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1 Introduction

Over the past few decades, non-monotonic reasoning has developed to be
one of the most important topics in computational logic and arti�cial intel-
ligence. The non-monotonicity here refers to the fact that, while in usual
(monotonic) reasoning adding more axioms leads to potentially more possi-
ble conclusions, in non-monotonic reasoning adding new facts to a knowledge
base may prevent previously valid conclusions. Di�erent ways to introduce
non-monotonic aspects to classical logic have been considered:

(1) The derivation process may be extended using non-monotonic inference
rules.

(2) The logical language may be extended with non-monotonic belief op-
erators.

(3) The de�nition of semantics may be changed.

In this survey we consider a logical formalism from each of the above
possibilities, namely

� Reiter's default logic (as a candidate for possibility (1) above), which
introduces default inference rules of the form α:β

γ
, where α:β

γ
intuitively

expresses that γ can be derived from α as long as β is consistent with
our knowledge;

� Moore's autoepistemic logic (a candidate for (2)), that extends classical
logic with a modal operator L to express the beliefs of an ideal rational
agent, in the sense that Lϕ expresses that ϕ is provable;

∗Leibniz Universität Hannover, Institut für Theoretische Informatik,
{thomas,vollmer}@thi.uni-hannover.de. Work partially supported by DFG grant
VO 630/6-2.



� McCarthy's circumscription (as candidate for (3)), which restricts the
semantics to the minimal models of a formula or set of formulae.

Additionally we survey abduction, where one is not interested in inferences
from a given knowledge base but in computing possible explanations for an
observation with respect to a given knowledge base.

Complexity results for di�erent reasoning tasks for propositional variants
of these logics have been studied already in the nineties. It was shown that
in each case, the complexity is higher than for usual propositional logic (typ-
ically complete for some level of the polynomial-time hierarchy). In recent
years, however, a renewed interest in complexity issues can be observed. One
current focal approach is to consider parameterized problems and identify
reasonable parameters that allow for FPT algorithms. In another approach,
the emphasis lies on identifying fragments, i.e., restriction of the logical lan-
guage, that allow more e�cient algorithms for the most important reasoning
tasks.

In this survey we focus on this second aspect. We describe complexity
results for fragments of logical languages obtained by either restricting the
allowed set of operators (e.g., forbidding negations one might consider only
monotone formulae) or by considering only formulae in conjunctive normal
form but with generalized clause types (which are also called Boolean con-
straint satisfaction problems).

The algorithmic problems we consider are suitable variants of satis�ability
and implication in each of the logics, but also certain counting problems,
where one is not only interested in the existence of certain objects (e.g.,
models of a formula) but asks for their number.

2 Post's Lattice

In 1941, Post showed that the sets of Boolean functions closed under projec-
tions and arbitrary composition, called clones, form a lattice containing only
countably in�nite such closed sets, and he identi�ed a �nite base for each of
them [55]. The closure operation, denoted by [·], is not arbitrarily chosen but
rather captures an intuitive understanding of expressiveness: Given a set B
of Boolean functions, [B] denotes the set of Boolean functions expressible us-
ing functions from B, or equivalently: computable with Boolean circuits with
gates performing functions from B. Moreover, it is well behaved with respect
to computational complexity; e.g., if Π(B) is a decision problem de�ned over
Boolean circuits with gates corresponding to Boolean functions from B, then
Π(B) ≤log

m Π(B′) for all �nite sets B′ of Boolean functions such that all func-
tions from B can be expressed in B′, i.e., B ⊆ [B′]. Similar statements hold



for decision problems de�ned over Boolean formulae (see [65]). Post's lattice
thus holds the key to study and classify the computational complexity of
problems parameterized by �nite sets of available Boolean functions. In this
section, we will de�ne the required terms and notation to introduce Post's
lattice.

Let L be the set of propositional formulae, i.e., the set of formulae de�ned
via

ϕ ::= a | f(ϕ, . . . , ϕ),

where a is a proposition and f is an n-ary Boolean function (we do not
distinguish between connectives and their associated functions). For a �nite
set B set of Boolean functions, a B-formula is a Boolean formula using
functions from B only. The set of all B-formulae is denoted by L(B).

A clone is a set of Boolean functions that is closed under superposition,
i.e., B contains all projections (that is, the functions Inm(x1, . . . , xn) = xm for
n ∈ N and 1 ≤ m ≤ n) and is closed under arbitrary composition [54]. For
a set B of Boolean functions, we denote by [B] the smallest clone containing
B and call B a base for [B]. A B-formula g is called B-representation of f
if f ≡ g.

Post showed that the set of all clones ordered by inclusion together with
meet A∧B = [A∩B] and join A∨B = [A∪B] forms the lattice depicted in
Figure 1. To give the list of all the clones, we need the following properties.
Say that a set A ⊆ {0, 1}n is c-separating, c ∈ {0, 1}, if there exists an
i ∈ {1, . . . , n} such that (a1, . . . , an) ∈ A implies ai = c. Let f be an n-
ary Boolean function and de�ne the dual of f to be the Boolean function
dual(f)(x1, . . . , xn) := ¬f(¬x1, . . . ,¬xn). We say that:

� f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1};

� f is c-separating if f−1(c) is c-separating, c ∈ {0, 1};

� f is c-separating of degree m if all A ⊆ f−1(c) with |A| = m are c-
separating;

� f ismonotone if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn);

� f is self-dual if f ≡ dual(f); here, dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn);

� f is a�ne if f(x1, . . . , xn) ≡ x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1};

� f is essentially unary if f depends on at most one variable.

The above properties canonically extend to sets of Boolean functions. The
list of all clones is given in Table 1, where id denotes the identity I11 and Tn+1

n is
the (n+1)-ary threshold function with threshold n de�ned as Tn+1

n (x0, . . . , xn) :=



Clone De�nition Base

BF All Boolean functions {x ∧ y,¬x}
R0 {f ∈ BF | f is 0-reproducing} {x ∧ y, x⊕ y}
R1 {f ∈ BF | f is 1-reproducing} {x ∨ y, x ↔ y}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotone} {x ∧ y, x ∨ y, 0, 1}
M0 M ∩ R0 {x ∧ y, x ∨ y, 0}
M1 M ∩ R1 {x ∧ y, x ∨ y, 1}
M2 M ∩ R2 {x ∧ y, x ∨ y}
S0 {f ∈ BF | f is 0-separating} {x → y}
Sn
0 {f ∈ BF | f is 0-separating of degree n} {x → y, dual(Tn+1

n )}
S1 {f ∈ BF | f is 1-separating} {x 9 y}
Sn
1 {f ∈ BF | f is 1-separating of degree n} {x 9 y, Tn+1

n }
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ ¬z), dual(Tn+1
n )}

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn
01 Sn

0 ∩M {dual(Tn+1
n ), 1}

S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(Tn+1
n )}

S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ ¬z), Tn+1
n }

S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn
11 Sn

1 ∩M {Tn+1
n , 0}

S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩M {x ∧ (y ∨ z), Tn+1
n }

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f ∈ BF | f is self-dual} {(x ∧ y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)}
D2 D ∩M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
L {f ∈ BF | f is a�ne} {x⊕ y, 1}
L0 L ∩ R0 {x⊕ y}
L1 L ∩ R1 {x ↔ y}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩ D {x⊕ y ⊕ z ⊕ 1}
E {f ∈ BF | f is constant or a conjunction} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
V {f ∈ BF | f is constant or a disjunction} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
N {f ∈ BF | f is essentially unary} {¬x, 0, 1}
N2 N ∩ D {¬x}
I {f ∈ BF | f is constant or a projection} {id, 0, 1}
I0 I ∩ R0 {id, 0}
I1 I ∩ R1 {id, 1}
I2 I ∩ R2 {id}

Table 1: List of all clones with de�nition and bases
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Figure 1: Post's lattice



∨n
i=0(x0 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn), i.e., Tn+1

n (x0, . . . , xn) is 1 if at least n
of its inputs are 1.

The following easy observation, which will be useful in the subsequent sec-
tions, gives a a �rst example of the relationship between function-restricted
sets of Boolean formulae.

Lemma 2.1 Let B be a �nite set of Boolean functions and let L be a set
of (B ∪ {1})-formulae. Then L can be transformed in logspace into a set L′

of B-formulae such that the number of satisfying assignments of L and L′

coincide.

Proof sketch. The idea is to add a fresh proposition t to L and to replace all
occurrences of the constant 1 with t. As a result we obtain that, for problems
Π de�ned over sets of Boolean formulae, Π(B ∪ {1}) ≡log

m Π(B).

3 Default Logic

Default logic is among the best known and most successful formalisms for
non-monotonic reasoning. It was proposed by Raymond Reiter in 1980 [56]
and extends classical logic with default rules, i.e., defeasible inference rules
with an additional justi�cation. These capture the process of deriving conclu-
sions based on inferences of the form �in the absence of contrary information,
assume . . .�. As with few exceptions most of our knowledge about the world
is almost true rather than an absolute truth, Reiter argued that his logic is
an adequate formalization of the human reasoning under the closed world as-
sumption, which allows one to assume the negation of all facts not derivable
from the given knowledge base.

Formally, a default rule is an expression of the form α:β
γ
, where α, β, γ

are formulae; α is called the premise, β is called justi�cation, and γ is called
conclusion. Further, a default theory is a pair (W,D), where W is a set
of formulae and D is a set of default rules. The intended interpretation of
default rules is that γ holds if α can be derived and β is consistent with our
knowledge and beliefs about the world. It is this consistency condition that
introduces the non-monotonicity:

Example 3.1 Consider the default theory (W,D) with W := {x}, D :={
x:y
z

}
. Then we should be able to derive z from (W,D), as x is a fact from

W and y is consistent with the consequences of W ∪ {z}. However, if W
is extended with {¬y} then W is no longer consistent with the justi�cation
of x:y

z
and we have no right to conclude z. The addition of ¬y to W thus

invalidates the consequence z.



As another consequence, the derivable knowledge depends on the set of
applied defaults:

Example 3.2 Consider the default theory (∅, D) with D :=
{

1:x
¬y
, 1:y
¬x

}
. If we

apply the left default, then ¬y is derivable while the right default is blocked,
as its justi�cations is inconsistent with the conclusion ¬y. On the other hand,
if we apply the right default �rst, then ¬x is derived and the left default rule
gets blocked.

Thus, to appropriately represent the knowledge derivable from a default
theory, we introduce the notion of stable extensions.

De�nition 3.3 ([56]) Let (W,D) be a default theory and E be a set of for-

mulae. LetE0 := W and Ei+1 := Th(Ei)∪
{
γ

∣∣∣ α:β
γ
∈ D,α ∈ Ei and ¬β /∈ E

}
.

Then E is a stable extension of (W,D) if and only if E =
⋃

i∈NEi.

Stable extensions can alternatively be characterized as the least �xed
points of an operator ΓW,D: For a given default theory (W,D) and a set E
of formulae, let ΓW,D(E) be the smallest set of formulae such that

1. W ⊆ Γ(E),

2. Γ(E) is deductively closed (i.e., ΓW,D(E) = Th(ΓW,D(E))), and

3. for all α:β
γ
∈ D with α ∈ ΓW,D(E) and ¬β /∈ E, it holds that γ ∈

ΓW,D(E)
(in this case, we also say that the default α:β

γ
is applicable).

Proposition 3.4 ([56]) Let (W,D) be a default theory and a E be a set of
formulae. Then E is a stable extension of (W,D) i� E is a �xed point of
ΓW,D.

We have already observed in Example 3.2 that a default theory may
possess several stable extensions; indeed, a default theory with n default
rules may have any number of di�erent stable extensions between 0 and 2n.
Thus the following questions naturally arise:

(Extension existence) Does a given default theory admit a stable exten-
sion?

(Credulous reasoning) Is a given formula contained in at least one stable
extension of a given default theory?

(Skeptical reasoning) And, �nally, is a given formula contained in all
stable extensions of a given default theory?

The computational complexity of the corresponding decision problems
was �rst explored by Kautz and Selman [38], and Stillman [61], who both



presented results for syntactically restricted fragments of disjunction-free de-
fault logics. In 1992, Gottlob [24] and Stillman [62] then independently
showed that the computational complexity of these questions is presumably
higher than that of the corresponding satis�ability and implication problem
in propositional logic:

Theorem 3.5 ([24, 62]) The extension existence problem and the credulous
reasoning problem for default logic are Σp

2-complete, whereas the skeptical
reasoning problem for default logic is Πp

2-complete.

More recently, Liberatore and Schaerf [41] showed that model checking
(i.e., the task to decide whether a given assignment is a model of any ex-
tension of a given default theory) is Σp

2-complete, too. And Ben-Eliyahu-
Zohary [4] extended the complexity landscape of default logics with results
on disjunction-free fragments dual to those studied by Kautz and Selman,
and Stillman. The study of these fragments was motivated by embeddings
of other formalisms into default logic. However, little was known about the
complexity of not-disjunction-free default logics. In [7], the authors devise
a systematic study of the fragments of default logic obtained by restricting
the set of available Boolean functions. The results provide insight into the
source of the hardness of default reasoning and reveal the trade-o� between
expressivity and computational complexity of fragments of default logic.

To present the results, let B be a �nite set of Boolean functions. Say that

the default theory (W,D) is a B-default theory if W ∪
{
α, β, γ

∣∣∣ α:β
γ

}
⊆ L(B)

and let B-default logic denote default logic restricted to B-default theories.

Theorem 3.6 ([7]) Let B be a �nite set of Boolean functions. Then the
extension existence problem for B-default logic is

1. Σp
2-complete if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2-complete if S11 ⊆ [B] ⊆ M,

3. NP-complete if [B] ∈ {N,N2, L, L0, L3},
4. P-complete if [B] ∈ {V,V0,E,E0},
5. NL-complete if [B] ∈ {I, I0}, and
6. trivial in all other cases (that is, if [B] ⊆ R1),

via logspace many-one reductions.

A key observation to the proof of this theorem is the following lemma.

Lemma 3.7 Let B be a �nite set of Boolean functions. If [B] ⊆ M then
any B-default theory has at most one stable extension; if [B] ⊆ R1 then any
B-default theory has at exactly one stable extension.



Proof. Suppose �rst that [B] ⊆ M. Then each function f ∈ B is either 1-
reproducing or equivalent to 0. Default rules with a justi�cation equivalent
to 0 are not applicable unless W is inconsistent. As in this case L is the
only stable extension of the default theory [56, Corollary 2.3], we w.l.o.g.
suppose that all justi�cations are 1-reproducing, i.e., [B] ⊆ R1. Now observe
that the negation of a 1-reproducing function is not 1-reproducing while
all consequents of 1-reproducing functions are. Indeed, if [B] ⊆ R1 then
any stable extension of a default theory is consistent and satis�ed by the
assignment setting to 1 all propositions, which also satis�es the justi�cation
of each default rule. Thus any monotone default theory may possess at most
one stable extension while any 1-reproducing default theory possesses exactly
one stable extension.

We will sketch the proof of Theorem 3.6.

Proof sketch. For S1 ⊆ [B] or D ⊆ [B], the Σp
2-hardness follows from Theo-

rem 3.5 and Lemma 2.1, as [S1∪{1}] = [D∪{1}] = BF and the upper bound
easily generalizes from {∧,∨,¬} to arbitrary sets of Boolean functions.

The case [B] ⊆ R1 follows directly from Lemma 3.7. It hence remains to
consider those sets B such that [B ∪ {1}] contains the constant 0. These are
all included in either the clone M or the clone L (or both).

For S11 ⊆ [B] ⊆ M, membership in ∆p
2 follows similarly from Lemmas 2.1

and 3.7: the only way for a monotone default theory not to possess a stable
extension is to contain a default rule α:β

γ
such that γ ≡ 0. It thus suf-

�ces to compute the set of applicable defaults using subsequent calls to a
coNP-oracle for B-formula implication and to verify that their conclusions
are satis�ed by the assignment setting to 1 all propositions. It is straight-
forward to implement this as a ∆p

2-algorithm. The ∆p
2-hardness on the other

hand is established using a reduction from the sequentially nested satis�abil-
ity problem, which was �rst identi�ed to be ∆p

2-complete in [25, Theorem 3.4]
(see also [40]).

If one further restricts the set B such that [B] ∈ {V,V0,E,E0} (i.e.,
[B ∪ {1}] does contain the Boolean constants and either conjunctions or dis-
junctions), then formula implication and the the extension existence problem
become tractable [6]. Indeed, the problem becomes P-complete, as can be
shown by a reduction from a variant of the circuit value problem.

Further restricting the set B such that [B] ∈ {I, I0} (i.e., [B ∪ {1}] does
only contain the Boolean constants) leads to default theories with rules whose
premise and conclusion are a single proposition. As a result, the existence of
a stable extension reduces to the complement of the reachability problem in
directed graphs. Similarly, reachability in such graphs can be transformed



into the question whether a stable extension does not have a stable extension.
As this problem is NL-complete and NL is closed under complement, the
extension existence problem for such default theories is NL-complete.

Finally, for [B] ∈ {L, L0, L3,N,N2} (i.e., ¬ ∈ [B ∪ {1}] and [B] is a�ne),
we observe a di�erent situation. There may exist exponentially many di�er-
ent stable extensions; yet, the veri�cation of a candidate is tractable because
implication and satis�ability of B-formulae are [6]. Hence, the extension
existence problem becomes solvable in NP. The NP-hardness, on the other
hand, is obtained by reducing from the satis�ability problem for 3CNF for-
mulae: given a formula ϕ ≡

∧n
i=1 ci with ci ≡ `i1 ∨ `i2 ∨ `i3, we construct the

default theory (∅, D) with

D :=

{
1 : xi

xi

,
1 : ¬xi

¬xi

∣∣∣∣ xi ∈ Vars(ϕ)

}
∪

{
`i1 : `i2
`i3

∣∣∣∣ 1 ≤ i ≤ n

}
,

where, for a literal `, ` denotes the literal of opposite polarity, and for a
formula ϕ, Vars(ϕ) denotes the set of all variables in ϕ. It is easy to verify
the correctness of this reduction. As the above default theory can easily
be written as a B-default theory for all B such that ¬ ∈ [B], the proof is
complete.

Remark 3.8 As default rules require the justi�cation β to be consistent
with a stable extension E (i.e., ¬β /∈ E), another conceivable formalization
of B-default logic would be to require α and γ to be B-formulae and β to be
the negation of a B-formula. For this formalization, the extension existence
problem for B-default logic is Σp

2-complete if S00 ⊆ [B] or S10 ⊆ [B] or
D2 ⊆ [B], and tractable otherwise (with this case splitting into ⊕L-complete
cases and logspace-solvable cases).

Given the upper and lower bounds for the stable extension problem it
is easy to settle the complexity of the credulous and skeptical reasoning
problem. De�ne the credulous (resp. skeptical) reasoning problem for B-
default logic as the problem to decide, given a B-default theory (W,D) and
a B-formula ϕ, whether ϕ is contained in a stable extension (resp. all stable
extensions) of (W,D).

Theorem 3.9 ([7]) Let B be a �nite set of Boolean functions. Then the
credulous (resp. skeptical) reasoning problem for B-default logic is

1. Σp
2-complete (resp. Πp

2-complete) if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2-complete if S11 ⊆ [B] ⊆ M,

3. coNP-complete if S00 ⊆ [B] ⊆ R1 or S10 ⊆ [B] ⊆ R1 or D2 ⊆ [B] ⊆ R1,



4. NP-complete (resp. coNP-complete) if [B] ∈ {N,N2, L, L0, L3},
5. P-complete if V2 ⊆ [B] ⊆ V or E2 ⊆ [B] ⊆ E or [B] ∈ {L1, L2}, and
6. NL-complete in all other cases (that is, if [B] ⊆ I),

via logspace many-one reductions.

Another possibility to study fragments of default logic, aside restricting
the available Boolean functions, is Schaefer's framework [57]. This frame-
work is motivated by constraint satisfaction problem, where a set of con-
ditions represented as logical relations has to be simultaneously satis�ed.
Hence, the set W and the formulae occurring in D are assumed to be a set of
applications of relations from S to the variables in Vars(W )∪Vars(D), where

Vars(D) is a shorthand for Vars
({
α, β, γ

∣∣ α:β
γ
∈ D

})
. That is, W and the

formulae occurring inD are of the form {R1(x11, . . . , x1m1), . . . , Rn(xn1, . . . , xnmn)},
where the Ri's are relations of arity mi from a �xed set S of available
relations over the domain {0, 1} and the variables x11, . . . , xnmn are from
Vars(W )∪Vars(D). Such a set of applications of relations is correspondingly
said to be satis�ed by an assignment σ if (σ(xi1), . . . , σ(ximi

)) ∈ Ri for all
1 ≤ i ≤ n. Call a relation R Schaefer if it is either

� a�ne (coincides with the set of models of an {⊕}-formula),
� bijunctive (coincides with the set of models of a 2CNF formula),

� Horn (coincides with the set of models of a Horn formula), or

� dual Horn (coincides with the set of models of a dual Horn formula).

And say that a set of relations is Schaefer if there is one of the above four
properties that is satis�ed by all relations in S. Call a default theory (W,D)

such that W ∪
{
α, β, γ

∣∣∣ α:β
γ

}
is a set of applications of relations from S a

default theory over relations from S.
We de�ne the extension existence problem for default logic over relations

from S as the problem to decide, given a default theory (W,D) over relations
from S, whether (W,D) has a stable extension. Further, de�ne the credulous
(resp. skeptical) reasoning problem for default logic over relations from S as
the problem to decide, given a default theory (W,D) over relations from S
and a set ϕ of applications of relations from S, whether ϕ is contained in
at least one (resp. any) stable extension of (W,D). In [10], Chapdelaine
et al. study the complexity of these problems and establish the following
trichotomies:

Theorem 3.10 ([10, 58]) Let S be a set of relations. Then the extension
existence problem for default logic over relations from S is



1. Σp
2-complete if S is not Schaefer,

2. NP-complete if S is Schaefer but neither 0-valid or 1-valid,

3. in P in all other cases.

Theorem 3.11 ([10, 58]) Let S be a set of relations. Then the credulous
(resp. skeptical) reasoning problem for default logic over relations from S is

1. Σp
2-complete if S is not Schaefer,

2. NP-complete (resp. coNP-complete) if S is Schaefer but neither 0-valid
nor 1-valid,

3. coNP-complete if S 0-valid or 1-valid but not Schaefer,

4. in P in all other cases.

For detailed proofs of these results, see [58].
We like to remark that also results like these about Boolean constraint

satisfaction problems are proved using Post's lattice. This is because the
classes of Boolean relations above (a�nce, bijunctive, Horn, dual Horn) can
all be de�ned using so called polymorphism, a kind of closure property, of
Boolean relations. These sets of polymorphism are always clones, i.e., they
appear somewhere in the lattice. To state only one example, a relation is
Horn i� the set of its polymorphisms is the class E2. The structure of the
lattice is then used in the proof to make a case distinction on all possible
sets of polymorphisms of S and determine the complexity in each case. For
more details, we refer the reader to [14].

Having settled the complexity of these decision problems, mind that these
results do only speak about the existence of objects, e.g., stable extensions.
But what about the complexity of counting them? We will conclude this
survey of the complexity of default logic with a treatment of the problem to
count the number stable extensions.

Let us introduce the relevant notions and counting complexity classes
�rst. For alphabets Σ and Π, let A ⊆ Σ? × Π? be a binary relation such
that the set A(x) := {y ∈ Π? | (x, y) ∈ A} is �nite for all x ∈ Σ?. We
write #A to denote the following counting problem: Given x ∈ Σ?, compute
|A(x)|. The class of counting problems computable in polynomial time is
denoted by FP. To characterize the complexity of counting problems that
are not known to be in FP, we follow [31] and de�ne an operator #·C on
classes C of decision problems: #A ∈ #·C if (a) there exists a polynomial
p, such that for all x and all y ∈ A(x), |y| ≤ p(|x|) and (b) the problem
to decide, given x and y, whether y ∈ A(x) is in C. Clearly, #·P coincides
with #P, the class of functions counting the number of accepting path of



nondeterministic polynomial-time Turing machines�the natural analogue of
NP in the counting complexity context [68]. Applying #· to the classes of the
polynomial hierarchy, we now obtain a linearly ordered hierarchy of counting
complexity classes [67, 31]: #P ⊆ #·NP ⊆ #·coNP = #·PNP ⊆ #·Σp

2 ⊆
#·Πp

2 = #·PΣp
2 ⊆ · · · .

The counting complexity of default logic has, to the authors' best knowl-
edge, �rst been considered in [66]. There, it was shown that counting the
number of stable extensions is complete for the second level of the count-
ing polynomial hierarchy, #·coNP, whenever [B ∪ {1}] = BF; becomes ∆p

2-
complete for all sets B such that [B ∪ {1}] = M; complete for the �rst
level of the counting hierarchy for all a�ne sets B such that ¬ can be im-
plemented from B ∪ {1}; and becomes e�ciently computable in all other
cases. The counting complexity thus decreases analogously to the complex-
ity of the extension existence problem. However, observe that we blur over
the distinction between decision problems and their characteristic functions:
By Lemma 3.7 any monotone B-default theory has at most one stable ex-
tension. The problem to count the number stable extensions thus coincides
with the characteristic function of the extension existence problem, which
∆p

2-complete.

Theorem 3.12 ([66]) Let B be a �nite set of Boolean functions. Then the
problem to count the number of stable extensions in B-default logic is

1. #·coNP-complete if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2-complete if S11 ⊆ [B] ⊆ M,

3. #P-complete if [B] ∈ {N,N2, L, L0, L3},
4. in FP in all other cases (that is, if [B] ⊆ V or [B] ⊆ E or [B] ⊆ R1)

via parsimonious reductions.

Note that for the classi�cation in Theorem 3.12 the conceptually simple
and well-behaved parsimonious reductions are su�cient (a counting prob-
lem #A parsimoniously reduces to a counting problem #B if there is a
polynomial-time computable function f such that for all inputs x, |A(x)| =
|B(f(x))| [68]), while for related classi�cations in the literature less restrictive
and more complicated reductions had to be used (see, e.g., [18, 28, 3]).

4 Autoepistemic Logic

Autoepistemic logic was introduced by Moore [45] to overcome some of
the peculiarities of the non-monotonic logics devised by McDermott and



Doyle [44] and McDermott [43]. While Moore de�ned autoepistemic logic
without referring to any particular modal system, it turned out that his logic
coincides with the non-monotonic modal logic based on KD45 [59]. There-
fore, autoepistemic logic can be considered a popular representative among
the non-monotonic modal logics. The connection of these logics and partic-
ularly autoepistemic logic to default logic has been extensively studied. The
�rst major approach in this direction was taken by Konolige [37], who showed
that default logic can be embedded into autoepistemic logic using slightly dif-
ferent semantics for the latter. Subsequently, Marek and Truszczynski [47, 48]
showed that, using strengthened notions in autoepistemic logic or weakened
notions in default logic, the two logics coincide in terms of expressivity. Fi-
nally, Gottlob [26] showed that default logic can be embedded into standard
autoepistemic logic, while the converse direction was shown to hold by Jan-
hunen [32].

The intention of Moore was to create a logic modelling the beliefs of an
ideally rational agent, i.e., an agent that believes all things he can deduce
and refutes belief in everything else. To this end, autoepistemic logic extends
propositional logic with the modal operator L stating that its argument �is
believed�. The set of all autoepistemic formulae Lae is de�ned as

ϕ ::= a | f(ϕ, . . . , ϕ) | Lϕ,

where a is a proposition and f is a Boolean function, and the relation |= is
extended to simply treat formulae starting with an L as atomic. Similarly
to default logic, the semantics of autoepistemic logic are de�ned in terms
of �xed points, which in the context of autoepistemic logic are called stable
expansions:

De�nition 4.1 ([45]) Let Σ ⊆ Lae be a set of autoepistemic formulae. A
set ∆ ⊆ Lae is a stable expansion of Σ if it satis�es the equation

∆ = Th(Σ ∪ L(∆) ∪ ¬L(Lae \∆)),

where L(∆) := {Lϕ | ϕ ∈ ∆} and ¬L(Lae \∆) := {¬Lϕ | ϕ 6∈ ∆}.

Example 4.2 Consider the set Σ = {Lx∨y, x∨Ly, L(x∨y) → z} of autoepis-
temic formulae. We claim that Σ has two stable expansions, each of which
containing z. Sticking with our informal interpretation of autoepistemic logic
as the logic of an ideally rational agent's beliefs, observe that we cannot de-
duce x from Σ. Hence, we would assign Lx the value 0 and consequently
be able to derive y from Lx ∨ y. This in turn allows us to conclude z from
L(x∨y) → z, as x∨y is derivable from y. Indeed, the set

⋃
i∈N ∆i of formulae



recursively de�ned via ∆0 := {x} and ∆i := Th(Σ∪L(∆i−1)∪¬L(Lae\∆i−1))
is a stable expansion of Σ that contains z.

On the other hand, we are not able to deduce y from Σ either. Hence,
we could also continue to assign to Ly the value 0 and be therefore able to
derive x. Again, we may conclude z from L(x ∨ y) → z. And just as above,⋃

i∈N ∆′
i with ∆′

0 := {y} and ∆′
i de�ned as ∆i is a stable expansion of Σ that

contains z.

There is an important di�erence to default logic as stable expansions need
not be minimal �xed points:

Example 4.3 Consider Σ′ := {Lp → p}. The set Σ′ has two stable expan-
sions, one stable expansion containing ¬Lp and the other one containing Lp.
As an iterative construction as in Example 4.2 is deemed to fail for the latter,
it may be considered ungrounded in the set of premises Σ.

Clearly, sets of autoepistemic formulae can also posses no or a single stable
expansion. Hence, the expansion existence problem, the credulous reasoning
problem and the skeptical reasoning problem arise just as in default logic.
The �rst treatment of the complexity of these problems has been performed
by Niemelä [49]. In his paper, he gave a �nite characterization of stable
expansions in terms of full sets : Let SFL(Σ) denote the set of L-pre�xed
subformulae of formulae in Σ.

De�nition 4.4 ([49]) Let Σ ⊆ Lae be a set of autoepistemic formulae. A
set Λ ⊆ SFL(Σ) ∪ {¬Lϕ | Lϕ ∈ SFL(Σ)} is Σ-full if for all Lψ ∈ SFL(Σ):

� Σ ∪ Λ |= ψ i� Lψ ∈ Λ.

� Σ ∪ Λ 6|= ψ i� ¬Lψ ∈ Λ.

Proposition 4.5 ([49]) Let Σ ⊆ Lae be a set of autoepistemic formulae. If
Λ is a Σ-full set, then there exists exactly one stable expansion of ∆ such that
Λ ⊆ L(∆)∪¬L(Lae\∆). Vice versa, if ∆ is a stable expansion of Σ, then there
exists exactly one Σ-full set Λ such that such that Λ ⊆ L(∆) ∪ ¬L(Lae \∆).

Using full sets as �nite representations for stable expansions, Niemelä
obtained a Σp

2 upper bound for the expansion existence problem and the
credulous reasoning problem, and a Πp

2 upper bound for the skeptical reason-
ing problem: for the expansion existence problem, simply guess a candidate
for a full set and verify the conditions given in De�nition 4.4 using an oracle
for formula implication. To extend this idea to the credulous and skeptical
reasoning problem, one still needs to de�ne a consequence relation |=L that,
given Σ ⊆ Lae and a Σ-full set Λ implies exactly those formulae contained



in the stable expansion corresponding to Λ. Niemelä shows that |=L can
be de�ned such that the problem of deciding the relation Turing reduces to
the implication problem. From this it is easy to see that the credulous and
skeptical reasoning problem are contained in Σp

2 and Πp
2 respectively. The

matching lower bounds were later established by Gottlob in [24].

Theorem 4.6 ([49, 24]) The expansion existence problem and the credu-
lous reasoning problem for autoepistemic logic are Σp

2-complete, whereas the
skeptical reasoning problem for autoepistemic logic is Πp

2-complete.

The hardness is obtained using a surprisingly simple reduction form the
validity problem for quanti�ed Boolean formulae of the form ∃x1 · · · ∃xn∀y1 · · · ∀ymψ,
where ψ is a propositional formula with Vars(ψ) = {xi | 1 ≤ i ≤ n} ∪ {yi |
1 ≤ i ≤ m}. Given a formula of the above form, we transform it into a set
Σ of autoepistemic formulae de�ned as

Σ := {Lxi ↔ xi | 1 ≤ i ≤ n} ∪ {Lψ}.

The idea behind the reduction is to mimic existential quanti�cation using
di�erent sets of beliefs such that an assignment satisfying ∀y1 · · · ∀ymψ results
in a stable expansion: If σ is an assignment that satis�es ∀y1 · · · ∀ymψ, then
the Σ ∪ Λ with Λ = {Lψ} ∪ {Lxi | 1 ≤ i ≤ n} ∪ {¬Lx1 | 1 ≤ i ≤ n} entails
ψ; therefore, Λ is a Σ-full set. On the other hand, if Λ is a full set, then we
can reconstruct from it an assignment satisfying ∀y1 · · · ∀ymψ.

Beyond this, the complexity of these problems for fragments of autoepis-
temic logic has seemingly only been studied in [12]. There, it was shown
that already autoepistemic logic using only ∧ and ∨ is Σp

2-complete and that
tractable fragments occur only for a�ne sets of Boolean functions. To present
the results, say that, for a �nite set B of Boolean functions, an autoepis-
temic B-formula is an autoepistemic formula using Boolean functions from
a given �nite set B only, and denote by Lae(B) the set of all autoepistemic
B-formulae. Further, let B-autoepistemic logic denote autoepistemic logic
restricted to autoepistemic B-formulae and de�ne the credulous (resp. skep-
tical) reasoning problem for B-autoepistemic logic as the problem to decide,
given a set Σ of autoepistemic B-formulae and an autoepistemic B-formula
ϕ, whether ϕ is contained in a stable expansion (resp. all stable expansions)
of Σ .

Theorem 4.7 ([12]) Let B be a �nite set of Boolean functions. Then the ex-
pansion existence problem and the credulous (resp. skeptical) reasoning prob-
lem for B-autoepistemic logic are

1. Σp
2-complete (resp. Πp

2-complete) if D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B],



2. NP-complete (resp. coNP-complete) if V2 ⊆ [B] ⊆ V,

3. ⊕L-hard and contained in P if L2 ⊆ [B] ⊆ L,

4. in L in all other cases (that is, if [B] ⊆ E),

via logspace many-one reductions.

Note that the complexity classi�cation of these problems substantially
di�ers from their analogues in default logic, which can be credited to the dif-
ferent approach to modelling non-monotonicity: while default logic is limited
to consistency testing in the justi�cation of a default rule, autoepistemic logic
is capable of both positive and negative introspection. As another result, in
general the intertranslatability of autoepistemic logic and default logic does
not hold for fragments of these logics (unless collapses considered unlikely
occur).

We will brie�y present the ideas behind Theorem 4.7. To start with, the
proof relies on the following lemma, which signi�cantly reduces the number
of clones to be considered.

Lemma 4.8 Let B be a �nite set of Boolean functions and Σ ⊆ Lae(B ∪
{0, 1}). Then we can construct in logspace a set Σ′ ⊆ Lae(B) such that the
stable expansions of Σ and Σ′ coincide on all autoepistemic formulae over
Vars(Σ).

Proof. Let Σ ⊆ Lae(B ∪ {0, 1}) be given. We �rst eliminate the constant 1
using Lemma 2.1 and transform the resulting set Σ′ to Σ′′ by substituting all
occurrences of 0 with the formula Lf , where f is a fresh proposition. Suppose
that ∆ is a consistent stable expansion of Σ′′. As f cannot be derived from
Σ′′, ∆ has to contain the ¬Lf . Hence any satisfying assignment of ∆ sets
Lf to 0.

It thus su�ces to consider the complexity of the expansion existence
problem for sets B such that [B] ∈ {BF,M,E,V, L,N, I}. The key observation
in the proof of Theorem 4.7 is that the reductions from the validity problem
for quanti�ed Boolean formulae of the form ∃x1 · · · ∃xn∀y1 · · · ∀ymψ with ψ
in negation normal form does not requires negations: Given a formula ϕ
in the above form, replace all negative literals ¬xi and ¬yi in ψ with new
propositions x′i and y

′
i. Call the resulting formula ϕ′. We then construct the

set of autoepistemic {∧,∨}-formulae as

Σ := {Lϕ′} ∪ {Lxi ∨ x′i, xi ∨ Lx′i | 1 ≤ i ≤ n} ∪ {yi ∨ y′i | 1 ≤ i ≤ m}.

Due to the formulae Lxi∨x′i, xi∨Lx′i, 1 ≤ i ≤ n, any stable expansion ∆ of Σ
contains either xi or x

′
i (but not both), while the formulae yi∨y′i, 1 ≤ i ≤ m,



guarantee that either yi or y
′
i is set to 1 in any satisfying assignment of ∆.

From this, it is easy to see that ϕ is valid i� Σ has a stable expansion.Hence,
the expansion existence problem is Σp

2-complete for S00 ⊆ [B], S10 ⊆ [B], or
D2 ⊆ [B].

This construction can be generalized to also work for quanti�ed Boolean
formulae of the form ∃x1 · · · ∃xnψ with ψ in conjunctive normal form. Hence,
we obtain NP-hardness for V2 ⊆ [B]. The corresponding upper bound follows
from the fact the formula implication of B-formulae with [B] ⊆ V is tractable.

For an argument to obtain a polynomial-time upper bound for the re-
maining cases, we refer the reader to the original paper. This concludes the
discussion of Theorem 4.7.

Turning to the problem of counting the number of stable expansions, the
reader may easily convince himself that the reductions used to establish the
NP-hardness and Σp

2-hardness above are parsimonious. Hence, the complex-
ity classi�cation of the counting problem is analogous to that of the expansion
existence problem:

Theorem 4.9 ([12]) Let B be a �nite set of Boolean functions. Then the
problem to count the number of stable expansions in B-autoepistemic logic is

1. #·coNP-complete if D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B],

2. #P-complete if V2 ⊆ [B] ⊆ V,

3. in FP in all other cases (that is, if [B] ⊆ L or [B] ⊆ E),

via parsimonious reductions.

Note that again parsimonious reductions are su�cient to obtain the com-
pleteness results in Theorem 4.9.

5 Circumscription

The third non-monotonic logic we will turn to is circumscription, which in-
stead of extending classical logic with default rules or introspection restricts
the attention to minimal models. Circumscription was introduced by Mc-
Carthy [42] in 1980 to overcome the quali�cation problem, i.e., the problem
of listing all preconditions required for an action to have its intended e�ect.
His approach was to allow for the conclusion that the objects that can be
shown to have a certain property by reasoning are all objects that satisfy this
property. Following [39], this is achieved by considering only those models
that are minimal with respect to a preorder on the set of assignments. For
ease of notation, we will identify assignments σ with the set {p | σ(p) = 1}.



De�nition 5.1 Let P , Q, Z partition the set of propositions and let σ, σ′ : P∪
Q ∪ Z → {0, 1} be assignments. De�ne ≤(P,Z) as the preorder de�ned by

σ ≤(P,Z) σ
′ ⇐⇒ σ ∩ P ⊆ σ′ ∩ P and σ ∩Q = σ′ ∩Q.

Using ≤(P,Z), we de�ne a consequence relation |=(P,Z) such that for an
assignment σ : P ∪ Q ∪ Z → {0, 1} and a set of formulae Γ with Vars(Γ) ⊆
P ∪ Q ∪ Z, σ |=(P,Z) Γ if σ is minimal w.r.t. ≤(P,Z) among all models of
Γ.. In this case, σ is also called a circumscriptive model of Γ. Accordingly,
we can de�ne the notion of (circumscriptive) implication: Γ |=(P,Z) ϕ if ϕ
is satis�ed in all circumscriptive models of Γ. It is not hard to see that
circumscription coincides with reasoning under the extended closed world
assumption, in which all formulae involving only propositions from P that
cannot be derived from Γ are assumed to be false [27].

Example 5.2 Let P := {x}, Q := ∅, Z := {y, z} and Γ := {(x ∧ ¬y) → z}.
The models of Γ are ∅, {y}, {z}, {x, y}, {y, z}, {x, z}, {y}, and {x, y, z}.
Of these, only ∅, {z}, and {y, z} are minimal with respect to ≤(P,Z). Hence,
Γ ∪ {y} |=(P,Z) z, while Γ ∪ {y} 6|= z.

The notions of circumscriptive models and circumscriptive inference nat-
urally lead to the following decision problems, that received extensive study
in the literature:

(Circumscriptive model checking) Given a set of formulae Γ, a preorder
≤(P,Z) on the set of its propositions and an assignment σ, does σ |=(P,Z) Γ
hold?

(Circumscriptive inference) Given a set of formulae Γ and a formula ϕ, a
preorder ≤(P,Z) on the set of their propositions, does Γ |=(P,Z) ϕ hold?

The circumscriptive model checking is dual to a generalization of the
minimal satis�ability problem, i.e., the question whether a given formula
has a model that is strictly smaller than a given assignment with respect
to a given preorder ≤(P,Z), and known to be coNP-complete in general [9],
whereas the circumscriptive inference problem was shown to be Πp

2-complete
by Eiter and Gottlob in [20]. These results reveal that, alike default logic and
autoepistemic logic, circumscription exhibits an increase in the complexity
of model checking and reasoning as compared to traditional propositional
logic. This increase in the complexity raises the question for restrictions
that lower the complexity of these tasks. Accordingly, the complexity of
these problems has been studied for both restricted sets of Boolean functions
and in Schaefers framework. We will consider the restrictions obtained from
Schaefer's framework �rst.



De�ne the circumscriptive model checking problem for sets of relations
from S as the problem to decide, given a a set Γ of applications of rela-
tions from S, an assignment σ : Vars(Γ) → {0, 1} and a partition (P,Q, Z) of
Vars(Γ), whether σ is a minimal model of Γ with respect to ≤(P,Z). In [34],
Kirousis and Kolaitis showed that using Schaefer's framework, the circum-
scriptive model checking problem restricted to Q = Z = ∅ is dichotomic, a
result which was later generalized to the general case in [36]:

Theorem 5.3 ([36]) Let S be a set of relations. Then the circumscriptive
model checking problem for sets of relations from S is

1. coNP-complete if S is not Schaefer and

2. in P in all other cases.

The tractability if S is Schaefer is easy to verify. In this case, the circum-
scriptive model checking problem Turing reduces to the satis�ability problem,
which in this case is tractable by [57]. To show the coNP-hardness in all re-
maining cases, Kirousis and Kolaitis give an involved three step reduction
from 1-in-3 SAT.

In addition to that, Kirousis and Kolaitis also classi�ed for possible sets
of available Boolean functions in an unpublished note. De�ne the circum-
scriptive model checking problem for sets of B-formulae as the problem to
decide, given a set Γ ⊆ L(B), an assignment σ : Vars(Γ) → {0, 1} and a par-
tition (P,Q, Z) of Vars(Γ), whether σ is a minimal model of Γ with respect
to ≤(P,Z).

Theorem 5.4 ([33]) Let B be a �nite set of Boolean functions. Then the
circumscriptive model checking problem for sets of B-formulae is

1. coNP-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B], and

2. in P in all other cases (that is, if [B] ⊆ M).

Key to the classi�cation is that if the set B of all available Boolean func-
tions is monotone, then the circumscriptive model checking problem Turing-
reduces to the the model checking problem for monotone Boolean formulae.
Given Γ and σ, denote by σi the assignment obtained by setting all propo-
sitions in Z to 1 and the ith proposition in P , which is set to 1 under σ to
0. Then σ |=(P,Z) Γ i� for all σi obtained in this way, σi 6|=(P,Z) Γ. Thus
circumscriptive model checking problem for sets of B-formulae is tractable if
[B] ⊆ M.

On the other hand, the coNP-hardness follows from the fact that all
remaining sets B satisfy [B∪{0, 1}] = BF, while we can simulate the Boolean



constants: If B ⊆ R1, then appealing to Lemma 2.1 su�ces. If B ⊆ R1,
we use the mapping Γ 7→ Γ′ := Γ[0/f, 1/t] ∪

{
t, f →

∧
Vars(Γ)

}
, where

Γ[0/f, 1/t] denotes the set obtained from Γ by replacing all occurrences of 0
by the fresh proposition f and all occurrences of 1 by the fresh proposition
t. Notice that any model of Γ′ sets t to 1 and that Γ′ is satis�ed by exactly
those assignments that satisfy Γ and additionally the assignment setting all
propositions to 1. Thus, if B ⊆ R1, we may replace any Boolean function in
the original Γ with an equivalent (B ∪ {0, 1})-formula.

We point out that the original proof in [33] builds on results from [34],
the sketch above provides an alternative proof.

As for the inference problem, the computational complexity of circum-
scriptive inference was �rst studied in 1990 by Cadoli and Lenzerini [11],
who analyzed the complexity of reasoning under various closed world as-
sumptions. They showed that circumscription for various restrictions on the
premises, conclusions and the order still remains intractable and also identi-
�ed tractable fragments. Yet the exact complexity of circumscriptive infer-
ence remained open until Eiter and Gottlob [20] proved its Πp

2-completeness.
This result was further re�ned both in the framework of restricted sets of
available Boolean functions as well as in Schaefer's framework. For the
latter, Kirousis and Kolaitis [35] proved a dichotomy separating the Πp

2-
complete cases and from those in coNP, and conjectured that the cases in
coNP could be re�ned into coNP-complete and tractable ones. While the
coNP-completeness for dual Horn relations or bijunctive relations was known
from [11] and Durand and Hermann showed that this also holds for for a�ne
relations [16], Nordh �nally a�rmatively settled Kirousis and Kolaitis' con-
jecture in [50]. For the restricted case of basic circumscription that requires
Q or Z or both to be empty, the trichotomy was established in [19]. We state
here the result from [50].

Say that a relation R is negative Horn if it coincides with the set of
models of a Horn formula without positive literals. De�ne the circumscriptive
inference problem for sets of relations from S as the problem to decide, given
a set Γ of applications of relations from S, a clause ϕ and a partition (P,Q, Z)
of Vars(Γ ∪ {ϕ}), whether Γ |=(P,Z) ϕ.

Theorem 5.5 ([50]) Let S be a set of relations. Then the circumscriptive
inference problem for sets of relations from S is

1. Πp
2-complete if S is not Schaefer,

2. coNP-complete if S is Schaefer but neither negative Horn nor both bi-
junctive and a�ne nor both Horn and dual Horn, and



3. in P in all other case (that is, if S is negative Horn or both bijunctive
and a�ne or both Horn and dual Horn).

For the approach parameterizing by the set available Boolean functions,
the circumscriptive inference problem for sets of B-formulae was classi�ed
in [64]. De�ne the circumscriptive inference problem for sets of B-formulae
as the problem to decide, given a set Γ ⊆ L(B), a clause ϕ and a partition
(P,Q, Z) of Vars(Γ ∪ {ϕ}), whether Γ |=(P,Z) ϕ.

Theorem 5.6 ([64]) Let B be a �nite set of Boolean functions. Then the
circumscriptive inference problem for sets of B-formulae is

1. Πp
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. coNP-complete if X ⊆ [B] ⊆ Y for some X ∈ {V2, S10,D2, L2} and
Y ∈ {M, L}, and

3. in P in all other case (that is, if [B] ⊆ N or [B] ⊆ E).

Remark 5.7 Unlike the reasoning problems de�ned for B-default logic and
B-autoepistemic logic, here an arbitrary formula is to be tested for implica-
tion. The complexity of deciding the circumscriptive inference of a B-formula
from a set of B-formulae is the same as above for all sets B except those sat-
isfying L2 ⊆ [B] ⊆ L; for these the problem is only known to be ⊕L-hard and
contained in coNP.

In the remainder of this section, we will consider the counting complexity
of circumscription, namely the problem to count the number of minimal mod-
els of a given set Γ w.r.t. to a given preorder ≤(P,Z). This problem, henceforth
referred to as the circumscriptive model counting problem, has recently gained
a lot of interest. Its restriction to Q = Z = ∅ is equivalent to the minimal
model counting problem, i.e., the problem of counting the number of mini-
mal models w.r.t. the coordinatewise partial order on assignments induced
by 0 < 1. While the problem to count the number of all models of a given
formula is well-known to be #P-complete via parsimonious reduction [68],
the exact complexity of the minimal model counting problem was open for
a long time. The problem is easily seen to belong to #·coNP, since deciding
whether a given assignment is among the minimal models of a given set of
formulae is in coNP. Similarly, its #P-hardness via parsimonious reductions
is apparent: the mapping ϕ 7→

{
ϕ ∧

∧
xi∈Vars(ϕ)(xi ⊕ yi)

}
with yi /∈ Vars(ϕ)

constitutes a parsimonious reduction from the problem to count the number
of all models of a given formula. However, #·coNP-hardness could only be
established using reductions under which not all of the classes of the counting
polynomial hierarchy are closed.



In 2000, Durand, Hermann and Kolaitis [18] introduced the notion of
subtractive reductions which suitably relaxed the notion of parsimonious re-
ductions. Say that a counting problem #A reduces to a counting problem
#B via strong subtractive reduction if there exists a pair of polynomial-
time computable functions f, g such that for all x, B(g(x)) ⊆ B(f(x)) and
|A(x)| = |B(f(x))|− |B(g(x))|. Subtractive reductions are the transitive clo-
sure of strong subtractive reductions, i.e., #A reduces to #B via subtractive
reductions if there exists a �nite sequence (#C)1≤i≤n such that #C1 = #A,
#Cn = #B and #Ci reduces to #Ci+1 via strong subtractive reduction for
all 1 ≤ i < n. Clearly, each parsimonious reduction is also a subtractive
reduction. And, more importantly, #P and #·Πp

k, for all k ≥ 1, are closed
under subtractive reductions.

Theorem 5.8 ([18]) The minimal model counting problem and the circum-
scriptive model counting problem are #·coNP-complete via subtractive reduc-
tions.

The counting complexity of the minimal model counting problem was
further studied in [17]. There the authors show that, using Schaefer's frame-
work, the restriction to relations that are either dual Horn, bijunctive or
a�ne reduces the complexity of the problem to #P-completeness, whereas
the restriction to Horn relations or relations that are both bijunctive an
a�ne yields e�ciently computable counting problems. Hence, the counting
problem for the case that all relations are both dual Horn and Horn as well
as the case that all relations are negative Horn are #P-complete while the
underlying decision problems are still tractable.

The counting complexity of both the minimal model counting problem
and the circumscriptive model counting problem was further studied in [66],
where the complexity of the fragments obtained by restricting the set of
Boolean functions is classi�ed. Here, the counting complexity decreases anal-
ogously to the complexity of the underlying decision problem.

Theorem 5.9 ([66]) Let B be a �nite set of Boolean functions. Then
the minimal model counting problem for B-formulae and the circumscrip-
tive model counting problem for B-formulae is

1. #·coNP-complete via subtractive reductions if S02 ⊆ [B] or S12 ⊆ [B]
or D1 ⊆ [B],

2. #P-complete via subtractive reductions if S00 ⊆ [B] ⊆ M or S10 ⊆
[B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. #P-complete via Turing reductions if V2 ⊆ [B] ⊆ V or L2 ⊆ [B] ⊆ L,
and

4. in FP in all other cases (that is, if [B] ⊆ N or [B] ⊆ E).



6 Abduction

Abduction is a fundamental and important form of non-monotonic reasoning
introduced by Peirce [53]. It can be thought of as a form of hypothetical
reasoning: to ask what can be abduced from an observation α is to ask for
an explanation, which in conjunction with the given background knowledge
accounts for α. The importance of this formalism to arti�cial intelligence was
�rst emphasized by Morgan [46] and has been fruitfully used in many areas
of computer science such as medical diagnosis [2], text analysis [30], system
diagnosis [63], con�guration problems [1], temporal knowledge bases [5], and
has connections to default reasoning [60].

Here we will consider logic based abduction in which the background
theory is represented by a logical theory, speci�cally in propositional logic.
Hence, the abduction problem can in general be formulated as the problem,
given a knowledge base Γ ⊆ L, a set A ⊆ Vars(Γ) of propositions called
hypothesis, and an observation q ∈ Vars(Γ), to compute a set E ⊆ Lits(A)
of literals over A such that Γ ∪ E is consistent and Γ ∪ E |= q. If such
a set E exists, then it is called an explanation for the abduction problem
P = (Γ, A, q).

The computational complexity of this problem has �rst been considered
by Selman and Levesque [60], who showed that it is NP-hard to compute
an explanation if Γ is restricted to Horn clauses. Independently, Friedrich,
Gottlob and Nejdl [23] studied the problem for de�nite Horn clauses. They
show that deciding whether a given proposition is contained in some or all
explanations is tractable whereas deciding whether a proposition is contained
in a subset-minimal explanation is NP-complete. It is yet tractable to com-
pute some subset-minimal explanation in this case [8]. Further results were
obtained by Eshghi [22], who proved that �nding subset-minimal explana-
tions becomes tractable if Γ is acyclic Horn and its pseudo-completion is
unit-refutable. Finally, the complexity of logic-based abduction was settled
by Eiter and Gottlob.

Theorem 6.1 ([21])

1. To decide, given an abduction problem P = (Γ, A, q) and a set E ⊆
Lits(A), whether E is an explanation for P is DP-complete.

2. To decide, given an abduction problem P, whether there exists an ex-
planation for P is Σp

2-complete.

3. To decide, given an abduction problem P and a proposition p, whether
all explanations for P contain p is Πp

2-complete.

These results also hold for subset-minimal explanations.



Eiter and Gottlob [21] also studied the complexity of abduction for pref-
erence relations other than subset-minimality, but to include these results
here would go beyond the scope of this survey. As in most cases the com-
plexity of the �rst and the third problem in Theorem 6.1 can be derived from
the question whether an explanation exists, we will henceforth focus on the
complexity of deciding the existence of an explanation.

Due to its applications to knowledge-based systems, it is natural to con-
sider the complexity of this problem in Schaefer's framework. Using this ap-
proach Creignou and Zanuttini [15] showed that the complexity of deciding
the existence of an explanation forms a trichotomy. De�ne the explanation
existence problem for sets of relations from S as the problem to decide, given
a set Γ of applications of relations from S, a set A ⊆ Vars(Γ) of propositions,
and a proposition q ∈ Vars(Γ) \ A, whether there exists a set E ⊆ Lits(A)
such that Γ∪E is consistent and Γ∪E |= q. Say that a relation R is IHS-B−
if if it coincides with the models of a CNF formula whose clauses are all of
one of the following types: (xi), (¬xi1 ∨ xi2), (¬xi1 ∨ · · · ∨ ¬xik) for some
k > 0. Analogously say that a relation R is IHS-B+ if if it coincides with the
models of a CNF formula whose clauses are all of one of the following types:
(¬xi), (¬xi1 ∨ xi2), (xi1 ∨ · · · ∨ xik) for some k > 0. Clearly, any IHS-B−
formula (resp. IHS-B+) formula is Horn (resp. dual Horn).

Theorem 6.2 ([15]) Let S be a set of relations. Then the explanation
existence problem for sets of relations from S is

1. Σp
2-complete if S is not Schaefer,

2. NP-complete if S is either Horn or dual Horn but neither bijunctive
nor a�ne nor de�nite Horn nor IHS-B+ nor IHS-B−,

3. in P if S is bijunctive or a�ne or de�nite Horn or IHS-B+ or IHS-B−.

As for restricted sets Γ the restriction of the query q to a positive propo-
sition does no longer come without loss of generality, variants of this problem
have been studied, where the observation is a term (a conjunction of literals),
a clause or an arbitrary formula. For example, if one allows for the query to
be a literal instead of a proposition, then the explanation existence problem
for de�nite Horn relations becomes NP-complete (apart from that, the classi-
�cation of Theorem 6.2 remains valid). For the case that the observation is a
term, a trichotomy has been established in [51]: here only the case that all re-
lations are a�ne remains tractable, while Horn relations, dual Horn relations
and relations expressible using either only (¬xi1 ∨ xi2), or only (xi1 ↔ xi2)
and (xi1 ∨ xi2), or only (xi1 ↔ xi2) and (¬xi1 ∨ ¬xi2) lead to NP-complete
fragments. Further loosening the restriction on the observations to allow for



an arbitrary formula leads to a dichotomic classi�cation into NP-complete
fragments (if the set of relations is Schaefer) and Σp

2-complete fragments (in
all other cases). These results are summarized and extended to also cover
clauses and arbitrary formulae and to several restrictions on the hypothesis
in [52].

Seeking further insights into the sources of complexity, abduction has
also been studied for restricted sets of Boolean functions. In [13], Creignou,
Schmidt and Thomas completely classi�ed the complexity of the explanation
existence problem for B-formulae, de�ned as the problem to decide, given a
given a set Γ ⊆ L(B) a set A ⊆ Vars(Γ) of propositions, and an observation
q ∈ Vars(Γ) \ A, whether there exists a set E ⊆ Lits(A) such that Γ ∪ E is
consistent and Γ ∪ E |= q.

Theorem 6.3 ([13]) Let B be a �nite set of Boolean functions. Then the
explanation existence problem for B-formulae is

1. Σp
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. NP-complete if S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M,
and

3. in P in all other cases (that is, if [B] ⊆ E or [B] ⊆ V or [B] ⊆ L).

The complexity of this problem for observations represented by clauses,
terms and B-formula was also classi�ed. The relaxation to clauses does not
alter the complexity classi�cation; however, the relaxation to observations
represented by terms increases the complexity of the cases satisfying [B ∪
{0, 1}] = V to NP-completeness. Lastly, if the observation is formalized as a
B-formula then the classi�cation becomes dichotomic with the clones above
E, V or L being Σp

2-complete and all remaining clones being tractable; thus
skipping the intermediate NP level.

The complexity of propositional abduction has thus been systematically
studied and is well understood. The counting complexity of abduction was
�rst studied by Hermann and Pichler [28, 29]. The problems arising in this
context are the problem to count the number of all explanations as well as the
problem to count the number of minimal explanations with respect to a given
preference relation, e.g., the subset-minimal explanations or explanations of
minimal cardinality. From the set of counting problems for abduction studied
by Hermann and Pichler, we will consider the following two problems:

(Explanation counting) Given a set Γ ⊆ L, a set A ⊆ Vars(Γ), and a
conjunction q1∧· · ·∧qn or propositions from Vars(Γ)\A, to count the number
of all sets E ⊆ A such that Γ ∪ E is consistent and Γ ∪ E |= q1 ∧ · · · ∧ qn.

(Subset-minimal explanation counting) Given a set Γ ⊆ L, a set A ⊆
Vars(Γ), and a conjunction q1 ∧ · · · ∧ qn or propositions from Vars(Γ) \ A,



to count the number of all sets E ⊆ A such that Γ ∪ E is consistent and
Γ ∪ E |= q1 ∧ · · · ∧ qn.

Theorem 6.4 ([28]) The explanation counting problem and the subset-
minimal explanation counting problem are #·coNP-complete via subtractive
reductions.

However, if one restricts Γ be be a set of applications of relations from a
�xed set S of available relations, then the counting complexity drops by at
least one level of the counting polynomial hierarchy: The explanation count-
ing problem for sets of relations from S is #P-complete if S is Horn or dual
Horn or bijunctive; it is contained in FP if S is a�ne and the explanations
are allowed to contain literals instead of propositions. On the other hand,
the subset-minimal explanation counting problem for sets of relations from
S is #P-complete in all of the previously mentioned cases.

In addition to these results, the complexity of counting all explanations
in the case that Γ is represented by a set of B-formulae and the observation
is a single proposition was also studied in [13]. There both variants, to count
the number of (positive) explanations and to count the number of literal
explanations, have been studied.

Theorem 6.5 ([13]) Let B be a �nite set of Boolean functions. Then the
explanation counting problem for sets of B-formulae is

1. #·coNP-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. #P-complete if V2 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M, and

3. in FP in all other cases (that is, if [B] ⊆ E or [B] ⊆ L),

via subtractive reductions. If explanations are restricted to contain positive
literals only, then the problem is contained in FP for V2 ⊆ [B] ⊆ V and only
known to be in #P for L2 ⊆ [B] ⊆ L.

The open case in Theorem 6.5 is equivalent to the case where Γ is re-
stricted to a set of a�ne relations. This case was already left open in [28].
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