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Shor's and Grover's famous quantum algorithms for fa
toring andsear
hing show that quantum 
omputers 
an solve 
ertain 
omputa-tional problems signi�
antly faster than any 
lassi
al 
omputer. Wedis
uss here what quantum 
omputers 
annot do, and spe
i�
ally howto prove limits on their 
omputational power. We 
over the mainknown te
hniques for proving lower bounds, and exemplify and 
om-pare the methods.1 Introdu
tionThe very �rst issue of the Journal of the ACM was published in January 1954.It was the �rst journal devoted to 
omputer s
ien
e. For its 50th anniversaryvolume, published in January 2003, editors-in-
hief Joseph Y. Halpern askedwinners of the Turing Award and the Nevanlinna Prize to dis
uss up to threeproblems that they thought would be major problems for 
omputer s
ien
ein the next 50 years. Nevanlinna Prize winner Leslie G. Valiant [54℄ des
ribesthree problems, the �rst of whi
h is on physi
ally realizable models for 
om-putation and formalizes the setting by de�ning: �We therefore 
all our 
lassPhP, the 
lass of physi
ally 
onstru
tible polynomial resour
e 
omputers.�He then formulates the problem by: �[t℄o phrase a single question, the full
hara
terization of PhP,� and argues that �this single question appears atthis time to be s
ienti�
ally the most fundamental in 
omputer s
ien
e.�On January 26, this year, Nobel Laureate David Gross gave a CERNColloquium presentation on �The future of physi
s� [28℄. He dis
usses �25questions that might guide physi
s, in the broadest sense, over the next 25years,� and in
ludes as questions 15 and 16 �Complexity� and �QuantumComputing.� In July, this year, the S
ien
e magazine 
elebrated its 125thanniversary by �explor[ing℄ 125 big questions that fa
e s
ienti�
 enquiry overthe next quarter-
entury� [46℄. Among the top 25, is the question of �Whatare the limits of 
onventional 
omputing?� Charles Seife writes: �[T℄here isa realm beyond the 
lassi
al 
omputer: the quantum,� and he dis
usses theissue of determining �what quantum-me
hani
al properties make quantum
omputers so powerful.�In this issue of the Bulletin of the EATCS, we would like to o�er anintrodu
tion to the topi
 of studying limitations on the power of quantum
omputers. Can quantum 
omputers really be more powerful than traditional
omputers? What 
an quantum 
omputers not do? What proof te
hniquesare used for proving bounds on the 
omputational power of quantum 
om-puters? It is a highly a
tive area of resear
h and �ourishing with profoundand beautiful theorems. Though deep, it is fortunately also an a

essible



area, based on basi
 prin
iples and simple 
on
epts, and one that does notrequire spe
ialized prior knowledge. One aim of this paper is to show this byproviding a fairly 
omplete introdu
tion to the two most su

essful methodsfor proving lower bounds on quantum 
omputations, the adversary methodand the polynomial method. Our survey is biased towards the adversarymethod sin
e it is likely the least familiar method and it yields very stronglower bounds. This paper is meant to be supplemented by the ex
ellent sur-vey of Buhrman and de Wolf [19℄ on de
ision tree 
omplexities, published in2002 in the journal Theoreti
al Computer S
ien
e.We demonstrate the methods on a running example, and for this, weuse one of the most basi
 algorithmi
 questions one may think of: that ofsear
hing an ordered set. Can one implement ordered sear
hing signi�
antlyfaster on a quantum 
omputer than applying a standard Θ(logN) binarysear
h algorithm?The rest of the paper is organized as follows. We motivate and de�ne ourmodels of 
omputation in the next se
tion. We then dis
uss very basi
 prin-
iples used in proving quantum lower bounds in Se
tion 3 and use them toestablish our �rst lower bound method, the adversary method, in Se
tion 4.We dis
uss how to apply the method in Se
tion 5, and its limitations in Se
-tion 6. We then give an introdu
tion to the se
ond method, the polynomialmethod, in Se
tion 7. We 
ompare the two methods in Se
tion 8 and give afew �nal remarks in Se
tion 9.We have aimed at limiting prior knowledge on quantum 
omputing to abare minimum. Senten
es and paragraphs with kets and bras (|this is a ket〉and 〈this is a bra|) 
an either safely be skipped, or substituted with 
olumn-ve
tors and row-ve
tors, respe
tively.2 Quantum query 
omplexityMany quantum algorithms are developed for the so-
alled ora
le model inwhi
h the input is given as an ora
le so that the only knowledge we 
angain about the input is in asking queries to the ora
le. The input is a �nitebitstring x ∈ {0, 1}N of some length N , where x = x1x2 . . . xN . The goal isto 
ompute some fun
tion F : {0, 1}N → {0, 1}m of the input x. Some of thefun
tions we 
onsider are boolean, some not. We use the shorthand notation
[N ] = {1, 2, . . . , N}.As our measure of 
omplexity, we use the query 
omplexity. The query
omplexity of an algorithm A 
omputing a fun
tion F is the number of queriesused by A. The query 
omplexity of F is the minimum query 
omplexity ofany algorithm 
omputing F . We are interested in proving lower bounds on



the query 
omplexity of spe
i�
 fun
tions and 
onsider methods for 
omput-ing su
h lower bounds.An alternative measure of 
omplexity would be to use the time 
omplex-ity whi
h 
ounts the number of basi
 operations used by an algorithm. Thetime 
omplexity is always at least as large as the query 
omplexity sin
e ea
hquery takes one unit step, and thus a lower bound on the query 
omplexityis also a lower bound on the time 
omplexity. For most existing quantumalgorithms, in
luding Grover's algorithm [27℄, the time 
omplexity is withinpoly-logarithmi
 fa
tors of the query 
omplexity. A notorious ex
eption is theso-
alled Hidden Subgroup Problem whi
h has polynomial query 
omplex-ity [23℄, yet polynomial time algorithms are known only for some instan
esof the problem.The ora
le model is 
alled de
ision trees in the 
lassi
al setting. A 
lassi
alquery 
onsists of an index i ∈ [N ], and the answer of the bit xi. There isa natural way of modeling a query so that it is reversible. The input is apair (i, b), where i ∈ [N ] is an index and b ∈ {0, 1} a bit. The output is thepair (i, b ⊕ xi), where the bit b is �ipped if xi = 1. There are (at least) twonatural ways of generalizing a query to the quantum setting, in whi
h werequire all operations to be unitary. The �rst way is to 
onsider a quantumquery as a unitary operator that takes two inputs |i〉|b〉, where i ∈ [N ] and
b ∈ {0, 1}, and outputs |i〉|b ⊕ xi〉. The ora
le is then simply just a linearextension of the reversible query given above. We extend the de�nition ofthe ora
le so that we 
an simulate a non-query, and we allow it to take somearbitrary an
illa state |z〉 with z ≥ 0 as part of the input and that is a
tedupon trivially,

O
′
x|i, b; z〉 =

{
|i, b; z〉 if i = 0 or xi = 0

|i, b⊕ 1; z〉 if i ∈ [N ] and xi = 1. (1)The an
illa |z〉 
ontains any additional information 
urrently part of thequantum state that is not involved in the query.The se
ond way is to 
onsider a quantum query as a unitary operator
Ox that takes only the one input |i〉 and outputs (−1)xi|i〉, where i ∈ [N ].We say that the ora
le is �
omputed in the phases� by Ox. Both operators
O′

x and Ox square to the identity, i.e., they are their own inverses, and thusunitary. The two operators are equivalent up to a fa
tor of two in that onequery to either ora
le 
an be simulated by two queries to the other ora
le.Though the �rst way is possibly the more intuitive, we shall adapt the se
ondway as it is very 
onvenient when proving lower bounds. Again, we extendthe de�nition of the ora
le Ox so that it also embodies a non-query, and we



allow it to take some arbitrary an
illa state |z〉 that is not a
ted upon,
Ox|i; z〉 =

{
|i; z〉 if i = 0

(−1)xi |i; z〉 if 1 ≤ i ≤ N . (2)We may think of one query as a one-round ex
hange of information be-tween two parties, the algorithm and the ora
le. In the 
lassi
al setting,the algorithm sends an index i ∈ [N ] to the ora
le, and the ora
le respondswith one bit of information, namely xi. In the quantum setting, the algo-rithm sends the log2(N) qubits |i〉 to the ora
le Ox, and the ora
le respondswith (−1)xi |i〉. The algorithm and ora
le thus ex
hange a total number of
2 log2(N) qubits, and thus, a quantum query toOx 
an 
onvey up to 2 log2(N)
lassi
al bits of information about the ora
le by Holevo's theorem [31, 20℄ andsuperdense 
oding [18℄.Information theoreti
ally, a fun
tion F : {0, 1}N → {0, 1}log2(N) thatoutputs at most O(log2(N)) bits, 
an potentially be solved by a 
onstantnumber of queries to the ora
le. An example of su
h a problem is the Deuts
h-Jozsa problem [22℄, whi
h is to distinguish balan
ed boolean fun
tions from
onstant fun
tions. (A fun
tion F is 
onstant if F (x) = F (y) for all inputs
x, y, and it is balan
ed if it is not 
onstant and |F−1(F (x))| = |F−1(F (y))|for all inputs x, y.)A quantum algorithm in the ora
le model starts in a state that is inde-pendent of the ora
le. For 
onvenien
e, we 
hoose the state |0〉 in whi
h allqubits are initialized to 0. It then evolves by applying arbitrary unitary op-erators U to the system, alternated with queries Ox to the ora
le x, followedby a 
on
lusive measurement of the �nal state, the out
ome of whi
h is theresult of the 
omputation. In symbols, a quantum algorithm A that uses Tqueries, 
omputes the �nal state

|ψT
x 〉 = UT OxUT−1 · · ·U1OxU0|0〉 (3)whi
h is then measured. If the algorithm 
omputes some fun
tion F :

{0, 1}N → {0, 1}m, we measure the m leftmost bit of the �nal state |ψT
x 〉,produ
ing some out
ome w. The su

ess probability px of A on input

x ∈ {0, 1}N is the probability that w = F (x). For 
omplete fun
tions
F : {0, 1}N → {0, 1}m, we de�ne the su

ess probability of A as the mini-mum of px over all x ∈ {0, 1}N . For partial fun
tions F : S → {0, 1}m, where
S ⊆ {0, 1}N , we take the minimum over S only. A quantum algorithm A haserror at most ǫ if the su

ess probability of A is at least 1 − ǫ. Let Qǫ(F )denote the minimum query 
omplexity of any quantum algorithm that 
om-putes F with two-sided error at most ǫ, and as 
ommon, let Q2(F ) = Q1/3(F )denote the two-sided bounded error 
omplexity with ǫ = 1/3.



As our running example, we use the well-known ordered sear
hing prob-lem. In the ora
le model, the input to ordered sear
hing is an N-bit string
x = (x1, . . . , xN ). We are promised that xi ≤ xi+1 for all 1 ≤ i < N andthat xN = 1, and the goal is to �nd the leftmost 1, i.e., the index i ∈ [N ] forwhi
h xi = 1 and no index j < i exists with xj = 1.Given: An N-bit string x = (x1, x2, . . . , xN ) given as an ora
le.Promise: xi ≤ xi+1 for 1 ≤ i < N and xN = 1.Output: Index i su
h that xi = 1 and either xi−1 = 0 or i = 1.The 
lassi
al query 
omplexity of ordered sear
hing is ⌈log2(N)⌉ and isa
hieved by standard binary sear
hing. The quantum query 
omplexity is atmost 0.45 log2N , due to the work of high s
hool student M. B. Ja
okes in
ollaboration with Landahl and Brookes [33℄ (See also [24, 30℄). Using theadversary method, we show that their algorithm is within a fa
tor of abouttwo of being optimal.3 Distinguishing hard inputsThe �rst quantum lower bound using adversary arguments was given by Ben-nett, Bernstein, Brassard, and Vazirani in [8℄. They show that any quantumquery algorithm 
an be sensitive to at most quadrati
ally many ora
le bits,whi
h implies a lower bound of Ω(

√
N) for Grover's problem [27℄ and thusproves that Grover's O(

√
N) algorithm is optimal. Grover's problem is asear
h problem in whi
h we are given an N-bit string x ∈ {0, 1}N as an ora-
le, and the goal is to �nd an index i for whi
h xi = 1, provided one exists.Interestingly, the lower bound of Bennett et al. was proved in 1994, wellbefore Grover de�ned his sear
h problem. In 2000, Ambainis [3℄ found animportant generalization of the method and 
oined it �adversary arguments.�A 
onstru
tive interpretation of basi
 adversary arguments is in termsof distinguishability. We will thus not be 
on
erned about 
omputing thefun
tion F , but merely interested in distinguishing ora
les. Consider somealgorithm A that 
omputes some fun
tion F in the ora
le model, and 
onsidertwo inputs x, y ∈ {0, 1}N for whi
h F (x) 6= F (y). Sin
e A 
omputes F , itmust in parti
ular be 
apable of distinguishing between ora
le x and ora
le y.For a given problem we try to identify pairs of ora
les that are hard todistinguish. If we 
an identify hard input pairs, we may derive a good lowerbound. However, a 
aveat is that using only the very hardest input pairs doesnot yield good lower bounds for some problems, and we are thus naturallyled to also 
onsider less hard input pairs. A remedy is to use weights that




apture the hardness of distinguishing ea
h pair of ora
les, and to do so, wede�ne a matrix Γ of dimension 2N × 2N that takes non-negative real values,
Γ : {0, 1}N × {0, 1}N → ℜ+

0 . (4)We require that Γ is symmetri
 and that Γ[x, y] = 0 whenever F (x) =
F (y). We say that Γ is a spe
tral adversary matrix for F if it satis�es thesetwo 
onditions. The symmetry 
ondition on Γ states that we are 
on
ernedabout distinguishing between any two inputs x, y. We are not 
on
ernedabout distinguishing x from y, nor distinguishing y from x. We dis
uss thissubtlety further in Se
tion 5 below when 
onsidering alternative de�nitionsof weighted adversary arguments. The spe
tral adversary matrix Γ allows usto 
apture both total and partial fun
tions, as well as non-boolean fun
tions.Sin
e we are only 
on
erned about distinguishability, on
e we have spe
i�edthe entries of Γ, we may safely ignore the underlying fun
tion F .Weighted adversary arguments were �rst used by Høyer, Neerbek, andShi in [30℄ to prove a lower bound of Ω(logN) for ordered sear
hing and
Ω(N logN) for sorting. Barnum and Saks [16℄ used weighted adversaryarguments to prove a lower bound of Ω(

√
N) for read-on
e formulae, andintrodu
ed the notion Γ that we adapt here. Barnum, Saks, and Szegedyextended their work in [17℄ and derived a general lower bound on the query
omplexity of F in terms of spe
tral properties of matrix Γ. Their lowerbound has a very elegant and short formulation, a basi
 proof, and 
apturesimportant properties of adversary methods, and we shall thus adapt mu
h oftheir terminology.As dis
ussed above, the key to prove a good lower bound is to pi
k a goodadversary matrix Γ. For our running example of ordered sear
hing, whi
h isa partial non-boolean fun
tion, we use the following weights.Example: Ordered Sea
hing 1. The weight on the pair (x, y) is the in-verse of the Hamming distan
e of x and y,

Γsear
h[x, y] =

{
1

|F (x)−F (y)|
if x and y are valid and distin
t inputs to F

0 otherwise. (5)The larger Hamming distan
e between x and y, the easier it is to distinguishthem, and the smaller weight is assigned to the pair.We have to 
hoose how to measure distinguishability. The possibly sim-plest measure is to use inner produ
ts. Two quantum states are distinguish-able with 
ertainty if and only if they are orthogonal, and they 
an be dis-tinguished with high probability if and only if their inner produ
t has smallabsolute value.



Fa
t 1. Suppose we are given one of two known states |Ψx〉, |Ψy〉. Thereexists a measurement that 
orre
tly determines whi
h of the two states weare given with error probability at most ǫ if and only if |〈Ψx|Ψy〉| ≤ ǫ′, where
ǫ′ = 2

√
ǫ(1 − ǫ).Sin
e a unitary operator is just a 
hange of basis, it does not 
hange theinner produ
t between any two quantum states, and thus the inner produ
t
an only 
hange as a 
onsequen
e of queries to the ora
le.4 Adversary lower boundsAdversary lower bounds are information theoreti
al of nature. A basi
 ideain adversary lower bounds is to upper bound the amount of information that
an be learned in a single query. If little information 
an be learned in anyone query, then many queries are required. We use spe
tral properties of Γto put an upper bound on the amount of information the algorithm learnsabout the ora
le.Let A be some quantum algorithm that 
omputes some fun
tion F withbounded two-sided error. For every integer t ≥ 0 and every ora
le x, let

|ψt
x〉 = UtOx · · ·U1OxU0|0〉 (6)denote the quantum state after t queries to the ora
le. To measure theprogress of the algorithm, we de�ne similarly to [3, 30, 16, 17℄ a weightfun
tion

W t =
∑

x,y

Γ[x, y]δxδy · 〈ψt
x|ψt

y〉, (7)where δ is a �xed prin
ipal eigenve
tor of Γ, i.e., a normalized eigenve
tor
orresponding to the largest eigenvalue of Γ, and where δx denotes the xthentry of δ.The algorithm starts in a quantum state |ψ0
x〉 = U0|0〉 whi
h is indepen-dent of the ora
le x, and thus the total initial weight is

W 0 =
∑

x,y

Γ[x, y]δxδy = λ(Γ), (8)where λ(Γ) denotes the spe
tral norm of Γ. The �nal state of the algorithmafter T queries is |ψT
x 〉 if the ora
le is x, and it is |ψT

y 〉 if the ora
le is y.If F (x) 6= F (y), we must have that |〈ψT
x |ψT

y 〉| ≤ ǫ′ by Fa
t 1, and hen
e
W T ≤ ǫ′W 0. If the total weight 
an de
rease by at most ∆ by ea
h query,the algorithm requires Ω(W 0

∆
) queries to the ora
le.



Following Barnum, Saks, and Szegedy [17℄, we upper bound ∆ by thelargest spe
tral norm of the matri
es Γi, de�ned by
Γi[x, y] =

{
Γi[x, y] if xi 6= yi

0 if xi = yi, (9)for ea
h 1 ≤ i ≤ n. The theorem of [17℄ is here stated (and proved) in aslightly more general form than in [17℄ so that it also applies on non-booleanfun
tions. Our proof aims at emphasizing distinguishability and di�ers fromthe original.Theorem 2 (Spe
tral method [17℄). For any adversary matrix Γ for anyfun
tion F : {0, 1}N → {0, 1}m,
Q2(F ) = Ω

( λ(Γ)

maxi λ(Γi)

)
. (10)Proof. We prove that the drop in total weightW t−W t+1 by the t+ 1th queryis upper-bounded by the largest eigenvalue of the matri
es Γi.For ea
h 0 ≤ i ≤ N , let Pi =

∑
z≥0 |i; z〉〈i; z| denote the proje
tiononto the subspa
e querying the ith ora
le bit. Let βx,i = |Pi|ψt

x〉| denote theabsolute value of the amplitude of querying the ith bit in the t+ 1th query,provided the ora
le is x. Note that ∑N
i=0 β

2
x,i = 1 for any ora
le x, sin
e thealgorithm queries one of the N bits x1, . . . , xN , or simulates a non-query byquerying the ora
le with i = 0. The t+ 1th query 
hanges the inner produ
tby at most the overlap between the proje
tions of the two states onto thesubspa
e that 
orresponds to indi
es i on whi
h xi and yi di�er,∣∣∣〈ψt

x|ψt
y〉 − 〈ψt+1

x |ψt+1
y 〉

∣∣∣ =
∣∣∣〈ψt

x|(I − OxOy)|ψt
y〉
∣∣∣ =

=
∣∣∣2
∑

i:xi 6=yi

〈ψt
x|Pi|ψt

y〉
∣∣∣ ≤ 2

∑

i:xi 6=yi

βx,iβy,i. (11)The bigger amplitudes of querying the bits i on whi
h xi and yi di�er,the larger the drop in the inner produ
t 
an be.De�ne an auxiliary ve
tor ai[x] = δxβx,i and note that
N∑

i=0

a2
i =

N∑

i=0

∑

x

δ2
xβ

2
x,i =

∑

x

δ2
x

N∑

i=0

β2
x,i =

∑

x

δ2
x = 1.



The drop in the total weight is upper bounded by
∣∣W t −W t+1

∣∣ =
∣∣∣
∑

x,y

Γ[x, y]δxδy
(
〈ψx|ψy〉 − 〈ψ′

x|ψ′
y〉
)∣∣∣

=
∣∣∣2
∑

x,y

∑

i:xi 6=yi

Γ[x, y]δxδy〈ψx|Pi|ψy〉
∣∣∣

≤ 2
∑

x,y

∑

i

Γi[x, y]δxδy · βx,iβy,i

= 2
∑

i

a∗i Γiai

≤ 2
∑

i

λ(Γi)a
2
i

≤ 2 max
i
λ(Γi) ·

∑

i

a2
i

= 2 max
i
λ(Γi).Here a∗i denotes the transpose of ai. The �rst inequality bounds the drop ininner produ
t for a spe
i�
 pair and follows from Equation 11. The se
ondinequality follows from the spe
tral norm of Γ. The se
ond and third inequal-ities state that the best possible query distributes the amplitude of the querya

ording to the largest prin
ipal eigenve
tor of the query matri
es Γi. ⊓⊔Example: Ordered Sea
hing 2. Returning to our example of orderedsear
hing, for N = 4, the adversary matrix with respe
t to the ordered basis

(0001, 0011, 0111, 1111) is given by
Γsear
h(4)

=




0 1 1
2

1
3

1 0 1 1
2

1
2

1 0 1
1
3

1
2

1 0


 .The spe
tral norm is easily seen to be lower bounded by the sum of the entriesin the �rst row, λ(Γsear
h(4)

) ≥ 1+ 1
2
+ 1

3
. In general, λ(Γsear
h) is lower boundedby the harmoni
 number HN−1, whi
h is at least ln(N). The spe
tral normof the query matri
es λ(Γsear
h

i ) is maximized when i = ⌊N/2⌋, in whi
h
ase it is upper bounded by the spe
tral norm of the in�nite Hilbert matrix
[1/(r+s−1)]r,s≥1, whi
h is π. We thus reprove the lower bound of (1−ǫ′) ln(N)

πfor ordered sear
hing in given [30℄.



5 Applying the spe
tral methodThe spe
tral method is very appealing in that it has a simple formulation,a basi
 proof, and gives good lower bounds for many problems. �palek andSzegedy [51℄ show that for any problem, the best lower bound a
hievableby the spe
tral method is always at least as good as the best lower bounda
hievable by any of the previously published adversary methods. Theirproof is 
onstru
tive and illuminating: given any lower bound in any ofthe previously published adversary methods, they 
onstru
t an adversarymatrix Γ and prove it a
hieves the same lower bound.The �rst general quantum lower bound using adversary arguments wasintrodu
ed by Ambainis in [3℄. As shown in [51℄, it 
an be derived from thespe
tral method by applying simple bounds on the spe
tral norm of Γ andea
h Γi. By de�nition, the numerator λ(Γ) is lower-bounded by 1
|d|2
d∗Γd forany non-negative ve
tor d, and by Mathias' lemma [39℄, the denominator

λ(Γi) is upper-bounded by the produ
t of a row-norm and a 
olumn-norm.Lemma 3 ([39, 51℄). Let G be any non-negative symmetri
 matrix and
M,N non-negative matri
es su
h that G = M ◦ N is the entrywise produ
tof M and N . Then

λ(G) ≤ max
x,y

G[x,y]>0

rx(M) cy(N),where rx(M) is the ℓ2-norm of the xth row in M , and cy(N) is the ℓ2-normof the yth 
olumn in N .Applying these two bounds, we obtain Ambainis' lower bound in [3℄. Werefer to the method as an unweighted adversary method sin
e it 
onsidersonly two types of inputs: easy inputs and hard inputs. We 
onstru
t a zero-one valued adversary matrix Γ that 
orresponds to a uniform distributionover the hard input pairs.Theorem 4 (Unweighted method [3℄). Let F be a partial boolean fun
-tion, and let A ⊆ F−1(0) and B ⊆ F−1(1) be subsets of (hard) inputs. Let
R ⊆ A × B be a relation, and set Ri = {(x, y) ∈ R : xi 6= yi} for ea
h
1 ≤ i ≤ n. Let m,m′ denote the minimal number of ones in any row and any
olumn in relation R, respe
tively, and let ℓ, ℓ′ denote the maximal numberof ones in any row and any 
olumn in any of the relations Ri, respe
tively.Then Q2(f) = Ω(

√
mm′/ℓℓ′).Proof. Let S = {(x, y) : (x, y) ∈ R ∨ (y, x) ∈ R} be a symmetrizedversion of R. De�ne a 
olumn ve
tor d from the relation S by setting



dx =
√

|{y : (x, y) ∈ S}|, and an adversary matrix Γ by setting Γ[x, y] = 1
dxdyif and only if (x, y) ∈ S. Then λ(Γ) ≥ 1

|d|2
d∗Γd = 1. For ea
h ofthe matri
es Γi, we apply Lemma 3 with M [x, y] = N [y, x] = 1

dx
if andonly if (x, y) ∈ S. For every x ∈ A, rx(M) ≤

√
ℓ/d2

x ≤
√
ℓ/m and

cy(N) ≤
√
ℓ′/d2

y ≤
√
ℓ′/m′. For every x ∈ B, the inequalities are swapped.By Lemma 3, λ(Γi) ≤ maxx,y:Γi[x,y]>0 rx(M)cy(N) ≤

√
ℓℓ′/mm′. ⊓⊔The unweighted adversary method is very simple to apply as it requiresonly to spe
ify a set R of hard input pairs. It gives tight lower bounds formany 
omputational problems, in
luding inverting a permutation [3℄, 
om-puting any symmetri
 fun
tion and 
ounting [42, 10, 14℄, 
onstant-level and-or trees [3, 29℄, and various graph problems [21℄. For some 
omputationalproblems, the hardness does however not ne
essarily rely only on a few se-le
ted hard instan
es, but rather on more global properties of the inputs.Applying the unweighted method on ordered sear
hing would for instan
eonly yield a lower bound of a 
onstant. In these 
ases, we may apply thefollowing weighted variant of the method, due to Ambainis [4℄ and Zhang [57℄.Theorem 5 (Weighted method [4, 57℄). Let F : S → {0, 1}m be a partialfun
tion. Let w,w′ denote a weight s
heme as follows:

• Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) =
w(y, x) that satis�es w(x, y) = 0 whenever F (x) = F (y).

• Every triple (x, y, i) ∈ S2 × [N ] is assigned a non-negative weight
w′(x, y, i) that satis�es w′(x, y, i) = 0 whenever xi = yi or F (x) = F (y),and w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i su
h that xi 6= yi.Then

Q2(F ) = Ω

(
min
x,y,i

w(x,y)>0
xi 6=yi

√
wt(x)wt(y)

v(x, i)v(y, i)

)
,where wt(x) =

∑
y w(x, y) and v(x, i) =

∑
y w

′(x, y, i) for all x ∈ S and i ∈
[N ].At �rst glan
e, the weighted method may look rather 
ompli
ated, bothin its formulation and use, though it is not. We �rst assign weights to pairs
(x, y) of inputs for whi
h F (x) 6= F (y), as in the spe
tral method. Werequire the weights to be symmetri
 so that they represent the di�
ulty indistinguishing between x and y.We then afterwards assign weights w′(x, y, i) that represent the di�
ultyin distinguishing x from y by querying index i. The harder it is to distinguish



x from y by index i, 
ompared to distinguishing y from x by index i, the moreweight we put on (x, y, i) and the less on (y, x, i), and visa-versa.To quantify this, de�ne t(x, y, i) = w′(x, y, i)/w′(y, x, i). Then t(x, y, i)represents the relative amount of information we learn about input pairs
(x, z) 
ompared to the amount of information we learn about input pairs
(u, y), by querying index i. If we, by querying index i, learn little about
x 
ompared to y, we let t(x, y, i) be large, and otherwise small. Considerwe query an index i for whi
h xi 6= yi. Then we learn whether the ora
leis x or y. However, at the same time, we also learn whether the ora
le is
x or z for any other pair (x, z) for whi
h xi 6= zi and F (x) 6= F (z); andsimilarly, we learn whether the ora
le is u or y for any other pair (u, y) forwhi
h ui 6= yi and F (u) 6= F (y). The less information querying index iprovides about pairs (x, z) 
ompared to pairs (u, y), the larger we 
hoose
t(x, y, i). Having thus 
hosen t(x, y, i), we set w′(x, y, i) = w(x, y)

√
t(x, y, i)and w′(y, x, i) = w(x, y)/

√
t(x, y, i).We show next that the weighted method yields a lower bound of Ω(logN)for the ordered sear
hing problem. This proves that the weighted method isstri
tly stronger than the unweighted method. The weighted method yieldsstrong lower bounds for read-on
e formula [16℄ and iterated fun
tions [4℄.Aaronson [2℄, Santha and Szegedy [50℄, and Zhang [58℄ use adversary argu-ments to prove lower bounds for lo
al sear
h, a distributed version of Grover'sproblem. �palek and Szegedy prove in [51℄ that the weighted method is equiv-alent to the spe
tral method�any lower bound that 
an be a
hieved by oneof the two methods 
an also be shown by the other. Their proof is 
on-stru
tive and gives simple expressions for 
onverting one into the other. Themain weights w(x, y) are the 
oe�
ients of the weight fun
tion W t for theinput pair (x, y), that is, w(x, y) = Γ[x, y]δxδy, and the se
ondary weights

w′(x, y, i) follow from Mathias' lemma [39℄ (Lemma 3).Example: Ordered Sea
hing 3. To apply the weighted method on or-dered sear
hing, we pi
k the same weights w(x, y) = Γsear
h[x, y] δxδy as inthe spe
tral method as there are no strong reasons for 
hoosing otherwise.Now, 
onsider t(x, y, i) with F (x) ≤ i < F (y) so that xi 6= yi. By queryingindex i, we also learn to distinguish between x and z for ea
h of the F (y)− iinputs z with i < F (z) ≤ F (y), and we learn to distinguish between u and yfor ea
h of the i− F (x) + 1 inputs u with F (x) ≤ F (u) ≤ i. We thus 
hooseto set
t(x, y, i) =

|F (y) − i| + 1

|F (x) − i| + 1
.Plugging these values into the weighted method yields a lower bound of

Ω(logN) for ordered sear
hing.



6 Limitations of the spe
tral methodThe spe
tral method and the weighted adversary method bound the amountof information that 
an be learned in any one query. They do not take intoa

ount that the amount of information that 
an be learned in the jth querymight di�er from the amount of information that 
an be learned in the kthquery.In 1999, Zalka [56℄ su

essfully managed to 
apture the amount of infor-mation that 
an be learned in ea
h individual query for a restri
ted versionof Grover's problem [27℄. In this restri
ted version, we are promised that theinput ora
le x is either the zero-string (so |x| = 0) or exa
tly one entry in
x is one (so |x| = 1), and the goal is to determine whi
h is the 
ase. Bysymmetry 
onsiderations, Zalka demonstrates that Grover's algorithm satu-rates some improved inequalities (whi
h are similar to Eq. 11) and hen
e isoptimal, even to within an additive 
onstant.Sin
e 
urrent adversary methods do not 
apture the amount of informa-tion the algorithm 
urrently knows, we may simply assume that the algorithmalready knows every bit of the ora
le and that it tries to prove so. This mo-tivates a study of the relationship between the best bound a
hievable by thespe
tral method and the 
erti�
ate 
omplexity. A 
erti�
ate for an input
x ∈ {0, 1}N , is a subset C ⊆ [N ] of input bits su
h that for any other input yin the domain of F that may be obtained from x by �ipping some of the in-di
es not in C, we have that F (x) = F (y). The 
erti�
ate 
omplexity Cx(F )of input x is the size of a smallest 
erti�
ate for x. The 
erti�
ate 
omplexityC(F ) of a fun
tion F is the maximum 
erti�
ate 
omplexity of any of itsinputs. We also de�ne the z-
erti�
ate 
omplexity Cz(F ) when taking themaximum only over inputs that map to z. The spe
tral theorem 
an thennever yield a lower bound better than a quantity that 
an be expressed interms of 
erti�
ate 
omplexity.Lemma 6 ([38, 57, 51℄). Let F : S → {0, 1} be any partialboolean fun
tion. The spe
tral adversary lower bound Adv(F ) is at most
min

{√C0(F )N,
√C1(F )N

}. If F is total, the method is limited by√C0(F )C1(F ).The 
erti�
ate 
omplexity of a fun
tion F : {0, 1}N → {0, 1}m is it-self polynomially related to the blo
k sensitivity of the fun
tion. An input
x ∈ {0, 1}N is sensitive to a blo
k B ⊆ [N ] if F (x) 6= F (xB), where xB de-notes the input obtained by �ipping the bits in x with indi
es from B. Theblo
k sensitivity bsx(F ) of input x is the maximum number of disjoint blo
ks
B1, B2, . . . , Bk ⊆ [N ] on whi
h x is sensitive. The blo
k sensitivity bs(F ) of
F is the maximum blo
k sensitivity of any of its inputs. We also de�ne the



z-blo
k sensitivity bsz(F ) when taking the maximum only over inputs thatmap to z.For any boolean fun
tion F : {0, 1}N → {0, 1}, the 
erti�
ate 
omplexityis upper bounded by C(F ) ≤ bs0(F )bs1(F ), and thus so is the spe
traladversary method. Conversely, Adv(F ) ≥
√bs(F ) by a zero-one valuedadversary matrix Γ: Let x′ ∈ {0, 1}N be an input that a
hieves the blo
ksensitivity of F , and let B1, B2, . . . , Bk ⊆ [N ] be disjoint blo
ks on whi
h x′is sensitive, where k = bs(F ). Set Γ(F )[x, xB] = 1 if and only if x = x′ and

B is one of the k blo
ks Bi and 
lose Γ under transposition. Then λ(Γ) =
√
kand maxi λ(Γi) = 1, and thus

√bs(F ) ≤ Adv(F ) ≤ bs0(F )bs1(F ). (12)The spe
tral adversary method is not suitable for proving lower boundsfor problems related to property testing. If fun
tion F : S → {0, 1} is apartial fun
tion with S ⊆ {0, 1}N su
h that every zero-input is of Hammingdistan
e at least εn from every one-input, then the spe
tral theorem doesnot yield a lower bound better than 1/ε.Laplante and Magniez introdu
e in [38℄ a lower-bound method basedon Kolmogorov 
omplexity. They show by dire
t 
onstru
tions that theirmethod is at least as strong as ea
h of the two methods, the spe
tral andweighted adversary method. �palek and Szegedy then show in [51℄ that thespe
tral method is at least as strong as the Kolmogorov 
omplexity method,allowing us to 
on
lude that the three methods are equivalent. Having su
ha variety of representations of the same method shows that the adversarymethod is very versatile and 
aptures fundamental properties of fun
tions.Indeed, Laplante, Lee, and Szegedy [37℄ show that the square of the adver-sary bound is a lower bound on the formula size. The following lower-boundmethod is a 
ombinatorial version of the Kolmogorov 
omplexity method.Theorem 7 (Minimax method [38, 51℄). Let F : S → {0, 1}m be a partialfun
tion and A a bounded-error quantum algorithm for F . Let p : S× [N ] →
ℜ+

0 be a set of |S| probability distributions su
h that px(i) denotes the averageprobability of querying the ith input bit on input x, where the average is takenover the whole 
omputation of A. Then the query 
omplexity QA of algorithm
A satis�es

QA ≥Mp = max
x,y:F (x)6=F (y)

1∑
i:xi 6=yi

√
px(i) py(i)

.The previous methods satisfy the property that if we plug in some matrixor relation, we get a valid lower bound. The minimax method is prin
ipallydi�erent. A lower bound 
omputed by the minimax theorem holds for one



parti
ular algorithm A, and it may not hold for some other and better algo-rithm. However, we may obtain a universal lower bound that holds for everybounded error algorithm by simply taking the minimum of the bound Mpover all possible sets of probability distributions p. The spe
tral bound andthe minimax bound are in a primal-dual relation: the best lower bound that
an be obtained by any adversary matrix Γ equals the smallest bound that
an be obtained by a set of probability distributions p [51℄. Primal methodsare used for obtaining 
on
rete lower bounds and dual methods are used forproving limitations of the method, as in Lemma 6.A useful property of the adversary method is that it 
omposes. Considera fun
tion of the form H = F ◦ (G1, . . . , Gk), where F : {0, 1}k → {0, 1}and Gi : {0, 1}Ni → {0, 1} for i = 1, . . . , k are partial boolean fun
tions.A 
omposition theorem states the 
omplexity of fun
tion H in terms of the
omplexities of F and G1, . . . , Gk. Barnum and Saks [16℄ use 
ompositionproperties to prove a query lower bound of Ω(
√
N) for any read-on
e formula,Ambainis [4℄ proves a 
omposition lower bound for iterated boolean fun
tions,and Laplante, Lee, and Szegedy [37℄ prove a limitation on 
omposition lowerbounds for fun
tions Gi for whi
h the adversary bound is upper bounded bya 
ommon bound b. To formulate a 
omposition theorem for arbitrary 
aseswhen the fun
tions Gi may have di�erent adversary bounds, we require aweighted version of the spe
tral method.Let F : {0, 1}N → {0, 1} be a partial boolean fun
tion and α =

(α1, . . . , αN) a string of positive reals. LetAdvα(F ) = max
Γ

min
i

{
αi
λ(Γ)

λ(Γi)

}
,where Γ ranges over all adversary matri
es for F . If the weights are all 1, thenour new quantity Advα(F ) 
oin
ides with the spe
tral adversary bound andis thus a lower bound on the quantum query 
omplexity of F . If the weights

α are non-uniform, then Advα(F ) is a new abstra
t 
omplexity measure thatassigns 
ost αi to querying the ith input bit. We 
an then prove [32℄ that thequantity Advα 
omposes in the following sense.Theorem 8 (Composition Theorem [16, 4, 37, 32℄). For any 
om-posite fun
tion H = F ◦ (G1, . . . , Gk), where F : {0, 1}k → {0, 1} and
Gi : {0, 1}Ni → {0, 1} are partial boolean fun
tions,Advα(H) = Advβ(F ),where βi = Advαi(Gi), and α = (α1, . . . , αk) is a k-tuple of strings αi ∈ ℜ+Ni.



A natural generalization of Grover's problem is the so-
alled k-fold sear
hproblem in whi
h we are promised that exa
tly k entries of the input ora
le
x are one (so |x| = k), and the goal is to �nd all of these k indi
es. Wesay an algorithm A su

eeds if it outputs a subset S ⊆ [N ] of size k and S
ontains all indi
es i ∈ [N ] for whi
h xi = 1. Thus, by de�nition, it fails evenif it outputs all but one of the k indi
es. The k-fold sear
h problem 
an besolved in O(

√
kn) queries, essentially by sequentially running Grover's sear
halgorithm k times. Klau
k, �palek, and de Wolf [35℄ show that if the numberof queries is less than ǫ√kn for some 
onstant ǫ, then the su

ess probabilityof A is exponentially small in k. They thus prove a strong dire
t produ
ttheorem for the k-fold sear
h problem. One of the main elements of the proofis the polynomial method whi
h we dis
uss in the next se
tion.In very re
ent work, Ambainis [5℄ proposes an extension of the adversarymethod and uses it to reprove the strong dire
t produ
t theorem of [35℄.Though the following very brief des
ription of the proof does not give fulljusti
e to the method, we hope it 
onveys some of the intuition on whi
h [5℄ isbased. The algorithm runs on a uniform superposition of all inputs. Duringthe 
omputation, the input register gets entangled with the workspa
e of thealgorithm due to the queries to the ora
le. We tra
e out the workspa
e andexamine the eigenspa
es of the density matrix of the input register. Due tosymmetries, there are exa
tly k + 1 eigenspa
es, indexed by the number ofones the algorithm �knows� at that stage of the algorithm. In the beginning,all amplitude is in the 0th eigenspa
e. One query 
an only move little ampli-tude from the ith eigenspa
e to the i+ 1th eigenspa
e. If the algorithm hasa good su

ess probability, the quantum amplitude of high eigenspa
es mustbe signi�
ant, sin
e the algorithm must �know� most of the k indi
es, whi
himplies a lower bound on the query 
omplexity.7 Polynomial lower boundsThere are essentially two di�erent methods known for proving lower boundson quantum 
omputations. The histori
ally �rst method is the adversarymethod we dis
uss above. It was introdu
ed in 1994 by Bennett, Bernstein,Brassard, and Vazirani, and published in 1997 in the SIAM Journal on Com-puting, in a spe
ial se
tion that 
ontains some of the most outstanding paperson quantum 
omputing. The se
ond method was introdu
ed shortly after,in 1998, by Beals, Buhrman, Cleve, Mos
a, and de Wolf [9℄, and impli
itlyused by Fortnow and Rogers in [25℄. Their approa
h is algebrai
 and followsearlier very su

essful work on 
lassi
al lower bounds via polynomials (see forinstan
e Beigel's 1993 survey [11℄ and Regan's 1997 survey [44℄). We �rst es-



tablish that any partial boolean fun
tion F : S → {0, 1}, where S ⊆ {0, 1}N ,
an be represented by a real-valued polynomial p : ℜN → ℜ.De�nition 9. Let F : S → {0, 1} be a partial boolean fun
tion, where S ⊆
{0, 1}N . An N-variable polynomial p represents F if p(x) = F (x) for all
x ∈ S, and it approximates F if |p(x)−F (x)| ≤ 1

3
for all x ∈ S. The degreeof F , denoted deg(F ), is the minimal degree of a polynomial representing F .The approximate degree of F , denoted d̃eg(F ), is the minimal degree of apolynomial approximating F .The 
rux in [9℄ is in showing that any quantum algorithm A 
omputingsome fun
tion F gives rise to some polynomial pA that represents or approx-imates F .Theorem 10 ([9℄). Let A be a quantum algorithm that 
omputes a partialboolean fun
tion F : S → {0, 1}, where S ⊆ {0, 1}N , using at most T queriesto the ora
le O

′
x. Then there exists an N-variate real-valued multilinear poly-nomial pA : ℜN → ℜ of degree at most 2T , whi
h equals the a

eptan
eprobability of A.Proof. In this theorem, we use the ora
le O′

x whi
h is equivalent to the ora-
le Ox, sin
e it allows for simple formulations. We �rst rewrite the a
tion of
O

′
x as

O
′
x|i, b; z〉 = (1 − xi)|i, b; z〉 + xi|i, b⊕ 1; z〉 (13)where we de�ne xi = 0 for i = 0 so that we 
an simulate a non-queryby querying xi with i = 0. Suppose we apply O′

x on some superposition∑
i,b,z αi,b,z|i, b; z〉 where ea
h amplitude αi,b,z is an N-variate 
omplex-valuedpolynomial in x of degree at most j. Then, by Eq. 13, the resulting state∑
i,b,z βi,b,z|i, b; z〉 is a superposition where ea
h amplitude βi,b,z is an N-variate 
omplex-valued polynomial in x of degree at most j+1. By proof byindu
tion, after T queries, ea
h amplitude 
an be expressed as a 
omplex-valued polynomial in x of degree at most T . The probability that the �nalmeasurement yields the out
ome 1, 
orresponding to a

epting the input, isobtained by summing some of the absolute values of the amplitudes squared.The square of any of the absolute amplitudes 
an be expressed as a real-valued polynomial pA in x of degree at most 2T . Theorem 10 follows. ⊓⊔The above theorem states that to any quantum algorithm A 
omputinga boolean fun
tion F : S → {0, 1}, where S ⊆ {0, 1}N , we 
an asso
iate an

N-variate polynomial pA : ℜN → ℜ that expresses the a

eptan
e probabilityof the algorithm on any given input. If algorithm A is exa
t, i.e., if A alwaysstops and outputs the 
orre
t answer, then pA(x) = F (x) for all x ∈ S, and



thus pA represents F . If A has bounded error, then 0 ≤ pA(x) ≤ 1/3 if
F (x) = 0 and 2/3 ≤ pA(x) ≤ 1 if F (x) = 1, and thus pA approximates F .The degree of pA is at most twi
e the number of queries used by algorithm A.Consequently, the degree of a fun
tion is a lower bound on the quantumquery 
omplexity, up to a fa
tor of two.Corollary 11 (Polynomial method [9℄). For any partial boolean fun
-tion F : S → {0, 1}, where S ⊆ {0, 1}N , we have QE(F ) ≥ deg(F )/2 and
Q2(F ) ≥ d̃eg(F )/2.8 Applying the polynomial methodThe 
hallenge in applying the polynomial method lies in the dimensionality ofthe input. Typi
ally, the method is applied by �rst identifying a univariateor bivariate polynomial that 
aptures essential properties of the problem,and then proving a lower bound on the degree of that polynomial. These
ond part is typi
ally reasonably straightforward sin
e polynomials havebeen studied for 
enturies and mu
h is known about their degrees. Thepossibly simplest nontrivial example is when F is the threshold fun
tionThrt de�ned by Thrt(x) = 1 if and only if |x| ≥ t. It is easy to see that
deg(Thrt) = Θ(N) for all nontrivial threshold fun
tions, and thus QE(Thrt) =
Ω(N). Paturi [43℄ shows that d̃eg(Thrt) = Θ

(√
(t+ 1)(N − t+ 1)

), and wethus readily get that Q2(Thrt) = Ω
(√

(t+ 1)(N − t+ 1)
), whi
h is tight byquantum 
ounting [14, 9℄. This degree argument extends to any symmetri
fun
tion F by writing F as a sum of threshold fun
tions. The same tightlower bounds for symmetri
 fun
tions 
an also be obtained by the unweightedadversary method (see the paragraph after Theorem 4).For general non-symmetri
 fun
tions, the polynomial method is, however,signi�
antly harder to apply. For problems that are �
lose� to being sym-metri
, we 
an sometimes su

eed in 
onstru
ting a univariate or bivariatepolynomial that yields a non-trivial lower bound. The �rst and, in our view,most important su
h a result was obtained by Aaronson in [1℄ in whi
h heproves a lower bound of Ω(N1/5) on any bounded-error quantum algorithmfor the 
ollision problem.The 
ollision problem is a non-boolean promise problem. The ora
le isan N-tuple of positive integers between 1 and M , whi
h we think of as afun
tion X : [N ] → [M ]. We model the ora
le O′′

X so that a query to the ithentry of the ora
le returns the integer X(i). Spe
i�
ally, O′′
X takes as input

|i, r; z〉 and outputs |i, r⊕X(i); z〉 where 0 ≤ r < 2m for m = ⌈log2(M +1)⌉,and r⊕X(i) denotes bitwise addition modulo 2. We are promised that either



X is a one-to-one fun
tion, or X is two-to-one, and the goal is to determinewhi
h is the 
ase.The result of Aaronson was shortly after improved by Shi [47℄ to Ω(N1/4)for general fun
tions X : [N ] → [M ], and to Ω(N1/3) in the 
ase the rangeis larger than the domain by a 
onstant fa
tor, M ≥ 3
2
N . The lower boundsof Aaronson and Shi appears as a joint arti
le [7℄. Finally, Kutin [36℄ andAmbainis [6℄ independently found remedies for the te
hni
al limitations inShi's proof, yielding an Ω(N1/3) lower bound for all fun
tions, whi
h is tightby an algorithm that uses Grover sear
h on subsets by Brassard, Høyer, andTapp [13℄.The best lower bound for the 
ollision problem that 
an be obtained usingthe adversary method is only a 
onstant, sin
e any one-to-one fun
tion is oflarge Hamming distan
e to any two-to-one fun
tion. Koiran, Nesme, andPortier [34℄ use the polynomial method to prove a lower bound of Ω(logN)for Simon's problem [48℄, whi
h is tight [48, 12℄. Simon's problem is a partialboolean fun
tion having properties related to �nite abelian groups. Also forthis problem, the best lower bound that 
an be obtained using the adversarymethod is a 
onstant.In 
ontrast, for any total boolean fun
tion F : {0, 1}N → {0, 1}, theadversary and polynomial method are both polynomially related to blo
ksensitivity,

√bs(F )/6 ≤ d̃eg(F ) ≤ deg(F ) ≤ bs3(F ) (14)
√bs(F ) ≤ Adv(F ) ≤ bs2(F ). (15)It follows from [19℄ that deg(F ) ≤ bs3(F ), and from Nisan and Szegedy [41℄that 6d̃eg(F )2 ≥ bs(F ). Buhrman and de Wolf [19℄ provides an ex
ellentsurvey of these and other 
omplexity measures of boolean fun
tions.The polynomial lower bound is known to be inferior to the weightedadversary method for some total boolean fun
tions. In [4℄, Ambainis gives aboolean fun
tion F : {0, 1}4 → {0, 1} on four bits, whi
h 
an be des
ribedas �the four input bits are sorted� [37℄, for whi
h deg(F ) = 2 and for whi
hthere exists an adversary matrix ΓF satisfying that λ(ΓF )/maxi λ(ΓF

i ) = 2.5.We 
ompose the fun
tion with itself and obtain a boolean fun
tion F2 = F ◦
(F, F, F, F ) : {0, 1}16 → {0, 1} de�ned on 16 bits for whi
h deg(F2) = 4, andfor whi
h λ(ΓF2)/maxi λ(ΓF2

i ) = 2.52, by the 
omposition theorem. Iterating
n times, yields a fun
tion F on N = 4n bits of degree deg(F ) = 2n, withspe
tral lower bound 2.5n = deg(F )1.32..., by the 
omposition theorem. Thethus 
onstru
ted fun
tion F is an example of an iterated fun
tion of lowdegree and high quantum query 
omplexity. It is the 
urrently biggest knowngap between the polynomial method and the adversary method for a total



fun
tion. Another iterated total fun
tion for whi
h the adversary methodsyield a lower bound better than the degree, is the fun
tion des
ribed by �allthree input bits are equal� [4℄.The polynomial method is very suitable when 
onsidering quantum al-gorithms 
omputing fun
tions with error ǫ that is sub-
onstant, whereas theadversary method is not formulated so as to 
apture su
h a �ne-grainedanalysis. Buhrman, Cleve, de Wolf, and Zalka [10℄ show that any quan-tum algorithm for Grover's problem that su

eeds in �nding an index i forwhi
h xi = 1 with probability at least 1 − ǫ, provided one exists, requires
Ω(
√
N log(1/ǫ)) queries to the ora
le. A possibly more familiar example isthat any polynomial approximating the parity fun
tion with any positivebias ǫ > 0 (as opposed to bias 1

6
where 1

6
= 2

3
− 1

2
) has degree N , sin
e anysu
h polynomial gives rise to a univariate polynomial of no larger degree with

N roots. Hen
e, any quantum algorithm 
omputing the parity fun
tion witharbitrary small bias ǫ > 0 requires N/2 queries to the ora
le, whi
h is tight.A useful property of representing polynomials is that they 
ompose. If pis a polynomial representing a fun
tion F , and polynomials q1, q2, . . . , qk rep-resent fun
tions G1, . . . , Gk, then p ◦ (q1, . . . , qk) represents F ◦ (G1, . . . , Gk),when well-de�ned. This 
omposition property does not hold for approxi-mating polynomials: if ea
h sub-polynomial qi takes the value 0.8, say, thenwe 
annot say mu
h about the value p(0.8, . . . , 0.8) sin
e the value of p onnon-integral inputs is not restri
ted by the de�nition of being an approxi-mating polynomial. To a
hieve 
omposition properties, we require that thepolynomials are insensitive to small variations of the input bits. Buhrman,Newman, Röhrig, and de Wolf give in [15℄ a de�nition of su
h polynomials,and refer to them as being robust.De�nition 12 (Robust polynomials [15℄). An approximate N-variatepolynomial p is robust on S ⊆ {0, 1}N if |p(y) − p(x)| ≤ 1
3
for every x ∈ Sand y ∈ ℜM su
h that |yi−xi| ≤ 1

3
for every i = 1, . . . ,M . The robust degreeof a boolean fun
tion F : S → {0, 1}, denoted rdeg(F ), is the minimal degreeof a robust polynomial approximating F .Robust polynomials 
ompose by de�nition. Buhrman et al. [15℄ showthat the robust degree of any total fun
tion F : {0, 1}N → {0, 1} is O(N) bygiving a 
lassi
al algorithm that uses a quantum subroutine for Grover's prob-lem [27℄ whi
h is tolerant to errors, due to Høyer, Mos
a, and de Wolf [29℄.Buhrman et al. [15℄ also show that rdeg(F ) ∈ O(d̃eg(F ) log d̃eg(F )) by giv-ing a 
onstru
tion for turning any approximating polynomial into a robustpolynomial at the 
ost of at most a logarithmi
 fa
tor in the degree of F .This implies that for any 
omposite fun
tion H = F ◦ (G, . . . , G), we have

d̃eg(H) ∈ O(d̃eg(F )d̃eg(G) log d̃eg(F )). It is not known whether this is



tight. Neither is it known if the approximate degree of H 
an be signi�-
antly smaller than the produ
t of the approximate degrees of F and G. Theonly known lower bound on the approximate degree of H is the trivial bound
Ω(d̃eg(F ) + d̃eg(G)).An and-or tree of depth two is a 
omposed fun
tion F◦(G, . . . , G) in whi
hthe outer fun
tion F is the logi
al AND of √N bits, and the inner fun
tion
G is the logi
al OR of √

N bits. By the unweighted adversary method,
omputing and-or trees of depth two requires Ω(
√
N) queries. Høyer, Mos
a,and de Wolf [29℄ give a bounded-error quantum algorithm that uses O(

√
N)queries, whi
h thus is tight. The existen
e of that algorithm implies thatthere exists an approximating polynomial for and-or tree of depth two ofdegree O(

√
N). No other 
hara
terization of an approximating polynomialfor and-or trees of depth two of degree O(

√
N) is 
urrently known. The bestknown lower bound on the approximate degree of and-or trees of depth twois Ω(N1/3), up to logarithmi
 fa
tors in N , by a folklore redu
tion from theelement distin
tness problem on √

N integers [7℄.9 Con
luding remarksWe have been fo
using on two methods for proving lower bounds on quan-tum query 
omplexity: the adversary method and the polynomial method.Adversary lower bounds are in general easy to 
ompute, but are limited bythe 
erti�
ate 
omplexity. Known lower bounds are 
onstru
ted by identify-ing hard input pairs, �nding weights a

ordingly, and 
omputing either thespe
tral norm of some matri
es, or applying the weighted method. Polyno-mial lower bounds may yield stronger bounds, but are hard to prove. Knownlower bounds by the polynomial methods are 
onstru
ted by identifying sym-metries within the problem, redu
ing the number of input variables to oneor two, and proving a lower bound on the degree of the redu
ed polynomial.Barnum, Saks, and Szegedy give in [17℄ a third lower bound method thatexa
tly 
hara
terizes the quantum query 
omplexity, but this strength turnsout also to be its weakness: it is very hard to apply and every known lowerbound obtained by the method 
an also be shown by one of the other twomethods. In a very re
ent work, Ambainis [5℄ extends the adversary methodand uses it to reprove a strong dire
t produ
t theorem by Klau
k, �palek,and de Wolf [35℄ obtained by te
hniques that in
lude the polynomial method.Klau
k et al. [35℄ show that their strong dire
t produ
t theorem impliesgood quantum time-spa
e tradeo�s, in
luding a quantum lower bound of
T 2·S = Ω(N3) for sorting. A signi�
ant body of work have been 
ondu
ted onlower bounds on 
ommuni
ation 
omplexity, primarily using the polynomial



method. We refer to de Wolf's ex
ellent survey [55℄ as a possible startingpoint.There is a range of problems for whi
h we do not 
urrently know tightquantum query bounds. One important example is binary and-or trees oflogarithmi
 depth. A binary and-or tree on N = 4n variables is obtainedby iterating the fun
tion F (x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4) in to-tal n times. The 
lassi
al query 
omplexity for probabilisti
 algorithms is
Θ(N0.753) [52, 49, 45℄. No better bounded-error quantum algorithm is known.The best known lower bound on the quantum query 
omplexity is Ω(

√
N)by embedding the parity fun
tion on √

N bits and noting that the parityfun
tion has linear query 
omplexity, whi
h 
an be shown by either method.Magniez, Santha, and Szegedy give in [40℄ a quantum algorithm for de-termining if a graph on N verti
es 
ontains a triangle whi
h uses O(N1.3)queries to the adja
en
y matrix. The best known lower bound is Ω(N) by theunweighted adversary method, and has been 
onje
tured not to be tight [4℄.The problem of triangle-identi�
ation is an example of a graph property,whi
h is a set of graphs 
losed under isomorphism. Sun, Yao, and Zhang [53℄show that there exists a non-trivial graph property of quantum query 
om-plexity O(
√
N), up to logarithmi
 fa
tors in N .Gasar
h, in a survey on private information retrieval, published in thisComputational Complexity Column in the Bulletin [26℄, writes: �A �eld isinteresting if it answers a fundamental question, or 
onne
ts to other �eldsthat are interesting, or uses te
hniques of interest.� It is our hope that thereader will �nd that thus surveyed area of quantum lower bounds ful�lls ea
hof those three 
riteria.A
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