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1 Introduction

Learning via the Fourier transform is a basic tool when learning in the PAC
model under the uniform distribution. It has been successfully applied to
various natural concept classes ranging from decision trees to constant depth
circuits. The most remarkable example is Jackson’s Harmonic Sieve algo-
rithm [I9] for learning DNF formulas in polynomial time with membership
queries. Learning via the Fourier transform has thus provided a success-
ful attack on the notoriously open problem of learning DNF formulas in the
distribution-free PAC model without membership queries. The fastest known
algorithm for this problem runs in time 20"*) |27,

The Fourier spectrum of Boolean functions has been first applied in the-
oretical computer science by Kahn, Kalai and Linial [22] to answer a ques-
tion posed by Ben-David and Linial [3] concerning the sensitivity of Boolean
functions. The first application in computational learning is due to Linial,
Mansour and Nisan [33]. The Fourier transform of a Boolean function f can
be regarded as a representation of f as a linear combination over the basis
of all parity functions. Fach coefficient is given by the correlation between f
and the corresponding basis function. Learning can then be achieved through
estimating the Fourier coefficients based on a sufficiently large sample of f.
For simple concept classes it is often possible to establish a certain prop-
erty of the concepts in terms of their Fourier transform, which implies that
each concept in the class can be approximated by paying attention to only a
small part of its Fourier spectrum. The learning problem is then reduced to
estimating the Fourier coefficients in the important part of the spectrum.

In this column we concentrate on learning functions with properties which
can be expressed in terms of their Fourier spectrum. In a first part we review
some basic algorithms, starting with the ubiquitous low-degree algorithm of
Linial et al. [33]. Then we present the KM-algorithm of Kushilevitz and
Mansour [30] for finding all significant Fourier coefficients. Next we describe
Jackson’s Harmonic Sieve algorithm which combines the KM-algorithm with
boosting, and finally we present the more recent algorithm of Jackson et
al. |20] which can be regarded as a simplified Harmonic Sieve obtained by
replacing the KM-algorithm by an exhaustive search.

In a second part we concentrate on learning classes of monotone func-
tions based on sensitivity arguments, including Bshouty and Tamon’s work on
monotone functions [9], Servedio’s learnability result for monotone DNF [A0)],
and the very recent learning algorithm of O’Donnell and Servedio for mono-
tone decision trees [39] based on a sensitivity result due to Friedgut [T4].

We do not make any attempt to be comprehensive. However, we do hope
to convince the reader that learning via the Fourier transform is a true success



story with no end in sight.

2 Notation and basic facts

In this section we fix the notation and give formal definitions for some of the
concepts used in this paper. Further we state some basic facts for further
reference.

Fourier Transform

We are interested in learning Boolean concept classes, i.e., each concept can
be represented as a Boolean function f: {0,1}" — {true, false}. We denote
the class of all Boolean functions of arity n by B,. If we identify true with
1 and false with 0, then B, forms a vector space of dimension 2" over the
field Fy. The regular basis for B, consists of the 2" functions term,(z),
a € {0,1}", mapping = to 1, if z = a, and to 0 otherwise. Clearly, any
Boolean function f € B,, has a unique representation f = Zae{O,l}” cqlterm,
with coefficients ¢, = f(a). For many applications it is important to have a
basis with the following useful properties.

(a) “Simple” functions should have small representations. E.g., if the value
of f is already determined by a small subset of its variables, then many
coefficients should vanish.

(b) Transforming f to a “similar” function f’ (e.g., f'(x) = f(x@a)) should
allow for an easy conversion of the coefficient representations of the two
functions.

By embedding B, into a richer structure, namely the vector space RO} =
{f:{0,1}™ — R} over R, these properties can be easily achieved. In fact, if
we require from our basis {x, | @ € {0,1}"} that it contains the functions
Xe; () = (—1)% (in order to fulfill property (a)) and that all basis functions
Xa have the property

Xa(7 ®b) = Xa()Xa(b), (1)

then also property (b) is fulfilled. This is easy to see, since for any function f
with the representation f(x) = >_,c(o1y» CaXa() it follows that the function
fan(x) = f(x @ b) has the representation

fon(@) = fx@b) = Y caxalr®b) = D caXa(®)xalb), (2)

ac{0,1}" ac{0,1}"



implying that the coefficients ¢, of fg, can be written as ¢, = xa(b)c,.
Property ([l) requires that the base functions are homomorphisms from the
Abelian group ({0, 1}", ®) to the multiplicative group (R*,-) of non-zero real
numbers. It is easy to show that exactly the parity functions

Xa(@) = (=)=, a € {0,1}"

have this property and that these functions indeed form a basis for the vector
space RIGU" By identifying the vector a € {0,1}" with the set S = {i €
[n] | @; = 1}, where we use [n] to denote the set {1,...,n}, we get the more
convenient representation

xs(2) = (=1)>es, S C [n].

More generally it can be shown that for any finite Abelian group G the class
of all homomorphisms from G to the multiplicative group (C*,-) of non-zero
complex numbers form a group F' (under multiplication, with the constant 1
function as neutral element) that is isomorphic to G. Moreover, the functions
in F form an orthogonal basis for the vector space C¢ over C of all functions
f: G — C. The elements of F' are called the characters of G and F' is called
the Fourier basis for C@.

In the case G = ({0,1}", @) all functions yg in the Fourier basis are real-
valued and hence also form a basis for the subspace RI®1" of all functions
f:{0,1}" — R. In fact, using the natural notion of inner-product

(frg)=27" Y [flz)g(z) = Elf(2)g()),

ze€{0,1}"

it is easy to verify that the Fourier basis F' = {xs | S C [n]} forms an
orthonormal system of functions, i.e.

1, S=T,

0, otherwise,

(Xs:xT) = Elxs(z)x7(2)] = E[xsar(z)] = { (3)

implying that all parity functions have unit norm ||ys|| = 1, where the norm
of a function f is induced by the inner-product using the rule

1Al =V = 2 fla)?

More generally, for p > 0 the p-norm is defined as

| £ll, = BN @17 = @73 | f@)l)



and the co-norm is

[ £lloe = max | f(z)].
Notice that the norm induced by the inner-product coincides with the 2-norm.
We remark for further use that for 0 < p < ¢ < oo, ||f|l, < || fll4- Since the
Fourier basis is orthonormal, the Fourier coefficients f(S) in the Fourier

exrpansion
f=>_f(s

SCln]

of f can be written as the inner-product F(S) = (f,xs) of f and the basis
functions xg. The function f 2["l +— R mapping each frequency S C [n] to
the corresponding Fourier coefficient f( ) is called the Fourier transform of
f. A crucial property of f is that if f does not depend on a variable z;, then
all coefficients f(S) with j € S vanish (cf. property (a)). Using [B) it follows
for any functions f,g: {0,1}" — R that

E[fg] = E[(Zs [(S)xs) (X1 §(T)xr)] = X0 F(S)IT)Elxsxr]
= 25 F(9)3(S).

Hence, a further consequence of the orthonormality of the Fourier basis is
Parseval’s identity stating that

A1 =) f(s)?

If we identify true with —1 and false with 1, i.e., if we let B, = {f: {0,1}" —
{—1,1}}, then Parseval’s identity implies that for a Boolean function f € B,
the squares f(S)? of the Fourier coefficients of f sum up to 1 and thus induce
a probability distribution on the frequencies. For a collection G C 2/ of
frequencies we refer to the “probability” » ¢ . f(S)2 of G as the weight of
the Fourier spectrum of f on G or simply as f’s Fourier weight on G.

Clearly, by the linearity of the vector space R{01}" the Fourier transform
of f + g is obtained as the sum f +g= f + g of the Fourler transforms of f
and g. Hence, if ¢ is obtained from a function f by removing all coefficients
outside G, i.e., g = > ¢ f(S)xs, then Parseval’s identity implies

If=gl?=>"1F=9(S)II* = Z!If 9P =" f(5)
S 5¢a
Notice that g need not be Boolean. But it is easy to see that we can approx-
imate any real-valued function g by the Boolean function
L, g(z) =0

—1, otherwise,

sgn(g(z)) = {



where
Pr[f(x) # sgn(g(x))] < [If — gl*.

We close this subsection with a useful inequality due to Beckner and Bonami
[2,6]. For any real ¢ € [0,1] let Ts be the linear operator mapping a function
[ to the function T5(f) = ) 4 SIS1F(S)xs, ie., Ty in some sense reduces the
Fourier weight of the high frequencies (where high means that |S| is large).
The Beckner-Bonami inequality states that | T5(f)|| < || f]|1162- Since for any
function f taking only values in the range {—1,0,1} we have ||f||3 = || f|[?
for all p > 0, the Beckner-Bonami inequality implies for such functions that

IT5 I < 112 = (LAY = (11122 0400, (4)

For further information and background on the Fourier transform of Boolean
functions we refer to [12, 42, B8, 10, B32.

Learning

We consider the well-known distribution-specific variant of Valiant’s Prob-
ably Approximate Correct (PAC) learning model [43]. Let f be a Boolean
function and D be a distribution on the instance space {0, 1}". For ¢ > 0 we
say that a Boolean function h is an (e, D)-approzimation of f if Prp[h(z) #
f(z)] < e, where z is chosen according to D. We use EX(f, D) to denote
an oracle which, when invoked, returns a random labeled example (x, f(x))
where x is chosen according to D. A concept class C C B, is learnable
with respect to D if there is a randomized learning algorithm A which, for
all targets f € C' and parameters €,0 > 0, when given inputs €, § and ora-
cle access to EX(f, D), A(e,d, EX(f, D)) outputs with probability 1 — ¢ a
Boolean function h which is an (e, D)-approximation of f. Here, the proba-
bility is taken over the random choices of A and the random labeled examples
returned by EX(f, D), where we assume that the random examples are se-
lected independently from each other and from the random choices of A.

We also consider weak learnability, where the hypothesis h produced by
the learning algorithm A is only slightly more accurate than random guessing.
For v > 0 we say that a Boolean function h is a weak (v, D)-approximation of
f it Prplh(z) # f(z)] < 1/2 —~. Now a concept class C' is weakly learnable
with advantage v and with respect to D if there is a learning algorithm A
such that for all f € C and parameters v, > 0, A(y,0, EX(f, D)) outputs
with probability 1 — § a weak (v, D)-approximation of f.

If the learning algorithm A requires direct access to the oracle f rather
than EX(f, D), then we say that C' is learnable with membership queries.



If D is the uniform distribution, we generally omit the reference to D. For
more background on learning we refer to [24].

Prominent examples of natural concept classes are decision trees with a
single variable at each inner node, DNF formulas, and constant depth AC®
circuits. Note that every decision tree with m nodes can be transformed into
a DNF formula with at most m terms, and that every m-term DNF formula
can be regarded as a constant depth AC circuit of size m + 1 and depth
2. For background on circuit complexity we refer the reader to a standard
textbook like [46]. For a discussion of the Fourier transform of these concept
classes we refer to the excellent overview of Mansour [35]. A more recent
overview is provided by Jackson and Tamon’s tutorial [21].

Probability Theory

For later use we state the following result to which we refer to as the Chernoff-
Hoeffding bound. Let Xi,...,X,, be independent random variables taking
values in the real interval [a, b] and having expectation E[X;] = . Then for
any A > 0, with probability at most 2e=2X’™/(0=) the additive error of the
estimate for p obtained by taking the arithmetic mean of m observations of
the random variables X, ... X, is greater than or equal to A,

Pr [‘% Z;Zl X — ,u} > )\} < 9p—2)\2m/(b—a)*

In other words, with confidence 1 — 2e=2X*m/(b=a)?

vides a A-accurate estimate for p.

, the arithmetic mean pro-

Further Notation

We measure the closeness of two real-valued functions f and g in terms of
the 2-norm squared of the difference of f and g. That is, we say that f and g
are e-close if || f — g||* < e. Note that for Boolean functions f and g it holds
that || f — g||> = 4 Pr[f(x) # g(x)] and hence, f and g are e-close if and only
if f is an (¢/4)-approximation of g.

3 Basic algorithms

In this section we review some basic algorithms for learning via the Fourier
transform. We start with the low-degree algorithm of Linial et al. [33] and its
application to AC? circuits. Next we present the KM-algorithm of Kushilevitz
and Mansour [30] which can be used to learn decision trees in polynomial
time with membership queries and its application to DNF formulas due to



Mansour [36]. Then we describe Jackson’s Harmonic Sieve [20] which learns
DNF formulas in polynomial time with membership queries. Finally we
brievly review the simple exhaustive search algorithm of Jackson, Klivans
and Servedio [20] which can be applied to majorities over AC® circuits.

3.1 The low-degree algorithm

The first application of Fourier analysis in computational learning theory is
due to Linial et al. [33]. The learning result is based on an upper bound
for the 2-norm of f restricted to high frequencies, where the bound depends
on the circuit complexity of f. So suppose that f is a Boolean function

satisfying
Y f(8)3<e

|S|>t

For the real-valued function g = 3 ¢, F(S)xs it follows by Parseval’s iden-
tity that
If =gl =>_ (9 <e,

|S|>t

which means that f can be e-approximated by fading out the high frequen-
cies S with |S| > ¢t. This observation reduces the learning problem for f
to the problem of computing the Fourier coefficients f(S) for all low-order
frequencies S with |S| < ¢.

This task can be accomplished by the low-degree algorithm which is the
most fundamental algorithm in the context of learning via the Fourier trans-
form. The algorithm is presented in Figure [l The simple but crucial ob-
servation is that each coefficient f(S) can be expressed as the expectation
E[f(x)xs(x)], where z is chosen uniformly at random. Thus each coefficient
f(S) can be accurately estimated with high confidence by drawing a suffi-
ciently large sample from EX (f). More specifically, the low-degree algorithm
draws a polynomial number in n’, 1/ and log 1/§ of labeled examples from
EX(f) and computes for each S of size at most ¢ an empirical estimate ag for
f(S) By applying the Chernoff-Hoeffding bound it follows that with prob-
ability 1 — §, each estimate ag is within additive error A\ = (¢/n*)/? from
its expected value f(S). In this case the approximation g = >1s|<t ASXs
satisfies

If = gl> =D _(F(S) =3(5)* = D (f(5) —as)*+ Y f(5)

S |S|<t [S|>t
<n'A? 4 e = 2,



input: frequency bound ¢, accuracy e, confidence § and access to EX(f)
output: a Boolean function h approximating f

1. request m = 2T"t ln(%"t) labeled examples (z;, f(x;)) from EX(f)
2. for each S C [n] with |S| <t compute ag = % Yo Flx)xs ()
3. output h = sgn(d_ 5 < asxs)

Figure 1: The low-degree algorithm

and since Prlsgn(g(z)) # f(z)] < ||f — g|%, it follows that the output hy-
pothesis h = sgn(g) is an (¢/2)-approximation of f. The running-time is
dominated by the sample size and thus polynomial in n’, 1/e and log(1/9).

Theorem 1. For any Boolean function f satisfying

> 83 <e,

|S|>t

the low-degree algorithm on inputs t, €, § and access to EX(f) outputs with
probability 1 — 0 an O(e)-approzimation of f in time poly(n',1/e,log(1/0)).

Let us remark for further reference, that the low-degree algorithm can
be easily generalized to Boolean functions f satisfying > ¢ f(5)2 < e
for an arbitrary collection G C 2 of frequencies, provided that G is
explicitly given as part of the input. In this case, the running-time is
poly(n, |G|, 1/¢,log(1/9)).

Based on Hastad’s Switching Lemma [I7], Linial et al. [33] showed that
for any Boolean function f which is computable by an ACY circuit of depth
d and size M it holds that

S A(9)2 < 202,

|S|>t

Applying the low-degree algorithm with ¢ = O(log(M/e)?) immediately
yields the following learning result.

Corollary 2. [33] The class of AC® circuits of depth d and size M over n
variables is learnable in time

poly (n'sM/9) 1og(1/5)).



Since an m-term DNF formula is computable by a circuit of size m + 1
and depth 2 it further follows that m-term DNF formulas are learnable in
time poly(n's"/)* 1og(1/4)).

By a result due to Kharitonov [25], Corollary Bl cannot be significantly
improved under a plausible cryptographic assumption. However, as we will
see in Section B4l the exponent d can be reduced to d—1. This will imply that
m-term DNF formulas are in fact learnable in time poly(n'°¢(™/%) log(1/6)).

3.2 The KM-Algorithm

For sufficiently simple functions it is sometimes possible to bound the 1-norm
of the Fourier transform. A nice example provide decision trees, for which
the 1-norm of the Fourier transform can be bounded by the number of nodes
in the tree by fairly elementary methods [30]. So suppose that f is a Boolean
function satisfying

£l < k.
Then clearly,

If(S)I<e/k | f(S)I<e/k

which means that f can be e-approximated by ignoring the small Fourier
coefficients having absolute value at most £/k. This observation reduces the
learning problem for f to the problem of finding all frequencies S whose
Fourier coefficients are larger in absolute value than some given threshold 6.

This problem can be solved by an algorithm of Goldreich and Levin [I6]
which is a key ingredient in their proof that parity functions are hard-core
predicates for one-way functions. The algorithm has been first applied in
the learning setting by Kushilevitz and Mansour [30]. The idea behind the
algorithm is best described in terms of the recursive procedure Coef given in
Figure Pl which can be regarded as a depth-first search on the binary tree of
depth n. Here, each node is given by its level k € [n] and a set S C [1, k],
where we use the notation [m, n] to describe the set {m, ..., n}. In each node
(S, k) we consider the sum

> fsuT)

TClk+1,n]

If & = n, then Coef has reached at a leaf of the tree, and since in this case
C(S,k) = f(S)?, the procedure returns S if and only if C'(S,k) > 6% If
(S, k) is an inner node with C(S, k) < 62, then there is no set T' C [k + 1, n]



Coef (S, k):

1. if k =n and C(S, k) > 6 then return({S})

2. if k <n and C(S,k) > 6% then
return(Coef(S,k + 1) U Coef(SU{k+ 1}, k+ 1))
3. return(()

Figure 2: The recursive procedure Coef

with [f(SUT)| > 6. Thus there is no need to further explore the subtree
of this node. Otherwise, Coef recursively continues the search with the two
children (S,k + 1) and (SU {k + 1},k + 1) of (S, k). Invoking Coef with
the root node ((,0), the procedure returns the collection of all frequencies
corresponding to Fourier coefficients with an absolute value greater than 6.

Concerning the number of recursive calls performed by Coef, first note
that by Parseval’s identity,

YOS k)= FS) =P =1,

SC1,k] SCin

implying that in each level k there are at most 1/6? nodes (S, k) with
C(S,k) > 0> Thus, the total number of recursive calls can be bounded
by n/0?. The main algorithmic difficulty, however, is the computation of the
sums C(S, k). This can be solved by expressing C(S, k) as a nested expecta-
tion. More precisely, consider the function g: {0, 1}”_"f — R which maps a
suffix z € {0, 1}"7* to the expectation E,[f(yz)xs(y)] for a uniformly chosen
prefix y € {0,1}*. For any prefix y € {0,1}* and T C [k + 1,n] we have
Xsur(2) = xsar(z) = xs(y)xr(z), where z = yz. Hence,

F(SUT) = E.[f(2)xsur(2)] = Ex[Ey[f (y2)xs(y)xr ()] = Eulg(@)xr(@)],

implying that f(SUT) = §(T). Now, by using Parseval’s identity, we can
express C(S, k) as

C(S,k) =Y 9(T) = Elg(x)’] = E[E,[f (yx)xs(y)]’]

TClk+1,n]

for uniformly chosen z € {0,1}* % and y € {0,1}*. By applying the
Chernoff-Hoeffding bound, this means that we can estimate C(S, k) by first
estimating the inner expectation for a small number of random suffixes =
and then estimate the outer expectation as the average sum of the squared



estimates for the inner expectation. For each given suffix z, the estimate for
the inner expectation can be obtained from a small number of values f(yx)
for random prefixes y, which can be obtained by asking the oracle f. By
using sufficiently accurate estimates of C(S,k) it can be shown that with
high probability, the modified search still runs in polynomial time and re-
turns a set containing all frequencies S with |f(S)| > 6. Furthermore, each
frequency S in the set satisfies |f(S)| = €(0), which by Parseval’s identity
implies that the number of frequencies in the returned collection is at most

0(1/62).

Lemma 3. [30| There is a randomized algorithm A such that for each
Boolean function f and threshold 0 > 0, A(0,6, f) outputs with probabil-
ity 1 — & a collection G C 2" of size O(1/6?) containing all frequencies S
with | f(S)| > 0. A runs in time poly(n,1/6,log(1/5)).

As observed by Jackson [T9] the algorithm of Lemma[ can also be applied
to real-valued functions f: {0,1}" — R. In this case, the number of recursive
calls of the procedure Coef is bounded by || f||n/6? rather than n/6%. Further
notice that the confidence in the Chernoff-Hoeffding bound depends on the
range of the random variables whose mean we want to estimate. In case f
is real-valued, the range of these random variables is [—|| f||%, || f]|2,] rather
than [—1,1], implying that the number of labeled examples from f needed
to estimate C(S,k) additionally depends on the parameter ||f|s. Since
IfIl < IIflloo, the running-time becomes polynomial in n, 1/6, log(1/6) and
|| fllo- Let us state this extension to real-valued functions for later use.

Lemma 4. [T19] There is a randomized algorithm A such that for each func-
tion f:4{0,1}" — R satisfying ||f||cc < k and threshold 6 > 0, A(0,6,k, f)
outputs with probability 1 — § a collection G C 2™ containing all frequencies

S with | f(S)] > 6. A runs in time poly(n, k,1/0,1og(1/4)).

Coming back to Boolean functions f € B, satisfying Hf”l < k, we can use
the algorithm of Lemma Bl to find a small collection GG containing all frequen-
cies S for which | f(S)| > &/k in time poly(n, k, 1/e,1og(1/8)), and then use
the generalized low-degree algorithm on G to output an O(g)-approximation
of f. This algorithm is known as the Kushilevitz-Mansour algorithm, or
simply KM-algorithm, and we state its properties in the following theorem.

Theorem 5. [30] For each Boolean function f satisfying Hf”l < k, the KM-
algorithm, given inputs k, €, 6 and oracle access to f, outputs with probability
1 =6 an O(g)-approzimation of f in time poly(n, k,1/e,log(1/9)).

As already mentioned at the beginning of this section, any Boolean func-
tion f computable by a decision tree with m nodes satisfies || f||; < m. Thus,



the KM-algorithm learns decision trees in polynomial time, although, a dis-
advantage of this result is that membership queries are needed.

Corollary 6. [30] The class of decision trees with m nodes is learnable with
membership queries in time poly(n,m,1/e log(1/9)).

For some applications, it is more convenient to consider the sparseness
of a Boolean function f. This property is closely related to the 1-norm of f.
We say that a function f is k-sparse, if the support {S C [n] | f(S) # 0} of
f has size at most k. Clearly, if f is k-sparse then ||fH1 < k. On the other
hand, if || f||; < k, then f is e-close to the function g = D 1(S) e k F(S)xs

By Parseval’s identity, the number of frequencies S with |f(S)| > ¢/k is less
than k?/e2. Hence it follows that g is (k?/c?)-sparse. We call a Boolean
function (e, k)-sparse if it is e-close to a k-sparse function. It is not hard to
show (see [30]) that for any (e, k)-sparse function f,

S (S <+

|f(S)|<e/k
Thus, the KM-algorithm is applicable to (e, k)-sparse Boolean functions.

Corollary 7. [30| For each (e, k)-sparse function f, the KM-algorithm given
inputs k, €, § and oracle access to [ outputs an O(e)-approzimation of f in
time poly(n, k,1/¢,1og(1/6)).

Mansour [36] showed that each DNF with terms of size at most d is
(e, k)-sparse for k = d©@°s1/2) By an argument attributed to War-
muth in [44], every m-term DNF is e-close to a DNF with terms of size
at most log(m/e) (by simply ignoring all terms of size larger than log(m/¢)).
Hence, an m-term DNF f is e-close to a (g, k)-sparse function for k =
(log(m/s)) (log(m/e)log(1/2)) — (p /g)Oleglog(m/e)log(1/2)) " wwhich by the triangle
inequality implies that f itself is (O(e), k)-sparse.

Corollary 8. [36] The class of m-term DNF formulas is learnable with mem-
bership queries in time poly(n, (m/e)lslosm/e)los(1/e) 11 /2 1og(1/5)).

3.3 The Harmonic Sieve

In the last section we described a quasipolynomial-time learning algorithm for
DNF formulas based on the sparseness of these functions. Another property
of the Fourier transform of m-term DNF is that the co-norm can be lower
bounded in terms of m [4]. This property provides the basis for Jackson’s



celebrated polynomial-time learning algorithm for DNF formulas which we
present in this section. So, for a Boolean function f satisfying

1 lloe > 7,

assume that S is a frequency with f(S) > ~. Expressing the coefficient f(S)
in terms of the probability that f(x) # xs(z),

f(8) = Elf (x)xs(@)] = 1 = 2Pr[f(2) # xs()];

it follows that .
Pr{f(x) # xs(a)] <~ 0,

This means that the function f can be weakly (v/2)-approximated by a single
parity function yg or its negation —yg, where we use yg if f(S) is positive,
and its negation otherwise. The corresponding frequency S can be found by
the KM-algorithm with high probability in time poly(n,1/7), and the sign
of f(S) can be easily determined by estimating f(.S) within additive error
less than +. Thus, for any v > 0 and every Boolean function f satisfying
Hf”oo > v we can produce with high probability a weak Q(v)-approximation
of f in time poly(n, 1/v), provided that we have access to the oracle f.

This reasoning can be generalized to arbitrary distributions D by using
the crucial observation that the correlation Ep[fxs] between f and a parity
Xs with respect to D can be expressed as the correlation E[fp(z)xs(z)]
between the real-valued function fp(z) = 2"D(z)f(z) and xg with respect
to the uniform distribution. Thus, Ep|[f(z)xs(z)] = E[fp(x)xs(z)] coincides
with the Fourier coefficient fD(S) of the function fp, implying that

1 _fD(S)'

Pr(f(x) # xs(e)] < —

If we now assume that || fp|le > 7 (rather than ||f||s > 7), then f can be
weakly (v/2, D)-approximated by a single parity function yg or its negation.
Further, on input =, the corresponding frequency S with \fD(S)\ = Q(y) can
be found by the algorithm of Lemma B using oracle access to fp.

Lemma 9. There is a randomized algorithm A such that for each distri-
bution D and Boolean function f satisfying || fplle = 7 and ||fplle < K,
A(k,~,9, fp) outputs with probability 1 — § a weak (2(v), D)-approzimation
of f in time poly(n, k, 1/v,log(1/9)).

Boosting [4T] is a well-known technique to transform a weak learner
into a strong learner. The technique can be most easily described in the



input: v, > 0 and a weak learning algorithm A
output: a Boolean function h approximating f

1. 7+ 0;

2. while |M;| > 2™ do
run A to produce a weak (v, D;)-approximation h;;
17— 14+ 1;

3. return h = sgn(>%_, h;(z))

J=0

Figure 3: The THA-boosting algorithm

distribution-free setting, where we assume that the weak learner produces
a weak (v, D)-approximation of the target f for any distribution D. With
respect to some fixed but unknown target distribution D, the boosting algo-
rithm runs the weak learner several times with respect to different distribu-
tions D;, which forces the weak learner to perform well on different regions of
the instance space. The resulting weak (-, D;)-approximations are then com-
bined in some way to produce a strong (¢, D)-approximation of f. Obviously,
the oracle access to f required by the boosting algorithm depends on how
the weak learner accesses the oracle. If the weak learner asks membership
queries, then also the boosting algorithm needs to ask membership queries.
If the weak learner needs only access to EX(f, D;), then it is usually possible
to apply a filtering technique in order to simulate the EX(f, D;) oracle by
asking queries to EX(f, D). This means that each example (z, f(z)) drawn
from EX(f, D) is discarded by the boosting algorithm with a certain prob-
ability depending on (z, f(z)) and D;, and only the remaining examples are
passed on to the weak learner.

There are several boosting strategies which mainly differ in how the dis-
tributions D; are defined, and in how the final hypothesis is obtained from
the weak hypotheses. The THA-boosting algorithm (see Figure Bl) uses a par-
ticularly well-suited boosting strategy which is based on a construction of a
hard-core distribution due to Impagliazzo [I8]. The boosting ability of this
construction has been pointed out by Klivans and Servedio [26]. In order to
achieve strong learning with respect to the uniform target distribution, the
IHA-boosting algorithm uses the following distributions D;. Suppose that the
weak learning algorithm has already produced the hypotheses hy, ..., h;_; for

some ¢ > 0, and let h = sgn(Z;;B h;(x)) denote the majority vote of these



hypotheses. First consider the margin

by which h agrees with the target f on an instance x. Note that h disagrees
with f on z only if N;(z) is negative. Next we define a measure M; on
the instance space {0,1}" which assigns weight 0 to the instances with large
margin, weight 1 to the instances with negative margin, and intermediate
weights to instances with non-negative but small margin. More precisely,

1 —yN;(z), otherwise.

Notice that My(z) = 1 for all z. The distribution D; is now obtained by
standardizing the measure M; by the weight |M;| =" M;(z) of M;,

Whenever the IHA-boosting algorithm is going to run the weak learner A, it
first checks whether the measure M; satisfies |M;| < €2". Observe that the
current majority vote h disagrees with f on z only if N;(z) > 0. In this case
M;(z) = 1 and hence the approximation error of A can be bounded by

Prh(z) # f(x)] <27 ) Mi(z) = 27"| M.

Thus, the condition |M;| < £2" guarantees that the boosting algorithm has
found the desired e-approximation of f.

Impagliazzo [I8] showed that the abort condition |M;| < £2™ is met after
at most O(1/v%€?) runs of A. Since for all z we have that D;(x) < 1/|M;,
the oco-norm of the distributions D; is bounded by 1/|M;| and hence the weak
learner A is run only on distributions D; satisfying |[2"D;||e < 1/e.

An algorithmic difficulty is the computation of the exponentially large
sum |M;| which is required to check the abort condition. This difficulty
can be overcome by first expressing 27"|M;| as the expected value E[M;(z)]
for a uniformly chosen x. Then we only have to observe that a random
example (x, M;(z)) can be easily obtained from a random example (z, f(x)).
Furthermore, M;(z) takes only values in the range [0,1]. Hence, with high
probability we can get an accurate estimate for 27"|M;| by drawing a small



sample from EX(f). Now, by using an estimate rather than the exact value
of 27| M|, it is easy to adjust the abort condition so that (1) the output h
is still an e-approximation of f and (2) the modified abort condition can still
be met after at most O(1/7%¢?) runs of A with distributions D;, where (3)
each D; still satisfies ||2"D;||o = O(1/¢).

Now suppose that f is a Boolean function satisfying for all distributions
D the bound

1£pllo > 7.

The Harmonic Sieve for learning f, as suggested in [26], runs the THA-
boosting algorithmﬂ based on the weak learner A provided by Lemma
Recall that A produces with sufficiently high probability a weak (£2(v), D;)-
approximation of the target f in time poly(n, k&, 1/v,log(1/4)), provided that
A gets an upper bound £ on the co-norm of fp, and has access to the oracle
fp,. Further, recall that fp, is defined as fp,(x) = 2"D;(z)f(x) and each
distribution D; satisfies [|2"D;|l«c = O(1/€). Hence, ||fp,|l« = O(1/¢) and
we can easily provide A with the required bound k. The resulting running
time of A becomes poly(n,1/v,1/e,log(1/0)).

The remaining obstacle is the fact that the boosting algorithm cannot
provide the weak learner with the exact values of fp,(x). However, it can
compute an accurate approximation of fp,(z) = 2"M;(x)/|M;| by using the
already calculated estimate for 27"|M;| together with the value M;(z). Note
that the latter value can be exactly computed from f(z) by using a single
membership query to f. It can be shown that using a sufficiently accurate
approximation of fp. does not have a significant impact on the learning
ability of A (cf. [T9]). Thus, with high probability, A indeed produces in
each iteration a weak (€(v), D;)-approximation of f which can be used by
the boosting algorithm to produce an e-approximation. The running time
of the Harmonic Sieve is roughly O(1/~%¢?) times the time required for each
simulation of A which is poly(n,1/v,1/e,log(1/d)). Thus, the Harmonic
Sieve achieves the following performance.

Theorem 10. (cf. [T9]) For each Boolean function f satisfying for all dis-
tributions D the bound ||fpllec > 7, the Harmonic Sieve on inputs €, v, §
and oracle access to f outputs with probability 1 — 6 an O(e)-approximation

of f in time poly(n,1/e,1/v,log(1/9)).

Jackson [T9] showed that for every m-term DNF f and for all distribu-
tions D on {0,1}" it holds that || fp|le = maxg|Ep[fxs]| = 1/(2m + 1).
Hence, the Harmonic Sieve can be used to efficiently learn DNF formulas
with membership queries.

'In [19], Jackson used the F1 boosting algorithm of Freund [T3].



Corollary 11. [T9] The class of m-term DNF formulas is learnable with
membership queries in time poly(n,m,1/e log(1/9)).

We notice that in the random walk model [1], the need for membership
queries can be avoided by using the Bounded Sieve of Bshouty and Feld-
man [7]. The random walk model is a variant of the PAC model where the
examples are generated by performing a random walk on the cube (hence,
they are not independent). The idea is to search for large coefficients by
performing a breadth-first search on the Boolean hypercube rather than a
depth-first search on the binary tree. Using the crucial property that the
Fourier spectrum of a DNF provides a large coefficient within the low-order
spectrum, Bshouty et al. [8] showed that the Bounded Sieve can be used to
efficiently learn DNF formulas in the random walk model. This property of
DNF formulas will also play an important role in the next subsection.

3.4 Exhaustive Search

The main drawback of the Harmonic Sieve is its need for membership queries
which are used by the underlying KM-algorithm to guide the search for large
coefficients. The expensive use of membership queries can be avoided, if the
low-order spectrum of the target contains a large coefficient. More precisely,
let. f be a Boolean function satisfying for each distribution D the bound
max|fp(S)| = 7.

Then f can be weakly (v/2, D)-approximated by a single parity function xg
or its negation where |S| < t. Hence, it suffices to perform an exhaustive
search over all frequencies S with |S| < ¢; similar to the low-degree algorithm.
This immediately yields the following weak learning result.

Lemma 12. [20| There is a randomized algorithm A such that for each
distribution D and Boolean function f satisfying max‘5|§t|fD(S)| > 7,
A(t,v,0, EX(f, D)) outputs with probability 1 —§ a weak (2(v), D)-approzi-
mation of f in time poly(n', 1/v,1og(1/4)).

Applying the THA boosting algorithm to the weak learning algorithm of
Lemma [[2, we can exploit the fact that the boosting algorithm only uses
distributions D; with ||2"D;||.c = O(1/e). This yields the following strong
learning result without membership queries.

Theorem 13. [20| There is a randomized algorithm A such that for each
Boolean function f satisfying for all distributions D with ||2"D||s = O(1/¢)
the bound max|s|< |fD(S)| >, At,v,e,0, EX(f)) outputs with probability
1 — ¢ an e-approxzimation of f in time poly(n',1/e,1/7,10g(1/9)).



An MAC? circuit consists of a majority-gate over a polynomial number
of ACY circuits. Jackson et al. [20]] showed that for every distribution D and
for every Boolean function f computable by an MAC? circuit of size M and
depth d it holds that

p(S)| = Q(1/Mn'
i 7 ()] = 01/,
where ¢ = O(log(M||2"D||»))%*. In particular, ¢ = O(log(M/e))?* for
every distribution D satisfying [|2"D||.c < 1/e. Thus we get the following
improvement of Corollary Bl

Corollary 14. [20] The class of MAC circuits of size M and depth d is
learnable in time
d—
poly(nEM T log(1/5)).

By Corollary [[4 it immediately follows that m-term DNF formulas are
learnable in time poly (n?(°e("/) 1og(1/4)) without membership queries. Let
us remark that a similar result already has been obtained by Verbeurgt [44],
though by using a different approach.

An algorithm similar to the one in Theorem can also be applied in
the model of statistical queries [23]. In this model it is possible to obtain
f(S) within additive error 7 by asking a single statistical query. The pa-
rameter 7 is called the tolerance of the query. It can be shown that m-term
DNF formulas are learnable with n@(08(7/€)) statistical queries, provided that
7=! = poly(m/e) [28]. This has been improved to 77! = O(m/e) in [31].
Interestingly, learning m-term DNF formulas requires n(°8(™) statistical
queries as long as the tolerance is sufficiently large [4].

3.5 Problems

Let us close this section by highlighting some important problems and sug-
gestions for further research concerning the learnability of DNF formulas
without membership queries. For the sake of clarity of exposition we omit
the reference to the parameters € and .

Clearly, the ultimate goal is to achieve the analogue of Jackson’s learn-
ability result for DNF formulas without using membership queries.

Problem 15. Are m-term DNF formulas learnable in time poly(n,m)?

Less ambiguous, but still a major break-through would be a polynomial-
time learning algorithm for DNF formulas with a non-constant number
m(n) of terms. In Section we will present an algorithm which achieves
this goal for the subclass of monotone DNF formulas with running-time

poly(n, (mlogn)#™) for p(m) = \/mlog(m).



Problem 16. Is the class of m-term DNF formulas learnable in time
poly(n, (mlogn)¥™), where ¢ does not depend on n?

In Section we saw that m-term DNF formulas are learnable in time
poly(n'°#™). This is the best known learning result for general m-term DNF
without membership queries. So even an improvement to poly(n{°s™") for
some « < 1 would be very interesting.

As a first step towards solving Problem [0, one might attack the easier
problem of learning decision trees instead of DNF formulas.

Problem 17. Is the class of decision trees with m nodes learnable in time
poly(n, (mlogn)¥™), where ¢ does not depend on n?

As we will see in section 4], the subclass of monotone decision trees with
m nodes is learnable in time poly(n,m).

4 Monotone functions and influence

The sensitivity of a Boolean function f is a measure of how strongly f(x)
reacts to a change of its variables. It is closely related to the notion of
influence of single variables on the value of f. Interestingly, the sensitivity
(as well as the influence) can be expressed in terms of the Fourier coefficients
of f yielding good approximations for functions having low sensitivity. This
approach works especially well for monotone functions, since in this case, the
influence values of the individual variables x1, ..., x, constitute the Fourier
spectrum on the singleton frequencies {z1},...,{z,}.

In this section we review some important learning results for monotone
Boolean functions that are based on sensitivity arguments, including Bshouty
and Tamon’s [9] work on monotone functions, Servedio’s learnability result
for monotone DNF [40], and the very recent learning algorithm of O’Donnell
and Servedio for monotone decision trees [39]. We start with a discussion of
the influence and sensitivity of a Boolean function f.

Influence and sensitivity

The concept of influence of a variable on a Boolean function was intro-
duced by Ben-Or and Linial [3]. Let f be a Boolean function on n vari-
ables z1,...,x,. The influence I;(f) of x; on f is defined as the probabil-
ity that flipping the j-th bit in a uniformly at random chosen assignment
x = (x1,...,x,) changes the value of f. More formally,

L(f) = Pr(f(z) # [z @ ¢)],



where z is uniformly at random chosen from {0, 1}" and e; denotes the as-
signment 0/~'10"~/~". The total influence of f is defined as I(f) = 3, I;(f).
It is easy to see that I(f) equals the average sensitivity of f on all assign-
ments x € {0, 1}", where the sensitivity of f on x = (xy,...,x,) is defined as
the number of bits in  whose flipping causes f to change its value. Note that
I(f) further coincides with the fraction of edges in the Boolean hypercube
that connect assignments x and 2’ having different values under f. Let us
consider the influence of some basic functions.

e The dictatorship function x; maps (zy,...,z,) — (—1)%. Clearly,
I;(x;) = 1if i = j, and I;(x;) = O otherwise. Hence, the dictatorship
function has total influence I(y;) = 1.

e The influence of a single variable z; on the parity function yp, is
I;(X{n) = 1 and hence the total influence I(xn)) sums up to n.

e The influence of x; on the majority function MAJ,, is
LMAT,) = () /27"

implying that I(MAJ,) < y/2n/m for n > 2. In fact, it is not hard
to show (e.g., see [I5]) that for any monotone n-ary Boolean function

f, I(f) < I(MAJ,) implying I(f) < v/2n/m. We will prove a slightly
weaker bound in Proposition

e The influence of a k-junta, i.e., of a function f depending only on a
fixed set R of at most k variables, is clearly bounded by I(f) < k,
since all variables z; with j ¢ R have influence [;(f) = 0.

As has been observed in [22], the influence of x; on a Boolean function f
coincides with the weight of the Fourier spectrum on all frequencies contain-
ing j. In fact, since fg,(S) = xs(¥)f(S) (cf. Equation (&) in Section B}, the
function f; = (f — fae,)/2 has the coefficients

~

o FO) = Fen () (8) = xs(e)f(S)  [f(S), jes
fi(5) = 2 - N 25 B {0, otherwise.

(5)
From Parseval’s identity it follows that

L(f) = Elfil = Eff] =27")_ fi(@)? =) _fi(5)*= > f(9)*
T S



Proposition 18. For any Boolean function f,

L =512 = 2 f(5)

S: jes
Hence, the total influence is I(f) = 3¢ |S|f(S)>.

For monotone f, the influence I;(f) coincides with the Fourier coef-
ficient f(j). Here we adopt the convention that f is called monotone,
if flipping any 0-bit in z to 1 does not change the value of f(x) from
true to false (recall that true is represented by the number —1 and false
by 1). For a bit b € {0,1} we use f;; to denote the Boolean function
fiv(x) = f(z1,...,2j-1,0,2j41,...,n). Now it is easy to see that

|f - feaej| = (fj,o - fj,l) = (f - feaej)Xj;

and hence, using (@), the influence of x; evaluates to

Ii(f)=FE

|:|f _2f®€j‘:| _ E[fXj —Qfeaerj] _ f(]) _QfEBej(j) _ Aj(j) — f(])

Proposition 19. For any monotone Boolean function f,
Li(f) = 10).
Hence, the total influence is I(f) =3, f(])

Letting R = {j € [n] | I;(f) > 0} be the set of relevant variables of f
and denoting the number of relevant variables by k, it follows from Cauchy-
Schwarz’s inequality and Parseval’s identity that

=L <RI L=k fG)P<k

JER JER JER

Hence the total influence of a monotone function can be bounded as follows.

Proposition 20. For any monotone k-junta f,

I(f) < VE.



4.1 Monotone Boolean functions

As we have seen, the low-degree algorithm succeeds on all targets having
small weight on the high frequencies of their Fourier spectrum. As we will
see in the proof of following proposition, the high frequency weight can be
bounded in terms of the influence. Thus, a small bound on the influence
guarantees a good performance of the low-degree algorithm.

Proposition 21. Let f be a Boolean function satisfying I1(f) <. Then

Y f9)y<e

|5|>1/e

Proof. We can bound the high frequency weight for any bound ¢ as follows.

D LS <Y ISIFS) <Y ISIF(S) t = 1(f)/t.

|S|>t |S|>t
Hence, the claim follows by choosing t = [/e. [ ]

By applying the low-degree algorithm, Proposition EIl immediately yields
the following theorem.

Theorem 22. There is a randomized algorithm A such that for each Boolean
function f satisfying I1(f) <1, A(l,e,0, EX(f)) outputs with probability 1 —§
an O(g)-approzimation for f in time poly(n'/c log(1/6)).

By Proposition B0, for a monotone function f we have the bound I(f) <
v/n, which immediately yields the following learning result of Bshouty and
Tamon.

Corollary 23. [9] The class of monotone Boolean functions is learnable in
time poly(nV™< log(1/6)).

In Section we will present an algorithm for monotone Boolean func-
tions running in time poly(n, 2(l/5)2) rather than poly(n'/¢) as in Theorem

4.2 Monotone juntas

By Proposition we know that the influence of a monotone k-junta is
bounded by vk. Hence, the algorithm of Theorem finds a low degree
O(e)-approximation g for f in time poly(n‘/E/E, log(1/9)). Bshouty and Ta-
mon [9] observed that by ignoring variables of sufficiently small influence, the
running-time can be improved to poly(l{:ﬁ/a, log(1/9)).



For a bound 8 > 0 let

R(0) ={j e n] | ;(f) > 0}

denote the set of variables having influence greater than 6. Then it is easy to
bound the Fourier weight of a k-junta on the frequencies containing at least
one variable of small influence.

Proposition 24. For any k-junta f,
> s
SZR(e/k)

Proof. Since for a k-junta the number |R| of relevant variables is bounded
by k and since each variable z; with j ¢ R(f) has influence I;(f) < 0, it
follows that

Z F92< 3T N f9r= Y L) <ok

SZR(O jZR(0) S: jES JER—R(0)
Hence, the claim follows by choosing 6 = ¢/k. [

In the following we will frequently consider the collection of all frequencies
S of order at most t containing only variables having influence greater than
#, which we denote by

G(0,t) = {S C R(0) | |S| < t}.

The following proposition shows that a k-junta f with influence I(f) < I
can be O(e)-approximated by taking only the coefficients corresponding to
frequencies inside G(e/k,[/¢).

Proposition 25. Let f be a k-junta satisfying I(f) <. Then

> f(9)? <2

SEG(e/k,l/e)

Proof. Using Propositions 21l and B4l it immediately follows that

SJr< Y F2+ Y f(S)? < 2.

SEG(e/k,l/e) SZR(&/k |S|>1/e



If f is monotone, we can collect all variables having large influence by es-
timating the Fourier coefficients of all singleton frequencies. More precisely,
in order to find all variables x; having influence I,;(f) > 6, we compute esti-
mates a; for the Fourier coefficients £(j) by drawing sufficiently many exam-
ples from the oracle EX(f) and collect all variables x; with a; > 36/4. Then,
with high probability, we get all variables x; with I,;(f) > 6 and no variables
x; with I;(f) < 0/2. This algorithm has been called Find-Variables by
Servedio [40)].

Proposition 26. For each monotone Boolean function f, Find-Variables
on inputs 6, 6 and access to EX(f), outputs with probability 1 — & in time
poly(n,1/6,log(1/6)) a set R* with R() C R* C R(60/2).

In order to compute an e-approximation for a monotone k-junta f, we
first use Find-Variables with § = ¢/k to obtain with high probability a
variable set R* C R(e/2k) containing all variables x; with I;(f) > ¢/k.
Since R* C R(e/2k) implies that R* contains only relevant variables, the size
of G* = {S C R* | |S| < 1/} is polynomial in k'/¢. Hence, we can apply
the generalized low-degree algorithm to get the following learning result for
monotone k-juntas having small influence.

Theorem 27. There is a randomized algorithm A such that for each mono-
tone k-junta f with I(f) < I, A(k,l,e,0, EX(f)) outputs with probability
1 — & an O(e)-approzimation for f in time poly(n, k"¢ log(1/6)).

Corollary 28. [9] The class of monotone k-juntas is learnable in time

poly (n, k¥ 1og(1/6)).

4.3 Monotone functions that are close to juntas

By refining the arguments used in the preceding subsection we will now
see that the generalized low-degree algorithm also succeeds on monotone
Boolean functions that are sufficiently close to a monotone k-junta [9]. As
a consequence, the generalized low-degree algorithm (in conjunction with
Find-Variables) becomes applicable to monotone m-term DNF formulas.
We call a function f an (e, k)-junta, if f is e-close to a k-junta. We first

show that for an (e, k)-junta, the number of variables z; having influence
I;(f) > ¢ is bounded by k.

Proposition 29. For any (e, k)-junta, |R(¢)| < k.



Proof. Let i be a k-junta that is e-close to f. Observe that for any variable
x; with I;(h) = 0 it holds that h(S) =0 if j € S. Hence,

= > 9= D> (fS) =) < |f =l <e.

S: jes S: jes
This shows that any variable in R(¢) must be relevant for h. [

In the next proposition we bound the weight of the high order Fourier
spectrum of f under the assumption that f is close to some function g with
a small weight on this region.

Proposition 30. For any function f that is e-close to some Boolean function

g with Z‘SBtQ(SV <e,
> F(9) < de.

IS|=t

Proof. Using the inequality f2 = (f —g+g)7*< Q(f §)* + 2¢* (Cauchy-
Schwarz) it follows that

ST A <2Y (FS) —a(9)F+2 3 a(8)? < de.

s>t ISI>t ISI>t .

Now assume that f is an (¢/n, k)-junta with the additional property that
it is e-close to some Boolean function g whose Fourier weight on the frequen-
cies S with |S| > ¢ is bounded by €. Then by using Proposition 24l with k = n
as well as Proposition B0, it follows that the frequency collection G(g/n,t)
has the property

SRS Y A9+ f(8)?=

SZG(e/n,t) SZR e/n) |S|>t

This means that f can be O(g)-approximated by using only Fourier coeffi-
cients corresponding to frequencies in G(¢/n,t). Since by Proposition 29 the
size of R(¢/n) is bounded by k, it further follows that the size of G(¢/n,t) is
bounded by k'. Thus we can use the algorithm Find-Variables to compute
a superset R* of R(¢/2n) containing only variables in R(¢/n) in order to get
the following learning result.

Theorem 31. There is a randomized algorithm A such that for each
monotone (g/n, k)-junta f that is e-close to some Boolean function g with
Z‘SEtQ(S)Q <e, A(k,t,e,6, EX(f)) outputs with probability 1 — 6 an O(e)-
approximation for f in time poly(n, k' log(1/0)).



Since by Proposition 21l 7(g) < [ implies that the Fourier weight of g on
the frequencies S with |S| > [/e is bounded by ¢, we also obtain the following
corollary.

Corollary 32. There is a randomized algorithm A such that for each mono-
tone (¢/n,k)-junta f that is e-close to some Boolean function g with influ-
ence 1(g) < 1, A(k,l,e,6, EX(f)) outputs with probability 1 — 6 an O(e)-
approzimation for f in time poly(n, k'/¢ log(1/6)).

Since for any £ > 0, an m-term DNF is an (¢, mlog(m/e))-junta, Corol-
lary B2implies the following learning result for monotone m-term DNF,| which
is in fact a consequence of a stronger result from [9].

Corollary 33. [9] The class of monotone m-term DNF formulas is learnable
mn time

poly(n, (mlog(n/e))V mlog(m/e)/e log(1/9)).

Hence, for m = O((logn)?/(loglogn)?) and constant €, monotone m-term
DNF formulas are learnable in polynomial time.

Servedio [40] used a bound of Mansour [36] to show that any m-term
DNF f is e-close to a Boolean function g satisfying Z‘Sbtg(S)? <cgfort=
O(log(m/e)log(1/¢)). By Theorem BI] this implies the following exponential
improvement of Corollary

Corollary 34. [A0| The class of monotone m-term DNF formulas is learnable
in time

poly(n, (mlog(n/c))* ™/ W) 1og(1/6)).
Hence, monotone O(2V!°6™)-term DNF formulas are learnable in polynomial
time.

4.4 Monotone functions with bounded influence

Since k-juntas have low influence, it is clear that all functions that are suf-
ficiently close to some k-junta also must have low influence. As shown by
Friedgut [I4], also the converse is true: any Boolean function f having low in-
fluence must be close to a k-junta where &k only depends on the influence and
not on the arity of f. More precisely, if I(f) <[ then f is a (¢, 2°¢/D)-junta.
Very recently, this relationship has been used by O’Donnell and Servedio [39)
to demonstrate the applicability of the generalized low-degree algorithm to
the class of monotone decision trees.

The proof of Friedgut’s result yields the following approximability result
for Boolean functions with bounded influence.



Proposition 35. [T4] For any Boolean function f with I(f) <,

> f(8)?=0¢),

S¢G(0,t)

where 0 = (2715 /1) and t = [ /=.

Proof. For a given € we want to derive a bound on 6 such that at most an ¢
fraction of the weight of the Fourier spectrum of f is outside of the collection
G(0.t). Let H={S C[n]|S Z R(#) N|S| <t} and note that S & G(0,t)
implies that either |[S| >t or S € H. Now it follows by Proposition 21 that

> FSP <Y F9P+ D) f(8) <e+ ) f(S)

SEG(6,t) |S|>t SeH SeH

Hence, it suffices to choose 6 small enough such that the Fourier weight of
f on H is bounded by O(e). Using Beckner-Bonami (cf. inequality (H) in
Section B]) and letting H; = {S C [n] | j € S A|S| < t} it follows for each
position j that

D28 < > 2 IS = 1Ty e fillP < (LI = L),

SeH; S:jes

implying that ZSeHj f(5)2 < 2'I;(f)¥3. Note that for each S € H there is

some j ¢ R() such that S € H;. Hence, summing up and using the bounds
I(f) <land I;(f) <0 for all j & R(0) we get

SRS Y D f9)r< Z 2L(f)? < 2t81/3ZIj(f) < 2!9'/3.

SeH J¢R(0) SEH; JgR(0

Thus, choosing § = (¢27!/1)3 yields the desired bound. Since t = [/e, the
size of R(6) is bounded by /6 = [#2%/¢ /e® = 200/9) and it follows that the
size of GG is bounded by 20(U/e)? [ ]

As an immediate consequence we can state the following learning result.

Theorem 36. There is a randomized algorithm A such that for each mono-
tone Boolean function f with I(f) <1, A(l,e,0, EX(f)) outputs with proba-
bility 1 — & an O(e)-approzimation for f in time poly(n, 20/ log(1/4)).

As shown by O’Donnell and Servedio [39], any Boolean function f com-
putable by a decision tree of size m has the property that >, f(i) < v/logm.

If f is monotone, this implies that I(f) =), f(z) < y/logm.



Corollary 37. [39] The class of monotone decision trees of size m is learn-
able in time

poly(n, m"/9", log(1/9)).

Hence, for constant €, monotone decision trees are learnable in polynomial
time.

4.5 Problems

Let us conclude with some interesting problems concerning the learnabil-
ity of monotone DNF formulas and juntas. As in Section we omit the
parameters ¢ and 0 for clarity reasons.

Monotone DNF

In the light of O’Donnell and Servedio’s efficient learning algorithm for mono-
tone decision trees [39] an interesting question to ask is whether this result
can be extended to monotone DNF formulas.

Problem 38. Are monotone m-term DNF formulas learnable in time
poly(n,m)?

It is further shown in [39] that the influence bound I(f) < /logm cannot
be extended to monotone m-term DNF formulas or even to functions f that
are computable by both an m-term DNF as well as by an m-clause CNF.
Thus, Problem B8 cannot be solved by solely relying on Theorem

The currently best learning algorithm for monotone m-term DNF
is the one of Corollary B4l due to Servedio [40)] which runs in time
poly(n, (mlogn)¥™) where p(m) = logm. It would be very interesting
to improve this result to an algorithm having fized parameterized complexity
in the sense of Downey and Fellows [TT].

Problem 39. Are monotone m-term DNF formulas learnable in time
poly(n,¢(m)), where ¢ does not depend on n?

Juntas

As we saw in Section E2], the analogue of Problem Bd for monotone k-juntas
has been solved by Bshouty and Tamon [9] by providing an algorithm running
in time poly(n, ¢(k)) for ¢(k) = kV¥ (cf. Corollary ER). An immediate
question is whether this can be extended to general juntas.

Problem 40. Are k-juntas learnable in time poly(n, ¢(k)), where ¢ does not
depend on n?



We want to emphasize that Problem H{] is a very important question
whose answer would have immediate applications to the learnability of DNF
formulas (as every DNF formula is close to a junta) as well as to the important
area of feature selection (cf. [B]). In fact, Mossel et al. [37] consider the
problem of learning juntas as the single most important problem in uniform
distribution learning. A slightly less ambiguous goal is to learn k-juntas in
time poly(n, (klogn)?*)). This would imply that juntas with a non-constant
number k(n) of relevant variables are learnable in polynomial time.

The currently best learning algorithm for k-juntas is due to Mossel et
al. [37] and runs in time O(n°*) for some o < 0.7. So even an improvement
to an a < 0.5 would be a significant progress.

Problem 41. Are k-juntas learnable in time O(n®*) for some a < 0.57

For the special case of symmetric juntas, Mossel et al. [37] used a result of
von zur Gathen and Roche [45] to bound the running-time by n®* for some
a < 2/3. The analogue of Problem HIl for symmetric juntas has been solved
by Lipton et al. [34] by providing an algorithm with running-time O(n*)
for & = 3/31. This bound has been subsequently improved to O(n*/1°¢k) in
[29].
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