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Quantum complexity is a young research area of increasing importance. In spite
of the scepticism of part of the research community regarding the possibility of
constructing quantum machines, there is nowadays at least one session devoted
to this topic in every complexity conference. Two experts in the area, Peter
Hgyer and Robert Spalek write in this column a beautiful survey on quantum
query complexity, focusing on the methods for proving lower bounds.
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Shor’s and Grover’s famous quantum algorithms for factoring and
searching show that quantum computers can solve certain computa-
tional problems significantly faster than any classical computer. We
discuss here what quantum computers cannot do, and specifically how
to prove limits on their computational power. We cover the main
known techniques for proving lower bounds, and exemplify and com-
pare the methods.

1 Introduction

The very first issue of the Journal of the ACM was published in January 1954.
It was the first journal devoted to computer science. For its 50th anniversary
volume, published in January 2003, editors-in-chief Joseph Y. Halpern asked
winners of the Turing Award and the Nevanlinna Prize to discuss up to three
problems that they thought would be major problems for computer science
in the next 50 years. Nevanlinna Prize winner Leslie G. Valiant [54] describes
three problems, the first of which is on physically realizable models for com-
putation and formalizes the setting by defining: “We therefore call our class
PhP, the class of physically constructible polynomial resource computers.”
He then formulates the problem by: “|t|lo phrase a single question, the full
characterization of PhP,” and argues that “this single question appears at
this time to be scientifically the most fundamental in computer science.”

On January 26, this year, Nobel Laureate David Gross gave a CERN
Colloquium presentation on “The future of physics” [28]. He discusses “25
questions that might guide physics, in the broadest sense, over the next 25
years,” and includes as questions 15 and 16 “Complexity” and “Quantum
Computing.” In July, this year, the Science magazine celebrated its 125th
anniversary by “explor|ing| 125 big questions that face scientific enquiry over
the next quarter-century” [46]. Among the top 25, is the question of “What
are the limits of conventional computing?” Charles Seife writes: “|T|here is
a realm beyond the classical computer: the quantum,” and he discusses the
issue of determining “what quantum-mechanical properties make quantum
computers so powerful.”

In this issue of the Bulletin of the EATCS, we would like to offer an
introduction to the topic of studying limitations on the power of quantum
computers. Can quantum computers really be more powerful than traditional
computers? What can quantum computers not do? What proof techniques
are used for proving bounds on the computational power of quantum com-
puters? It is a highly active area of research and flourishing with profound
and beautiful theorems. Though deep, it is fortunately also an accessible



area, based on basic principles and simple concepts, and one that does not
require specialized prior knowledge. One aim of this paper is to show this by
providing a fairly complete introduction to the two most successful methods
for proving lower bounds on quantum computations, the adversary method
and the polynomial method. Our survey is biased towards the adversary
method since it is likely the least familiar method and it yields very strong
lower bounds. This paper is meant to be supplemented by the excellent sur-
vey of Buhrman and de Wolf [T9] on decision tree complexities, published in
2002 in the journal Theoretical Computer Science.

We demonstrate the methods on a running example, and for this, we
use one of the most basic algorithmic questions one may think of: that of
searching an ordered set. Can one implement ordered searching significantly
faster on a quantum computer than applying a standard ©(log N) binary
search algorithm?

The rest of the paper is organized as follows. We motivate and define our
models of computation in the next section. We then discuss very basic prin-
ciples used in proving quantum lower bounds in Section Bl and use them to
establish our first lower bound method, the adversary method, in Section @l
We discuss how to apply the method in Section B, and its limitations in Sec-
tion @ We then give an introduction to the second method, the polynomial
method, in Section [ We compare the two methods in Section § and give a
few final remarks in Section

We have aimed at limiting prior knowledge on quantum computing to a
bare minimum. Sentences and paragraphs with kets and bras (|this is a ket)
and (this is a bra|) can either safely be skipped, or substituted with column-
vectors and row-vectors, respectively.

2  Quantum query complexity

Many quantum algorithms are developed for the so-called oracle model in
which the input is given as an oracle so that the only knowledge we can
gain about the input is in asking queries to the oracle. The input is a finite
bitstring x € {0, 1}V of some length N, where x = 2,25 ...2y. The goal is
to compute some function F : {0, 1} — {0, 1}™ of the input z. Some of the
functions we consider are boolean, some not. We use the shorthand notation
[N]={1,2,...,N}.

As our measure of complexity, we use the query complexity. The query
complexity of an algorithm A computing a function F'is the number of queries
used by A. The query complexity of F' is the minimum query complexity of
any algorithm computing F'. We are interested in proving lower bounds on



the query complexity of specific functions and consider methods for comput-
ing such lower bounds.

An alternative measure of complexity would be to use the time complex-
ity which counts the number of basic operations used by an algorithm. The
time complexity is always at least as large as the query complexity since each
query takes one unit step, and thus a lower bound on the query complexity
is also a lower bound on the time complexity. For most existing quantum
algorithms, including Grover’s algorithm [27], the time complexity is within
poly-logarithmic factors of the query complexity. A notorious exception is the
so-called Hidden Subgroup Problem which has polynomial query complex-
ity [23|, yet polynomial time algorithms are known only for some instances
of the problem.

The oracle model is called decision trees in the classical setting. A classical
query consists of an index ¢ € [N], and the answer of the bit x;. There is
a natural way of modeling a query so that it is reversible. The input is a
pair (i,b), where ¢ € [N] is an index and b € {0,1} a bit. The output is the
pair (i,b @ x;), where the bit b is flipped if z; = 1. There are (at least) two
natural ways of generalizing a query to the quantum setting, in which we
require all operations to be unitary. The first way is to consider a quantum
query as a unitary operator that takes two inputs |i)|b), where i € [N] and
b € {0,1}, and outputs |i)|b & x;). The oracle is then simply just a linear
extension of the reversible query given above. We extend the definition of
the oracle so that we can simulate a non-query, and we allow it to take some
arbitrary ancilla state |z) with z > 0 as part of the input and that is acted
upon trivially,

O i b 2) |i,b; ) ifi=0orz; =0 0
v li,b®1;z) ifie[N]andz; =1

The ancilla |z) contains any additional information currently part of the
quantum state that is not involved in the query.

The second way is to consider a quantum query as a unitary operator
O, that takes only the one input |i) and outputs (—1)%|i), where i € [N].
We say that the oracle is “computed in the phases” by O,. Both operators
O’ and O, square to the identity, i.e., they are their own inverses, and thus
unitary. The two operators are equivalent up to a factor of two in that one
query to either oracle can be simulated by two queries to the other oracle.
Though the first way is possibly the more intuitive, we shall adapt the second
way as it is very convenient when proving lower bounds. Again, we extend
the definition of the oracle O, so that it also embodies a non-query, and we




allow it to take some arbitrary ancilla state |z) that is not acted upon,

0, i: 2) |i; 2) ifi=0 2)
x|l 2) = . . .
(=1)%i;z) if1<i<N.

We may think of one query as a one-round exchange of information be-
tween two parties, the algorithm and the oracle. In the classical setting,
the algorithm sends an index ¢ € [N] to the oracle, and the oracle responds
with one bit of information, namely x;. In the quantum setting, the algo-
rithm sends the log,(N) qubits |i) to the oracle O,, and the oracle responds
with (—1)%¢). The algorithm and oracle thus exchange a total number of
21og, (V) qubits, and thus, a quantum query to O, can convey up to 2log,(N)
classical bits of information about the oracle by Holevo’s theorem [31), 20] and
superdense coding [18].

Information theoretically, a function F : {0,1}Y — {0,1}162(") that
outputs at most O(log,(N)) bits, can potentially be solved by a constant
number of queries to the oracle. An example of such a problem is the Deutsch-
Jozsa problem [22], which is to distinguish balanced boolean functions from
constant functions. (A function F is constant if F'(z) = F(y) for all inputs
z,y, and it is balanced if it is not constant and |F~'(F(x))| = |[F~Y(F(y))|
for all inputs z,y.)

A quantum algorithm in the oracle model starts in a state that is inde-
pendent of the oracle. For convenience, we choose the state |0) in which all
qubits are initialized to 0. It then evolves by applying arbitrary unitary op-
erators U to the system, alternated with queries O, to the oracle x, followed
by a conclusive measurement of the final state, the outcome of which is the
result of the computation. In symbols, a quantum algorithm A that uses T’
queries, computes the final state

7)) = UrO,Uz_y - - - U0, U |0) (3)

which is then measured. If the algorithm computes some function F' :
{0,1}Y — {0,1}™, we measure the m leftmost bit of the final state 1),
producing some outcome w. The success probability p, of A on input
x € {0,1}V is the probability that w = F(x). For complete functions
F :{0,1}"¥ — {0,1}™, we define the success probability of A as the mini-
mum of p, over all z € {0, 1}*¥. For partial functions F : S — {0, 1}™, where
S C {0,1}¥, we take the minimum over S only. A quantum algorithm A has
error at most € if the success probability of A is at least 1 — e. Let Q.(F)
denote the minimum query complexity of any quantum algorithm that com-
putes F' with two-sided error at most €, and as common, let Q2(F) = Q1/3(F")
denote the two-sided bounded error complexity with e = 1/3.



As our running example, we use the well-known ordered searching prob-
lem. In the oracle model, the input to ordered searching is an N-bit string
x = (x1,...,xy). We are promised that z; < x;,; for all 1 < i < N and
that 2y = 1, and the goal is to find the leftmost 1, i.e., the index i € [N] for
which z; = 1 and no index j < 7 exists with z; = 1.

Given: An N-bit string x = (x1, 22, ..., xy) given as an oracle.
Promise: z; < x;.1 for 1 << N and zy = 1.
Output: Index ¢ such that x; = 1 and either ;_;1 =0 or ¢ = 1.

The classical query complexity of ordered searching is [log,(N)] and is
achieved by standard binary searching. The quantum query complexity is at
most 0.45log, N, due to the work of high school student M. B. Jacokes in
collaboration with Landahl and Brookes [33| (See also |24, B0]). Using the
adversary method, we show that their algorithm is within a factor of about
two of being optimal.

3 Distinguishing hard inputs

The first quantum lower bound using adversary arguments was given by Ben-
nett, Bernstein, Brassard, and Vazirani in [§]. They show that any quantum
query algorithm can be sensitive to at most quadratically many oracle bits,
which implies a lower bound of Q(v/N) for Grover’s problem [27] and thus
proves that Grover’s O(\/N) algorithm is optimal. Grover’s problem is a
search problem in which we are given an N-bit string z € {0, 1} as an ora-
cle, and the goal is to find an index ¢ for which z; = 1, provided one exists.
Interestingly, the lower bound of Bennett et al. was proved in 1994, well
before Grover defined his search problem. In 2000, Ambainis [3] found an
important generalization of the method and coined it “adversary arguments.”

A constructive interpretation of basic adversary arguments is in terms
of distinguishability. We will thus not be concerned about computing the
function F', but merely interested in distinguishing oracles. Consider some
algorithm A that computes some function F'in the oracle model, and consider
two inputs z,y € {0,1}" for which F(z) # F(y). Since A computes F, it
must in particular be capable of distinguishing between oracle z and oracle y.
For a given problem we try to identify pairs of oracles that are hard to
distinguish. If we can identify hard input pairs, we may derive a good lower
bound. However, a caveat is that using only the very hardest input pairs does
not yield good lower bounds for some problems, and we are thus naturally
led to also consider less hard input pairs. A remedy is to use weights that



capture the hardness of distinguishing each pair of oracles, and to do so, we
define a matrix I' of dimension 2V x 2V that takes non-negative real values,

{0, 1} x {0,1}" — R{. (4)

We require that I' is symmetric and that I'[z,y] = 0 whenever F(z) =
F(y). We say that T is a spectral adversary matriz for F if it satisfies these
two conditions. The symmetry condition on I' states that we are concerned
about distinguishing between any two inputs z,y. We are not concerned
about distinguishing x from y, nor distinguishing y from x. We discuss this
subtlety further in Section Bl below when considering alternative definitions
of weighted adversary arguments. The spectral adversary matrix I' allows us
to capture both total and partial functions, as well as non-boolean functions.
Since we are only concerned about distinguishability, once we have specified
the entries of I', we may safely ignore the underlying function F'.

Weighted adversary arguments were first used by Hgyer, Neerbek, and
Shi in [B0] to prove a lower bound of Q(log N) for ordered searching and
Q(Nlog N) for sorting. Barnum and Saks [I6] used weighted adversary
arguments to prove a lower bound of Q(\/N) for read-once formulae, and
introduced the notion I' that we adapt here. Barnum, Saks, and Szegedy
extended their work in [I7] and derived a general lower bound on the query
complexity of F' in terms of spectral properties of matrix I". Their lower
bound has a very elegant and short formulation, a basic proof, and captures
important properties of adversary methods, and we shall thus adapt much of
their terminology.

As discussed above, the key to prove a good lower bound is to pick a good
adversary matrix I'. For our running example of ordered searching, which is
a partial non-boolean function, we use the following weights.

Example: Ordered Seaching 1. The weight on the pair (z,y) is the in-
verse of the Hamming distance of x and vy,

if x and y are valid and distinct inputs to F

1
Fsearch [x7 y] — |F(x)—F(y)|
0 otherwise.

(5)
The larger Hamming distance between x and y, the easier it is to distinguish
them, and the smaller weight is assigned to the pair.

We have to choose how to measure distinguishability. The possibly sim-
plest measure is to use inner products. Two quantum states are distinguish-
able with certainty if and only if they are orthogonal, and they can be dis-
tinguished with high probability if and only if their inner product has small
absolute value.



Fact 1. Suppose we are given one of two known states |V,),|V,). There
exists a measurement that correctly determines which of the two states we
are given with error probability at most € if and only if |(V,|V,)| < €, where

€ =2/€e(1 —e).

Since a unitary operator is just a change of basis, it does not change the
inner product between any two quantum states, and thus the inner product
can only change as a consequence of queries to the oracle.

4 Adversary lower bounds

Adversary lower bounds are information theoretical of nature. A basic idea
in adversary lower bounds is to upper bound the amount of information that
can be learned in a single query. If little information can be learned in any
one query, then many queries are required. We use spectral properties of '
to put an upper bound on the amount of information the algorithm learns
about the oracle.

Let A be some quantum algorithm that computes some function F with
bounded two-sided error. For every integer ¢ > 0 and every oracle z, let

¢5) = U0, -+ - U0, Uo|0) (6)

denote the quantum state after ¢ queries to the oracle. To measure the
progress of the algorithm, we define similarly to [3, B0, M6, 7] a weight
function

W' =" "Tla,y]d.0, - (Whlvh), (7)

where 0 is a fixed principal eigenvector of I', i.e., a normalized eigenvector
corresponding to the largest eigenvalue of I', and where §, denotes the z™
entry of 9.

The algorithm starts in a quantum state [)2) = Ug|0) which is indepen-
dent of the oracle x, and thus the total initial weight is

WO = "Tlx,y)0.0, = \(I), (8)

where A(T") denotes the spectral norm of I'. The final state of the algorithm
after T queries is [¢]) if the oracle is z, and it is [¢]) if the oracle is y.
If F(z) # F(y), we must have that [(¢]]¢])] < ¢ by Fact [ and hence
WT < WO, If the total weight can decrease by at most A by each query,
the algorithm requires Q(WTO) queries to the oracle.



Following Barnum, Saks, and Szegedy [I7|, we upper bound A by the
largest spectral norm of the matrices I';, defined by

Dilw,y]  if o # v

for each 1 < ¢ < n. The theorem of [T7] is here stated (and proved) in a
slightly more general form than in |[T7] so that it also applies on non-boolean
functions. Our proof aims at emphasizing distinguishability and differs from
the original.

Theorem 2 (Spectral method [17)]). For any adversary matriz T for any
function F : {0,1}Y — {0,1}™,

Qa(F) = Q(%) (10)

Proof. We prove that the drop in total weight W*—W*! by the t 4+ 1*" query
is upper-bounded by the largest eigenvalue of the matrices I';.

For each 0 < ¢ < N, let P, = > _|i;2)(i; 2| denote the projection
onto the subspace querying the i oracle bit. Let Bei = |Pi|l)| denote the
absolute value of the amplitude of querying the i*" bit in the ¢ 4 1" query,
provided the oracle is x. Note that Zﬁio ﬂii = 1 for any oracle z, since the
algorithm queries one of the N bits x1, ..., zy, or simulates a non-query by
querying the oracle with ¢ = 0. The ¢ + 1'® query changes the inner product
by at most the overlap between the projections of the two states onto the
subspace that corresponds to indices ¢ on which x; and y; differ,

[ty — gt | = | Wil - 0,0,)lu)

- ’2 Z (e lPily) | <2 Z Br,iBy,i- (11)

12 AY; iz Ay,

The bigger amplitudes of querying the bits ¢ on which z; and y; differ,
the larger the drop in the inner product can be.

Define an auxiliary vector a;[x] = 9,05, and note that

N N N
A=) Y b= ) Bi=) =1
i=0 i=0 = T i=0 -



The drop in the total weight is upper bounded by
Wi Wt = )Zr 2, 100, (i) — (wil))|

- )22 S Tl y16.8, (0 Pily)

TY Gxi Y

< QZZF$955  BuiBy.
= QZa*FaZ

< QZAF a?

< Qmiax)\(f‘i)-Za?

7

= 2max \(T}).

i

%

Here a} denotes the transpose of a;. The first inequality bounds the drop in
inner product for a specific pair and follows from Equation [ The second
inequality follows from the spectral norm of I'. The second and third inequal-
ities state that the best possible query distributes the amplitude of the query
according to the largest principal eigenvector of the query matrices I';, O

Example: Ordered Seaching 2. Returning to our example of ordered

searching, for N = 4, the adversary matrixz with respect to the ordered basis
(0001,0011,0111,1111) is given by

Fsearch (4) —

= = O =
— O N
O =W

W~ = O

The spectral norm is easily seen to be lower bounded by the sum of the entries
in the first row, )\(Fseamhw) > 1+%+%. In general, \(T'5¢7M) 4s lower bounded
by the harmonic number Hy_1, which is at least In(N). The spectral norm
of the query matrices N(T5™M) is mazimized when i = |N/2|, in which
case it is upper bounded by the spectral norm of the infinite Hilbert matrix
[1/(r+s—1)],s>1, which is m. We thus reprove the lower bound of (1—6,)@
for ordered searching in given [31]].



5 Applying the spectral method

The spectral method is very appealing in that it has a simple formulation,
a basic proof, and gives good lower bounds for many problems. épalek and
Szegedy [B1] show that for any problem, the best lower bound achievable
by the spectral method is always at least as good as the best lower bound
achievable by any of the previously published adversary methods. Their
proof is constructive and illuminating: given any lower bound in any of
the previously published adversary methods, they construct an adversary
matrix [' and prove it achieves the same lower bound.

The first general quantum lower bound using adversary arguments was
introduced by Ambainis in [3]. As shown in [51], it can be derived from the
spectral method by applying simple bounds on the spectral norm of I and
each I';. By definition, the numerator A(I") is lower-bounded by #d*lﬂd for
any non-negative vector d, and by Mathias’ lemma [39)|, the denominator
A(I;) is upper-bounded by the product of a row-norm and a column-norm.

Lemma 3 ([39), B1]). Let G be any non-negative symmetric matriz and
M, N non-negative matrices such that G = M o N is the entrywise product
of M and N. Then

AG) £ max 14(M) ¢y (N),

Glz,y]>0

where (M) is the la-norm of the x™ row in M, and c,(N) is the ly-norm
of the y™ column in N.

Applying these two bounds, we obtain Ambainis’ lower bound in [3]. We
refer to the method as an unweighted adversary method since it considers
only two types of inputs: easy inputs and hard inputs. We construct a zero-
one valued adversary matrix I' that corresponds to a uniform distribution
over the hard input pairs.

Theorem 4 (Unweighted method [3]). Let F' be a partial boolean func-
tion, and let A C F~1(0) and B C F~1(1) be subsets of (hard) inputs. Let
R C A x B be a relation, and set R; = {(z,y) € R : x; # y;} for each
1 <i<n. Let m,m’ denote the minimal number of ones in any row and any
column in relation R, respectively, and let £,{' denote the maximal number
of ones in any row and any column in any of the relations R;, respectively.

Then Q2(f) = Q(\/mm//Ll").

Proof. Let S = {(z,y) : (x,y) € RV (y,x) € R} be a symmetrized
version of R. Define a column vector d from the relation S by setting



d. = /[{y: (z,y) € S}|, and an adversary matrix I by setting I'[z,y] = ﬁ

if and only if (z,y) € S. Then A\I) > —»d'I'd = 1. For each of

1d?
the matrices I';, we apply Lemma B with M[x,y] = Ny, z| = é if and

only if (z,y) € S. For every z € A, r,(M) < /{/d2 < /{/m and
cy(N) < \/E’/dz < \/¢'/m/. For every x € B, the inequalities are swapped.

By Lemma B, \(I';) < max, y.r,z.450 7z(M)cy (N) < /00 /mm/. 0

The unweighted adversary method is very simple to apply as it requires
only to specify a set R of hard input pairs. It gives tight lower bounds for
many computational problems, including inverting a permutation [3], com-
puting any symmetric function and counting [42, 10, [T4], constant-level and-
or trees |3l 29], and various graph problems [21]|. For some computational
problems, the hardness does however not necessarily rely only on a few se-
lected hard instances, but rather on more global properties of the inputs.
Applying the unweighted method on ordered searching would for instance
only yield a lower bound of a constant. In these cases, we may apply the
following weighted variant of the method, due to Ambainis [4] and Zhang [57].

Theorem 5 (Weighted method [4, 57]). Let F': S — {0, 1}™ be a partial
function. Let w,w’ denote a weight scheme as follows:

o Every pair (x,y) € S? is assigned a non-negative weight w(x,y) =
w(y, x) that satisfies w(x,y) = 0 whenever F(x) = F(y).

o Every triple (z,y,i) € S? x [N] is assigned a non-negative weight
w'(z,y,1) that satisfies w'(x,y,i) = 0 whenever x; = y; or F'(z) = F(y),
and w'(z,y,i)w'(y, z,1) > w(x,y) for all x,y,i such that x; # y;.

Then,
Qz(F)=Q< min M)

@,y,i v(x,i)v(y, 1)

w(xz,y)>0
T 7#Y;

where wt(x) = >, w(x,y) and v(x,i) = > w'(z,y,4) for allz € S and i €
[V].

At first glance, the weighted method may look rather complicated, both
in its formulation and use, though it is not. We first assign weights to pairs
(x,y) of inputs for which F(x) # F(y), as in the spectral method. We
require the weights to be symmetric so that they represent the difficulty in
distinguishing between x and y.

We then afterwards assign weights w'(z, y, ) that represent the difficulty
in distinguishing x from y by querying index v. The harder it is to distinguish



x from y by index ¢, compared to distinguishing y from x by index i, the more
weight we put on (x,y,7) and the less on (y, z,4), and visa-versa.

To quantify this, define t(z,y,i) = w'(x,y,i)/w'(y,z,i). Then t(x,y,1)
represents the relative amount of information we learn about input pairs
(z,z) compared to the amount of information we learn about input pairs
(u,y), by querying index i. If we, by querying index i, learn little about
x compared to y, we let t(z,y,i) be large, and otherwise small. Consider
we query an index i for which x; # ;. Then we learn whether the oracle
is z or y. However, at the same time, we also learn whether the oracle is
x or z for any other pair (z,z) for which z; # 2, and F(z) # F(2); and
similarly, we learn whether the oracle is u or y for any other pair (u,y) for
which u; # y; and F(u) # F(y). The less information querying index i
provides about pairs (z,z) compared to pairs (u,y), the larger we choose
t(z,y,1). Having thus chosen t(x,y,1), we set w'(z,y,1) = w(x,y)\/t(z,y,1)
and w'(y, x,1) = w(z,y)/\/t(x,y,1).

We show next that the weighted method yields a lower bound of 2(log N)
for the ordered searching problem. This proves that the weighted method is
strictly stronger than the unweighted method. The weighted method yields
strong lower bounds for read-once formula [T6] and iterated functions [4l.
Aaronson [2|, Santha and Szegedy [50|, and Zhang |58] use adversary argu-
ments to prove lower bounds for local search, a distributed version of Grover’s
problem. Spalek and Szegedy prove in [51] that the weighted method is equiv-
alent to the spectral method any lower bound that can be achieved by one
of the two methods can also be shown by the other. Their proof is con-
structive and gives simple expressions for converting one into the other. The
main weights w(z,y) are the coefficients of the weight function W* for the
input pair (x,y), that is, w(z,y) = I'[z,y]d,d,, and the secondary weights
w'(z,y, 1) follow from Mathias’ lemma [39] (Lemma B).

Example: Ordered Seaching 3. To apply the weighted method on or-
dered searching, we pick the same weights w(z,y) = ™[z y] 6,6, as in
the spectral method as there are no strong reasons for choosing otherwise.
Now, consider t(x,y,i) with F(x) < i < F(y) so that x; # y;. By querying
index i, we also learn to distinguish between x and z for each of the F(y)—i
inputs z with i < F(z) < F(y), and we learn to distinguish between u and y
for each of the i — F(x) + 1 inputs u with F(z) < F(u) <1i. We thus choose
to set

_|Fl) —i+1

| F(z) =i+ 1

Plugging these wvalues into the weighted method yields a lower bound of
Qlog N) for ordered searching.

t(z,y,1)



6 Limitations of the spectral method

The spectral method and the weighted adversary method bound the amount
of information that can be learned in any one query. They do not take into
account that the amount of information that can be learned in the ;' query
might differ from the amount of information that can be learned in the k"
query.

In 1999, Zalka [56| successfully managed to capture the amount of infor-
mation that can be learned in each individual query for a restricted version
of Grover’s problem [27]. In this restricted version, we are promised that the
input oracle x is either the zero-string (so |x| = 0) or exactly one entry in
x is one (so |z| = 1), and the goal is to determine which is the case. By
symmetry considerations, Zalka demonstrates that Grover’s algorithm satu-
rates some improved inequalities (which are similar to Eq. [[1l) and hence is
optimal, even to within an additive constant.

Since current adversary methods do not capture the amount of informa-
tion the algorithm currently knows, we may simply assume that the algorithm
already knows every bit of the oracle and that it tries to prove so. This mo-
tivates a study of the relationship between the best bound achievable by the
spectral method and the certificate complexity. A certificate for an input
x € {0,1}", is a subset C' C [N] of input bits such that for any other input y
in the domain of F' that may be obtained from x by flipping some of the in-
dices not in C, we have that F'(x) = F(y). The certificate complexity C,(F)
of input z is the size of a smallest certificate for x. The certificate complexity
C(F) of a function F' is the maximum certificate complexity of any of its
inputs. We also define the z-certificate complexity C,(F') when taking the
maximum only over inputs that map to z. The spectral theorem can then
never yield a lower bound better than a quantity that can be expressed in
terms of certificate complexity.

Lemma 6 ([38, 57, BI]). Let ' : S — {0,1} be any partial
boolean function. The spectral adversary lower bound Adv(F') is at most

min {/Co(F)N,/Ci(F)N}. If F is total, the method is limited by
Co(F)Ca(F).

The certificate complexity of a function F : {0,1}¥ — {0,1}™ is it-
self polynomially related to the block sensitivity of the function. An input
x € {0,1} is sensitive to a block B C [N] if F(x) # F(z?), where 2 de-
notes the input obtained by flipping the bits in z with indices from B. The
block sensitivity bs,(F') of input x is the maximum number of disjoint blocks
By, By, ...,B; C [N] on which x is sensitive. The block sensitivity bs(F') of
F'is the maximum block sensitivity of any of its inputs. We also define the




z-block sensitivity bs,(F') when taking the maximum only over inputs that
map to z.

For any boolean function F : {0,1}" — {0, 1}, the certificate complexity
is upper bounded by C(F) < bsy(F)bsi(F), and thus so is the spectral
adversary method. Conversely, Adv(F) > +/bs(F) by a zero-one valued
adversary matrix I Let 2/ € {0,1}" be an input that achieves the block
sensitivity of F', and let By, Bs, ..., B;, C [N] be disjoint blocks on which 2’
is sensitive, where k = bs(F). Set I'(F)[x,2%] = 1 if and only if x = 2’ and
B is one of the k blocks B; and close I under transposition. Then A\(T') = vk
and max; A(I';) = 1, and thus

bs(F) < Adv(F) < bso(F)bs, (F). (12)

The spectral adversary method is not suitable for proving lower bounds
for problems related to property testing. If function F' : S — {0,1} is a
partial function with S C {0,1}" such that every zero-input is of Hamming
distance at least en from every one-input, then the spectral theorem does
not yield a lower bound better than 1/e.

Laplante and Magniez introduce in [38] a lower-bound method based
on Kolmogorov complexity. They show by direct constructions that their
method is at least as strong as each of the two methods, the spectral and
weighted adversary method. Spalek and Szegedy then show in [51] that the
spectral method is at least as strong as the Kolmogorov complexity method,
allowing us to conclude that the three methods are equivalent. Having such
a variety of representations of the same method shows that the adversary
method is very versatile and captures fundamental properties of functions.
Indeed, Laplante, Lee, and Szegedy [37] show that the square of the adver-
sary bound is a lower bound on the formula size. The following lower-bound
method is a combinatorial version of the Kolmogorov complexity method.

Theorem 7 (Minimax method |38, 51]). Let F' : S — {0, 1}™ be a partial
function and A a bounded-error quantum algorithm for F. Letp: S x [N] —
R§ be a set of |S| probability distributions such that p, (i) denotes the average
probability of querying the i input bit on input x, where the average is taken

over the whole computation of A. Then the query complexity Qa of algorithm
A satisfies

1
max '
ryF@AFW) Y /Pa(i) py (i)

The previous methods satisfy the property that if we plug in some matrix
or relation, we get a valid lower bound. The minimax method is principally
different. A lower bound computed by the minimax theorem holds for one

QAZMp:



particular algorithm A, and it may not hold for some other and better algo-
rithm. However, we may obtain a universal lower bound that holds for every
bounded error algorithm by simply taking the minimum of the bound M,
over all possible sets of probability distributions p. The spectral bound and
the minimax bound are in a primal-dual relation: the best lower bound that
can be obtained by any adversary matrix I equals the smallest bound that
can be obtained by a set of probability distributions p [5I]. Primal methods
are used for obtaining concrete lower bounds and dual methods are used for
proving limitations of the method, as in Lemma [Bl

A useful property of the adversary method is that it composes. Consider
a function of the form H = F o (Gy,...,G}), where F : {0,1}F — {0,1}
and G; : {0,1}" — {0,1} for i = 1,...,k are partial boolean functions.
A composition theorem states the complexity of function H in terms of the
complexities of F' and G4, ...,Gg. Barnum and Saks [T6] use composition
properties to prove a query lower bound of Q(v/N) for any read-once formula,
Ambainis [4] proves a composition lower bound for iterated boolean functions,
and Laplante, Lee, and Szegedy [37] prove a limitation on composition lower
bounds for functions G; for which the adversary bound is upper bounded by
a common bound b. To formulate a composition theorem for arbitrary cases
when the functions G; may have different adversary bounds, we require a
weighted version of the spectral method.

Let F : {0,1}" — {0,1} be a partial boolean function and o =
(v, ...,ay) a string of positive reals. Let

Advy(F) = max min {O‘i i(@) } ’

where I" ranges over all adversary matrices for F'. If the weights are all 1, then
our new quantity Adv,(F) coincides with the spectral adversary bound and
is thus a lower bound on the quantum query complexity of F'. If the weights
a are non-uniform, then Adv,(F) is a new abstract complexity measure that
assigns cost a; to querying the i*" input bit. We can then prove [32] that the
quantity Adv, composes in the following sense.

Theorem 8 (Composition Theorem [16, 4, B7, B2]). For any com-
posite function H = F o (Gy,...,Gy), where F : {0,1}* — {0,1} and
G, {0,1}Yi — {0,1} are partial boolean functions,

Adv,(H) = Advg(F),

where 3; = Adv,i(Gy), and o = (o, ... a*) is a k-tuple of strings o € RV,



A natural generalization of Grover’s problem is the so-called k-fold search
problem in which we are promised that exactly k entries of the input oracle
x are one (so |z| = k), and the goal is to find all of these k indices. We
say an algorithm A succeeds if it outputs a subset S C [N] of size k and S
contains all indices ¢ € [N] for which x; = 1. Thus, by definition, it fails even
if it outputs all but one of the k£ indices. The k-fold search problem can be
solved in O(v/kn) queries, essentially by sequentially running Grover’s search
algorithm k times. Klauck, épalek, and de Wolf [35] show that if the number
of queries is less than eyv/kn for some constant ¢, then the success probability
of A is exponentially small in k. They thus prove a strong direct product
theorem for the k-fold search problem. One of the main elements of the proof
is the polynomial method which we discuss in the next section.

In very recent work, Ambainis [5] proposes an extension of the adversary
method and uses it to reprove the strong direct product theorem of [35].
Though the following very brief description of the proof does not give full
justice to the method, we hope it conveys some of the intuition on which [B] is
based. The algorithm runs on a uniform superposition of all inputs. During
the computation, the input register gets entangled with the workspace of the
algorithm due to the queries to the oracle. We trace out the workspace and
examine the eigenspaces of the density matrix of the input register. Due to
symmetries, there are exactly k 4 1 eigenspaces, indexed by the number of
ones the algorithm “knows” at that stage of the algorithm. In the beginning,
all amplitude is in the 0" eigenspace. One query can only move little ampli-
tude from the i*" eigenspace to the i + 1'! eigenspace. If the algorithm has
a good success probability, the quantum amplitude of high eigenspaces must
be significant, since the algorithm must “know” most of the k indices, which
implies a lower bound on the query complexity.

7 Polynomial lower bounds

There are essentially two different methods known for proving lower bounds
on quantum computations. The historically first method is the adversary
method we discuss above. It was introduced in 1994 by Bennett, Bernstein,
Brassard, and Vazirani, and published in 1997 in the STAM Journal on Com-
puting, in a special section that contains some of the most outstanding papers
on quantum computing. The second method was introduced shortly after,
in 1998, by Beals, Buhrman, Cleve, Mosca, and de Wolf [9], and implicitly
used by Fortnow and Rogers in [25]. Their approach is algebraic and follows
earlier very successful work on classical lower bounds via polynomials (see for
instance Beigel’s 1993 survey [I1] and Regan’s 1997 survey [44]). We first es-



tablish that any partial boolean function F : S — {0,1}, where S C {0, 1}¥,
can be represented by a real-valued polynomial p : RV — R.

Definition 9. Let F' : S — {0,1} be a partial boolean function, where S C
{0,1}". An N-variable polynomial p represents F if p(x) = F(z) for all
x €S, and it approximates F if [p(x) — F(z)| < 5 for all z € S. The degree
of F, denoted deg(F), is the minimal degree of a polynomial representing F'.
The approximate degree of F, denoted deg(F), is the minimal degree of a
polynomial approzimating F.

The crux in [9] is in showing that any quantum algorithm A computing
some function F gives rise to some polynomial pa that represents or approx-
imates F'.

Theorem 10 (J9]). Let A be a quantum algorithm that computes a partial
boolean function F : S — {0,1}, where S C {0,1}Y, using at most T queries
to the oracle O),. Then there exists an N-variate real-valued multilinear poly-
nomial pn : RY — R of degree at most 2T, which equals the acceptance
probability of A.

Proof. In this theorem, we use the oracle O/, which is equivalent to the ora-
cle O,, since it allows for simple formulations. We first rewrite the action of
O as

OLli, by z) = (1 — x;)|i, b; 2) + x;]i, b B 1; 2) (13)

where we define x; = 0 for ¢ = 0 so that we can simulate a non-query
by querying z; with ¢ = 0. Suppose we apply O/ on some superposition
Zi’b’z Qip.|7, b; z) where each amplitude «;, , is an N-variate complex-valued
polynomial in x of degree at most j. Then, by Eq. [3, the resulting state
Y ivs Binzli,b;2) is a superposition where each amplitude 3;,. is an N-
variate complex-valued polynomial in x of degree at most j + 1. By proof by
induction, after T' queries, each amplitude can be expressed as a complex-
valued polynomial in x of degree at most 7. The probability that the final
measurement yields the outcome 1, corresponding to accepting the input, is
obtained by summing some of the absolute values of the amplitudes squared.
The square of any of the absolute amplitudes can be expressed as a real-
valued polynomial pa in x of degree at most 27. Theorem [0 follows. O

The above theorem states that to any quantum algorithm A computing
a boolean function F': S — {0,1}, where S C {0,1}", we can associate an
N-variate polynomial pa : Y — R that expresses the acceptance probability
of the algorithm on any given input. If algorithm A is exact, i.e., if A always
stops and outputs the correct answer, then pa(x) = F(z) for all z € S, and



thus pa represents F. If A has bounded error, then 0 < pa(z) < 1/3 if
F(z) = 0 and 2/3 < pa(x) < 1if F(x) = 1, and thus pa approximates F.
The degree of pa is at most twice the number of queries used by algorithm A.
Consequently, the degree of a function is a lower bound on the quantum
query complexity, up to a factor of two.

Corollary 11 (Polynomial method [9]). For any partial boolean func-
tion F: S — {0,1}, where S C {0,1}", we have Qg(F) > deg(F)/2 and
Qa2(F) > deg(F)/2.

8 Applying the polynomial method

The challenge in applying the polynomial method lies in the dimensionality of
the input. Typically, the method is applied by first identifying a univariate
or bivariate polynomial that captures essential properties of the problem,
and then proving a lower bound on the degree of that polynomial. The
second part is typically reasonably straightforward since polynomials have
been studied for centuries and much is known about their degrees. The
possibly simplest nontrivial example is when F' is the threshold function
Thr; defined by Thr,(z) = 1 if and only if |x| > t. It is easy to see that
deg(Thr;) = O(N) for all nontrivial threshold functions, and thus Qg (Thry) =
Q(N). Paturi [43] shows that deg(Thr,) = ©(y/(t + 1)(N —t + 1)), and we
thus readily get that Q2(Thr,) = Q(y/(¢ + 1)(N — ¢ + 1)), which is tight by
quantum counting [I4, ©]. This degree argument extends to any symmetric
function F' by writing F' as a sum of threshold functions. The same tight
lower bounds for symmetric functions can also be obtained by the unweighted
adversary method (see the paragraph after Theorem HI).

For general non-symmetric functions, the polynomial method is, however,
significantly harder to apply. For problems that are “close” to being sym-
metric, we can sometimes succeed in constructing a univariate or bivariate
polynomial that yields a non-trivial lower bound. The first and, in our view,
most important such a result was obtained by Aaronson in [I] in which he
proves a lower bound of Q(N'/?) on any bounded-error quantum algorithm
for the collision problem.

The collision problem is a non-boolean promise problem. The oracle is
an N-tuple of positive integers between 1 and M, which we think of as a
function X : [N] — [M]. We model the oracle O% so that a query to the ‘"
entry of the oracle returns the integer X (7). Specifically, O’ takes as input
li,; z) and outputs |i,r @ X (i); z) where 0 < r < 2™ for m = [log,(M +1)],
and 7@ X (i) denotes bitwise addition modulo 2. We are promised that either



X is a one-to-one function, or X is two-to-one, and the goal is to determine
which is the case.

The result of Aaronson was shortly after improved by Shi [&7] to Q(N/*)
for general functions X : [N] — [M], and to Q(N'/3) in the case the range
is larger than the domain by a constant factor, M > %N. The lower bounds
of Aaronson and Shi appears as a joint article []. Finally, Kutin [36] and
Ambainis [6] independently found remedies for the technical limitations in
Shi’s proof, yielding an Q(N'/3) lower bound for all functions, which is tight
by an algorithm that uses Grover search on subsets by Brassard, Hgyer, and
Tapp [13].

The best lower bound for the collision problem that can be obtained using
the adversary method is only a constant, since any one-to-one function is of
large Hamming distance to any two-to-one function. Koiran, Nesme, and
Portier [34] use the polynomial method to prove a lower bound of Q(log N)
for Simon’s problem [48|, which is tight [48, [T2]. Simon’s problem is a partial
boolean function having properties related to finite abelian groups. Also for
this problem, the best lower bound that can be obtained using the adversary
method is a constant.

In contrast, for any total boolean function F : {0,1}¥ — {0,1}, the
adversary and polynomial method are both polynomially related to block
sensitivity,

bs(F)/6 < deg(F) < deg(F) < bs’(F) (14)
bs(F) < Adv(F) < bs?(F). (15)

It follows from |T9] that deg(F) < bs*(F), and from Nisan and Szegedy [&T]
that 6deg(F)? > bs(F). Buhrman and de Wolf [I9] provides an excellent
survey of these and other complexity measures of boolean functions.

The polynomial lower bound is known to be inferior to the weighted
adversary method for some total boolean functions. In [4], Ambainis gives a
boolean function F' : {0,1}* — {0,1} on four bits, which can be described
as “the four input bits are sorted” [37|, for which deg(F') = 2 and for which
there exists an adversary matrix I'"" satisfying that A\(T''")/ max; A(T'F) = 2.5.
We compose the function with itself and obtain a boolean function Fy = Fo
(F,F,F, F):{0,1}'¢ — {0,1} defined on 16 bits for which deg(F;) = 4, and
for which A(T'2)/ max; A\(I'/?) = 2.52, by the composition theorem. Iterating
n times, yields a function F' on N = 4" bits of degree deg(F) = 2", with
spectral lower bound 2.5" = deg(F)!3%+ by the composition theorem. The
thus constructed function F' is an example of an iterated function of low
degree and high quantum query complexity. It is the currently biggest known
gap between the polynomial method and the adversary method for a total



function. Another iterated total function for which the adversary methods
yield a lower bound better than the degree, is the function described by “all
three input bits are equal” [4].

The polynomial method is very suitable when considering quantum al-
gorithms computing functions with error e that is sub-constant, whereas the
adversary method is not formulated so as to capture such a fine-grained
analysis. Buhrman, Cleve, de Wolf, and Zalka [I0] show that any quan-
tum algorithm for Grover’s problem that succeeds in finding an index ¢ for
which z; = 1 with probability at least 1 — ¢, provided one exists, requires
Q(4/N log(1/€)) queries to the oracle. A possibly more familiar example is
that any polynomial approximating the parity function with any positive

bias € > 0 (as opposed to bias % where £ = 2 — %) has degree N, since any

such polynomial gives rise to a univariateﬁpol;nomial of no larger degree with
N roots. Hence, any quantum algorithm computing the parity function with
arbitrary small bias € > 0 requires N/2 queries to the oracle, which is tight.

A useful property of representing polynomials is that they compose. If p
is a polynomial representing a function F', and polynomials ¢, o, . . ., qx T€p-
resent functions Gy, ..., Gy, then po(qq,...,qx) represents Fo(Gy,...,Gy),
when well-defined. This composition property does not hold for approxi-
mating polynomials: if each sub-polynomial ¢; takes the value 0.8, say, then
we cannot say much about the value p(0.8,...,0.8) since the value of p on
non-integral inputs is not restricted by the definition of being an approxi-
mating polynomial. To achieve composition properties, we require that the
polynomials are insensitive to small variations of the input bits. Buhrman,
Newman, Rohrig, and de Wolf give in [I5] a definition of such polynomials,
and refer to them as being robust.

Definition 12 (Robust polynomials [15]). An approzimate N-variate
polynomial p is robust on S C {0, 1}V if [p(y) — p(z)] < % for every x € S
and y € RM such that |y;—x;] < é for everyt=1,..., M. The robust degree
of a boolean function F: S — {0,1}, denoted rdeg(F), is the minimal degree
of a robust polynomial approximating F.

Robust polynomials compose by definition. Buhrman et al. [I5] show
that the robust degree of any total function F : {0,1}" — {0,1} is O(N) by
giving a classical algorithm that uses a quantum subroutine for Grover’s prob-
lem [27] which is tolerant to errors, due to Hgyer, Mosca, and de Wolf [29].
Buhrman et al. [I5] also show that rdeg(F) € O(deg(F)logdeg(F)) by giv-
ing a construction for turning any approximating polynomial into a robust
polynomial at the cost of at most a logarithmic factor in the degree of F'.
This implies that for any composite function H = F o (G,...,G), we have
deg(H) € O(deg(F)deg(G)logdeg(F)). It is not known whether this is



tight. Neither is it known if the approximate degree of H can be signifi-
cantly smaller than the product of the approximate degrees of F' and G. The
only known lower bound on the approximate degree of H is the trivial bound
O(deg(F) + dog(G)).

An and-or tree of depth two is a composed function Fo(G, ..., G) in which
the outer function F is the logical AND of /N bits, and the inner function
G is the logical OR of /N bits. By the unweighted adversary method,
computing and-or trees of depth two requires Q(\/N) queries. Hgyer, Mosca,
and de Wolf [29] give a bounded-error quantum algorithm that uses O(v/N)
queries, which thus is tight. The existence of that algorithm implies that
there exists an approximating polynomial for and-or tree of depth two of
degree O(\/N) No other characterization of an approximating polynomial
for and-or trees of depth two of degree O(\/N) is currently known. The best
known lower bound on the approximate degree of and-or trees of depth two
is Q(N'/3), up to logarithmic factors in N, by a folklore reduction from the
element distinctness problem on /N integers [].

9 Concluding remarks

We have been focusing on two methods for proving lower bounds on quan-
tum query complexity: the adversary method and the polynomial method.
Adversary lower bounds are in general easy to compute, but are limited by
the certificate complexity. Known lower bounds are constructed by identify-
ing hard input pairs, finding weights accordingly, and computing either the
spectral norm of some matrices, or applying the weighted method. Polyno-
mial lower bounds may yield stronger bounds, but are hard to prove. Known
lower bounds by the polynomial methods are constructed by identifying sym-
metries within the problem, reducing the number of input variables to one
or two, and proving a lower bound on the degree of the reduced polynomial.

Barnum, Saks, and Szegedy give in [I7] a third lower bound method that
exactly characterizes the quantum query complexity, but this strength turns
out also to be its weakness: it is very hard to apply and every known lower
bound obtained by the method can also be shown by one of the other two
methods. In a very recent work, Ambainis [5] extends the adversary method
and uses it to reprove a strong direct product theorem by Klauck, épalek,
and de Wolf [35] obtained by techniques that include the polynomial method.
Klauck et al. [30] show that their strong direct product theorem implies
good quantum time-space tradeoffs, including a quantum lower bound of
T?%.8 = Q(N?) for sorting. A significant body of work have been conducted on
lower bounds on communication complexity, primarily using the polynomial



method. We refer to de Wolf’s excellent survey [05] as a possible starting
point.

There is a range of problems for which we do not currently know tight
quantum query bounds. One important example is binary and-or trees of
logarithmic depth. A binary and-or tree on N = 4" variables is obtained
by iterating the function F(z1,29,73,24) = (1 A x3) V (3 A x4) in to-
tal n times. The classical query complexity for probabilistic algorithms is
O(N73) |52, B9, E5]. No better bounded-error quantum algorithm is known.
The best known lower bound on the quantum query complexity is Q(v/N)
by embedding the parity function on v/N bits and noting that the parity
function has linear query complexity, which can be shown by either method.

Magniez, Santha, and Szegedy give in [A0] a quantum algorithm for de-
termining if a graph on N vertices contains a triangle which uses O(N'?)
queries to the adjacency matrix. The best known lower bound is Q(N) by the
unweighted adversary method, and has been conjectured not to be tight [4].
The problem of triangle-identification is an example of a graph property,
which is a set of graphs closed under isomorphism. Sun, Yao, and Zhang |53
show that there exists a non-trivial graph property of quantum query com-
plexity O(v/N), up to logarithmic factors in N.

Gasarch, in a survey on private information retrieval, published in this
Computational Complexity Column in the Bulletin [26], writes: “A field is
interesting if it answers a fundamental question, or connects to other fields
that are interesting, or uses techniques of interest.” It is our hope that the
reader will find that thus surveyed area of quantum lower bounds fulfills each
of those three criteria.
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