
On the notion of bit omplexityClaus Diem ∗AbstratIn many works in the �elds of omputational omplexity, algorith-mi number theory and mathematial ryptology as well as in relatedareas, laims on the running times of algorithms are made. However,often no omputational model is given and the analysis is performedin a more or less ad ho way, ounting in an intuitive way �bit oper-ations�. On the other hand, the omputational model of a suessorRAM with logarithmi ost funtion provides an adequate and for-mal basis for the analysis of the omplexity of algorithms from a �bitoriented� point of view.This motivates the searh for a result on the simulation of mahinesin a suitably de�ned general model by suessor RAMs. In this work, avery general RAM model is de�ned, and then a �quasi-optimal� resulton the simulation of suh mahines by suessor RAMs is given.1 IntrodutionIn a large body of works in the �elds of omputational omplexity, algorithminumber theory and mathematial ryptography as well as in related areas,laims on the running times or time omplexity of algorithms are made.However, in a substantial part of these works, the analysis of the algorithmsis performed in a more or less intuitive and ad ho way without referene toa spei� model of omputation.Often, the running time (or expeted running time) is omputed by ount-ing in some intuitive way �bit operations�. Or to phrase it di�erently: in aertain intuitive way, the bit omplexity of algorithms is onsidered. Suhan approah is learly su�ient if one is merely interested in questions onomplexity from a �qualitative� point of view (disregarding exponents) � asis often the ase in omplexity theory. However, often more onrete state-ments are made, and then the question poses itself whether the laimedrunning time holds true in a partiular �bit-oriented� model of omputation.
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The situation onerning spae requirements or spae omplexity is similarbut in fat � as we will disuss below � it is even worse beause it is even lesslear what is exatly meant by laims onerning spae requirements.This is by far a new phenomenon. Already in 1980 Arnold Shönhageobserved; see [5℄:Many of the onrete algorithms given in the literature are (atleast impliitly) designed for multitape Turing mahines, some-times the higher �exibility of random aess mahines (with avariety of instrution sets) is required, and frequently it is totallyleft to the reader's imagination what the model of omputationshould look like.Let us �x the following terminology: By a mahine type we mean a typeof Turing mahines, random aess mahines, et.1 A model of omputationis then a mahine type together with a time and a spae measure. In someases, these measures are obvious (e.g. for Turing mahines), but in otherases � in partiular for RAM models � they are not, and are has to betaken whih measure is used.It is intuitively obvious that if one speaks about running time withoutfurther omments, one should have a sequential mahine type with a bit-oriented storage and atomisti instrution set in mind, and the time measuremust re�et the number of bit operations required. Of ourse, we annotgive a rigorous de�nition of these intuitive notions but some requirementsseem to be obvious: First, the mahine type must have a most reduedset of instrutions. Seond, the time needed for one instrution must byde�nition re�et the lengths of the numbers whih have to be onsidered forits exeution.2One suh model is the multi-tape Turing mahine model (with varioussimilar de�nitions). Another model is the suessor RAM with logarithmiost measure (again with various similar de�nitions).We note here that the bit-oriented point of view of this work is slightlydi�erent from the atomisti point of view in [5℄. An atomisti model aord-ing to Shönhage is for example the Storage Modi�ation Mahine (SSM).1We do not give a rigorous general de�nition of �mahine type�, and � onsistent withthis � we do not laim any general mathematial propositions on mahine types. Themathematial propositions are rather for spei� mahine types.2We assume here impliitly that the mahines have a program. Let us note here thatin an obvious way, Turing mahines an also be based on programs. This point of view isemphasized by Shönhage, f. [5℄ and [6℄.



However, from our point of view, the SSM model is not bit-oriented beauseit misses a bit-oriented (a priori) storage. Also, the suessor RAM types(as de�ned in [5℄) with uniform time measure deserve to be alled atomistibut not bit-oriented, beause in one time unit arbitrarily many bits might behanged. Note here that it is shown in [5℄ that the SSM type (with obvioustime measure) is real time equivalent to ertain suessor RAM types withuniform time measure.3In many works on the omplexity of omputational problems arising inalgorithmi number theory, ryptography and related areas, it seems to beassumed that the underlying model is on the one hand bit-oriented and onthe other hand, storage aess is more or less immediate. These requirementsare met by suessor RAMs with logarithmi time measure. The very limitedinstrution set of these models does however often not make it possible toobtain the laimed running times in a straightforward way. For example, veryoften the algorithms and their analyzes require the presene of instrutionsfor addition and subtration of registers.This situation motivates the searh for a general result whih transformsa result for any kind of random aess mahine model with �reasonable� timeand spae measures to a result for suessor RAMs.In this work, we give a rigorous de�nition of a RAM type with a very gen-eral instrution set (whose mahines we all RAM with extended instrutionset). With an adequate (and intuitive) time measure, we show that mahinesof this type an be simulated �quasi-optimally� (optimally up to �logarith-mi fators�) by suessor RAMs with logarithmi ost measure. Conerningspae omplexity, the result is �quasi-optimal� too and in fat relates a parti-ularly strong spae measure on suessor RAMs with a weak spae measurefor the general RAM type. The result on time omplexity shows in partiularthat RAMs with additional instrutions for addition and subtration and /or for AND, OR and, XOR and / or for onatenation and shifts an be sim-ulated �quasi-optimally� by suessor RAMs with respet to the logarithmiost funtion.The simulation is straightforward, and in fat, it essentially already ap-peared in the literature before; f. the proof of [8, Theorem 19.28℄. However,an extensive searh in the literature did not reveal a result as the one given inthis work even for the simulation of RAMs with instrutions for addition and3The use of the notion �real time equivalent� in [5℄ is di�erent for its use at other plaesin the literature, e.g., in [7℄ and [8℄. In the spirit of [7℄, one might say that these modelssimulate eah other in linear time. With the de�nitions of [8℄, the time measures of themodels are linearly related.



subtration by suessor RAMs.4 It is exatly the lak of a suitable referenewhih motivated the author to write this work.2 Basi de�nitions and observationsWe assume that the reader is familiar with RAM models, at least on anintuitive basis. Brie�y, a suessor RAM type is a RAM type with only onearithmeti instrution: the omputation of the suessor.5In [5℄ two suh types are de�ned, alled RAM0 and RAM1. Let us reallthe partiular de�nitions in [5℄ on a oneptual level and ompare them toother de�nitions of RAM types in literature.Let us de�ne the set of natural numbers N as the set {0, 1, 2, . . .}.All mahines de�ned in [5℄ operate on the alphabet {0, 1} for input andoutput. Eah mahine has an input and output tape, whih are read re-spetively write only. Furthermore, they have a program based on someinstrution set. The instrution sets ontain instrutions based on the odesinput, output, goto, halt. The input instrution reads a bit from the inputtape and � aording to the bit � jumps to one of two labels. The outputinstrution prints a bit.As usual for random aess mahines, a mahine of type RAM1 has reg-isters, an aumulator, instrutions to load a �xed natural number and toload and store data diretly and indiretly, and an instrution for ompari-son. All registers and the aumulator an store arbitrary natural numbers(or bit strings). The registers are indexed by natural numbers, and the a-umulator is by de�nition not a register. Di�erent from other random aessmahine types, the RAM1 type only has one �arithmeti� (or operational)instrution: the omputation of the suessor. The type RAM0 is similar tothe type RAM1. The essential di�erenes are that the type RAM0 does nothave an instrution for indiret addressing but it has an additional addressregister instead.Usually, random aess mahine types de�ned in the literature have addi-tional �arithmeti instrutions�. The most ited type in the literature seemsto be the one by Aho, Hoproft, and Ullman ([1℄). This type has instrutionsfor addition, subtration, multipliation and division with remainder. Other4In [7, Theorem 2.4℄ a orresponding result is stated for RAMs with instrutions forAND, OR and XOR. However, the very short argument in [7℄ does not seem to be reallyto the point.5In [8℄ a mahine type alled suessor RAM is de�ned whih has instrutions foromputation of the suessor and the predeessor. We do not follow this de�nition.



types have instrutions for bitwise AND, OR and XOR, and still others havean instrution for onatenation; f. [8, Setion 1.2℄.Let a RAM0 or RAM1 Π be given, and let x be an input to Π. Thenthere are essentially two di�erent de�nitions of running time of Π for x:the uniform and the logarithmi running time. With the uniform runningtime, eah instrution exeuted is given the time 1. In order to de�ne thelogarithmi running time, we �rst de�ne the size of a natural number n as 0if n = 0 and ⌊log
2
(n)⌋+1 otherwise.6 Now for the logarithmi running time,eah instrution not involving registers or the aumulator is given the time1, and the instrutions involving registers or the aumulator are given astime 1+ the sum of sizes of the numbers in the aumulator or the registersin question involved (the aumulator for omparison and omputation ofthe suessor, the aumulator and one register for diret aess and theaumulator and two registers for indiret aess).We de�ne the uniform or logarithmi time measure for Π as the funtionon the natural numbers assigning to eah natural number x the orrespondingrunning time of Π upon input of x.On the other hand, when we speak of the state of the mahine at apartiular time, we refer to the state after a partiular number of operationshas been exeuted, that is, after a partiular uniform time has passed.From a bit-oriented point of view, the logarithmi time measure is learlythe more adequate one. After all it really measures the bits involved in theexeution of a partiular instrution. Beause of this, in the following webase our results for time omplexity on this measure. We therefore all thelogarithmi measure also the time omplexity and denote it by T .We have already mentioned that it is shown in [5℄ that the two suessorRAM types RAM0 and RAM1 are real time equivalent with respet to theuniform time measure. In fat, the simulation in [5℄ reveals that they arealso real time equivalent with the logarithmi time measure, thus it doesnot matter whih type we hoose. Let us � somewhat arbitrarily � de�ne asuessor RAM as a mahine of type RAM1.There are various measures of spae omplexity for RAMs de�ned in theliterature. In this work, for suessor RAMs we use three spae measures

S1, S2, S3 whih are again funtions on the inputs and are de�ned as follows:Let us �x a suessor RAM Π and some input x to it. Let Ri,t be theontent of register Ri at time t. Let ut(i) := sgn(size(Ri,t)), that is, ut(i)6This de�nition of the size of a number follows the de�nitions in [8℄. In [7℄ the size of
0 is by de�nition 1. The logarithmi funtion in [1℄ is the same as the size in [7℄; see alsoSetion 4.



indiates if register i is used at time t. Further, let
b := sup{i ∈ N | register Ri is used during the omputation}
=sup{i ∈ N | ∃t ∈ N : ut(i) = 1} .We now de�ne:

S1(x) := sup
t∈N

∞
∑

i=0

(size(Ri,t) + size(i) · ut(i)
)

S2(x) :=
∞
∑

i=0

sup
t∈N

(size(Ri,t) + size(i) · ut(i)
)

S3(x) :=
b

∑

i=0

sup
t∈N

(size(Ri,t) + size(i))Clearly,
S1 ≤ S2 ≤ S3 .Measure S2 seems to be the most aepted measure in the literature; f. [7℄,[8℄. Measures as S1 and S2 but without the term for the size of the registernumber are also often used in the literature. For example, in [1℄ the orre-sponding variant of measure S2 is used. From a bit-oriented point of view,measure S2 is however more natural.In ontrast to the de�nitions in [8℄, the spae measures are also de�nedfor inputs for whih the mahine does not terminate. For inputs for whihthe mahine terminates, the measure is always �nite, for inputs for whih themahine does not terminate it might be �nite or in�nite.Let � as de�ned above � T be the time omplexity of Π. Then
S3 ∈ O(T ) .Indeed, let us �x some input x upon whih Π terminates. Wlog. we anassume that numbers > 0 are only loaded diretly and indiretly (no �xednumber n > 0 is loaded). Then the suessors of 0, . . . , b − 1 have to beomputed. The logarithmi running time for this is ∑b−1

i=0
(1 + size(i)) ≥

∑b

i=0
size(i). Furthermore, if Ri,t is 6= 0, then at some time s < t, Ri,t has tobe stored in register Ri, and the logarithmi time needed for this is at leastsize(Ri,t).3 Disussion and further de�nitionsWe now strive for a general result whih transfers propositions on a typeof random aess mahines with a very broad arithmeti instrution set to



propositions for suessor RAMs. The instrution set should ontain allinstrutions of the suessor RAM type and additional instrutions whihwe all higher arithmeti instrutions. These higher arithmeti instrutionsde�ne partial funtions from N
n to N for some n, as for example do the usualaddition and subtration instrutions.7In order that one an obtain a transfer result as desired, learly, the partialfuntions de�ned by the higher arithmeti instrutions must be omputable.A subtle question is then what time and spae requirements one should hargefor the exeution of an instrution at a partiular time. Our answer to thisquestion is to essentially the following: We again use suessor RAMs tode�ne the higher arithmeti instrutions, and we measure the time and spaeomplexities of the operations of these suessor RAMs with the measuresde�ned above.We now desribe the mahines and the time and spae measures we on-sider in detail.First, we generalize the de�nition of suessor RAM (i.e. RAM1) in thefollowing way: We do not anymore have just one input tape but several inputtapes. Correspondingly, the input instrutions now take the following form:input m, λ0, λ1Here m is a natural number ≤ the number of input tapes, and as before

λ0, λ1 are labels. The operation given by this instrution is as follows: Onesymbol is read from tape m and then aording to the symbol being 0 or 1,the program is ontinued at label λ0 or λ1.We all the resulting mahine type multi-inputtape suessor RAM type(mi-suessor RAM type for short).We now de�ne a type of omputational mahines whih we all RAM withextended instrution set as well as time and spae measures on them.The set of instrutions of the new type has two parts. The �rst partonsists of the instrutions of the suessor RAM model; we all these in-strutions basi instrutions. The seond part is given as follows: For eahsuessor RAM P , we introdue an instrution cP . We all these instru-tions higher arithmeti instrutions. The arithmeti instrution are thenthe instrution for omputation of the suessor and the higher arithmetiinstrutions.7The instrutions one usually onsiders in RAM models de�ne funtions, not onlypartial funtions.



The syntati requirements for a (program of a) RAM with extendedinstrution set are as for suessor RAMs.8Let now a (program for a) RAM with extended instrution set Π be given.Then the operation of Π is as follows: The basi instrutions operate as usual.The operation of cP for a suessor RAM P is as follows: This instrutionauses P to be exeuted in the following way. If P has n input tapes, P takesas input the ontent of registers 1, . . . , n of Π. The output tape of P is theaumulator of Π. If P terminates, Π ontinues with the next instrution, asusual. If P does not terminate, Π does not terminate either.We de�ne three time measures for suh a mahine Π.
• simple uniform time simply ounts the number of instrutions of Π.
• extended uniform time is de�ned as follows: The time for eah basiinstrution is 1, and the time for some instrution cP is the uniformtime needed for the exeution of P with the inputs urrently presentin the respetive registers of Π.
• extended logarithmi time is de�ned in the same manner based on log-arithmi time: The time for eah basi instrution is measured in log-arithmi time, and the time for cP is the logarithmi time needed forthe exeution of P with the inputs urrently present in the respetiveregisters of Π.It is extended logarithmi time whih aptures best the intuitive idea of abit-oriented measure for this mahine type, and therefore, similarly to above,we all this measure time omplexity and denote it by T .Let still some RAM mahine with extended instrution set Π be given,and let x be an input for Π. Let i = 1, 2, 3. The ith basi spae measureof Π applied to x is de�ned as Si(x) above applied to Π; let us denote thismeasure by SBi.We de�ne the 1st spae measure of the exeution of some arithmeti in-strution P at a partiular (simple uniform) time of Π as the �rst spaemeasure applied to P and the orresponding input (present in the orre-sponding registers of Π). Now S1(x) is the supremum of SB1(x) and the �rstspae measure applied to the exeutions of the arithmeti instrutions.The de�nition of the measures S2 and S3 is a bit more ompliated: Let

i = 2, 3. Let P be a suessor RAM suh that cP ours in (the program8One an (formally) de�ne RAMs and programs of RAMs in suh a way that a RAMand the orresponding program are (by de�nition) idential.



of) Π (it might our several times). Then we de�ne Si,P (x) as Si(x) abovebut with respet to all states of P for all exeutions of P during the exe-ution of Π. Let cP1
, . . . , cPk

with distint mahines P1, . . . , Pk be all higherarithmeti instrutions ourring in the (program of) Π. Then we de�ne
Si(x) := SBi(x) +

∑k

j=1
Si,Pj

(x).Again we have
S1 ≤ S2 ≤ S3 ,and it is not di�ult to see that
S2 ∈ O(T ) .However, there are mahines for whih it does not hold that S3 ∈ O(T ). Infat, S3 an be exponentially large with respet to T . For example, there ex-ists a suessor RAM E whih omputes 2n in a time of O(n). Now using theinstrution cE, one immediately obtains a RAM with extended instrutionset whih upon input of n ∈ N stores 1 in register 2n and then terminatesand for whih T ∈ O(n) and S3 ≥ SB3 ≥ 2n.4 The resultIn order to formulate the main result, it is onvenient to use the followingfuntion, alled logarithmi funtion in [1℄.De�nition For some n ∈ N, we de�ne l(n) := 1 if n = 0 and l(n) :=

⌊log
2
(n)⌋ + 1 otherwise.Theorem Let some RAM with extended instrution set Π be given. Thenthere exists a suessor RAM Π′ suh that the following holds:

Π′ terminates if and only if Π terminates, and the output of Π′ is equalto the output of Π. Furthermore:Let T be the time omplexity of Π and T ′ the time omplexity of Π′, andlet S1 be the 1st spae measure for Π and S ′

3
the 3rd spae measure for Π′.Then

T ′ ∈ O(T · l(S1)) ⊆ O(T · l(T ))and
S ′

3
∈ O(S1 · l(S1)) .We give the proof in two parts: We �rst only show the result for the asethat Π is a suessor RAM, and then we address the simulation of arbitrary



RAMs with extended instrution set. Note that the �rst result is non-trivialbeause of the bound on the third spae measure of Π′. The simulation forthe �rst result ontains the essential idea for the general result as well.The result for suessor RAMsThe simulation Let a suessor RAM Π be given. We now desribe themahine Π′ used for the simulation.Note �rst that � as shown in the example at the end of Setion 2 � thenumbers stored in the registers of Π an be exponentially large with respetto the running time. This is, however, not possible for suessor RAMs. Sowe need a way to store the numbers in the registers of Π without using toolarge numbers in the registers of Π′.A key idea for the simulation to simulate the registers and the aumulatorof Π in the following way: There are ells for data, and they always onlyontain 0 or 1. As a very naive approah to this idea, one might try to storethe register ells in arrays. There are, however, some problems with thisapproah: First, how does one ope with �over�ow� of arrays and seond,how does one use indiret addressing in an e�ient way? One possibilityfor the seond problem would be to try to transfer suh an array into oneregister. But note that we do note have addition instrutions at our disposal,so it is unlear how to implement this idea in a su�iently e�ient way.Rather than storing the data of one register of Π in an array, we storeit in a linked list: Eah node of the list ontains two entries whih are eahstored in one register of Π′: The �rst entry is a data element (being 0 or 1),and the seond entry is the address of the next node.In the same way, we simulate the aumulator of Π, and furthermore, alsoin this way, we implement an address register used for indiret addressing.We use a binary tree to guarantee fast aess to the simulated registers.The tree is as follows: Eah node of the tree has at most two hildren, andthe edges to the hildren are labeled with 0 or 1.9 Let us assume that atsome time t, register Rx of Π ontains data d > 0, and let xk · · ·x0 be thebinary expansion of x and dℓ · · · d0 be the binary expansion of d. Then atthe orresponding time of the simulation, there is a path from the root of thetree following the labels x0, . . . , xk. The end of the path is the beginning ofthe linked list, and the data ells of the list ontain d0, . . . , dℓ. If on the otherhand d = 0, there is no suh path. (There might be a partial path in the9We only use this labeling for the present informal desription of the simulation. Onlythe hildren but not the labels are stored.



tree but not a full path.) It is this tree struture whih allows for e�ientmanipulation of data of Π.During the operation, new verties are inserted into the tree if some reg-ister is used whih previously ontains 0, and verties are deleted if a registeris set bak to 0.The struture just desribed is stored in the registers with even addresses,and one node oupies two onseutive even registers.In order to aess the storage e�iently, we use a stak and a ounter.These are stored in the registers with odd addresses. Addresses of (tuples of)registers of Π′ whih were used for the tree or the data ells and are deletedare put onto the stak for reuse. (The stak is stored as an array, and eahaddress oupies one register � as usual.) The ounter stores the largestaddress used for the tree and the lists. If the stak is empty, the ounter isinremented, and its value is used as an address.
Illustration If, for example, all registers from 0 to 15 of Π are oupied,the tree looks like this. Here the edges with the numbers are the beginningsof the lists for the ontents of the orresponding registers of Π. (The numbersare not stored but only printed here for orientation.)
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If only registers 8, 12, 5 and 15 are oupied, the tree looks as follows:
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8 12 15Again the numbers indiate that at these edges linked lists start.If now, for example, register 15 is leared, the orresponding edge as wellas the two edges above are deleted, and the orresponding addresses of Π′are put on the stak for reuse.The time and spae requirements We now outline the results on timeand spae requirements obtained via the simulation.The number of registers of Π′ used for the simulation is in O(S1). Beauseof the use of the stak for storage management, the supremum of addressesused is in O(S1) as well. It follows that at during the whole omputation thesupremum of numbers stored in the registers is in O(S1).Therefore S ′

3
∈ O(S1 · l(S1)).Now, in order to load the ontent of the simulation of register Ri of Πat time t into the simulation of the aumulator or the simulated addressregisters we have to go along O(l(Ri,t) + l(i)) nodes of the searh tree andthe linked list for the register.Again, the supremum of numbers stored in registers of Π′ in O(S1). Thisimplies that the logarithmi time for suh an operation is in O((l(Ri,t)+l(i))·

l(S1)).Analogous onsiderations apply to the omputation of the suessor andomparison.All in all, the time omplexity of Π′ is in O(T · l(S1)).As already remarked in Setion 2, S1 ∈ O(T ) and thus T ′ ∈ O(T ·l(S1)) ⊆
O(T · l(T )).



The general aseThe outline for the general ase is in fat nearly as the one for the restritedase. We however also have to simulate the arithmeti instrutions cP , andfor this we use the simulation for suessor RAMs just outlined.We simulate the storage of Π′ exatly as just desribed, but we onlyuse registers Ri with odd i. The registers Ri with even i are then used tosimulate the higher arithmeti instrutions. If cP is suh a higher arithmetiinstrution, then we simulate it by a suessor RAM P ′ as desribed in the�rst part of the proof.We now outline the results on time and spae omplexity for the generalase. In fat, with minor modi�ations, the analysis in the speial ase stillapplies.The number of registers of Π′ used for the simulation of the registers,the aumulator, the stak, the ounter and the address register of Π is nowin O(SB1), and the supremum of addresses used for these strutures is in
O(SB1). Thus the supremum of numbers stored in any register of Π′ usedfor these strutures is in O(SB1) as well.By the previous result, there exists a onstant C1 > 0 suh that thesupremum of addresses of Π′ and the supremum of numbers stored in theregisters of Π′ used for the simulation of the arithmeti instrutions is≤ C1S1.All in all, we obtain S ′

3
∈ O(S1 · l(S1)).The logarithmi time for the simulation of loading or storing in registersof Π′ is in O((l(Ri,t) + l(i)) · l(SB1)), and again we have an analogous resultfor the omputation of the suessor and omparison.Furthermore, there exists a onstant C2 > 0 suh that the simulation ofany higher arithmeti instrution CP of Π′ at any partiular time of Π′ anbe performed in logarithmi time ≤ C2 times the logarithmi time of theexeution of P ′ with the partiular input.All in all, the time omplexity of Π′ is in O(T · l(S1)).As already remarked, S1 ∈ O(T ).5 Some further remarksWe now make some further remarks related to the Theorem.

• As usual, one also an de�ne non-deterministi RAMs with extendedinstrution set. There are in fat two approahes: First, one an still



leave the instrution set as above (in partiular, for eah determin-isti suessor RAM P , we have an instrution cP ) but allow non-determinism in the same way as one usually does for RAM models.And seond, one an in fat also extend the instrution set, allowinginstrutions orresponding to non-deterministi suessor RAMs. Inany ase, the proof of the Theorem in an obvious way also leads toresults on the simulation of non-deterministi RAMs.
• As a variant of this, one an onsider randomized RAMs. Here thesame omments as above apply. In partiular, we an use the Theoremto transfer propositions on the running times of Monte Carlo or LasVegas algorithms. Propositions onerning Las Vegas algorithms areoften formulated via expeted running times in the following sense:For eah input x the time omplexity T (x) is now a random variable,and one onsiders the funtion assigning to eah input x the expetedvalue of T (x). Propositions on expeted running times de�ned like thisan then also easily be transferred. The same applies to propositionson spae omplexity with respet to the various measures.
• A usual RAM type is as the suessor RAM types but with two kinds ofarithmeti instrutions: addition and subtration. (In [7℄ and [8℄ this isalled the standard RAM.) Now, there exist mi-suessor RAMs A and
S whih an perform addition and subtration in linear time and withonstant storage. Let now Π be a �standard RAM� with logarithmitime measure T , and let the spae measures S1, S2, S3 be de�ned asabove. Then Π an in an obvious way be simulated by a RAM withextended instrution set Π′ suh that T ′ ∈ Θ(T ) and Si ∈ Θ(S ′

i) for
i = 1, 2, 3. We an then apply the Theorem to simulate Π by a suessorRAM Π′′ with T ′′ ∈ O(T · l(S1)) and S ′′

3
∈ O(S1 · l(S1)). The same holdswith respet to RAMs whih have additional instrutions for AND, OR,and XOR and / or for onatenation and shifts.

• As already mentioned, a lassial and often ited omputational modelis the mahine type de�ned in [1℄ with logarithmi ost funtion. Inthis mahine type there are instrutions for addition, subtration, mul-tipliation and division with remainder.As shown by Shönhage ([5, Theorem 7.1℄), there exists a suessorRAM whih omputes the produt of two natural numbers m ≥ n ina logarithmi time of O(l(m) · l(l(m))). Furthermore, division with



remainder an be performed e�iently with Newton iteration, and thestated omplexity then also holds true ([3, 4.3.3. D℄).Let now a mahine Π as in [1℄ be given, and let T and S1, S2, S3 bede�ned as above. Then by using only the seond part of the simulationfor the Theorem, we obtain a suessor RAM Π′ simulating Π with
T ′ ∈ O(T ·l(S1)) and S ′

3
∈ O(S1 ·l(S1)). So we have the same onlusionas in the previous item.

• If one substitutes logarithmi by uniform time and extended logarith-mi by extended uniform time, the simulation does not lead to a �quasi-optimal� result. Indeed, let Π and Π′ be as in the simulation, and let Tuand T ′

u be the extended uniform resp. uniform time measures. If now Πis a suessor RAM, the supremum of addresses used and the supremumof values in any register are ≤ Tu. One then obtains T ′ ∈ O(Tu · l(Tu)).If however Π is some RAM with extended instrution set, one only hasthat the supremum of addresses used and the supremum of values inany register of Π are ≤ 2Tu . One then merely obtains T ′

u ∈ O(T 2

u ).
• Of ourse, with RAMs with extended instrution set and the simpleuniform time measure, one an obtain nearly arbitrarily small runningtimes. Two speial ases are however worthwhile mentioning:Let Π is a �standard RAM� with simple uniform time measure Ts. Thenwith the simulation we obtain a suessor RAM Π with simple uniformtime measure T ′

s and T ′

s ∈ O(T 2

s ). The argument for this is exatlyas the one for the previous item. This result is given in [8, Theorem19.28℄.However, if one allows all four arithmeti instrutions, one obtains adramatially di�erent model; see [2℄, [4℄ and [8, Theorem 20.12℄, [8,Theorem 20.35℄: The set of languages whih an be reognized in poly-nomially bounded time on a nondeterministi mahine an then alsobe reognized in polynomially bounded time on a deterministi ma-hine and is equal to the set of languages whih an be reognized inpolynomially bounded spae on a Turing mahine. From a omplex-ity theoreti point of view, this model an be onsidered as a parallelmodel.
• One an �iterate� the de�nition of the mahine type �RAM with ex-tended instrution� set by de�ning a new type whih has as arithmeti



all instrutions of the RAM with extended instrution set. By iterat-ing this proedure, we obtain a sequene RAM types indexed by thenatural numbers; let us all any mahine of these types a RAM withiteratively extended instrution set. We an now also iterate the de�ni-tion of the extended logarithmi time measure and the spae measures,obtaining in this way measures for all these mahines. Let now suh aRAM Π be given. Then one an also apply the simulation iteratively.Finally, one obtains a suessor RAM Π′ whih simulates Π suh thatthe following holds: With the notations as in the Theorem and theusual Õ-notation to apture logarithmi fators, we have:
T ′ ∈ T · Poly(l(S1)) ⊆ Õ(T ) and S ′

3
∈ Õ(S1)

• It would be very interesting to have a general �quasi-optimal� resulton the simulation of random aess mahines in some model by Turingmahines. However, no suh result is known. The following statement ishowever obvious: Let Π be a RAM with extended instrution set. Thenthere exists a Turing mahine (with 1-dimensional tapes) simulating Πwith a time omplexity of O(T · S1) ⊆ O(T 2).6 SummaryWe give a summary of the de�nitions and results of this work on an intuitivelevel.The starting point of this work is the observation that often the analysisof algorithms is performed in an ad-ho way without referene to a spei�model of omputation. Impliitly however, the algorithms are usually ana-lyzed in some kind of random aess mahine (RAM) model with some kindof instrution set. This motivates the searh for a general transfer result to atruly bit-oriented model of omputation. Suh a result is given in this work.Brie�y, the result an be stated as follows: If one de�nes the time andspae requirements of the instrutions of the model in a bit-oriented way,one an obtain a transfer whih is �quasi-optimal�, i.e. �optimal up to alogarithmi fator�.Generally speaking, the result shows that if one employs the usual Õor O∗ notation, it really is justi�ed to take an intuitive and not too formalapproah to omplexity of algorithms.Two aspets should however be added to aution the reader:



First, if one uses the O-notation and gives expliit �logarithmi terms�, itreally is neessary to �rst state the orresponding omputational model. (Atleast as long as no stronger simulation result is known.)Seond, one might argue that a more adequate model of omputationfor algorithms with large spae requirements is the multitape Turing model.There is, however, no general �quasi-optimal� transfer result from RAM mod-els to the Turing model known.AknowledgmentI thank Pierrik Gaudry for disussions on omputational models.Referenes[1℄ A. Aho, J. Hoproft, and J. Ullman. The design and analysis of omputeralgorithms. Addison-Wesley, 1974.[2℄ A. Berton, G Mauri, and N. Sabadini. Simulations among lasses ofrandom aess mahines and equivalene among numbers suintly rep-resented. Ann. Disrete Math., 25:65�90, 1985.[3℄ D. Knuth. The Art of Programming, Vol. 2 (Seminumerial Algorithms).Addison-Wesley, 1969.[4℄ A. Shönhage. On the power of random aess mahines. In H. Maurer,editor, Pro. 6th Internat. Coll. on Automata, Languages and Program-ming, volume 71 of LNCS. Springer, 1979.[5℄ A. Shönhage. Storage Modi�ation Mahines. SIAM J. Computing,9:490�508, 1980.[6℄ A. Shönhage, A. Grotefeld, and E. Vetter. Fast algorithms � a multitapeTuring mahine implementation. BI Wissenshaftsverlag, Mannheim,1994.[7℄ P. van Emide Boas. Mahine Models and Simulations. In J. van Leeuwen,editor, Handbook of Theoretial Computer Siene, Volume A: Algo-rithms and Complexity. Elsevier, 1992.[8℄ K. Wagner and G. Wehsung. Computational Complexity. VEB Verlagder Wissenshaften, Berlin, and D. Reidel Publishing Co., Dordreht,1986.
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