
The Computational Complexity

Column

by

Jacobo Torán

Dept. Theoretische Informatik, Universität Ulm
Oberer Eselsberg, 89069 Ulm, Germany

jacobo.toran@uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

The algebraic perspective to study regular languages has been traditionally very
fruitful. Pascal Tesson and Denis Therien show in this excellent survey that this
line of research is still very active. They overview many recent results providing
applications for algebraic tools in several areas of complexity theory such as
boolean circuit complexity, communication complexity, the theory of bounded
width branching programs and learning theory.

Bridges between Algebraic Automata

Theory and Complexity Theory∗

Pascal Tesson† Denis Thérien‡

Abstract
∗Research supported by NSERC and FQRNT.
†Département d'Informatique et de Génie Logiciel, Université Laval, Québec, Canada.

pascal.tesson@ift.ulaval.ca
‡School of Computer Science, McGill University, Montréal, Canada.

denis@cs.mcgill.ca

http://informatik.uni-ulm.de
http://www.uni-ulm.de
jacobo.toran@uni-ulm.de
http://theorie.informatik.uni-ulm.de/Personen/jt.html

The algebraic theory of �nite automata has been one of the most
successful tools to study and classify regular languages. These very
same tools can in fact be used to understand more powerful models
of computation and we discuss here the impact that semigroup theory
can have in computational complexity.

1 Introduction

Many interesting results in the study and classi�cation of regular languages
have come from an algebraic perspective pioneered by Eilenberg [23]. As
we describe more precisely in the next section, �nite automata and �nite
semigroups and monoids are closely related and one can naturally choose to
consider automata as algebraic objects or, conversely, consider �nite semi-
groups and monoids as machines. This connection makes it possible to relate
the combinatorial properties of a regular language with the algebraic proper-
ties of its minimal automaton. One such famous example is Schützenberger's
characterization of star-free regular languages [52]: a language can be de-
scribed by an extended regular expression without the use of the Kleene
star if and only if the semigroup corresponding to its minimal automaton
contains no non-trivial group. A number of important classes of regular lan-
guages admit similar algebraic characterizations, often yielding decidability
results which are not known to be obtainable by other means.

This algebraic perspective conveniently allows one to switch between the
language theoretic and semigroup theoretic viewpoints on �nite automata.
In fact, the interaction between automata theory and �nite semigroup theory
has been so successful that the two �elds are now barely distinguishable. As
one can witness by comparing the key references on the subject over the
last �fty years [23, 45, 46, 2], �nite semigroup theory has rapidly evolved
into a rich mathematical �eld with considerable depth that involves category
theory, topology and combinatorics.

In this column, we wish to explore the relevance of semigroup theoretic
tools in computational complexity. At �rst glance, regular languages seem to
be of little interest to computational complexity theory because they can all
be recognized in linear time and constant space but there are other measures
of complexity for which regular languages provide a non-trivial case-study of
considerable interest: circuit complexity [12, 38], communication complex-
ity [50, 65], property testing [3], etc. In these investigations, the algebraic
perspective on regular languages is often a key starting point and can help
uncover unexpected similarities between the various models. There is, for
instance, a very tight relation between the communication complexity and

the circuit complexity of regular languages [38, 66].
By viewing �nite semigroups as machines akin to �nite automata we can

analyze, with the same algebraic perspective, more powerful models of com-
putation such as boolean circuits, branching programs and communication
protocols. This approach has been particularly successful in analyzing the
computational power of bounded-width branching programs and boolean cir-
cuits of shallow depth and has provided algebraic characterizations of impor-
tant complexity classes such as AC0, ACC0 and NC1 through the �program
over monoid� formalism [12] and PSPACE and its main subclasses through
the �leaf language� model [33]. In this context, it is sometimes possible to
draw interesting parallels between algebraic operations on classes of semi-
groups, combinatorial operations on classes of regular languages and opera-
tions on complexity classes.

We believe that the rich algebraic theory of �nite automata partly ex-
plains why the study of regular languages has had more impact in com-
putational complexity than the rest of formal language theory. Often the
combinatorial characterizations of classes of regular languages are su�cient
to derive upper bounds on their complexity whereas the algebraic point of
view is most useful when establishing hardness results for languages that do
not belong to these same classes. We outline in this column how the in-
teraction between semigroup theory and complexity has developed over the
last twenty years and survey what we believe are promising avenues for fu-
ture research. It should be noted, although this is beyond our present scope,
that the computational relevance of algebraic automata theory has in turn
introduced new ideas in �nite semigroup theory (see the survey [64]).

In the next section, we will review the basics of algebraic automata theory
and proceed to survey some applications of these methods in communication
complexity, boolean circuit complexity, bounded width branching programs
and learning theory.

2 Regular Languages and Finite Monoids

We begin with a brief overview of algebraic automata theory. A more thor-
ough introduction can be found in the excellent survey of Pin [46].

A semigroup is a set S equipped with a binary associative operation which
we denote multiplicatively. A monoid M is a semigroup with a distinguished
identity element 1M . Throughout this column S and M denote respectively
a �nite semigroup and a �nite monoid.

The set Σ∗ of �nite words over the alphabet Σ forms a monoid (the free
monoid over Σ) under concatenation and with identity ε, the empty word.

With the exception of the free monoid, all monoids considered in the sequel
are �nite. If A is a �nite automaton with states Q over the alphabet Σ,
then a word w ∈ Σ∗ induces a mapping tw from Q to Q. Since Q is �nite,
the set T (A) = {tw : w ∈ Σ∗} is also �nite and because tu ◦ tv = tuv, T (A)
forms a monoid under composition, known as the transformation monoid of
A. The identity element in that case is the identity transformation which
corresponds to w = ε1.

For a language L ⊆ Σ∗ the syntactic congruence ≡L on Σ∗ is de�ned by
setting x ≡L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗. It is
well-known that L is a regular language if and only if ≡L has �nite index: in
this case the syntactic monoid of L de�ned by M(L) = Σ∗/ ≡L is in fact the
transition monoid of L's minimal automaton.

We say that a monoid M divides the monoid N and write M ≺ N if M
is the homomorphic image of a submonoid of N . A class V of �nite monoids
forms a pseudo-variety if it is closed under direct product and division.

For a language L and a word u, the left quotient of L by u is the language
u−1L = {x : ux ∈ L} and the right quotient Lu−1 is de�ned symmetrically. A
class V of languages forms a variety of languages if it is closed under boolean
operations, left and right quotients and inverse homomorphisms from one
free monoid to another (i.e. if L ⊆ Σ∗ is in V and φ is a morphism from Γ∗ to
Σ∗ then the language φ−1(L) must also belong to V). The variety theorem,
which we state next, is the cornerstone of algebraic automata theory.

Theorem 1 (Variety theorem). If V is a pseudo-variety then the class
L(V) of languages with syntactic monoids in V is a variety of languages and
these syntactic monoids generate V. In fact, the correspondence V → L(V)
de�nes a natural bijection between pseudo-varieties of �nite monoids and
varieties of languages.

Because of this correspondence, we can easily switch our point of view
on varieties and describe them either combinatorially as classes of regular
languages or algebraically as classes of monoids. In many important cases
this bijection has been made explicit. Schützenberger's result mentioned in
the introduction and Simon's theorem, giving an algebraic characterization
of the variety of piecewise-testable languages [53], are the most famous exam-
ples. This has been most fruitful in connection with logic. In that context,
one basic question is to decide whether or not a given regular language can
be described by a formula of some particular form. More often than not,

1We should mention here that for technical reasons we will always consider monoids
rather than semigroups. We refer the interested reader to [46] for a thorough discussion
of this technical point.

these languages form a language variety (see [58] for a meta-explanation of
this phenomenon) and it becomes possible to use computations on the syn-
tactic monoid in the decision procedure. This approach yields decidability
results for various classes of �rst-order formulas [42, 55, 68] and FO formu-
las augmented with modular quanti�ers [57, 59, 60, 66] as well as temporal
logics [20, 36, 68, 69]. There have been attempts to use the same approach
to decide logically de�ned classes of regular tree languages although this
extension faces a number of technical hurdles (see e.g. [24]).

For two elements a, b of a group G recall that the commutator [a, b] of a
and b is the group element a−1b−1ab. Clearly [a, b] = 1G if and only if a and
b commute. A group G is nilpotent of class 1 if it is Abelian and, inductively
is nilpotent of class k if the subgroup [G, G] generated by its commutators
is nilpotent of class k − 1. We denote as Ab, Gnil,k and Gnil respectively
the class of Abelian groups, nilpotent groups of class k and nilpotent groups.
These classes form pseudo-varieties and there are good descriptions of the
corresponding regular languages.

A word u = a1 . . . at with ai ∈ Σ is a subword of w ∈ Σ∗ if w can be
factorized as w0a1w1 . . . wt−1atwt and we denote by

(
w
u

)
the number of such

factorizations. We say that a language L counts subwords of length k modulo
m if membership of w in L depends on the values modulo m of

(
w
u1

)
, . . . ,

(
w
ut

)
for some words ui each having length at most k. It was shown in [67] that a
regular language K belongs to L(Gnil,k) if and only if there exists m ≥ 1 such
that L counts subwords of length k modulo m. In particular, if the syntactic
monoid of K is an Abelian group then membership of w in K depends solely
on the number of occurrences of each letter modulo some integer m. There
also exists an explicit, albeit more complex, description of regular languages
whose syntactic monoid is a solvable group but all attempts to provide a
useful description of languages corresponding to groups in general have failed
because of our very limited understanding of non-solvable groups. For any
pseudo-variety H of groups, we will denote by H the class of monoids whose
subgroups lie in H.

A monoid is aperiodic (or group-free) if it contains no non-trivial group.
Groups and aperiodics are in some sense two extreme cases of monoids and
they can be used as building blocks to construct all monoids via semidirect
products [46].

An element e of M is idempotent if e2 = e. For a �nite monoid M there is
a minimal integer ω, called M 's exponent, such that mω is idempotent for all
m ∈ M . We de�ne the pseudo-variety DO as the class of �nite monoids that
satisfy the identity (xy)ω(yx)ω(xy)ω = (xy)ω. This pseudo-variety and its
subclasses has found considerable importance both in language theory and
in applications to complexity [63] and is the focus of the results surveyed in

the sequel. The following lemma provides an alternative characterization of
DO which is often more useful.

Lemma 2. A monoid M does not belong to DO if and only if

• M is divided by the syntactic monoid of (ab)∗; or

• M is divided by the syntactic monoid of {a, b}∗aa{a, b}∗; or

• M is a Tq-monoid for some q ≥ 2, i.e. there are idempotents e, f ∈ M
such that (ef)qe = ef but (ef)r 6= ef when q does not divide r.

For any pseudo-variety of groups H, it is possible to give a combinatorial
description of the regular languages with syntactic monoids in DO∩H using
unambiguous concatenations. For a ∈ Σ and L, K ⊆ Σ∗, we say that the
concatenation LaK is perfectly unambiguous if L ⊆ (Σ − {a})∗ or K ⊆
(Σ − {a})∗. If LaK is perfectly unambiguous then any w ∈ LaK can be
uniquely factorized as wLawK with wL ∈ L and wK ∈ K since the a can only
be the �rst or last occurrence of a in w.

Lemma 3 ([65]). A language K has its syntactic monoid in DO ∩H i� it
belongs to the smallest language variety closed under perfectly unambiguous
concatenations which contains the languages Σ∗ for any alphabet Σ and the
languages with syntactic monoids in H.

As a corollary, it can be inferred that the pseudo-variety DO∩Ab corre-
sponds to the smallest language variety containing the languages with com-
mutative syntactic monoids and closed under perfectly unambiguous con-
catenations.

Perfectly unambiguous concatenations are a special case of a more gen-
eral construction. For languages K0, . . . , Kt ⊆ Σ∗ and letters a1, . . . , at ∈ Σ,
we denote as

(
w

K0a1K1...atKt

)
the number of distinct ways in which the word

w ∈ Σ∗ can be factorized as w = w0a1 . . . atwt with wi ∈ i. The concate-
nation K0a1K1 . . . atKt is said to be unambiguous if for all w it holds that(

w
K0a1K1...atKt

)
is 0 or 1. For any variety V of languages the unambiguous

polynomial closure of V , denoted (V), is the variety generated by unam-
biguous concatenations of languages in V . Similarly, for any prime p, the
Modp polynomial closure of V , denoted ModpPol(V), is the variety gener-
ated by languages of the form {w :

(
w

K0a1K1...atKt

)
≡ i (mod p)} for Ki ∈ V .

While the operators UPol and ModpPol are de�ned on varieties of languages,
they have an algebraic counterpart de�ned in terms of so-called Mal'cev
products of pseudo-varieties (see [46]): if V denotes the pseudo-variety of
monoids corresponding to V , then the pseudo-varieties corresponding to

UPol(V) and ModpPol(V) are respectively LI©m V and LGp©m V where LI
and LGp respectively denote the classes of locally trivial monoids and lo-
cal p-groups [48, 71]. While a technical discussion of the Mal'cev product
would be tedious, we simply mention that given a list of identities de�ning a
pseudo-variety V it is often possible to derive a list of identities de�ning the
two pseudo-varieties above [47, 48, 71]. In particular the following lemma
can be obtained.

Lemma 4 ([65]). A monoid does not belong to LGp©m Com if and only if

• M is divided by the syntactic monoid of (ab)∗; or

• M is divided by the syntactic monoid of {a, b}∗aa{a, b}∗; or

• M is a Tq-monoid for some q ≥ 2 which is not a power of p; or

• or M contains a subgroup H whose commutator subgroup is not a p-
group.

This lemma provides us with an excellent understanding of the Modp-
closure of commutative languages. The unambiguous polynomial closure of
these languages in fact corresponds to the pseudo-variety DO ∩ Ab which
we discussed earlier.

3 Communication Complexity

Communication complexity measures the amount of information that two or
more processors need to exchange when computing a function on some input
distributed among them. It was �rst introduced by Yao [72] in relation to
distributed computing but it has become one of the most ubiquitous tools
of theoretical computer science with important connections to VLSI design
(see [40]), branching program complexity [70], circuit complexity [28, 29, 32,
43, 51], time-space tradeo�s for Turing machines [6], data structures [40] and
proof complexity [13]. The monograph of Kushilevitz and Nisan [40] provides
a very good overview of the �rst �fteen years of research on the subject.

In a (very entertaining) paper [5], Babai, Frankl and Simon de�ned
communication complexity analogues of the standard time/space complexity
classes P, NP, RP, ⊕P, PSPACE and so on and considered a natural notion of
reduction in the communication context under which classes like NP, ⊕P and
PSPACE have complete problems. This provides, on one hand, a powerful
framework to compare the power of various extensions of the usual deter-
ministic model while building, on the other hand, a rich structure of classes
in which one can hope to gain intuition on the nature of non-determinism,
alternation, randomization and so on.

3.1 Two-Party Models

In the simplest model, two parties (Alice and Bob) collaborate to evaluate a
function f : X × Y → R. Alice is given x ∈ X while Bob receives y ∈ Y and
their goal is to compute f(x, y) while exchanging as few bits as possible. The
two parties communicate according to some previously agreed upon protocol
which, informally, is a scheme ensuring that Alice and Bob will never speak
simultaneously and will be able to make sense of the information they send
each other. Formally, one usually de�nes a communication protocol P as a
binary tree in which edges are labeled 0 or 1, leaves are labeled by some value
in R and every inner node s is either labeled by a function as : X → {0, 1}
or a function bs : Y → {0, 1}. On input (x, y) one can now picture Alice
and Bob following a path from the root down the tree: when a node labeled
by some as is reached, Alice computes as(x) sends the result to Bob and
the players follow the edge out of s labeled by as(x). When a node labeled
bs is encountered Bob similarly computes bs(y). The output P(x, y) of the
protocol is simply the label of the leaf at the end of the unique path de�ned
by (x, y) and we say that P computes f if P(x, y) = f(x, y) for all (x, y).
The cost of the protocol is the depth of this tree, i.e. the number of bits
exchanged by Alice and Bob on the worst-case input.

The deterministic communication complexity of f , denoted D(f) is the
cost of the cheapest protocol computing f . In general, we are interested in
the complexity of functions f : Σ∗×Σ∗ → R and will thus consider D(f) as a
function of input length and study its asymptotic behavior. Unless speci�ed
otherwise, we will in fact assume that the inputs given to Alice and Bob are
a pair of words of equal length over some �nite alphabet.

There are a number of important variations on the deterministic model
which have been thoroughly studied and we consider here two of them:

• In a non-deterministic communication protocol P a third player, say
God, having access to both x and y �rst sends to Alice and Bob a proof
π whose length is a function of the length of x and y. Alice and Bob
then follow an ordinary deterministic protocol P ′ with output in {0, 1}.
The protocol P accepts the input (x, y) if and only if there is some proof
π such that the output of the ensuing deterministic protocol P ′ outputs
1. The cost of a non-deterministic protocol is the maximum number of
bits exchanged in the protocol (including the bits of π) for any input
(x, y). We denote the non-deterministic communication complexity of
a language L as N1(L).

• A Modp-counting communication protocol P is syntactically similar to a
non-deterministic protocol but it accepts the inputs (x, y) for which the

number of proofs leading Alice and Bob to acceptance is not divisible by
p. We denote by Np(L) the Modp-counting communication complexity
of L.

Note that in these two models, protocols are only used to compute lan-
guages, i.e. functions with a {0, 1} output.

De�nition 5. Let f : Σn × Σn → {0, 1} and g : Γt(n) × Γt(n) → {0, 1} be
two functions. A rectangular reduction of length t from f to g is a pair of
functions A, B : Σn → Γt(n) such that f(x, y) = g(A(x), B(y)).

These reductions are very natural in a communication complexity context
since the functions A and B can be computed privately by Alice and Bob
respectively. Hence, if there is a rectangular reduction of length t(n) from f
to g then D(g)(t(n)) ≥ D(f)(n).

If f is a function of two strings x, y of length n over Σ then D(f) ≤
(log Σ) · n + 1 since it is always possible for Alice to send x to Bob and
for Bob to return f(x, y). Thus, Babai, Frankl and Simon de�ned the class
P cc as the class of languages with deterministic communication complexity
O(logd n) and argued that Pcc captures languages with e�cient protocols just
as P captures languages with e�cient algorithms. Following their suggestion,
we will drop the cc superscript for �convenience and added thrill� and de�ne
NP and ModpP as the class of languages with, respectively, non-deterministic
and Modp-counting communication complexity O(logd n). There are in fact
natural complete problems for NP and ModpP. For n-bit strings x, y, we
de�ne the disjointness function as DISJ(x, y) = 1 if xiyi = 0 for 1 ≤ i ≤ n
and the inner product modulo p as IPp(x, y) = 1 if

∑n
i=1 xiyi ≡ 0 (mod p).

If we view x, y as encoding subsets of {1, . . . , n} then DISJ(x, y) = 1 if and
only if x ∩ y = ∅ and IPp(x, y) = 1 if and only if |x ∩ y| is divisible by p.

Theorem 6 ([5, 22]). The complement of DISJ is NP -complete under
rectangular reductions of length O(2logd n).
For any prime p, IPp is ModpP -complete under rectangular reductions of
length O(2logd n).

It is not hard to show that D(DISJ) = Θ(n) and so P 6= NP in the world
of communication complexity. Furthermore one can show that N1(IPp) =
Θ(n) and, for any prime p, Np(DISJ) = Θ(n) and Np(IPq) = Θ(n) for any
q not a power of p. So the classes NP and ModpP are all incomparable and
distinct from P [22].

Strictly speaking, DISJ and IPq are not regular languages but it is easy
to see that they are closely related to the regular languages {00, 01, 10}∗

and (({00, 01, 10}∗11{00, 01, 10}∗)q)∗ respectively. To further explore the rel-
evance of regular languages in this context, we de�ne the communication
complexity of a regular language as the complexity of the following task: Al-
ice and Bob respectively receive a1, a3, . . . a2n−1 and a2, a4, . . . , a2n where each
ai is either an element of the �nite alphabet Σ or the empty word ε and they
want to determine whether a1a2 . . . a2n belongs to L. Similarly, the commu-
nication complexity of a �nite monoid M is the communication complexity
of evaluating in M the product m1 · m2 · . . . · m2n where the odd-indexed
mi ∈ M are known to Alice and the even-indexed mi are known to Bob (we
will refer to this task as the word problem for M). The next lemma provides
a key tool for studying the communication complexity of regular languages
by relating the complexity of a language with its syntactic monoid.

Lemma 7 ([50]). If L is a regular language with syntactic monoid M =
M(L) then D(L) = Θ(D(M)) and Np(L) = Θ(Np(M)) for any prime p.

It is possible to give a complete classi�cation result for the communication
complexity of regular languages in a number of models. In order to discuss
the proof of the next theorem, we will need the lower bounds stated earlier
about disjointness and inner product as well as a simple lower bound about
the function Greater Than de�ned as GT (x, y) = 1 i� x ≥ y. It is known
that the deterministic and Modp-counting complexity of GT is Θ(log n).

Theorem 8. [65] Let L ⊆ A∗ be a regular language with M = M(L). Then

D(L) =

O(1) if and only if M is commutative;

Θ(log n) if and only if M is in DO ∩Ab but not commutative;

Θ(n) otherwise.

Np(L) =

O(1) if and only if M is commutative;

Θ(log n) if and only if M is in LGp©m Com
but is not commutative;

Θ(n) otherwise.

Proof sketch. We can take advantage of Lemma 7 to conveniently reason
either in language-theoretic or algebraic terms and all these classi�cations
fully exploit this duality. The upper bounds are typically derived through
our combinatorial understanding of the relevant classes of regular languages
while the semigroup-theoretic tools are most crucial to obtain the matching
lower bounds.

For example, it is quite easy to see that D(L) = O(1) if M(L) is commu-
tative. If on the other hand, M contains elements a, b that do not commute

then there is an obvious exponential length rectangular reduction from GT
to the word problem of M . Given n-bit integers x, y, Alice and Bob can
form a string of 2n+1 monoid elements m1 . . . m2n+1 where m2i = a if i = x
but m2i = 1M otherwise and m2i−1 = b if i = y but m2i−1 = 1M otherwise.
Clearly Alice and Bob can respectively compute the even and odd indexed
mi's and the resulting product is ab if x < y but ba if x ≥ y. Thus in any of
the models considered, the communication complexity of a non-commutative
monoid is at least log of the complexity of GT .

Let us next consider the pseudo-variety DO∩Ab: recall from the previous
section that the variety of languages corresponding toDO∩Ab is the smallest
language variety containing the commutative languages and closed under
perfectly unambiguous concatenations.

Let L0 and L1 be languages of O(log n) deterministic communication
complexity and L0aL1 be perfectly unambiguous and assume without loss of
generality that L0 ⊆ (Σ−{a})∗. To determine if an input word w belongs to
L0aL1, it su�ces for Alice and Bob to identify the position of the �rst a in w
and then use the logarithmic cost protocols for L0 and L1 to check if the pre-
�x and su�x of that position have the required form. Of course, the position
of that initial a can be determined at cost 2 log n by simply exchanging the
indices of the �rst a held by each player and so D(L0aL1) = O(log n). Since
commutative languages have constant deterministic communication complex-
ity we obtain the general logarithmic upper bound for any language with a
syntactic monoid in DO ∩Ab.

To obtain the upper bound for the Modp-counting complexity of lan-
guages with syntactic monoids in LGp©m Com, we use the de�nition of
ModpPol(Com). Any such language is the boolean combination of languages
of the form

{x|
(

x

(L0a1L1 . . . akLk)

)
≡ j (mod p)}

where each M(Li) is commutative. We sketch an O(log n)-cost protocol to
check if a given word w ∈ (A ∪ {ε})∗ has a number of factorizations as
u0a1u1 . . . akuk, with ui ∈ Li, that is not congruent to 0 modulo p: The
proof chosen in the �rst step of the protocol consists of k log n-bit integers
t1 < t2 < . . . < tk. Next, Alice and Bob interpret the ti's as possible locations
for the bookmarks a1, a2, . . . , ak in w and accept if they correspond to a valid
factorization u0a1u1 . . . akuk with ui ∈ Li. The latter can be done at constant
cost since Alice and Bob need only check that the position ti really holds the
letter ai and that the segment ui belongs to Li, which requires only O(1) bits
since M(Li) is commutative. The cost of the protocol is dominated by the
length of the proof which is O(log n) and the number of proofs accepted by

Alice and Bob is exactly the number of legal factorizations so the protocol
accepts if and only if it is non-zero modulo p.

Let us next prove that a monoid containing a non-Abelian group has linear
deterministic communication complexity. If G is a non-Abelian subgroup of
M there are a, b ∈ G such that [a, b] = a−1b−1ab 6= 1G. We claim that if
[a, b] has order m in G then there is a rectangular reduction of length O(n)
from IPm to the word problem of G. Indeed, if x, y are n-bit vectors Alice
and Bob construct for each pair of bits xi, yi a four-tuple of group elements
g4i−3g4i−2g4i−1g4i. Alice sets g4i−3 = a−1 and m4i−1 = a when xi = 1 but
g4i−3 = g4i−1 = 1G when xi = 0. Bob similarly chooses g4i−2 = b−1 and
g4i = b when yi = 1 but g4i−2 = g4i = 1G when yi = 0. This four-tuple thus
evaluates to [a, b] if and only if xi = yi = 1 and to 1G otherwise. The product
of all such tuples is [a, b]r with r = Σ

1≤i≤n
xiyi and is therefore equal to 1G if

and only if IPm(x, y) = 1. Thus, in all models considered, the communication
complexity of G or any monoid containing G must be at least that of IPm.
Note that for a prime p, the argument actually shows that there exists an m
not a power of p such that IPm reduces to the word problem for G as long
as [G, G] is not a p-group. This fact is needed for the linear lower bound in
the Modp-counting case.

Using the same type of arguments, it is possible to construct a linear
length reduction from IPq to the word problem of any Tq-monoid.

One can also show that there is a length n reduction from Disjointness
to the communication problem for the regular language (ab)∗. Once again,
on input x, y Alice and Bob construct for each pair of bits xi, yi of the DISJ
instance, a four-tuple s4i−3 . . . s4i. Alice sets s4i−3 = a and s4i−1 = b if xi = 1
but s4i−3 = s4i−1 = ε when xi = 0. Similarly, Bob sets s4i−2 = a and s4i = b
when yi = 1 but s4i−2 = s4i = ε when yi = 0. The resulting four-tuple is aabb
if xi = yi = 1 but otherwise is one of εεεε, εaεbε and aεbε. It is now clear
that the word s1 . . . s4n belongs to (ab)∗ if and only if DISJ(x, y) = 1. We
can conclude that D((ab)∗) = Ω(n) and Np((ab)∗) = Ω(n) for each prime p.
Furthermore, these lower bounds also apply to any monoid divided by the
syntactic monoid of (ab)∗.

A similar argument provides a linear length reduction from the comple-
ment of DISJ to the communication problem associated with the regular
language {a, b}∗aa{a, b}∗. If a monoid M is not in DO ∩Ab then either M
is a Tp-monoid or it contains a non-Abelian subgroup or it is divided by the
syntactic monoid of either (ab)∗ or {a, b}∗aa{a, b}∗. In the �rst two cases we
obtain the required lower bound for D(M) through a reduction from IPp and
in the last two cases through a reduction from DISJ .

In [65], the same approach is used to obtain complete classi�cation results

for the two-party communication complexity of regular languages in the prob-
abilistic and non-interactive variants of the two-party model. Interestingly,
all the lower bounds are obtained through reductions from four problems
(inner product modulo p, disjointness, greater than and indexing) which are
among the most-studied examples in communication complexity. In a sense,
the classi�cation results retrospectively explain their pivotal importance.

One can also derive the following corollary from elements of the above
proof.

Corollary 9. If L is a regular language then the corresponding communica-
tion problem is either in P or hard for one of the classes NP , co − NP or
ModpP for some prime p ≥ 2.

In this sense, regular languages exhibit a very nice behavior with re-
spect to communication complexity and this corollary is reminiscent of re-
sults about leaf language classes de�ned by regular languages [17]. Using an
argument closely related to Barrington's theorem (see Section 4) it is also
possible to show that there any regular language whose syntactic monoid
contains a non-solvable group is complete for the class PSPACE which, in
the communication complexity context, is de�ned using alternation [5].

It can be shown if V is a variety of languages and p, q are distinct primes
then Modp(V)∩ Modq(V) = UPol(V) [46]. This yields:

Corollary 10. If L is a regular language such that for two distinct primes p
and q we have both NMODp(L) = O(log n) and NMODq(L) = O(log n). Then
D(L) = O(log n).

It is unclear whether this corollary holds only for regular languages: we do
not know of any language in (ModpP∩ModqP)−P and it is quite possible that
these classes are in fact equal. For the usual time/space classes one suspects
that ModpP ∩ModqP 6= P since ModpP ∩ModqP at least contains the class
UP of unambiguous polynomial time which is believed to be distinct from P.
However the communication complexity analogue of UP is in fact equal to
P [37] and it has also been shown that NP ∩ co�NP = P [40].

It would be very interesting to also obtain a complete classi�cation re-
sult for the communication complexity of regular languages in the non-
deterministic model. This task however requires the use of more sophisti-
cated algebraic machinery and the key Lemma 7 has to be re�ned. Indeed,
this lemma essentially states that the communication complexity of a reg-
ular language in the deterministic or Modp-counting models depends on its
syntactic monoid. A regular language and its complement share the same
syntactic monoid but might have very di�erent non-deterministic communi-
cation complexity. To circumvent the problem one needs to consider so-called

ordered syntactic monoids and positive varieties [46]. With the appropri-
ate de�nitions it is possible to show that the non-deterministic communica-
tion complexity of a regular language is exactly that of its ordered syntactic
monoid. Let Pol(Com) denote the class of unions of languages of the form
K0a1K1 . . . atKt, where each Ki is a commutative language. We conjecture
that

Conjecture 11. Let L be a regular language. Then

N1(L) =

O(1) if M(L) is commutative;

Θ(log n) if L ∈ Pol(Com);

Θ(n) otherwise.

The O(log n) upper bound can easily be derived from the de�nition of
the class of languages Pol(Com). The Ω(log n) is also a simple consequence
of the non-deterministic complexity of GT . However, the remaining Ω(n)
lower bound has yet to be established and seems quite challenging. It would
however provide interesting insight into the non-deterministic communication
model.

3.2 Input on Forehead Model

An interesting multiparty extension of the two-party model known as the
input on the forehead model was introduced by Chandra, Furst and Lipton
in order to prove lower bounds on the length of certain classes of branching
programs. In this game, k parties want to compute a function f(x1, . . . , xk)
and the ith player has access to all inputs except xi so we conveniently picture
player i as having xi written on his forehead. We will denote as Dk(f) the
k-party communication complexity of f .

In contrast to the two-party model, the input on the forehead model does
not obviously model any sort of real-life situation. Still it has proved to
be an extremely useful tool in proving complexity-theoretic lower bounds,
most notably for branching programs and boolean circuits. In particular,
all languages in the circuit class ACC0 are known to have polylogarithmic
communication complexity when the number of players involved in the game
is polylogarithmic. Hence proving su�ciently strong lower bounds in multi-
party communication complexity remains an important open problem. Un-
fortunately, the underlying combinatorics of the model are still poorly un-
derstood.

One of the strongest lower bounds available for this model concerns the
generalized inner product mod p. For any k, p, we de�ne GIPk,p as the
boolean function over k n-bit strings x1, . . . , xk which is 1 if the number of

indices i such that x1
i = x2

i = . . . = xk
i = 1 is divisible by p. Note that

for k = 2, GIP is the usual inner product mentioned earlier. Sophisticated
discrepancy techniques show that for any �xed k and any p, the k-party
communication complexity of GIPk,p = Ω(n) [6, 28].

As in the two-party case, we de�ne the k-party communication complexity
of a regular language L as the number of bits k parties need to exchange to
check if a string a1 . . . akn (with ai ∈ Σ∪{ε}) belongs to L when player i has
access to all input letters except those with an index congruent to i mod k.
Using an analog of Lemma 7, a number of nice facts about the multiparty
communication complexity of regular languages can be established [19, 50, 62]
although the picture is not as clear as the one obtained in the two-party case.

Theorem 12 ([19, 50, 62]). Let L ⊆ Σ∗ be a regular language with syntactic
monoid M = M(L). If M lies in DO ∩Gnil then there exists a constant k
such that Dk(L) = O(1). Otherwise, we have Dk(L) = ω(1) for all k.

If M is a group in Gnil,k then Dk+1(L) = O(1). If however M is a group
outside Gnil,k then Dk+1(L) = Ω(n).

Proof sketch. Let us �rst argue the second half of the theorem. We
know that if M is a nilpotent group of class k then L counts subwords of
length k modulo some integer m. In the k +1-party model every input letter
is accessible to k players and so any k-tuple is seen entirely by at least one
player. Therefore, the players can count modulo m the number of occurrences
of a subword of length k with communication at most (k + 1) · dlog me, a
constant, and so Dk(L) = O(1).

For the matching lower bound we know that in the group M is not nilpo-
tent of class k there are elements g1, . . . , gk+1 such that the iterated com-
mutator [. . . [[g1, g2], g3], . . . , gk+1] has order q > 1. An argument similar to
the one sketched for Theorem 8 then provides a linear length reduction from
GIPk+1,q to the word problem for M .

To provide the �rst upper bound, it su�ces to show that if K ⊆ (Σ−{a})∗
and L ⊆ Σ∗ have bounded k-party complexity for some k then the perfectly
unambiguous concatenation KaL has bounded k + 1-party complexity. To
locate the �rst occurrence of a, each player identi�es the party holding that
a. Of course the player actually holding it will be incorrect but all other
players will agree. Since k + 1 ≥ 3, this process allows k of the k + 1 parties
to identify the location of the �rst a using only (k + 1) · dlog(k + 1)e bits of
communication and they can now simulate the k-party protocols for K and
L.

Finally, by Lemma 2, it su�ces to establish the ω(1) lower bound for Tq-
monoids and for the languages {a, b}∗aa{a, b}∗ and (ab)∗. First one can use
the de�nition of Tq-monoids to build for any �xed k a reduction from GIPk,q

to the word problem of a Tq-monoid. In similar fashion, it is possible to reduce
the k-party generalization of the disjointness function to {a, b}∗aa{a, b}∗,
thus yielding an Ω(log n) lower bound for the language. The last bound
seems to be the most di�cult and is obtained through Ramsey-theoretical
arguments.

In many multiparty communication complexity upper bounds, the fact
that any k − 1-tuple of input bits is seen entirely by at least one of the k
players is used to construct e�cient protocols. The above result outlines the
importance of this feature: counting subwords of length k modulo m can be
done at constant cost by k + 1 players while it requires linear (i.e. maximal)
cost for k parties. Suppose now that k parties simply want to test if a cer-
tain subword occurs in the input, i.e. the players want to test if their input
belongs to Σ∗a1Σ

∗a2 . . . akΣ
∗. For k +1 parties, the task is trivial since if the

subword occurs at all then at least one player can see it completely. It is how-
ever conjectured that for any k this same language has unbounded k-party
communication complexity. The result has been established by Pudlák [49]
for k ≤ 5 using Ramsey-theoretical methods but remains open in general.

3.3 Characterizations of Languages of Bounded Com-

plexity

In general, we can de�ne the communication complexity of a (not necessarily
regular) language K ⊆ Σ∗ as the complexity of testing if a word w belongs to
K when the input positions are distributed in the worst possible way among
the di�erent players. We should note that this is not quite the de�nition we
used for regular languages since we assumed that each input position was
either some letter of Σ or the empty string ε. Equivalently, Lemma 7 and
Theorems 8 and 12 could be stated as holding for the worst-case partition
complexity of regular languages with a neutral letter. A letter e is said to be
neutral for K if for all u, v ∈ Σ∗ it holds that uv ∈ K ⇔ uev ∈ K and this
in e�ect what we are imposing by allowing an input letter to be ε.

A deep and beautiful theorem of Szegedy provides a surprising character-
ization of languages that have bounded two-party communication complex-
ity [61].

Theorem 13. A language K has bounded worst-case partition two-party
communication complexity if and only if K can be recognized by a program
over a commutative monoid.

We will de�ne precisely what is meant by �program� in the next sec-
tion. An alternative statement would be that every such K is reducible to

a commutative regular language via a reduction in which each bit of output
depends on a single bit of input. Note that these reductions are rectangular
reductions.

Since we have a characterization of regular languages with bounded k-
party communication complexity for su�ciently large k, it is natural to won-
der whether there exists a multiparty analog of Szegedy's theorem. There is
in fact reason to believe [19] that it is not possible to obtain a result quite
as general as Theorem 13. Nevertheless, one can prove

Theorem 14 ([19]). Let K be a language with a neutral letter such that,
for some constant k, the worst-case partition k-party complexity of K is
bounded. Then in fact K is a regular language and its syntactic monoid lies
in DO ∩Gnil.

Let us (conveniently) leave aside the neutral letter issue. This theorem in
some sense characterizes the type of information that k parties can expect to
compute for free and thereby solidi�es our understanding of the power and
limitations of the multiparty model.

4 Boolean Circuit Complexity and Bounded-

Width Branching Programs

Historically, the interaction between algebraic automata theory and com-
plexity theory began with Barrington's insight on bounded-width branching
programs and the ensuing characterization of the circuit complexity class
NC1.

Recall that a boolean circuit Cn with n (boolean) inputs X1, . . . , Xn is a
directed acyclic graph with three types of nodes (or gates): 2n input nodes
of in degree 0, a single output node of out-degree 0 and inner nodes with
in- and out-degree at least 1. The input nodes are labeled with some input
Xi or its complement X i while the inner nodes and output node are labeled
with a symmetric boolean function chosen from some predetermined base.
The depth of Cn is the length of the longest path from an input node to
the output and its size is its number of wires (i.e. edges). Such a circuit
naturally computes a function of its n inputs. Since circuits only process
inputs of some �xed length we use families of circuits C = {Cn}n≥0 so that
circuit Cn processes inputs of length n. The size and depth of C are then
functions of n.

We recall the de�nitions of standard circuit complexity classes. A boolean
function f : {0, 1}∗ → {0, 1} belongs to the class NC1 if it can be computed

by a family of circuits of depth O(log n) constructed with and and or gates
of fan-in 2. Furthermore f belongs to ACC0 if it can be computed by a family
of circuits of polynomial size and constant depth constructed with and, or
and Modm gates of arbitrary fan-in, where a Modm gate outputs 1 if the
sum of its inputs is divisible by m. The classes AC0 and CC0 denote the
restrictions of ACC0 in which we allow respectively only and, or gates or
only the Modm gates.

A branching program (or BP) over the variables x1, . . . , xn is a directed
acyclic graph whose inner nodes are labeled with a variable xi. Each in-
ner node has outdegree two and the two outgoing edges are labeled with
0 or 1. A branching program further has a distinguished start node of in-
degree 0 and two output nodes corresponding to acceptance and rejection.
An n-bit input naturally traces a path from the start vertex to one of the
output nodes: when a node labeled xi is reached we follow the edge out of
that node labeled by the value of the ith bit of the input. Branching pro-
grams, also known as Branching Decision Diagrams (or BDD's) can be used
as data structures to represent boolean functions and have been particularly
important in automated software and hardware veri�cation [70].

By de�nition, a BP only processes inputs of some �xed length and, as
for circuits, we consider families of BPs {Bn}n≥0 where Bi handles inputs of
length n. There have been extensive e�orts to prove lower bounds on the size
(i.e. number of nodes) or the length (i.e. maximum length path from input
to output) of BPs (or restricted classes of BPs) computing certain boolean
functions. Interestingly, the most pro�cient tool for this task seems to be
communication complexity [70].

We say that a BP has width k if for every i there are no more than k
nodes reachable from the start in i steps. A family of branching programs
is said to have bounded-width if there is a k such that all Bi have width
k. If we tolerate a moderate blow-up in size, we can assume that the graph
underlying a BP of width k consists of ` levels each consisting of exactly k
nodes and that the di�erent nodes of one level all query the same input bit;
we will assume this normal form. The arrows labeled 0 (resp. labeled with
1) between levels i and i+1 can simply be thought of as a mapping t0 (resp.
t1) from [k] to [k]. Which of these two transformations is applied of course
depends on the value of the input bit queried at that level. Any input to the
branching program also naturally de�nes a mapping from the k points of the
�rst level to the k points of the last level, which is simply the composition of
the transformations chosen at each level.

This simple observation naturally leads to an algebraic interpretation
of bounded-width BPs known as non-uniform automata or programs over
monoid. An n-input program of length ` over M is a sequence of instructions

φn = (i1, f1), . . . , (i`, f`) where 1 ≤ ij ≤ n is the index of some input bit and
fj is a function from {0, 1} to M . On a given n-bit input x = x1 . . . xn, the
output of φn is φn(x) = f1(xi1) · f2(xi2) · · · · · f`(xi`) where the product is
taken in M . The input x is accepted if φn(x) belongs to some target subset
T ⊆ M . Any branching program of width k can trivially be converted into
a program over the �nite monoid of transformations on k points. However,
the program over monoid formalism allows a �ner analysis since the chosen
monoid places restrictions on the transformations t0, t1 used in the BP.

It was originally believed that any family of bounded width BPs comput-
ing the and of its input bits required exponential or at least super-polynomial
length and that polynomial length BPs of width k were strictly less powerful
than polynomial length BPs of width k +1. Barrington, however proved this
intuition incorrect:

Theorem 15 ([7]). A boolean function can be computed by a family of
bounded-width BPs of polynomial length if and only if it belongs to NC1 if
and only if it can be computed by a polynomial-length program over any non-
solvable group.

If G is a non-trivial group such that [G, G] = G then it must be simple,
non-Abelian and hence non-solvable. The key step in the trickiest part of
the above theorem involves showing through induction on depth that for any
NC1 circuit C of depth d and any element g ∈ G, there is a program φC,g of
length O(4d) over G whose output is g on inputs accepted by the circuit and
1G on rejected inputs. Suppose for simplicity that there are elements g1, g2

such that g = [g1, g2] and that the output gate of the circuit is an and gate.
The two inputs of this gate are computed by circuits C1, C2 of depth d−1 and
the induction hypothesis gives us programs φC1,g1 , φC2,g2 where φCi,gi

(x) = gi

if Ci accepts x and 1G otherwise. One can now easily show that the program
φC,g = [φC1,g1 , φC2,g2] has the required property.

Since S5 is non-solvable, it follows that polynomial length BPs of width
5 are as powerful as polynomial length BPs of any �xed width and cap-
ture exactly NC1. Interestingly, some of the most studied subclasses of NC1

also admit similar algebraic characterizations [9, 10, 12, 41]. In particular,
AC0 , CC0 and ACC0 are precisely captured by polynomial length programs
over respectively �nite aperiodic monoids, �nite solvable groups and �nite
solvable monoids, i.e. monoids whose subgroups are solvable [12]. Recently,
the class TC0 of functions computed by polynomial-size threshold circuits of
bounded depth has also been shown to admit an algebraic characterization
using in�nite groups [39].

These algebraic characterizations can provide useful intuition when rea-
soning about circuits and were, for instance, instrumental in understanding

the computing power of cylindrical circuits [31, 30]. The fact that comput-
ing the sum of n bits modulo p requires exponential-size AC0 circuits [54]
is probably the most celebrated result in circuit complexity. The algebraic
characterization of AC0 in terms of group-free monoids was not known when
Furst, Saxe and Sipser originally showed a super-polynomial lower bound for
AC0 circuits computing Parity [25] but in retrospect, this language seems
like an ideal candidate since its syntactic monoid is the two-element group.

Many of the open questions about the relative power of these classes can
thus be recast in algebraic terms [12, 41, 56]. It is for instance conjectured
that CC0 and ACC0 are strict subsets of NC1 and this is equivalent to pos-
tulating that polynomial length programs over respectively solvable groups
and solvable monoids cannot compute the word problem of a non-solvable
group. One advantage of this point of view is that it proposes meaningful
intermediate steps towards a proof of such separations. For instance, it has
been shown that programs over a nilpotent group cannot compute the n-bit
and, regardless of the program length [11]. The communication complexity
results of the previous section already indicated that nilpotent groups are a
particularly weak class of solvable groups so such a result is not a real sur-
prise. Much less trivial is the fact that computing and using programs over
the pseudo-variety Gp ∗ Ab (generated by the semidirect products of a p-
group with an Abelian group) requires exponential length. One can hope to
slowly develop lower bound techniques for larger and larger classes of solvable
groups to �nally obtain the separation of CC0 and NC1 . There are a num-
ber of natural candidates for the next class of solvable groups for which one
might hope to prove program-length lower bounds, including supersolvable
groups and the pseudo-variety Gp ∗ Gnil generated by semidirect products
of p-groups with Abelian groups.

Results on the communication complexity of classes of �nite monoids can
in fact be used to provide length lower bounds for programs over the same
classes. For instance one can show that Gp∗Ab is a subclass of LGp©m Com
and so any group G in Gp ∗ Ab has logarithmic two-party Modp-counting
communication complexity. It follows that any function computed by a pro-
gram of length t(n) over G has Modp-counting complexity at most O(log t(n))
and in particular, exponential length programs are required to compute func-
tions like IPq (for q not a power of p) which have linear complexity in this
model. It can similarly be shown that a group in Gp ∗ Gnil has O(log n)
Modp-counting k-party communication complexity for some k and so poly-
nomial length programs over these groups can only compute functions also
having logarithmic Modp-counting k-party complexity. Unfortunately there
are currently no known superlogarithmic bounds known for an explicit func-
tion in this model.

A slightly di�erent perspective on the algebraic characterizations of sub-
classes of NC1 can be given. Using a simple divide and conquer strategy, it
is not hard to see that every regular language lies in NC1 . The surprise is
that any regular language whose syntactic monoid contains a non-solvable
group is in fact NC1 -hard under polynomial length projections which are
simply reductions in which every bit of output depends on a single bit of
input. In that sense, many results about the computing power of polynomial
length programs over various classes of monoids can be recast as results on
the circuit-complexity of the corresponding classes of regular languages. It
should be noted that, as in the communication complexity context, upper
bounds invariably follow from our combinatorial understanding of regular
languages whereas hardness results or lower bounds usually stem from the
algebraic perspective. A number of basic results on the circuit complexity of
regular languages can be found in [8, 12, 21].

Simply saying that there are ACC0 circuits to recognize any regular lan-
guage with a solvable syntactic monoid or AC0 circuits for any starfree lan-
guage is rather vague and it is natural to ask, for instance, how small these
circuits can actually be. A general upper bound due to [18] shows that any
regular language in AC0 or ACC0 can in fact be computed by circuits with
only O(ng−1(n)) wires for any primitive recursive g.

There are in fact regular languages like the and or the Parity function
which can be recognized by circuits with a single gate and linearly many
wires. Recently, Koucký, Pudlák and Thérien [38] gave a complete charac-
terization of regular languages recognized by AC0 and ACC0 circuits with
linearly many wires when it is assumed that the language contains a neutral
letter. Once again, the answer turns out to be algebraic.

Theorem 16. Let L be a regular language with a neutral letter: L can be
recognized by an ACC0 circuit with linearly many wires i� M(L) ∈ DO∩Ab.

Proof sketch. As always, the upper bound comes from the combinatorial
description of languages with syntactic monoids in DO ∩Ab. It is a simple
exercise to show that commutative languages can be recognized with linearly
many wires and, once again, the upper bound boils down to showing that if
K ⊆ (Σ − {a})∗ and L can be recognized by such circuits then so can the
perfectly unambiguous concatenation KaL.

It is of course crucial to locate the �rst occurrence of a in the input. A nice
construction of Bilardi and Preparata [16] gives an AC0 circuit with linearly
many wires with n inputs and n outputs which simultaneously computes
for each i = 1, . . . , n the AND of the �rst i variables. The combination of
this circuit with the linear wire-size circuits computing K and L provide the
desired circuit for KaL.

The algebra comes into play for the proof of the matching lower bound.
Using results on so-called superconcentrators it is possible to show that if
L is a regular language with a neutral letter and deterministic two-party
communication complexity Ω(n) then L cannot be computed using O(n)
wires. The theorem can thus be obtained as a corollary to theorem 8.

Alternatively, one can measure the size of circuits by counting gates rather
than wires and ask what languages can be computed with a linear number
of gates. Surprisingly there exist CC0 circuits with a linear number of gates
recognizing any regular language whose syntactic monoid is a solvable group.
We conjecture that these are in fact the only regular languages with this
property. To establish this fact, it would su�ce to show that computing
and in CC0 requires ω(n) gates but no such lower bound is known, even
though it is suspected that a much stronger bound holds. For AC0 the most
intriguing open question is whether or not the language {a, b}∗aa{a, b}∗ can
be computed with O(n) gates when a neutral letter is introduced. It can be
shown that this is equivalent to deciding whether or not addition of two n-bit
integers can be done in AC0 with O(n) gates.

5 Learning

We sketch in this section some ideas that seem to be interesting in the de-
velopment of an algebraic framework for computational learning theory. We
will consider the model of exact learning introduced by Angluin [4] although
part of our discussion also applies to the classical PAC-learning model of
Valiant. In Angluin's model, a learning algorithm must identify some un-
known function f by asking queries to a teacher. The teacher knows f and
we assume that he answers queries honestly although, potentially, in adver-
sarial fashion when there is more than one correct answer to a query. There
are typically two types of queries considered: evaluation queries (the learner
asks the value of f on some speci�c input w and the teacher returns f(w))
and equivalence queries (the learner proposes a function g as an hypothetical
candidate for f and the teacher returns, if possible, an argument w and the
value f(w) 6= g(w) thus proving that f 6≡ g). The complexity of the learning
algorithm is primarily measured as the number of queries made to the teacher
although the time needed for the algorithm to construct these queries is also
a concern.

A considerable amount of research has been devoted to the complexity
of learning a boolean function taken from some speci�c class of boolean
functions. The di�culty of the task depends of course on the class of functions
being learned, the representation of these functions and the types of queries

allowed. One of the key open questions in the �eld is to determine whether or
not boolean functions represented in disjunctive normal form can be learned
e�ciently using evaluation and equivalence queries.

It is not immediately clear whether there is any way to use algebraic
automata theory to enlighten this area of research. But since almost all pos-
itive results in exact learning involve subclasses of NC1 (because it seems
hopelessly di�cult to learn in richer classes) one can consider the problem
of learning boolean functions that are represented by an n-input program of
polynomial length over some �xed monoid M . The complexity of the learn-
ing task clearly depends on the algebraic structure of M . The most obvious
bene�t of this approach is its ability to analyze algebraically the power and
limitations of some broad algorithmic techniques found in the existing liter-
ature and to o�er a new perspective on these islands of tractability for exact
learning. Moreover we can hope to gain, as in the communication complexity
setting, some algebraic intuition about what makes a learning task di�cult.

Let us �rst consider the case where only evaluation queries are allowed.
If M is not a group or if M is a non-solvable group then for any w ∈ {0, 1}n

there exists a polynomial length program over M computing the singleton
language {w}. By a standard adversarial argument we can conclude that
2n queries are necessary to identify a function represented by a polynomial-
length program over M .

We can therefore focus on the case of solvable groups. If G is a nilpotent
group then by results of [44] any program over G accepting at least one n-bit
string must in fact accept one of Hamming weight at most some constant kG

depending on G which leads to the following simple result.

Lemma 17. If P and Q are programs over a nilpotent group G that agree
on every input of Hamming weight less than kG then P and Q compute the
same boolean function.

This clearly leads to a learning strategy to identify a boolean function f
represented by a program over G using evaluation queries alone: it su�ces
to ask for the value of f on all O(nGk) inputs of small weight.

In the same spirit, it is possible to show that a program of length m over
a group G in Gp ∗ Ab cannot compute the AND of more than O(log m)
variables [11]. By an argument similar to the one above, we can therefore
identify a function f represented by a program of length m over such groups
using only O(nlog m) evaluation queries. Note however that although these
queries su�ce to identify f there is no known way of e�ciently constructing
a representation of f which would allow one to subsequently evaluate it on
some arbitrary input.

One of the most powerful paradigms of exact learning uses so-called mul-
tiplicity automata or MAs. A multiplicity automaton A over a ring R and
an alphabet Σ is a non-deterministic automaton in which each transition
is assigned some ring value. The value of a path in the automaton is the
product of the labels on its edges. For any w ∈ Σ∗ the value of A on w is
the sum of the values of all paths that the automaton can visit on input w.
A powerful result of [14] shows that a function computed by an MA can be
learned e�ciently using a combination of evaluation and equivalence queries.
This algorithm uni�ed a number of previously existing techniques and, since
its discovery, has been the starting point for a number of positive results.

In the algebraic context, MAs have been used to learn functions f :
Gn → G which are represented by expressions over G (i.e. programs where
an instruction querying the ith element of the input w ∈ Gn always re-
turns wi) when G has a normal cyclic group isomorphic to Zp and G/Zp

∼=
Zq [26]. It would be interesting to further understand which boolean func-
tions represented by programs over a monoid M can be learned using the MA
paradigm: preliminary investigations indicate that, once again, the pseudo-
variety LGp©m Com is relevant in this context.

The argument that programs over non-groups can recognize arbitrary
singletons in {0, 1}n does not apply to expressions computing functions f :
Mn → M so an exponential lower bound for learning functions represented
by such expressions using only evaluation queries cannot be readily concluded
in general. In fact expressions over monoids in DA, the intersection of DO
with aperiodics, can be identi�ed with polynomially many evaluation queries,
again using a strategy that focuses on inputs of small Hamming weight [26].
Within aperiodics, the syntactic monoids of (ab)∗ and {a, b}∗aa{a, b}∗ are
minimal (with respect to division) outside of DA and it is possible to show
that learning expressions over either monoid will generally require an expo-
nential number of queries.

Coming back to the boolean case, it can be shown that programs over
DA can compute precisely the functions which are represented by decision
trees of bounded rank [27]. These functions are known to be learnable with
a polynomial number of both equivalence and evaluation queries. Func-
tions represented by programs over the syntactic monoid of (ab)∗ can also
be learned with a polynomial number of queries of the two types. Programs
over the syntactic monoid of {a, b}∗aa{a, b}∗ on the other hand can represent
DNF formulas with no blow-up in size and so the question of whether such
programs can be learned e�ciently is one of the central questions of learn-
ing theory. A precise characterization of the classes of monoids over which
programs are e�ciently learnable is yet to come but it is reasonable to think
that it would shed interesting light on the exact learning model.

6 Conclusion

Investigations in the complexity of regular languages are greatly facilitated in
contexts where the complexity of a language is determined by the algebraic
structure of its syntactic monoid. In such cases, communication complexity
and circuit complexity being potent examples, it is possible to use the rich
tools of algebraic automata theory to make progress. By taking the com-
binatorial point of view on languages one can usually obtain upper bounds
whereas lower bounds and hardness results come from the algebraic perspec-
tive.

Applying the semigroup-theoretic approach to study di�erent models
of computation has the advantage of uncovering similarities between the
strengths and weaknesses of apparently unrelated models. For instance, we
saw that pseudo-varieties like DO are involved in the dividing line between
easy and hard problems in communication complexity, circuit complexity and
learning theory.

This approach has been particularly successful in connection with circuit
complexity and it should be mentioned that there is a very nice interplay
between the logical descriptions of regular languages, the logical description
of subclasses of NC1 and programs [9, 55, 66]. This provides multiple points
of view on circuit complexity classes and the interaction of logic and algebra
clearly helps in building our intuition about boolean circuits.

There are two obvious ways to extend the program over monoid formal-
ism: by considering programs over more general algebras or by considering
a more powerful mechanism then programs. In one direction, programs over
groupoids can be used to capture circuit-complexity classes beyond NC1 [15].
In the second, the leaf-language framework [1] can provide algebraic charac-
terizations of subclasses of PSPACE [33] or P [35].

Many other cases of applications of �nite algebraic structures can be
found in computational complexity, including a very powerful approach to
understand the complexity of constraint satisfaction problems [34] and alge-
braic methods have always been part of the complexity theory toolbox. We
believe that in many cases semigroup theory can be an elegant and powerful
element of this tool set.

Acknowledgements: We want to thank Mark Mercer and Arkadev Chat-
topadhyay for their comments on a draft of this survey.

References

[1] Leaf language home page. http://www.thi.uni-hannover.de/forschung/

leafl/index.en.php.
[2] J. Almeida. Finite Semigroups and Universal Algebra. Series in Algebra, Vol

3. World Scienti�c, 1994.
[3] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are

testable with a constant number of queries. SIAM J. Comput., 30(6):1842�
1862, 2000.

[4] D. Angluin. Learning regular sets from queries and counterexamples. Infor-

mation and Computation, 75(2):87�106, 1987.
[5] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication

complexity theory. In Proc. 27th IEEE Symp. on Foundations of Comp. Sci.

(FOCS'86), pages 337�347, 1986.
[6] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom

generators for logspace, and time-space trade-o�s. J. Comput. Syst. Sci.,
45(2):204�232, 1992.

[7] D. A. Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150�164,
1989. Preliminary version appeared in STOC'86.

[8] D. A. M. Barrington, K. J. Compton, H. Straubing, and D. Thérien. Regular
languages in nc1. J. Comput. Syst. Sci., 44(3):478�499, 1992.

[9] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within
nc. J. Comput. Syst. Sci., 41(3):274�306, 1990.

[10] D. A. M. Barrington and H. Straubing. Superlinear lower bounds for bounded-
width branching programs. J. Comput. Syst. Sci., 50(3):374�381, 1995.

[11] D. A. M. Barrington, H. Straubing, and D. Thérien. Non-uniform automata
over groups. Information and Computation, 89(2):109�132, 1990.

[12] D. A. M. Barrington and D. Thérien. Finite monoids and the �ne structure
of NC1. Journal of the ACM, 35(4):941�952, Oct. 1988.

[13] P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for lovász-schrijver
systems and beyond follow from multiparty communication complexity. In
Proc. 32nd Int. Conf. on Automata, Languages and Programming (ICALP'05),
pages 1176�1188, 2005.

[14] F. Bergadano and S. Varricchio. Learning behaviors of automata from multi-
plicity and equivalence queries. SIAM J. Comput., 25(6):1268�1280, 1996.

[15] J. Berman, A. Drisko, F. Lemieux, C. Moore, and D. Thérien. Circuits and
expressions with non-associative gates. In IEEE Conference on Computational

Complexity, pages 193�203, 1997.

http://www.thi.uni-hannover.de/forschung/leafl/index.en.php
http://www.thi.uni-hannover.de/forschung/leafl/index.en.php

[16] G. Bilardi and F. P. Preparata. Characterization of associative operations
with pre�x circuits of constant depth and linear size. SIAM J. Comput.,
19(2):246�255, 1990.

[17] B. Borchert. On the acceptance power of regular languages. Theor. Comput.
Sci., 148(2):207�225, 1995.

[18] A. K. Chandra, S. Fortune, and R. J. Lipton. Unbounded fan-in circuits and
associative functions. J. Comput. Syst. Sci., 30(2):222�234, 1985.

[19] A. Chattopadhyay, A. Krebs, M. Szegedy, P. Tesson, and D. Thérien. Func-
tions with bounded multiparty communication complexity. submitted for pub-
lication, 2006.

[20] J. Cohen, D. Perrin, and J.-E. Pin. On the expressive power of temporal logic.
Journal of Computer and System Sciences, 46(3):271�294, 1993.

[21] K. J. Compton and H. Straubing. Characterizations of regular languages in low
level complexity classes. In Current Trends in Theoretical Computer Science,
pages 235�246. 2001.

[22] C. Damm, M. Krause, C. Meinel, and S. Waack. On relations between counting
communication complexity classes. J. Comput. Syst. Sci., 69(2):259�280, 2004.

[23] S. Eilenberg. Automata, Languages and Machines, volume B. Academic Press,
1976.

[24] Z. Ésik and P. Weil. Algebraic recognizability of regular tree languages. Theor.
Comput. Sci., 340(1):291�321, 2005.

[25] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13�27, 1984. Preliminary
version appeared in FOCS'81.

[26] R. Gavaldà, P. Tesson, and D. Thérien. Learning expressions and programs
over monoids. Information and Computation, 2006. To appear.

[27] R. Gavaldà and D. Thérien. Algebraic characterizations of small classes of
boolean functions. In Proc. of Symp. on Theoretical Aspects of Comp. Sci.

(STACS'03), 2003.
[28] V. Grolmusz. Separating the communication complexities of MOD m and

MOD p circuits. In Proc. 33rd IEEE FOCS, pages 278�287, 1992.
[29] V. Grolmusz. The BNS lower bound for multi-party protocols in nearly opti-

mal. Information and Computation, 112(1):51�54, 1994.

[30] K. A. Hansen. Constant width planar computation characterizes acc0. In
Proc. 21st Symp. on Theoretical Aspects of CS (STACS'04), pages 44�55,
2004.

[31] K. A. Hansen, P. B. Miltersen, and V. Vinay. Circuits on cylinders. In 14th

Symp. on Fundamentals of Comp. Theory (FCT'03), pages 171�182, 2003.

[32] J. Håstad and M. Goldmann. On the power of small-depth threshold circuits.
In Proc. 31st IEEE FOCS, pages 610�618, 1990.

[33] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. Wagner.
On the power of polynomial time bit-reductions. In Conf. on Structure in

Complexity Theory, 1993.
[34] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints.

J. ACM, 44(4):527�548, 1997.
[35] B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf languages.

In Proceedings of the Ninth Annual Structure in Complexity Theory Confer-

ence, pages 242�254. IEEE Computer Society Press, 1994.
[36] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,

University of California, Berkeley, 1968.
[37] M. Karchmer, I. Newman, M. E. Saks, and A. Wigderson. Non-deterministic

communication complexity with few witnesses. J. Comput. Syst. Sci.,
49(2):247�257, 1994.

[38] M. Koucký, P. Pudlák, and D. Thérien. Bounded-depth circuits: separat-
ing wires from gates. In Proc. 37th ACM Symp. on Theory of Computing

(STOC'05), pages 257�265, 2005.

[39] A. Krebs, K.-J. Lange, and S. Rei�erscheid. Characterizing tc0 in terms of
in�nite groups. In Proc. 22nd Symp. on Theoretical Aspects of CS (STACS'05),
pages 496�507, 2005.

[40] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

[41] P. McKenzie, P. Péladeau, and D. Thérien. NC1: The automata theoretic
viewpoint. Computational Complexity, 1:330�359, 1991.

[42] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, Cam-
bridge, Mass., 1971.

[43] N. Nisan. The communication complexity of treshold gates. In Combinatorics,

Paul Erdös is Eighty, Vol. 1, pages 301�315, 1993.
[44] P. Péladeau and D. Thérien. Sur les langages reconnus par des groupes nilpo-

tents. C.R. Acad. des Sci. Paris Sér. I Math., 306(2):93�95, 1988. English
translation by A. Russell and S. Russell appears as TR01-040 of ECCC.

[45] J.-E. Pin. Varieties of formal languages. North Oxford Academic Publishers
Ltd, London, 1986.

[46] J.-E. Pin. Syntactic semigroups. In G. R. et A. Salomaa, editor, Handbook of
language theory, volume 1, chapter 10, pages 679�746. Springer Verlag, 1997.

[47] J. E. Pin and P. Weil. Pro�nite semigroups, Mal'cev products, and identities.
Journal of Algebra, 182:604�626, 1996.

[48] J. E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory
Comput. Systems, 30:383�422, 1997.

[49] P. Pudlák. An application of Hindman's theorem to a problem on communi-
cation complexity. To appear in Combinatorics, Probability and Computing,
2003.

[50] J.-F. Raymond, P. Tesson, and D. Thérien. An algebraic approach to com-
munication complexity. Lecture Notes in Computer Science (ICALP'98),
1443:29�40, 1998.

[51] R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. In Proc.

38thth IEEE FOCS, 1997.
[52] M. P. Schützenberger. On �nite monoids having only trivial subgroups. In-

formation and Control, 8(2):190�194, 1965.
[53] I. Simon. Piecewise testable events. In Proc. 2nd GI Conf., pages 214�222,

1975.
[54] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean

circuit complexity. In Proc. 19th ACM STOC, pages 77�82, 1986.
[55] H. Straubing. Finite Automata, Formal Logic and Circuit Complexity. Boston:

Birkhauser, 1994.
[56] H. Straubing. When can one monoid simulate another? In Algorithmic Prob-

lems in Groups and Semigroups, pages 267�288. Birkhäuser, 2000.
[57] H. Straubing. Languages de�ned by modular quanti�ers. Information and

Computation, 166:112�132, 2001.
[58] H. Straubing. On the logical description of regular languages. In Proc. of the

5th Latin American Theoretical Informatics Conference (LATIN '02), 2002.
[59] H. Straubing and D. Thérien. Regular languages de�ned by generalized �rst-

order formulas with a bounded number of bound variables. In Proc. of 18th

Symp. on Theoretical Aspects of Comp. Sci. conference, pages 551�562, 2001.
[60] H. Straubing, D. Thérien, and W. Thomas. Regular languages de�ned by

generalized quanti�ers. Information and Computation, (118):289�301, 1995.
[61] M. Szegedy. Functions with bounded symmetric communication complex-

ity, programs over commutative monoids, and ACC. J. Comput. Syst. Sci.,
47(3):405�423, 1993.

[62] P. Tesson. Computational Complexity Questions Related to Finite Monoids

and Semigroups. PhD thesis, McGill University, 2003.
[63] P. Tesson and D. Thérien. Diamonds are forever: the variety DA. In

G. Gomez, P. Silva, and J-E.Pin, editors, Semigroups, Algorithms, Automata
and Languages. WSP, 2002.

[64] P. Tesson and D. Thérien. Monoids and computation. International Journal
on Algebra and Computation, 14(5�6):801�816, 2004.

[65] P. Tesson and D. Thérien. Complete classi�cations for the communication
complexity of regular languages. Theory of Computing Systems, 38(2):135�
159, 2005.

[66] P. Tesson and D. Thérien. Restricted two-variable sentences, circuits and
communication complexity. In Proc. 32nd Int. Conf. on Automata, Languages

and Programming (ICALP'05), pages 526�538, 2005.
[67] D. Thérien. Subword counting and nilpotent groups. In L. Cummings, editor,

Combinatorics on Words: Progress and Perspectives, pages 195�208. Academic
Press, 1983.

[68] D. Thérien and T. Wilke. Over words, two variables are as powerful as one
quanti�er alternation. In Proc. 30th ACM Symposium on the Theory of Com-

puting, pages 256�263, 1998.
[69] D. Thérien and T. Wilke. Nesting until and since in linear temporal logic.

Theory Comput. Syst., 37(1):111�131, 2004.
[70] I. Wegener. Branching Programs and Binary Decision Diagrams. SIAMMono-

graphs on Discrete Mathematics and Applications, 2000.
[71] P. Weil. Closure of varieties of languages under products with counter. J.

Comput. Syst. Sci., 45:316�339, 1992.
[72] A. C. Yao. Some complexity questions related to distributive computing. In

Proc. 11th ACM STOC, pages 209�213, 1979.

	Introduction
	Regular Languages and Finite Monoids
	Communication Complexity
	Two-Party Models
	Input on Forehead Model
	Characterizations of Languages of Bounded Complexity

	Boolean Circuit Complexity and Bounded-Width Branching Programs
	Learning
	Conclusion

