at least partially) su

eeded and some of them are not.We strongly hope that these approa
hes inspire a new idea on how to atta
kthe di�
ult problems, espe
ially the lower bound problems, in 
omputational
omplexity.The last thing we mention is that the feasibility of 
he
king the 
omputerproofs. If a proof is "NP-type", i.e., a witness of an upper or lower bound isgenerated (like the one in Se
tion 4.2), then it seems no problems. However, if



a proof is "
o-NP-type", i.e., the non-existen
e is veri�ed by 
he
king a hugenumber of 
ases (like the one in Se
tion 3.3), this may be a problemati
. Onepossible approa
h is to translate a 
omputer proof into a formal proof. A Coqproof of the Four Color Theorem by Gonthier [19℄ or an ongoing "Flyspe
k"proje
t [20℄ for the Kepler Conje
ture is a ni
e example. However this wouldneed a huge amount of work in general, and we do not have a good solutionto this meta-problem.Referen
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