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Shor's and Grover's famous quantum algorithms for fatoring andsearhing show that quantum omputers an solve ertain omputa-tional problems signi�antly faster than any lassial omputer. Wedisuss here what quantum omputers annot do, and spei�ally howto prove limits on their omputational power. We over the mainknown tehniques for proving lower bounds, and exemplify and om-pare the methods.1 IntrodutionThe very �rst issue of the Journal of the ACM was published in January 1954.It was the �rst journal devoted to omputer siene. For its 50th anniversaryvolume, published in January 2003, editors-in-hief Joseph Y. Halpern askedwinners of the Turing Award and the Nevanlinna Prize to disuss up to threeproblems that they thought would be major problems for omputer sienein the next 50 years. Nevanlinna Prize winner Leslie G. Valiant [54℄ desribesthree problems, the �rst of whih is on physially realizable models for om-putation and formalizes the setting by de�ning: �We therefore all our lassPhP, the lass of physially onstrutible polynomial resoure omputers.�He then formulates the problem by: �[t℄o phrase a single question, the fullharaterization of PhP,� and argues that �this single question appears atthis time to be sienti�ally the most fundamental in omputer siene.�On January 26, this year, Nobel Laureate David Gross gave a CERNColloquium presentation on �The future of physis� [28℄. He disusses �25questions that might guide physis, in the broadest sense, over the next 25years,� and inludes as questions 15 and 16 �Complexity� and �QuantumComputing.� In July, this year, the Siene magazine elebrated its 125thanniversary by �explor[ing℄ 125 big questions that fae sienti� enquiry overthe next quarter-entury� [46℄. Among the top 25, is the question of �Whatare the limits of onventional omputing?� Charles Seife writes: �[T℄here isa realm beyond the lassial omputer: the quantum,� and he disusses theissue of determining �what quantum-mehanial properties make quantumomputers so powerful.�In this issue of the Bulletin of the EATCS, we would like to o�er anintrodution to the topi of studying limitations on the power of quantumomputers. Can quantum omputers really be more powerful than traditionalomputers? What an quantum omputers not do? What proof tehniquesare used for proving bounds on the omputational power of quantum om-puters? It is a highly ative area of researh and �ourishing with profoundand beautiful theorems. Though deep, it is fortunately also an aessible



area, based on basi priniples and simple onepts, and one that does notrequire speialized prior knowledge. One aim of this paper is to show this byproviding a fairly omplete introdution to the two most suessful methodsfor proving lower bounds on quantum omputations, the adversary methodand the polynomial method. Our survey is biased towards the adversarymethod sine it is likely the least familiar method and it yields very stronglower bounds. This paper is meant to be supplemented by the exellent sur-vey of Buhrman and de Wolf [19℄ on deision tree omplexities, published in2002 in the journal Theoretial Computer Siene.We demonstrate the methods on a running example, and for this, weuse one of the most basi algorithmi questions one may think of: that ofsearhing an ordered set. Can one implement ordered searhing signi�antlyfaster on a quantum omputer than applying a standard Θ(logN) binarysearh algorithm?The rest of the paper is organized as follows. We motivate and de�ne ourmodels of omputation in the next setion. We then disuss very basi prin-iples used in proving quantum lower bounds in Setion 3 and use them toestablish our �rst lower bound method, the adversary method, in Setion 4.We disuss how to apply the method in Setion 5, and its limitations in Se-tion 6. We then give an introdution to the seond method, the polynomialmethod, in Setion 7. We ompare the two methods in Setion 8 and give afew �nal remarks in Setion 9.We have aimed at limiting prior knowledge on quantum omputing to abare minimum. Sentenes and paragraphs with kets and bras (|this is a ket〉and 〈this is a bra|) an either safely be skipped, or substituted with olumn-vetors and row-vetors, respetively.2 Quantum query omplexityMany quantum algorithms are developed for the so-alled orale model inwhih the input is given as an orale so that the only knowledge we angain about the input is in asking queries to the orale. The input is a �nitebitstring x ∈ {0, 1}N of some length N , where x = x1x2 . . . xN . The goal isto ompute some funtion F : {0, 1}N → {0, 1}m of the input x. Some of thefuntions we onsider are boolean, some not. We use the shorthand notation
[N ] = {1, 2, . . . , N}.As our measure of omplexity, we use the query omplexity. The queryomplexity of an algorithm A omputing a funtion F is the number of queriesused by A. The query omplexity of F is the minimum query omplexity ofany algorithm omputing F . We are interested in proving lower bounds on



the query omplexity of spei� funtions and onsider methods for omput-ing suh lower bounds.An alternative measure of omplexity would be to use the time omplex-ity whih ounts the number of basi operations used by an algorithm. Thetime omplexity is always at least as large as the query omplexity sine eahquery takes one unit step, and thus a lower bound on the query omplexityis also a lower bound on the time omplexity. For most existing quantumalgorithms, inluding Grover's algorithm [27℄, the time omplexity is withinpoly-logarithmi fators of the query omplexity. A notorious exeption is theso-alled Hidden Subgroup Problem whih has polynomial query omplex-ity [23℄, yet polynomial time algorithms are known only for some instanesof the problem.The orale model is alled deision trees in the lassial setting. A lassialquery onsists of an index i ∈ [N ], and the answer of the bit xi. There isa natural way of modeling a query so that it is reversible. The input is apair (i, b), where i ∈ [N ] is an index and b ∈ {0, 1} a bit. The output is thepair (i, b ⊕ xi), where the bit b is �ipped if xi = 1. There are (at least) twonatural ways of generalizing a query to the quantum setting, in whih werequire all operations to be unitary. The �rst way is to onsider a quantumquery as a unitary operator that takes two inputs |i〉|b〉, where i ∈ [N ] and
b ∈ {0, 1}, and outputs |i〉|b ⊕ xi〉. The orale is then simply just a linearextension of the reversible query given above. We extend the de�nition ofthe orale so that we an simulate a non-query, and we allow it to take somearbitrary anilla state |z〉 with z ≥ 0 as part of the input and that is atedupon trivially,

O
′
x|i, b; z〉 =

{
|i, b; z〉 if i = 0 or xi = 0

|i, b⊕ 1; z〉 if i ∈ [N ] and xi = 1. (1)The anilla |z〉 ontains any additional information urrently part of thequantum state that is not involved in the query.The seond way is to onsider a quantum query as a unitary operator
Ox that takes only the one input |i〉 and outputs (−1)xi|i〉, where i ∈ [N ].We say that the orale is �omputed in the phases� by Ox. Both operators
O′

x and Ox square to the identity, i.e., they are their own inverses, and thusunitary. The two operators are equivalent up to a fator of two in that onequery to either orale an be simulated by two queries to the other orale.Though the �rst way is possibly the more intuitive, we shall adapt the seondway as it is very onvenient when proving lower bounds. Again, we extendthe de�nition of the orale Ox so that it also embodies a non-query, and we



allow it to take some arbitrary anilla state |z〉 that is not ated upon,
Ox|i; z〉 =

{
|i; z〉 if i = 0

(−1)xi |i; z〉 if 1 ≤ i ≤ N . (2)We may think of one query as a one-round exhange of information be-tween two parties, the algorithm and the orale. In the lassial setting,the algorithm sends an index i ∈ [N ] to the orale, and the orale respondswith one bit of information, namely xi. In the quantum setting, the algo-rithm sends the log2(N) qubits |i〉 to the orale Ox, and the orale respondswith (−1)xi |i〉. The algorithm and orale thus exhange a total number of
2 log2(N) qubits, and thus, a quantum query toOx an onvey up to 2 log2(N)lassial bits of information about the orale by Holevo's theorem [31, 20℄ andsuperdense oding [18℄.Information theoretially, a funtion F : {0, 1}N → {0, 1}log2(N) thatoutputs at most O(log2(N)) bits, an potentially be solved by a onstantnumber of queries to the orale. An example of suh a problem is the Deutsh-Jozsa problem [22℄, whih is to distinguish balaned boolean funtions fromonstant funtions. (A funtion F is onstant if F (x) = F (y) for all inputs
x, y, and it is balaned if it is not onstant and |F−1(F (x))| = |F−1(F (y))|for all inputs x, y.)A quantum algorithm in the orale model starts in a state that is inde-pendent of the orale. For onveniene, we hoose the state |0〉 in whih allqubits are initialized to 0. It then evolves by applying arbitrary unitary op-erators U to the system, alternated with queries Ox to the orale x, followedby a onlusive measurement of the �nal state, the outome of whih is theresult of the omputation. In symbols, a quantum algorithm A that uses Tqueries, omputes the �nal state

|ψT
x 〉 = UT OxUT−1 · · ·U1OxU0|0〉 (3)whih is then measured. If the algorithm omputes some funtion F :

{0, 1}N → {0, 1}m, we measure the m leftmost bit of the �nal state |ψT
x 〉,produing some outome w. The suess probability px of A on input

x ∈ {0, 1}N is the probability that w = F (x). For omplete funtions
F : {0, 1}N → {0, 1}m, we de�ne the suess probability of A as the mini-mum of px over all x ∈ {0, 1}N . For partial funtions F : S → {0, 1}m, where
S ⊆ {0, 1}N , we take the minimum over S only. A quantum algorithm A haserror at most ǫ if the suess probability of A is at least 1 − ǫ. Let Qǫ(F )denote the minimum query omplexity of any quantum algorithm that om-putes F with two-sided error at most ǫ, and as ommon, let Q2(F ) = Q1/3(F )denote the two-sided bounded error omplexity with ǫ = 1/3.



As our running example, we use the well-known ordered searhing prob-lem. In the orale model, the input to ordered searhing is an N-bit string
x = (x1, . . . , xN ). We are promised that xi ≤ xi+1 for all 1 ≤ i < N andthat xN = 1, and the goal is to �nd the leftmost 1, i.e., the index i ∈ [N ] forwhih xi = 1 and no index j < i exists with xj = 1.Given: An N-bit string x = (x1, x2, . . . , xN ) given as an orale.Promise: xi ≤ xi+1 for 1 ≤ i < N and xN = 1.Output: Index i suh that xi = 1 and either xi−1 = 0 or i = 1.The lassial query omplexity of ordered searhing is ⌈log2(N)⌉ and isahieved by standard binary searhing. The quantum query omplexity is atmost 0.45 log2N , due to the work of high shool student M. B. Jaokes inollaboration with Landahl and Brookes [33℄ (See also [24, 30℄). Using theadversary method, we show that their algorithm is within a fator of abouttwo of being optimal.3 Distinguishing hard inputsThe �rst quantum lower bound using adversary arguments was given by Ben-nett, Bernstein, Brassard, and Vazirani in [8℄. They show that any quantumquery algorithm an be sensitive to at most quadratially many orale bits,whih implies a lower bound of Ω(

√
N) for Grover's problem [27℄ and thusproves that Grover's O(

√
N) algorithm is optimal. Grover's problem is asearh problem in whih we are given an N-bit string x ∈ {0, 1}N as an ora-le, and the goal is to �nd an index i for whih xi = 1, provided one exists.Interestingly, the lower bound of Bennett et al. was proved in 1994, wellbefore Grover de�ned his searh problem. In 2000, Ambainis [3℄ found animportant generalization of the method and oined it �adversary arguments.�A onstrutive interpretation of basi adversary arguments is in termsof distinguishability. We will thus not be onerned about omputing thefuntion F , but merely interested in distinguishing orales. Consider somealgorithm A that omputes some funtion F in the orale model, and onsidertwo inputs x, y ∈ {0, 1}N for whih F (x) 6= F (y). Sine A omputes F , itmust in partiular be apable of distinguishing between orale x and orale y.For a given problem we try to identify pairs of orales that are hard todistinguish. If we an identify hard input pairs, we may derive a good lowerbound. However, a aveat is that using only the very hardest input pairs doesnot yield good lower bounds for some problems, and we are thus naturallyled to also onsider less hard input pairs. A remedy is to use weights that



apture the hardness of distinguishing eah pair of orales, and to do so, wede�ne a matrix Γ of dimension 2N × 2N that takes non-negative real values,
Γ : {0, 1}N × {0, 1}N → ℜ+

0 . (4)We require that Γ is symmetri and that Γ[x, y] = 0 whenever F (x) =
F (y). We say that Γ is a spetral adversary matrix for F if it satis�es thesetwo onditions. The symmetry ondition on Γ states that we are onernedabout distinguishing between any two inputs x, y. We are not onernedabout distinguishing x from y, nor distinguishing y from x. We disuss thissubtlety further in Setion 5 below when onsidering alternative de�nitionsof weighted adversary arguments. The spetral adversary matrix Γ allows usto apture both total and partial funtions, as well as non-boolean funtions.Sine we are only onerned about distinguishability, one we have spei�edthe entries of Γ, we may safely ignore the underlying funtion F .Weighted adversary arguments were �rst used by Høyer, Neerbek, andShi in [30℄ to prove a lower bound of Ω(logN) for ordered searhing and
Ω(N logN) for sorting. Barnum and Saks [16℄ used weighted adversaryarguments to prove a lower bound of Ω(

√
N) for read-one formulae, andintrodued the notion Γ that we adapt here. Barnum, Saks, and Szegedyextended their work in [17℄ and derived a general lower bound on the queryomplexity of F in terms of spetral properties of matrix Γ. Their lowerbound has a very elegant and short formulation, a basi proof, and apturesimportant properties of adversary methods, and we shall thus adapt muh oftheir terminology.As disussed above, the key to prove a good lower bound is to pik a goodadversary matrix Γ. For our running example of ordered searhing, whih isa partial non-boolean funtion, we use the following weights.Example: Ordered Seahing 1. The weight on the pair (x, y) is the in-verse of the Hamming distane of x and y,

Γsearh[x, y] =

{
1

|F (x)−F (y)|
if x and y are valid and distint inputs to F

0 otherwise. (5)The larger Hamming distane between x and y, the easier it is to distinguishthem, and the smaller weight is assigned to the pair.We have to hoose how to measure distinguishability. The possibly sim-plest measure is to use inner produts. Two quantum states are distinguish-able with ertainty if and only if they are orthogonal, and they an be dis-tinguished with high probability if and only if their inner produt has smallabsolute value.



Fat 1. Suppose we are given one of two known states |Ψx〉, |Ψy〉. Thereexists a measurement that orretly determines whih of the two states weare given with error probability at most ǫ if and only if |〈Ψx|Ψy〉| ≤ ǫ′, where
ǫ′ = 2

√
ǫ(1 − ǫ).Sine a unitary operator is just a hange of basis, it does not hange theinner produt between any two quantum states, and thus the inner produtan only hange as a onsequene of queries to the orale.4 Adversary lower boundsAdversary lower bounds are information theoretial of nature. A basi ideain adversary lower bounds is to upper bound the amount of information thatan be learned in a single query. If little information an be learned in anyone query, then many queries are required. We use spetral properties of Γto put an upper bound on the amount of information the algorithm learnsabout the orale.Let A be some quantum algorithm that omputes some funtion F withbounded two-sided error. For every integer t ≥ 0 and every orale x, let

|ψt
x〉 = UtOx · · ·U1OxU0|0〉 (6)denote the quantum state after t queries to the orale. To measure theprogress of the algorithm, we de�ne similarly to [3, 30, 16, 17℄ a weightfuntion

W t =
∑

x,y

Γ[x, y]δxδy · 〈ψt
x|ψt

y〉, (7)where δ is a �xed prinipal eigenvetor of Γ, i.e., a normalized eigenvetororresponding to the largest eigenvalue of Γ, and where δx denotes the xthentry of δ.The algorithm starts in a quantum state |ψ0
x〉 = U0|0〉 whih is indepen-dent of the orale x, and thus the total initial weight is

W 0 =
∑

x,y

Γ[x, y]δxδy = λ(Γ), (8)where λ(Γ) denotes the spetral norm of Γ. The �nal state of the algorithmafter T queries is |ψT
x 〉 if the orale is x, and it is |ψT

y 〉 if the orale is y.If F (x) 6= F (y), we must have that |〈ψT
x |ψT

y 〉| ≤ ǫ′ by Fat 1, and hene
W T ≤ ǫ′W 0. If the total weight an derease by at most ∆ by eah query,the algorithm requires Ω(W 0

∆
) queries to the orale.



Following Barnum, Saks, and Szegedy [17℄, we upper bound ∆ by thelargest spetral norm of the matries Γi, de�ned by
Γi[x, y] =

{
Γi[x, y] if xi 6= yi

0 if xi = yi, (9)for eah 1 ≤ i ≤ n. The theorem of [17℄ is here stated (and proved) in aslightly more general form than in [17℄ so that it also applies on non-booleanfuntions. Our proof aims at emphasizing distinguishability and di�ers fromthe original.Theorem 2 (Spetral method [17℄). For any adversary matrix Γ for anyfuntion F : {0, 1}N → {0, 1}m,
Q2(F ) = Ω

( λ(Γ)

maxi λ(Γi)

)
. (10)Proof. We prove that the drop in total weightW t−W t+1 by the t+ 1th queryis upper-bounded by the largest eigenvalue of the matries Γi.For eah 0 ≤ i ≤ N , let Pi =

∑
z≥0 |i; z〉〈i; z| denote the projetiononto the subspae querying the ith orale bit. Let βx,i = |Pi|ψt

x〉| denote theabsolute value of the amplitude of querying the ith bit in the t+ 1th query,provided the orale is x. Note that ∑N
i=0 β

2
x,i = 1 for any orale x, sine thealgorithm queries one of the N bits x1, . . . , xN , or simulates a non-query byquerying the orale with i = 0. The t+ 1th query hanges the inner produtby at most the overlap between the projetions of the two states onto thesubspae that orresponds to indies i on whih xi and yi di�er,∣∣∣〈ψt

x|ψt
y〉 − 〈ψt+1

x |ψt+1
y 〉

∣∣∣ =
∣∣∣〈ψt

x|(I − OxOy)|ψt
y〉
∣∣∣ =

=
∣∣∣2
∑

i:xi 6=yi

〈ψt
x|Pi|ψt

y〉
∣∣∣ ≤ 2

∑

i:xi 6=yi

βx,iβy,i. (11)The bigger amplitudes of querying the bits i on whih xi and yi di�er,the larger the drop in the inner produt an be.De�ne an auxiliary vetor ai[x] = δxβx,i and note that
N∑

i=0

a2
i =

N∑

i=0

∑

x

δ2
xβ

2
x,i =

∑

x

δ2
x

N∑

i=0

β2
x,i =

∑

x

δ2
x = 1.



The drop in the total weight is upper bounded by
∣∣W t −W t+1

∣∣ =
∣∣∣
∑

x,y

Γ[x, y]δxδy
(
〈ψx|ψy〉 − 〈ψ′

x|ψ′
y〉
)∣∣∣

=
∣∣∣2
∑

x,y

∑

i:xi 6=yi

Γ[x, y]δxδy〈ψx|Pi|ψy〉
∣∣∣

≤ 2
∑

x,y

∑

i

Γi[x, y]δxδy · βx,iβy,i

= 2
∑

i

a∗i Γiai

≤ 2
∑

i

λ(Γi)a
2
i

≤ 2 max
i
λ(Γi) ·

∑

i

a2
i

= 2 max
i
λ(Γi).Here a∗i denotes the transpose of ai. The �rst inequality bounds the drop ininner produt for a spei� pair and follows from Equation 11. The seondinequality follows from the spetral norm of Γ. The seond and third inequal-ities state that the best possible query distributes the amplitude of the queryaording to the largest prinipal eigenvetor of the query matries Γi. ⊓⊔Example: Ordered Seahing 2. Returning to our example of orderedsearhing, for N = 4, the adversary matrix with respet to the ordered basis

(0001, 0011, 0111, 1111) is given by
Γsearh(4)

=




0 1 1
2

1
3

1 0 1 1
2

1
2

1 0 1
1
3

1
2

1 0


 .The spetral norm is easily seen to be lower bounded by the sum of the entriesin the �rst row, λ(Γsearh(4)

) ≥ 1+ 1
2
+ 1

3
. In general, λ(Γsearh) is lower boundedby the harmoni number HN−1, whih is at least ln(N). The spetral normof the query matries λ(Γsearh

i ) is maximized when i = ⌊N/2⌋, in whihase it is upper bounded by the spetral norm of the in�nite Hilbert matrix
[1/(r+s−1)]r,s≥1, whih is π. We thus reprove the lower bound of (1−ǫ′) ln(N)

πfor ordered searhing in given [30℄.



5 Applying the spetral methodThe spetral method is very appealing in that it has a simple formulation,a basi proof, and gives good lower bounds for many problems. �palek andSzegedy [51℄ show that for any problem, the best lower bound ahievableby the spetral method is always at least as good as the best lower boundahievable by any of the previously published adversary methods. Theirproof is onstrutive and illuminating: given any lower bound in any ofthe previously published adversary methods, they onstrut an adversarymatrix Γ and prove it ahieves the same lower bound.The �rst general quantum lower bound using adversary arguments wasintrodued by Ambainis in [3℄. As shown in [51℄, it an be derived from thespetral method by applying simple bounds on the spetral norm of Γ andeah Γi. By de�nition, the numerator λ(Γ) is lower-bounded by 1
|d|2
d∗Γd forany non-negative vetor d, and by Mathias' lemma [39℄, the denominator

λ(Γi) is upper-bounded by the produt of a row-norm and a olumn-norm.Lemma 3 ([39, 51℄). Let G be any non-negative symmetri matrix and
M,N non-negative matries suh that G = M ◦ N is the entrywise produtof M and N . Then

λ(G) ≤ max
x,y

G[x,y]>0

rx(M) cy(N),where rx(M) is the ℓ2-norm of the xth row in M , and cy(N) is the ℓ2-normof the yth olumn in N .Applying these two bounds, we obtain Ambainis' lower bound in [3℄. Werefer to the method as an unweighted adversary method sine it onsidersonly two types of inputs: easy inputs and hard inputs. We onstrut a zero-one valued adversary matrix Γ that orresponds to a uniform distributionover the hard input pairs.Theorem 4 (Unweighted method [3℄). Let F be a partial boolean fun-tion, and let A ⊆ F−1(0) and B ⊆ F−1(1) be subsets of (hard) inputs. Let
R ⊆ A × B be a relation, and set Ri = {(x, y) ∈ R : xi 6= yi} for eah
1 ≤ i ≤ n. Let m,m′ denote the minimal number of ones in any row and anyolumn in relation R, respetively, and let ℓ, ℓ′ denote the maximal numberof ones in any row and any olumn in any of the relations Ri, respetively.Then Q2(f) = Ω(

√
mm′/ℓℓ′).Proof. Let S = {(x, y) : (x, y) ∈ R ∨ (y, x) ∈ R} be a symmetrizedversion of R. De�ne a olumn vetor d from the relation S by setting



dx =
√

|{y : (x, y) ∈ S}|, and an adversary matrix Γ by setting Γ[x, y] = 1
dxdyif and only if (x, y) ∈ S. Then λ(Γ) ≥ 1

|d|2
d∗Γd = 1. For eah ofthe matries Γi, we apply Lemma 3 with M [x, y] = N [y, x] = 1

dx
if andonly if (x, y) ∈ S. For every x ∈ A, rx(M) ≤

√
ℓ/d2

x ≤
√
ℓ/m and

cy(N) ≤
√
ℓ′/d2

y ≤
√
ℓ′/m′. For every x ∈ B, the inequalities are swapped.By Lemma 3, λ(Γi) ≤ maxx,y:Γi[x,y]>0 rx(M)cy(N) ≤

√
ℓℓ′/mm′. ⊓⊔The unweighted adversary method is very simple to apply as it requiresonly to speify a set R of hard input pairs. It gives tight lower bounds formany omputational problems, inluding inverting a permutation [3℄, om-puting any symmetri funtion and ounting [42, 10, 14℄, onstant-level and-or trees [3, 29℄, and various graph problems [21℄. For some omputationalproblems, the hardness does however not neessarily rely only on a few se-leted hard instanes, but rather on more global properties of the inputs.Applying the unweighted method on ordered searhing would for instaneonly yield a lower bound of a onstant. In these ases, we may apply thefollowing weighted variant of the method, due to Ambainis [4℄ and Zhang [57℄.Theorem 5 (Weighted method [4, 57℄). Let F : S → {0, 1}m be a partialfuntion. Let w,w′ denote a weight sheme as follows:

• Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) =
w(y, x) that satis�es w(x, y) = 0 whenever F (x) = F (y).

• Every triple (x, y, i) ∈ S2 × [N ] is assigned a non-negative weight
w′(x, y, i) that satis�es w′(x, y, i) = 0 whenever xi = yi or F (x) = F (y),and w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i suh that xi 6= yi.Then

Q2(F ) = Ω

(
min
x,y,i

w(x,y)>0
xi 6=yi

√
wt(x)wt(y)

v(x, i)v(y, i)

)
,where wt(x) =

∑
y w(x, y) and v(x, i) =

∑
y w

′(x, y, i) for all x ∈ S and i ∈
[N ].At �rst glane, the weighted method may look rather ompliated, bothin its formulation and use, though it is not. We �rst assign weights to pairs
(x, y) of inputs for whih F (x) 6= F (y), as in the spetral method. Werequire the weights to be symmetri so that they represent the di�ulty indistinguishing between x and y.We then afterwards assign weights w′(x, y, i) that represent the di�ultyin distinguishing x from y by querying index i. The harder it is to distinguish



x from y by index i, ompared to distinguishing y from x by index i, the moreweight we put on (x, y, i) and the less on (y, x, i), and visa-versa.To quantify this, de�ne t(x, y, i) = w′(x, y, i)/w′(y, x, i). Then t(x, y, i)represents the relative amount of information we learn about input pairs
(x, z) ompared to the amount of information we learn about input pairs
(u, y), by querying index i. If we, by querying index i, learn little about
x ompared to y, we let t(x, y, i) be large, and otherwise small. Considerwe query an index i for whih xi 6= yi. Then we learn whether the oraleis x or y. However, at the same time, we also learn whether the orale is
x or z for any other pair (x, z) for whih xi 6= zi and F (x) 6= F (z); andsimilarly, we learn whether the orale is u or y for any other pair (u, y) forwhih ui 6= yi and F (u) 6= F (y). The less information querying index iprovides about pairs (x, z) ompared to pairs (u, y), the larger we hoose
t(x, y, i). Having thus hosen t(x, y, i), we set w′(x, y, i) = w(x, y)

√
t(x, y, i)and w′(y, x, i) = w(x, y)/

√
t(x, y, i).We show next that the weighted method yields a lower bound of Ω(logN)for the ordered searhing problem. This proves that the weighted method isstritly stronger than the unweighted method. The weighted method yieldsstrong lower bounds for read-one formula [16℄ and iterated funtions [4℄.Aaronson [2℄, Santha and Szegedy [50℄, and Zhang [58℄ use adversary argu-ments to prove lower bounds for loal searh, a distributed version of Grover'sproblem. �palek and Szegedy prove in [51℄ that the weighted method is equiv-alent to the spetral method�any lower bound that an be ahieved by oneof the two methods an also be shown by the other. Their proof is on-strutive and gives simple expressions for onverting one into the other. Themain weights w(x, y) are the oe�ients of the weight funtion W t for theinput pair (x, y), that is, w(x, y) = Γ[x, y]δxδy, and the seondary weights

w′(x, y, i) follow from Mathias' lemma [39℄ (Lemma 3).Example: Ordered Seahing 3. To apply the weighted method on or-dered searhing, we pik the same weights w(x, y) = Γsearh[x, y] δxδy as inthe spetral method as there are no strong reasons for hoosing otherwise.Now, onsider t(x, y, i) with F (x) ≤ i < F (y) so that xi 6= yi. By queryingindex i, we also learn to distinguish between x and z for eah of the F (y)− iinputs z with i < F (z) ≤ F (y), and we learn to distinguish between u and yfor eah of the i− F (x) + 1 inputs u with F (x) ≤ F (u) ≤ i. We thus hooseto set
t(x, y, i) =

|F (y) − i| + 1

|F (x) − i| + 1
.Plugging these values into the weighted method yields a lower bound of

Ω(logN) for ordered searhing.



6 Limitations of the spetral methodThe spetral method and the weighted adversary method bound the amountof information that an be learned in any one query. They do not take intoaount that the amount of information that an be learned in the jth querymight di�er from the amount of information that an be learned in the kthquery.In 1999, Zalka [56℄ suessfully managed to apture the amount of infor-mation that an be learned in eah individual query for a restrited versionof Grover's problem [27℄. In this restrited version, we are promised that theinput orale x is either the zero-string (so |x| = 0) or exatly one entry in
x is one (so |x| = 1), and the goal is to determine whih is the ase. Bysymmetry onsiderations, Zalka demonstrates that Grover's algorithm satu-rates some improved inequalities (whih are similar to Eq. 11) and hene isoptimal, even to within an additive onstant.Sine urrent adversary methods do not apture the amount of informa-tion the algorithm urrently knows, we may simply assume that the algorithmalready knows every bit of the orale and that it tries to prove so. This mo-tivates a study of the relationship between the best bound ahievable by thespetral method and the erti�ate omplexity. A erti�ate for an input
x ∈ {0, 1}N , is a subset C ⊆ [N ] of input bits suh that for any other input yin the domain of F that may be obtained from x by �ipping some of the in-dies not in C, we have that F (x) = F (y). The erti�ate omplexity Cx(F )of input x is the size of a smallest erti�ate for x. The erti�ate omplexityC(F ) of a funtion F is the maximum erti�ate omplexity of any of itsinputs. We also de�ne the z-erti�ate omplexity Cz(F ) when taking themaximum only over inputs that map to z. The spetral theorem an thennever yield a lower bound better than a quantity that an be expressed interms of erti�ate omplexity.Lemma 6 ([38, 57, 51℄). Let F : S → {0, 1} be any partialboolean funtion. The spetral adversary lower bound Adv(F ) is at most
min

{√C0(F )N,
√C1(F )N

}. If F is total, the method is limited by√C0(F )C1(F ).The erti�ate omplexity of a funtion F : {0, 1}N → {0, 1}m is it-self polynomially related to the blok sensitivity of the funtion. An input
x ∈ {0, 1}N is sensitive to a blok B ⊆ [N ] if F (x) 6= F (xB), where xB de-notes the input obtained by �ipping the bits in x with indies from B. Theblok sensitivity bsx(F ) of input x is the maximum number of disjoint bloks
B1, B2, . . . , Bk ⊆ [N ] on whih x is sensitive. The blok sensitivity bs(F ) of
F is the maximum blok sensitivity of any of its inputs. We also de�ne the



z-blok sensitivity bsz(F ) when taking the maximum only over inputs thatmap to z.For any boolean funtion F : {0, 1}N → {0, 1}, the erti�ate omplexityis upper bounded by C(F ) ≤ bs0(F )bs1(F ), and thus so is the spetraladversary method. Conversely, Adv(F ) ≥
√bs(F ) by a zero-one valuedadversary matrix Γ: Let x′ ∈ {0, 1}N be an input that ahieves the bloksensitivity of F , and let B1, B2, . . . , Bk ⊆ [N ] be disjoint bloks on whih x′is sensitive, where k = bs(F ). Set Γ(F )[x, xB] = 1 if and only if x = x′ and

B is one of the k bloks Bi and lose Γ under transposition. Then λ(Γ) =
√
kand maxi λ(Γi) = 1, and thus

√bs(F ) ≤ Adv(F ) ≤ bs0(F )bs1(F ). (12)The spetral adversary method is not suitable for proving lower boundsfor problems related to property testing. If funtion F : S → {0, 1} is apartial funtion with S ⊆ {0, 1}N suh that every zero-input is of Hammingdistane at least εn from every one-input, then the spetral theorem doesnot yield a lower bound better than 1/ε.Laplante and Magniez introdue in [38℄ a lower-bound method basedon Kolmogorov omplexity. They show by diret onstrutions that theirmethod is at least as strong as eah of the two methods, the spetral andweighted adversary method. �palek and Szegedy then show in [51℄ that thespetral method is at least as strong as the Kolmogorov omplexity method,allowing us to onlude that the three methods are equivalent. Having suha variety of representations of the same method shows that the adversarymethod is very versatile and aptures fundamental properties of funtions.Indeed, Laplante, Lee, and Szegedy [37℄ show that the square of the adver-sary bound is a lower bound on the formula size. The following lower-boundmethod is a ombinatorial version of the Kolmogorov omplexity method.Theorem 7 (Minimax method [38, 51℄). Let F : S → {0, 1}m be a partialfuntion and A a bounded-error quantum algorithm for F . Let p : S× [N ] →
ℜ+

0 be a set of |S| probability distributions suh that px(i) denotes the averageprobability of querying the ith input bit on input x, where the average is takenover the whole omputation of A. Then the query omplexity QA of algorithm
A satis�es

QA ≥Mp = max
x,y:F (x)6=F (y)

1∑
i:xi 6=yi

√
px(i) py(i)

.The previous methods satisfy the property that if we plug in some matrixor relation, we get a valid lower bound. The minimax method is prinipallydi�erent. A lower bound omputed by the minimax theorem holds for one



partiular algorithm A, and it may not hold for some other and better algo-rithm. However, we may obtain a universal lower bound that holds for everybounded error algorithm by simply taking the minimum of the bound Mpover all possible sets of probability distributions p. The spetral bound andthe minimax bound are in a primal-dual relation: the best lower bound thatan be obtained by any adversary matrix Γ equals the smallest bound thatan be obtained by a set of probability distributions p [51℄. Primal methodsare used for obtaining onrete lower bounds and dual methods are used forproving limitations of the method, as in Lemma 6.A useful property of the adversary method is that it omposes. Considera funtion of the form H = F ◦ (G1, . . . , Gk), where F : {0, 1}k → {0, 1}and Gi : {0, 1}Ni → {0, 1} for i = 1, . . . , k are partial boolean funtions.A omposition theorem states the omplexity of funtion H in terms of theomplexities of F and G1, . . . , Gk. Barnum and Saks [16℄ use ompositionproperties to prove a query lower bound of Ω(
√
N) for any read-one formula,Ambainis [4℄ proves a omposition lower bound for iterated boolean funtions,and Laplante, Lee, and Szegedy [37℄ prove a limitation on omposition lowerbounds for funtions Gi for whih the adversary bound is upper bounded bya ommon bound b. To formulate a omposition theorem for arbitrary aseswhen the funtions Gi may have di�erent adversary bounds, we require aweighted version of the spetral method.Let F : {0, 1}N → {0, 1} be a partial boolean funtion and α =

(α1, . . . , αN) a string of positive reals. LetAdvα(F ) = max
Γ

min
i

{
αi
λ(Γ)

λ(Γi)

}
,where Γ ranges over all adversary matries for F . If the weights are all 1, thenour new quantity Advα(F ) oinides with the spetral adversary bound andis thus a lower bound on the quantum query omplexity of F . If the weights

α are non-uniform, then Advα(F ) is a new abstrat omplexity measure thatassigns ost αi to querying the ith input bit. We an then prove [32℄ that thequantity Advα omposes in the following sense.Theorem 8 (Composition Theorem [16, 4, 37, 32℄). For any om-posite funtion H = F ◦ (G1, . . . , Gk), where F : {0, 1}k → {0, 1} and
Gi : {0, 1}Ni → {0, 1} are partial boolean funtions,Advα(H) = Advβ(F ),where βi = Advαi(Gi), and α = (α1, . . . , αk) is a k-tuple of strings αi ∈ ℜ+Ni.



A natural generalization of Grover's problem is the so-alled k-fold searhproblem in whih we are promised that exatly k entries of the input orale
x are one (so |x| = k), and the goal is to �nd all of these k indies. Wesay an algorithm A sueeds if it outputs a subset S ⊆ [N ] of size k and Sontains all indies i ∈ [N ] for whih xi = 1. Thus, by de�nition, it fails evenif it outputs all but one of the k indies. The k-fold searh problem an besolved in O(

√
kn) queries, essentially by sequentially running Grover's searhalgorithm k times. Klauk, �palek, and de Wolf [35℄ show that if the numberof queries is less than ǫ√kn for some onstant ǫ, then the suess probabilityof A is exponentially small in k. They thus prove a strong diret produttheorem for the k-fold searh problem. One of the main elements of the proofis the polynomial method whih we disuss in the next setion.In very reent work, Ambainis [5℄ proposes an extension of the adversarymethod and uses it to reprove the strong diret produt theorem of [35℄.Though the following very brief desription of the proof does not give fulljustie to the method, we hope it onveys some of the intuition on whih [5℄ isbased. The algorithm runs on a uniform superposition of all inputs. Duringthe omputation, the input register gets entangled with the workspae of thealgorithm due to the queries to the orale. We trae out the workspae andexamine the eigenspaes of the density matrix of the input register. Due tosymmetries, there are exatly k + 1 eigenspaes, indexed by the number ofones the algorithm �knows� at that stage of the algorithm. In the beginning,all amplitude is in the 0th eigenspae. One query an only move little ampli-tude from the ith eigenspae to the i+ 1th eigenspae. If the algorithm hasa good suess probability, the quantum amplitude of high eigenspaes mustbe signi�ant, sine the algorithm must �know� most of the k indies, whihimplies a lower bound on the query omplexity.7 Polynomial lower boundsThere are essentially two di�erent methods known for proving lower boundson quantum omputations. The historially �rst method is the adversarymethod we disuss above. It was introdued in 1994 by Bennett, Bernstein,Brassard, and Vazirani, and published in 1997 in the SIAM Journal on Com-puting, in a speial setion that ontains some of the most outstanding paperson quantum omputing. The seond method was introdued shortly after,in 1998, by Beals, Buhrman, Cleve, Mosa, and de Wolf [9℄, and impliitlyused by Fortnow and Rogers in [25℄. Their approah is algebrai and followsearlier very suessful work on lassial lower bounds via polynomials (see forinstane Beigel's 1993 survey [11℄ and Regan's 1997 survey [44℄). We �rst es-



tablish that any partial boolean funtion F : S → {0, 1}, where S ⊆ {0, 1}N ,an be represented by a real-valued polynomial p : ℜN → ℜ.De�nition 9. Let F : S → {0, 1} be a partial boolean funtion, where S ⊆
{0, 1}N . An N-variable polynomial p represents F if p(x) = F (x) for all
x ∈ S, and it approximates F if |p(x)−F (x)| ≤ 1

3
for all x ∈ S. The degreeof F , denoted deg(F ), is the minimal degree of a polynomial representing F .The approximate degree of F , denoted d̃eg(F ), is the minimal degree of apolynomial approximating F .The rux in [9℄ is in showing that any quantum algorithm A omputingsome funtion F gives rise to some polynomial pA that represents or approx-imates F .Theorem 10 ([9℄). Let A be a quantum algorithm that omputes a partialboolean funtion F : S → {0, 1}, where S ⊆ {0, 1}N , using at most T queriesto the orale O

′
x. Then there exists an N-variate real-valued multilinear poly-nomial pA : ℜN → ℜ of degree at most 2T , whih equals the aeptaneprobability of A.Proof. In this theorem, we use the orale O′

x whih is equivalent to the ora-le Ox, sine it allows for simple formulations. We �rst rewrite the ation of
O

′
x as

O
′
x|i, b; z〉 = (1 − xi)|i, b; z〉 + xi|i, b⊕ 1; z〉 (13)where we de�ne xi = 0 for i = 0 so that we an simulate a non-queryby querying xi with i = 0. Suppose we apply O′

x on some superposition∑
i,b,z αi,b,z|i, b; z〉 where eah amplitude αi,b,z is an N-variate omplex-valuedpolynomial in x of degree at most j. Then, by Eq. 13, the resulting state∑
i,b,z βi,b,z|i, b; z〉 is a superposition where eah amplitude βi,b,z is an N-variate omplex-valued polynomial in x of degree at most j+1. By proof byindution, after T queries, eah amplitude an be expressed as a omplex-valued polynomial in x of degree at most T . The probability that the �nalmeasurement yields the outome 1, orresponding to aepting the input, isobtained by summing some of the absolute values of the amplitudes squared.The square of any of the absolute amplitudes an be expressed as a real-valued polynomial pA in x of degree at most 2T . Theorem 10 follows. ⊓⊔The above theorem states that to any quantum algorithm A omputinga boolean funtion F : S → {0, 1}, where S ⊆ {0, 1}N , we an assoiate an

N-variate polynomial pA : ℜN → ℜ that expresses the aeptane probabilityof the algorithm on any given input. If algorithm A is exat, i.e., if A alwaysstops and outputs the orret answer, then pA(x) = F (x) for all x ∈ S, and



thus pA represents F . If A has bounded error, then 0 ≤ pA(x) ≤ 1/3 if
F (x) = 0 and 2/3 ≤ pA(x) ≤ 1 if F (x) = 1, and thus pA approximates F .The degree of pA is at most twie the number of queries used by algorithm A.Consequently, the degree of a funtion is a lower bound on the quantumquery omplexity, up to a fator of two.Corollary 11 (Polynomial method [9℄). For any partial boolean fun-tion F : S → {0, 1}, where S ⊆ {0, 1}N , we have QE(F ) ≥ deg(F )/2 and
Q2(F ) ≥ d̃eg(F )/2.8 Applying the polynomial methodThe hallenge in applying the polynomial method lies in the dimensionality ofthe input. Typially, the method is applied by �rst identifying a univariateor bivariate polynomial that aptures essential properties of the problem,and then proving a lower bound on the degree of that polynomial. Theseond part is typially reasonably straightforward sine polynomials havebeen studied for enturies and muh is known about their degrees. Thepossibly simplest nontrivial example is when F is the threshold funtionThrt de�ned by Thrt(x) = 1 if and only if |x| ≥ t. It is easy to see that
deg(Thrt) = Θ(N) for all nontrivial threshold funtions, and thus QE(Thrt) =
Ω(N). Paturi [43℄ shows that d̃eg(Thrt) = Θ

(√
(t+ 1)(N − t+ 1)

), and wethus readily get that Q2(Thrt) = Ω
(√

(t+ 1)(N − t+ 1)
), whih is tight byquantum ounting [14, 9℄. This degree argument extends to any symmetrifuntion F by writing F as a sum of threshold funtions. The same tightlower bounds for symmetri funtions an also be obtained by the unweightedadversary method (see the paragraph after Theorem 4).For general non-symmetri funtions, the polynomial method is, however,signi�antly harder to apply. For problems that are �lose� to being sym-metri, we an sometimes sueed in onstruting a univariate or bivariatepolynomial that yields a non-trivial lower bound. The �rst and, in our view,most important suh a result was obtained by Aaronson in [1℄ in whih heproves a lower bound of Ω(N1/5) on any bounded-error quantum algorithmfor the ollision problem.The ollision problem is a non-boolean promise problem. The orale isan N-tuple of positive integers between 1 and M , whih we think of as afuntion X : [N ] → [M ]. We model the orale O′′

X so that a query to the ithentry of the orale returns the integer X(i). Spei�ally, O′′
X takes as input

|i, r; z〉 and outputs |i, r⊕X(i); z〉 where 0 ≤ r < 2m for m = ⌈log2(M +1)⌉,and r⊕X(i) denotes bitwise addition modulo 2. We are promised that either



X is a one-to-one funtion, or X is two-to-one, and the goal is to determinewhih is the ase.The result of Aaronson was shortly after improved by Shi [47℄ to Ω(N1/4)for general funtions X : [N ] → [M ], and to Ω(N1/3) in the ase the rangeis larger than the domain by a onstant fator, M ≥ 3
2
N . The lower boundsof Aaronson and Shi appears as a joint artile [7℄. Finally, Kutin [36℄ andAmbainis [6℄ independently found remedies for the tehnial limitations inShi's proof, yielding an Ω(N1/3) lower bound for all funtions, whih is tightby an algorithm that uses Grover searh on subsets by Brassard, Høyer, andTapp [13℄.The best lower bound for the ollision problem that an be obtained usingthe adversary method is only a onstant, sine any one-to-one funtion is oflarge Hamming distane to any two-to-one funtion. Koiran, Nesme, andPortier [34℄ use the polynomial method to prove a lower bound of Ω(logN)for Simon's problem [48℄, whih is tight [48, 12℄. Simon's problem is a partialboolean funtion having properties related to �nite abelian groups. Also forthis problem, the best lower bound that an be obtained using the adversarymethod is a onstant.In ontrast, for any total boolean funtion F : {0, 1}N → {0, 1}, theadversary and polynomial method are both polynomially related to bloksensitivity,

√bs(F )/6 ≤ d̃eg(F ) ≤ deg(F ) ≤ bs3(F ) (14)
√bs(F ) ≤ Adv(F ) ≤ bs2(F ). (15)It follows from [19℄ that deg(F ) ≤ bs3(F ), and from Nisan and Szegedy [41℄that 6d̃eg(F )2 ≥ bs(F ). Buhrman and de Wolf [19℄ provides an exellentsurvey of these and other omplexity measures of boolean funtions.The polynomial lower bound is known to be inferior to the weightedadversary method for some total boolean funtions. In [4℄, Ambainis gives aboolean funtion F : {0, 1}4 → {0, 1} on four bits, whih an be desribedas �the four input bits are sorted� [37℄, for whih deg(F ) = 2 and for whihthere exists an adversary matrix ΓF satisfying that λ(ΓF )/maxi λ(ΓF

i ) = 2.5.We ompose the funtion with itself and obtain a boolean funtion F2 = F ◦
(F, F, F, F ) : {0, 1}16 → {0, 1} de�ned on 16 bits for whih deg(F2) = 4, andfor whih λ(ΓF2)/maxi λ(ΓF2

i ) = 2.52, by the omposition theorem. Iterating
n times, yields a funtion F on N = 4n bits of degree deg(F ) = 2n, withspetral lower bound 2.5n = deg(F )1.32..., by the omposition theorem. Thethus onstruted funtion F is an example of an iterated funtion of lowdegree and high quantum query omplexity. It is the urrently biggest knowngap between the polynomial method and the adversary method for a total



funtion. Another iterated total funtion for whih the adversary methodsyield a lower bound better than the degree, is the funtion desribed by �allthree input bits are equal� [4℄.The polynomial method is very suitable when onsidering quantum al-gorithms omputing funtions with error ǫ that is sub-onstant, whereas theadversary method is not formulated so as to apture suh a �ne-grainedanalysis. Buhrman, Cleve, de Wolf, and Zalka [10℄ show that any quan-tum algorithm for Grover's problem that sueeds in �nding an index i forwhih xi = 1 with probability at least 1 − ǫ, provided one exists, requires
Ω(
√
N log(1/ǫ)) queries to the orale. A possibly more familiar example isthat any polynomial approximating the parity funtion with any positivebias ǫ > 0 (as opposed to bias 1

6
where 1

6
= 2

3
− 1

2
) has degree N , sine anysuh polynomial gives rise to a univariate polynomial of no larger degree with

N roots. Hene, any quantum algorithm omputing the parity funtion witharbitrary small bias ǫ > 0 requires N/2 queries to the orale, whih is tight.A useful property of representing polynomials is that they ompose. If pis a polynomial representing a funtion F , and polynomials q1, q2, . . . , qk rep-resent funtions G1, . . . , Gk, then p ◦ (q1, . . . , qk) represents F ◦ (G1, . . . , Gk),when well-de�ned. This omposition property does not hold for approxi-mating polynomials: if eah sub-polynomial qi takes the value 0.8, say, thenwe annot say muh about the value p(0.8, . . . , 0.8) sine the value of p onnon-integral inputs is not restrited by the de�nition of being an approxi-mating polynomial. To ahieve omposition properties, we require that thepolynomials are insensitive to small variations of the input bits. Buhrman,Newman, Röhrig, and de Wolf give in [15℄ a de�nition of suh polynomials,and refer to them as being robust.De�nition 12 (Robust polynomials [15℄). An approximate N-variatepolynomial p is robust on S ⊆ {0, 1}N if |p(y) − p(x)| ≤ 1
3
for every x ∈ Sand y ∈ ℜM suh that |yi−xi| ≤ 1

3
for every i = 1, . . . ,M . The robust degreeof a boolean funtion F : S → {0, 1}, denoted rdeg(F ), is the minimal degreeof a robust polynomial approximating F .Robust polynomials ompose by de�nition. Buhrman et al. [15℄ showthat the robust degree of any total funtion F : {0, 1}N → {0, 1} is O(N) bygiving a lassial algorithm that uses a quantum subroutine for Grover's prob-lem [27℄ whih is tolerant to errors, due to Høyer, Mosa, and de Wolf [29℄.Buhrman et al. [15℄ also show that rdeg(F ) ∈ O(d̃eg(F ) log d̃eg(F )) by giv-ing a onstrution for turning any approximating polynomial into a robustpolynomial at the ost of at most a logarithmi fator in the degree of F .This implies that for any omposite funtion H = F ◦ (G, . . . , G), we have

d̃eg(H) ∈ O(d̃eg(F )d̃eg(G) log d̃eg(F )). It is not known whether this is



tight. Neither is it known if the approximate degree of H an be signi�-antly smaller than the produt of the approximate degrees of F and G. Theonly known lower bound on the approximate degree of H is the trivial bound
Ω(d̃eg(F ) + d̃eg(G)).An and-or tree of depth two is a omposed funtion F◦(G, . . . , G) in whihthe outer funtion F is the logial AND of √N bits, and the inner funtion
G is the logial OR of √

N bits. By the unweighted adversary method,omputing and-or trees of depth two requires Ω(
√
N) queries. Høyer, Mosa,and de Wolf [29℄ give a bounded-error quantum algorithm that uses O(

√
N)queries, whih thus is tight. The existene of that algorithm implies thatthere exists an approximating polynomial for and-or tree of depth two ofdegree O(

√
N). No other haraterization of an approximating polynomialfor and-or trees of depth two of degree O(

√
N) is urrently known. The bestknown lower bound on the approximate degree of and-or trees of depth twois Ω(N1/3), up to logarithmi fators in N , by a folklore redution from theelement distintness problem on √

N integers [7℄.9 Conluding remarksWe have been fousing on two methods for proving lower bounds on quan-tum query omplexity: the adversary method and the polynomial method.Adversary lower bounds are in general easy to ompute, but are limited bythe erti�ate omplexity. Known lower bounds are onstruted by identify-ing hard input pairs, �nding weights aordingly, and omputing either thespetral norm of some matries, or applying the weighted method. Polyno-mial lower bounds may yield stronger bounds, but are hard to prove. Knownlower bounds by the polynomial methods are onstruted by identifying sym-metries within the problem, reduing the number of input variables to oneor two, and proving a lower bound on the degree of the redued polynomial.Barnum, Saks, and Szegedy give in [17℄ a third lower bound method thatexatly haraterizes the quantum query omplexity, but this strength turnsout also to be its weakness: it is very hard to apply and every known lowerbound obtained by the method an also be shown by one of the other twomethods. In a very reent work, Ambainis [5℄ extends the adversary methodand uses it to reprove a strong diret produt theorem by Klauk, �palek,and de Wolf [35℄ obtained by tehniques that inlude the polynomial method.Klauk et al. [35℄ show that their strong diret produt theorem impliesgood quantum time-spae tradeo�s, inluding a quantum lower bound of
T 2·S = Ω(N3) for sorting. A signi�ant body of work have been onduted onlower bounds on ommuniation omplexity, primarily using the polynomial



method. We refer to de Wolf's exellent survey [55℄ as a possible startingpoint.There is a range of problems for whih we do not urrently know tightquantum query bounds. One important example is binary and-or trees oflogarithmi depth. A binary and-or tree on N = 4n variables is obtainedby iterating the funtion F (x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4) in to-tal n times. The lassial query omplexity for probabilisti algorithms is
Θ(N0.753) [52, 49, 45℄. No better bounded-error quantum algorithm is known.The best known lower bound on the quantum query omplexity is Ω(

√
N)by embedding the parity funtion on √

N bits and noting that the parityfuntion has linear query omplexity, whih an be shown by either method.Magniez, Santha, and Szegedy give in [40℄ a quantum algorithm for de-termining if a graph on N verties ontains a triangle whih uses O(N1.3)queries to the adjaeny matrix. The best known lower bound is Ω(N) by theunweighted adversary method, and has been onjetured not to be tight [4℄.The problem of triangle-identi�ation is an example of a graph property,whih is a set of graphs losed under isomorphism. Sun, Yao, and Zhang [53℄show that there exists a non-trivial graph property of quantum query om-plexity O(
√
N), up to logarithmi fators in N .Gasarh, in a survey on private information retrieval, published in thisComputational Complexity Column in the Bulletin [26℄, writes: �A �eld isinteresting if it answers a fundamental question, or onnets to other �eldsthat are interesting, or uses tehniques of interest.� It is our hope that thereader will �nd that thus surveyed area of quantum lower bounds ful�lls eahof those three riteria.AknowledgmentsWe thank Mihal Kouký and Kolja Vereshhagin for disussions on the proofof the spetral adversary bound.Referenes[1℄ S. Aaronson. Quantum lower bound for the ollision problem. In Pro-eedings of 34th ACM Symposium on Theory of Computing, pages 635�642, 2002.[2℄ S. Aaronson. Lower bounds for loal searh by quantum arguments. InProeedings of 36th ACM Symposium on Theory of Computing, pages465�474, 2004.
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