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1 IntrodutionLearning via the Fourier transform is a basi tool when learning in the PACmodel under the uniform distribution. It has been suessfully applied tovarious natural onept lasses ranging from deision trees to onstant depthiruits. The most remarkable example is Jakson's Harmoni Sieve algo-rithm [19℄ for learning DNF formulas in polynomial time with membershipqueries. Learning via the Fourier transform has thus provided a suess-ful attak on the notoriously open problem of learning DNF formulas in thedistribution-free PAC model without membership queries. The fastest knownalgorithm for this problem runs in time 2Õ(n1/3) [27℄.The Fourier spetrum of Boolean funtions has been �rst applied in the-oretial omputer siene by Kahn, Kalai and Linial [22℄ to answer a ques-tion posed by Ben-David and Linial [3℄ onerning the sensitivity of Booleanfuntions. The �rst appliation in omputational learning is due to Linial,Mansour and Nisan [33℄. The Fourier transform of a Boolean funtion f anbe regarded as a representation of f as a linear ombination over the basisof all parity funtions. Eah oe�ient is given by the orrelation between fand the orresponding basis funtion. Learning an then be ahieved throughestimating the Fourier oe�ients based on a su�iently large sample of f .For simple onept lasses it is often possible to establish a ertain prop-erty of the onepts in terms of their Fourier transform, whih implies thateah onept in the lass an be approximated by paying attention to only asmall part of its Fourier spetrum. The learning problem is then redued toestimating the Fourier oe�ients in the important part of the spetrum.In this olumn we onentrate on learning funtions with properties whihan be expressed in terms of their Fourier spetrum. In a �rst part we reviewsome basi algorithms, starting with the ubiquitous low-degree algorithm ofLinial et al. [33℄. Then we present the KM-algorithm of Kushilevitz andMansour [30℄ for �nding all signi�ant Fourier oe�ients. Next we desribeJakson's Harmoni Sieve algorithm whih ombines the KM-algorithm withboosting, and �nally we present the more reent algorithm of Jakson etal. [20℄ whih an be regarded as a simpli�ed Harmoni Sieve obtained byreplaing the KM-algorithm by an exhaustive searh.In a seond part we onentrate on learning lasses of monotone fun-tions based on sensitivity arguments, inluding Bshouty and Tamon's work onmonotone funtions [9℄, Servedio's learnability result for monotone DNF [40℄,and the very reent learning algorithm of O'Donnell and Servedio for mono-tone deision trees [39℄ based on a sensitivity result due to Friedgut [14℄.We do not make any attempt to be omprehensive. However, we do hopeto onvine the reader that learning via the Fourier transform is a true suess



story with no end in sight.2 Notation and basi fatsIn this setion we �x the notation and give formal de�nitions for some of theonepts used in this paper. Further we state some basi fats for furtherreferene.Fourier TransformWe are interested in learning Boolean onept lasses, i.e., eah onept anbe represented as a Boolean funtion f : {0, 1}n → {true, false}. We denotethe lass of all Boolean funtions of arity n by Bn. If we identify true with
1 and false with 0, then Bn forms a vetor spae of dimension 2n over the�eld F2. The regular basis for Bn onsists of the 2n funtions terma(x),
a ∈ {0, 1}n, mapping x to 1, if x = a, and to 0 otherwise. Clearly, anyBoolean funtion f ∈ Bn has a unique representation f =

∑

a∈{0,1}n catermawith oe�ients ca = f(a). For many appliations it is important to have abasis with the following useful properties.
(a) �Simple� funtions should have small representations. E.g., if the valueof f is already determined by a small subset of its variables, then manyoe�ients should vanish.
(b) Transforming f to a �similar� funtion f ′ (e.g., f ′(x) = f(x⊕a)) shouldallow for an easy onversion of the oe�ient representations of the twofuntions.By embedding Bn into a riher struture, namely the vetor spae R{0,1}n

=
{f : {0, 1}n → R} over R, these properties an be easily ahieved. In fat, ifwe require from our basis {χa | a ∈ {0, 1}n} that it ontains the funtions
χei

(x) = (−1)xi (in order to ful�ll property (a)) and that all basis funtions
χa have the property

χa(x⊕ b) = χa(x)χa(b), (1)then also property (b) is ful�lled. This is easy to see, sine for any funtion fwith the representation f(x) =
∑

a∈{0,1}n caχa(x) it follows that the funtion
f⊕b(x) = f(x⊕ b) has the representation

f⊕b(x) = f(x⊕ b) =
∑

a∈{0,1}n

caχa(x⊕ b) =
∑

a∈{0,1}n

caχa(x)χa(b), (2)



implying that the oe�ients c′a of f⊕b an be written as c′a = χa(b)ca.Property (1) requires that the base funtions are homomorphisms from theAbelian group ({0, 1}n,⊕) to the multipliative group (R∗, ·) of non-zero realnumbers. It is easy to show that exatly the parity funtions
χa(x) = (−1)

Pn
i=1

aixi, a ∈ {0, 1}nhave this property and that these funtions indeed form a basis for the vetorspae R{0,1}n . By identifying the vetor a ∈ {0, 1}n with the set S = {i ∈
[n] | ai = 1}, where we use [n] to denote the set {1, . . . , n}, we get the moreonvenient representation

χS(x) = (−1)
P

i∈S xi, S ⊆ [n].More generally it an be shown that for any �nite Abelian group G the lassof all homomorphisms from G to the multipliative group (C∗, ·) of non-zeroomplex numbers form a group F (under multipliation, with the onstant 1funtion as neutral element) that is isomorphi to G. Moreover, the funtionsin F form an orthogonal basis for the vetor spae CG over C of all funtions
f : G→ C. The elements of F are alled the haraters of G and F is alledthe Fourier basis for CG.In the ase G = ({0, 1}n,⊕) all funtions χS in the Fourier basis are real-valued and hene also form a basis for the subspae R{0,1}n of all funtions
f : {0, 1}n → R. In fat, using the natural notion of inner-produt

〈f, g〉 = 2−n
∑

x∈{0,1}n

f(x)g(x) = E[f(x)g(x)],it is easy to verify that the Fourier basis F = {χS | S ⊆ [n]} forms anorthonormal system of funtions, i.e.
〈χS, χT 〉 = E[χS(x)χT (x)] = E[χS∆T (x)] =

{

1, S = T,

0, otherwise, (3)implying that all parity funtions have unit norm ‖χS‖ = 1, where the normof a funtion f is indued by the inner-produt using the rule
‖f‖ =

√

〈f, f〉 =

√

2−n
∑

x

f(x)2.More generally, for p > 0 the p-norm is de�ned as
‖f‖p = E[|f(x)|p]1/p =

(

2−n
∑

x

|f(x)|p
)1/p



and the ∞-norm is
‖f‖∞ = max

x
|f(x)|.Notie that the norm indued by the inner-produt oinides with the 2-norm.We remark for further use that for 0 < p ≤ q ≤ ∞, ‖f‖p ≤ ‖f‖q. Sine theFourier basis is orthonormal, the Fourier oe�ients f̂(S) in the Fourierexpansion

f =
∑

S⊆[n]

f̂(S)χSof f an be written as the inner-produt f̂(S) = 〈f, χS〉 of f and the basisfuntions χS. The funtion f̂ : 2[n] 7→ R mapping eah frequeny S ⊆ [n] tothe orresponding Fourier oe�ient f̂(S) is alled the Fourier transform of
f . A ruial property of f̂ is that if f does not depend on a variable xj , thenall oe�ients f̂(S) with j ∈ S vanish (f. property (a)). Using (3) it followsfor any funtions f, g : {0, 1}n → R that

E[fg] = E
[(

∑

S f̂(S)χS

)(
∑

T ĝ(T )χT

)]

=
∑

S,T f̂(S)ĝ(T )E[χSχT ]

=
∑

S f̂(S)ĝ(S).Hene, a further onsequene of the orthonormality of the Fourier basis isParseval's identity stating that
‖f‖2 =

∑

S

f̂(S)2.If we identify true with −1 and false with 1, i.e., if we let Bn = {f : {0, 1}n →
{−1, 1}}, then Parseval's identity implies that for a Boolean funtion f ∈ Bn,the squares f̂(S)2 of the Fourier oe�ients of f sum up to 1 and thus induea probability distribution on the frequenies. For a olletion G ⊆ 2[n] offrequenies we refer to the �probability� ∑

S∈G f̂(S)2 of G as the weight ofthe Fourier spetrum of f on G or simply as f 's Fourier weight on G.Clearly, by the linearity of the vetor spae R{0,1}n , the Fourier transformof f + g is obtained as the sum f̂ + g = f̂ + ĝ of the Fourier transforms of fand g. Hene, if g is obtained from a funtion f by removing all oe�ientsoutside G, i.e., g =
∑

S∈G f̂(S)χS, then Parseval's identity implies
‖f − g‖2 =

∑

S

‖f̂ − g(S)‖2 =
∑

S

‖f̂(S)− ĝ(S)‖2 =
∑

S 6∈G

f̂(S)2.Notie that g need not be Boolean. But it is easy to see that we an approx-imate any real-valued funtion g by the Boolean funtion
sgn(g(x)) =

{

1, g(x) ≥ 0

−1, otherwise,



where
Pr[f(x) 6= sgn(g(x))] ≤ ‖f − g‖2.We lose this subsetion with a useful inequality due to Bekner and Bonami[2, 6℄. For any real δ ∈ [0, 1] let Tδ be the linear operator mapping a funtion

f to the funtion Tδ(f) =
∑

S δ|S|f̂(S)χS, i.e., Tδ in some sense redues theFourier weight of the high frequenies (where high means that |S| is large).The Bekner-Bonami inequality states that ‖Tδ(f)‖ ≤ ‖f‖1+δ2 . Sine for anyfuntion f taking only values in the range {−1, 0, 1} we have ‖f‖22 = ‖f‖ppfor all p > 0, the Bekner-Bonami inequality implies for suh funtions that
‖Tδ(f)‖2 ≤ ‖f‖21+δ2 =

(

‖f‖1+δ2

1+δ2

)2/(1+δ2)
= (‖f‖2)2/(1+δ2). (4)For further information and bakground on the Fourier transform of Booleanfuntions we refer to [12, 42, 38, 10, 32℄.LearningWe onsider the well-known distribution-spei� variant of Valiant's Prob-ably Approximate Corret (PAC) learning model [43℄. Let f be a Booleanfuntion and D be a distribution on the instane spae {0, 1}n. For ε > 0 wesay that a Boolean funtion h is an (ε, D)-approximation of f if PrD[h(x) 6=

f(x)] ≤ ε, where x is hosen aording to D. We use EX(f, D) to denotean orale whih, when invoked, returns a random labeled example (x, f(x))where x is hosen aording to D. A onept lass C ⊆ Bn is learnablewith respet to D if there is a randomized learning algorithm A whih, forall targets f ∈ C and parameters ε, δ > 0, when given inputs ε, δ and ora-le aess to EX(f, D), A(ε, δ, EX(f, D)) outputs with probability 1 − δ aBoolean funtion h whih is an (ε, D)-approximation of f . Here, the proba-bility is taken over the random hoies of A and the random labeled examplesreturned by EX(f, D), where we assume that the random examples are se-leted independently from eah other and from the random hoies of A.We also onsider weak learnability, where the hypothesis h produed bythe learning algorithmA is only slightly more aurate than random guessing.For γ > 0 we say that a Boolean funtion h is a weak (γ, D)-approximation of
f if PrD[h(x) 6= f(x)] ≤ 1/2− γ. Now a onept lass C is weakly learnablewith advantage γ and with respet to D if there is a learning algorithm Asuh that for all f ∈ C and parameters γ, δ > 0, A(γ, δ, EX(f, D)) outputswith probability 1− δ a weak (γ, D)-approximation of f .If the learning algorithm A requires diret aess to the orale f ratherthan EX(f, D), then we say that C is learnable with membership queries.



If D is the uniform distribution, we generally omit the referene to D. Formore bakground on learning we refer to [24℄.Prominent examples of natural onept lasses are deision trees with asingle variable at eah inner node, DNF formulas, and onstant depth AC0iruits. Note that every deision tree with m nodes an be transformed intoa DNF formula with at most m terms, and that every m-term DNF formulaan be regarded as a onstant depth AC0 iruit of size m + 1 and depth
2. For bakground on iruit omplexity we refer the reader to a standardtextbook like [46℄. For a disussion of the Fourier transform of these oneptlasses we refer to the exellent overview of Mansour [35℄. A more reentoverview is provided by Jakson and Tamon's tutorial [21℄.Probability TheoryFor later use we state the following result to whih we refer to as the Cherno�-Hoe�ding bound. Let X1, . . . , Xm be independent random variables takingvalues in the real interval [a, b] and having expetation E[Xi] = µ. Then forany λ > 0, with probability at most 2e−2λ2m/(b−a)2 , the additive error of theestimate for µ obtained by taking the arithmeti mean of m observations ofthe random variables X1, . . .Xm is greater than or equal to λ,

Pr
[

∣

∣

1
m

∑m
i=1 Xi − µ

∣

∣ ≥ λ
]

≤ 2e−2λ2m/(b−a)2 .In other words, with on�dene 1− 2e−2λ2m/(b−a)2 , the arithmeti mean pro-vides a λ-aurate estimate for µ.Further NotationWe measure the loseness of two real-valued funtions f and g in terms ofthe 2-norm squared of the di�erene of f and g. That is, we say that f and gare ε-lose if ‖f − g‖2 ≤ ε. Note that for Boolean funtions f and g it holdsthat ‖f − g‖2 = 4 Pr[f(x) 6= g(x)] and hene, f and g are ε-lose if and onlyif f is an (ε/4)-approximation of g.3 Basi algorithmsIn this setion we review some basi algorithms for learning via the Fouriertransform. We start with the low-degree algorithm of Linial et al. [33℄ and itsappliation toAC0 iruits. Next we present the KM-algorithm of Kushilevitzand Mansour [30℄ whih an be used to learn deision trees in polynomialtime with membership queries and its appliation to DNF formulas due to



Mansour [36℄. Then we desribe Jakson's Harmoni Sieve [20℄ whih learnsDNF formulas in polynomial time with membership queries. Finally webrievly review the simple exhaustive searh algorithm of Jakson, Klivansand Servedio [20℄ whih an be applied to majorities over AC0 iruits.3.1 The low-degree algorithmThe �rst appliation of Fourier analysis in omputational learning theory isdue to Linial et al. [33℄. The learning result is based on an upper boundfor the 2-norm of f̂ restrited to high frequenies, where the bound dependson the iruit omplexity of f . So suppose that f is a Boolean funtionsatisfying
∑

|S|>t

f̂(S)2 ≤ ε.For the real-valued funtion g =
∑

|S|≤t f̂(S)χS it follows by Parseval's iden-tity that
‖f − g‖2 =

∑

|S|>t

f̂(S)2 ≤ ε,whih means that f an be ε-approximated by fading out the high frequen-ies S with |S| > t. This observation redues the learning problem for fto the problem of omputing the Fourier oe�ients f̂(S) for all low-orderfrequenies S with |S| ≤ t.This task an be aomplished by the low-degree algorithm whih is themost fundamental algorithm in the ontext of learning via the Fourier trans-form. The algorithm is presented in Figure 1. The simple but ruial ob-servation is that eah oe�ient f̂(S) an be expressed as the expetation
E[f(x)χS(x)], where x is hosen uniformly at random. Thus eah oe�ient
f̂(S) an be aurately estimated with high on�dene by drawing a su�-iently large sample from EX(f). More spei�ally, the low-degree algorithmdraws a polynomial number in nt, 1/ε and log 1/δ of labeled examples from
EX(f) and omputes for eah S of size at most t an empirial estimate aS for
f̂(S). By applying the Cherno�-Hoe�ding bound it follows that with prob-ability 1 − δ, eah estimate aS is within additive error λ = (ε/nt)1/2 fromits expeted value f̂(S). In this ase the approximation g =

∑

|S|≤t aSχSsatis�es
‖f − g‖2 =

∑

S

(f̂(S)− ĝ(S))2 =
∑

|S|≤t

(f̂(S)− aS)2 +
∑

|S|>t

f̂(S)2

≤ ntλ2 + ε = 2ε,



input: frequeny bound t, auray ε, on�dene δ and aess to EX(f)output: a Boolean funtion h approximating f1. request m = 2nt

ε
ln(2nt

δ
) labeled examples (xi, f(xi)) from EX(f)2. for eah S ⊆ [n] with |S| ≤ t ompute aS = 1

m

∑m
i=1 f(xi)χS(xi)3. output h = sgn(

∑

|S|≤t aSχS)Figure 1: The low-degree algorithmand sine Pr[sgn(g(x)) 6= f(x)] ≤ ‖f − g‖2, it follows that the output hy-pothesis h = sgn(g) is an (ε/2)-approximation of f . The running-time isdominated by the sample size and thus polynomial in nt, 1/ε and log(1/δ).Theorem 1. For any Boolean funtion f satisfying
∑

|S|>t

f̂(S)2 ≤ ε,the low-degree algorithm on inputs t, ε, δ and aess to EX(f) outputs withprobability 1− δ an O(ε)-approximation of f in time poly(nt, 1/ε, log(1/δ)).Let us remark for further referene, that the low-degree algorithm anbe easily generalized to Boolean funtions f satisfying ∑

S∈G f̂(S)2 ≤ εfor an arbitrary olletion G ⊆ 2[n] of frequenies, provided that G isexpliitly given as part of the input. In this ase, the running-time is
poly(n, |G|, 1/ε, log(1/δ)).Based on Hastad's Swithing Lemma [17℄, Linial et al. [33℄ showed thatfor any Boolean funtion f whih is omputable by an AC0 iruit of depth
d and size M it holds that

∑

|S|>t

f̂(S)2 ≤ 2M2−t1/d/20.Applying the low-degree algorithm with t = O(log(M/ε)d) immediatelyyields the following learning result.Corollary 2. [33℄ The lass of AC0 iruits of depth d and size M over nvariables is learnable in time
poly(nlog(M/ε)d

, log(1/δ)).



Sine an m-term DNF formula is omputable by a iruit of size m + 1and depth 2 it further follows that m-term DNF formulas are learnable intime poly(nlog(m/ε)2 , log(1/δ)).By a result due to Kharitonov [25℄, Corollary 2 annot be signi�antlyimproved under a plausible ryptographi assumption. However, as we willsee in Setion 3.4, the exponent d an be redued to d−1. This will imply that
m-term DNF formulas are in fat learnable in time poly(nlog(m/ε), log(1/δ)).3.2 The KM-AlgorithmFor su�iently simple funtions it is sometimes possible to bound the 1-normof the Fourier transform. A nie example provide deision trees, for whihthe 1-norm of the Fourier transform an be bounded by the number of nodesin the tree by fairly elementary methods [30℄. So suppose that f is a Booleanfuntion satisfying

‖f̂‖1 ≤ k.Then learly,
∑

|f̂(S)|≤ε/k

f̂(S)2 ≤ (ε/k)
∑

|f̂(S)|≤ε/k

f̂(S) ≤ ε,whih means that f an be ε-approximated by ignoring the small Fourieroe�ients having absolute value at most ε/k. This observation redues thelearning problem for f to the problem of �nding all frequenies S whoseFourier oe�ients are larger in absolute value than some given threshold θ.This problem an be solved by an algorithm of Goldreih and Levin [16℄whih is a key ingredient in their proof that parity funtions are hard-oreprediates for one-way funtions. The algorithm has been �rst applied inthe learning setting by Kushilevitz and Mansour [30℄. The idea behind thealgorithm is best desribed in terms of the reursive proedure Coef given inFigure 2, whih an be regarded as a depth-�rst searh on the binary tree ofdepth n. Here, eah node is given by its level k ∈ [n] and a set S ⊆ [1, k],where we use the notation [m, n] to desribe the set {m, . . . , n}. In eah node
(S, k) we onsider the sum

C(S, k) =
∑

T⊆[k+1,n]

f̂(S ∪ T )2.If k = n, then Coef has reahed at a leaf of the tree, and sine in this ase
C(S, k) = f̂(S)2, the proedure returns S if and only if C(S, k) ≥ θ2. If
(S, k) is an inner node with C(S, k) < θ2, then there is no set T ⊆ [k + 1, n]



Coef(S, k):1. if k = n and C(S, k) ≥ θ2 then return({S})2. if k < n and C(S, k) ≥ θ2 thenreturn(Coef(S, k + 1) ∪ Coef(S ∪ {k + 1}, k + 1))3. return(∅) Figure 2: The reursive proedure Coefwith |f̂(S ∪ T )| ≥ θ. Thus there is no need to further explore the subtreeof this node. Otherwise, Coef reursively ontinues the searh with the twohildren (S, k + 1) and (S ∪ {k + 1}, k + 1) of (S, k). Invoking Coef withthe root node (∅, 0), the proedure returns the olletion of all frequeniesorresponding to Fourier oe�ients with an absolute value greater than θ.Conerning the number of reursive alls performed by Coef, �rst notethat by Parseval's identity,
∑

S⊆[1,k]

C(S, k) =
∑

S⊆[n]

f(S)2 = ‖f‖2 = 1,implying that in eah level k there are at most 1/θ2 nodes (S, k) with
C(S, k) ≥ θ2. Thus, the total number of reursive alls an be boundedby n/θ2. The main algorithmi di�ulty, however, is the omputation of thesums C(S, k). This an be solved by expressing C(S, k) as a nested expeta-tion. More preisely, onsider the funtion g : {0, 1}n−k → R whih maps asu�x x ∈ {0, 1}n−k to the expetation Ey[f(yx)χS(y)] for a uniformly hosenpre�x y ∈ {0, 1}k. For any pre�x y ∈ {0, 1}k and T ⊆ [k + 1, n] we have
χS∪T (z) = χS∆T (z) = χS(y)χT (x), where z = yx. Hene,
f̂(S ∪ T ) = Ez[f(z)χS∪T (z)] = Ex

[

Ey[f(yx)χS(y)χT (x)]
]

= Ex[g(x)χT (x)],implying that f̂(S ∪ T ) = ĝ(T ). Now, by using Parseval's identity, we anexpress C(S, k) as
C(S, k) =

∑

T⊆[k+1,n]

ĝ(T )2 = Ex[g(x)2] = Ex

[

Ey[f(yx)χS(y)]2
]for uniformly hosen x ∈ {0, 1}n−k and y ∈ {0, 1}k. By applying theCherno�-Hoe�ding bound, this means that we an estimate C(S, k) by �rstestimating the inner expetation for a small number of random su�xes xand then estimate the outer expetation as the average sum of the squared



estimates for the inner expetation. For eah given su�x x, the estimate forthe inner expetation an be obtained from a small number of values f(yx)for random pre�xes y, whih an be obtained by asking the orale f . Byusing su�iently aurate estimates of C(S, k) it an be shown that withhigh probability, the modi�ed searh still runs in polynomial time and re-turns a set ontaining all frequenies S with |f̂(S)| ≥ θ. Furthermore, eahfrequeny S in the set satis�es |f̂(S)| = Ω(θ), whih by Parseval's identityimplies that the number of frequenies in the returned olletion is at most
O(1/θ2).Lemma 3. [30℄ There is a randomized algorithm A suh that for eahBoolean funtion f and threshold θ > 0, A(θ, δ, f) outputs with probabil-ity 1 − δ a olletion G ⊆ 2[n] of size O(1/θ2) ontaining all frequenies Swith |f̂(S)| ≥ θ. A runs in time poly(n, 1/θ, log(1/δ)).As observed by Jakson [19℄ the algorithm of Lemma 3 an also be appliedto real-valued funtions f : {0, 1}n → R. In this ase, the number of reursivealls of the proedure Coef is bounded by ‖f‖n/θ2 rather than n/θ2. Furthernotie that the on�dene in the Cherno�-Hoe�ding bound depends on therange of the random variables whose mean we want to estimate. In ase fis real-valued, the range of these random variables is [−‖f‖2∞, ‖f‖2∞] ratherthan [−1, 1], implying that the number of labeled examples from f neededto estimate C(S, k) additionally depends on the parameter ‖f‖∞. Sine
‖f‖ ≤ ‖f‖∞, the running-time beomes polynomial in n, 1/θ, log(1/δ) and
‖f‖∞. Let us state this extension to real-valued funtions for later use.Lemma 4. [19℄ There is a randomized algorithm A suh that for eah fun-tion f : {0, 1}n → R satisfying ‖f‖∞ ≤ k and threshold θ > 0, A(θ, δ, k, f)outputs with probability 1− δ a olletion G ⊆ 2[n] ontaining all frequenies
S with |f̂(S)| ≥ θ. A runs in time poly(n, k, 1/θ, log(1/δ)).Coming bak to Boolean funtions f ∈ Bn satisfying ‖f̂‖1 ≤ k, we an usethe algorithm of Lemma 3 to �nd a small olletion G ontaining all frequen-ies S for whih |f̂(S)| ≥ ε/k in time poly(n, k, 1/ε, log(1/δ)), and then usethe generalized low-degree algorithm on G to output an O(ε)-approximationof f . This algorithm is known as the Kushilevitz-Mansour algorithm, orsimply KM-algorithm, and we state its properties in the following theorem.Theorem 5. [30℄ For eah Boolean funtion f satisfying ‖f̂‖1 ≤ k, the KM-algorithm, given inputs k, ε, δ and orale aess to f , outputs with probability
1− δ an O(ε)-approximation of f in time poly(n, k, 1/ε, log(1/δ)).As already mentioned at the beginning of this setion, any Boolean fun-tion f omputable by a deision tree with m nodes satis�es ‖f̂‖1 ≤ m. Thus,



the KM-algorithm learns deision trees in polynomial time, although, a dis-advantage of this result is that membership queries are needed.Corollary 6. [30℄ The lass of deision trees with m nodes is learnable withmembership queries in time poly(n, m, 1/ε, log(1/δ)).For some appliations, it is more onvenient to onsider the sparsenessof a Boolean funtion f . This property is losely related to the 1-norm of f̂ .We say that a funtion f is k-sparse, if the support {S ⊆ [n] | f̂(S) 6= 0} of
f̂ has size at most k. Clearly, if f is k-sparse then ‖f̂‖1 ≤ k. On the otherhand, if ‖f̂‖1 ≤ k, then f is ε-lose to the funtion g =

∑

|f̂(S)|>ε/k f̂(S)χS.By Parseval's identity, the number of frequenies S with |f̂(S)| > ε/k is lessthan k2/ε2. Hene it follows that g is (k2/ε2)-sparse. We all a Booleanfuntion (ε, k)-sparse if it is ε-lose to a k-sparse funtion. It is not hard toshow (see [30℄) that for any (ε, k)-sparse funtion f ,
∑

|f̂(S)|≤ε/k

f̂(S)2 ≤ ε + ε2/k.Thus, the KM-algorithm is appliable to (ε, k)-sparse Boolean funtions.Corollary 7. [30℄ For eah (ε, k)-sparse funtion f , the KM-algorithm giveninputs k, ε, δ and orale aess to f outputs an O(ε)-approximation of f intime poly(n, k, 1/ε, log(1/δ)).Mansour [36℄ showed that eah DNF with terms of size at most d is
(ε, k)-sparse for k = dO(d log(1/ε)). By an argument attributed to War-muth in [44℄, every m-term DNF is ε-lose to a DNF with terms of sizeat most log(m/ε) (by simply ignoring all terms of size larger than log(m/ε)).Hene, an m-term DNF f is ε-lose to a (ε, k)-sparse funtion for k =
(log(m/ε))O(log(m/ε) log(1/ε)) = (m/ε)O(log log(m/ε) log(1/ε)), whih by the triangleinequality implies that f itself is (O(ε), k)-sparse.Corollary 8. [36℄ The lass of m-term DNF formulas is learnable with mem-bership queries in time poly(n, (m/ε)log log(m/ε) log(1/ε), 1/ε, log(1/δ)).3.3 The Harmoni SieveIn the last setion we desribed a quasipolynomial-time learning algorithm forDNF formulas based on the sparseness of these funtions. Another propertyof the Fourier transform of m-term DNF is that the ∞-norm an be lowerbounded in terms of m [4℄. This property provides the basis for Jakson's



elebrated polynomial-time learning algorithm for DNF formulas whih wepresent in this setion. So, for a Boolean funtion f satisfying
‖f̂‖∞ ≥ γ,assume that S is a frequeny with f̂(S) ≥ γ. Expressing the oe�ient f̂(S)in terms of the probability that f(x) 6= χS(x),

f̂(S) = E[f(x)χS(x)] = 1− 2 Pr[f(x) 6= χS(x)],it follows that
Pr[f(x) 6= χS(x)] ≤ 1− f̂(S)

2
.This means that the funtion f an be weakly (γ/2)-approximated by a singleparity funtion χS or its negation −χS, where we use χS if f̂(S) is positive,and its negation otherwise. The orresponding frequeny S an be found bythe KM-algorithm with high probability in time poly(n, 1/γ), and the signof f̂(S) an be easily determined by estimating f̂(S) within additive errorless than γ. Thus, for any γ > 0 and every Boolean funtion f satisfying

‖f̂‖∞ ≥ γ we an produe with high probability a weak Ω(γ)-approximationof f in time poly(n, 1/γ), provided that we have aess to the orale f .This reasoning an be generalized to arbitrary distributions D by usingthe ruial observation that the orrelation ED[fχS] between f and a parity
χS with respet to D an be expressed as the orrelation E[fD(x)χS(x)]between the real-valued funtion fD(x) = 2nD(x)f(x) and χS with respetto the uniform distribution. Thus, ED[f(x)χS(x)] = E[fD(x)χS(x)] oinideswith the Fourier oe�ient f̂D(S) of the funtion fD, implying that

Pr
D

[f(x) 6= χS(x)] ≤ 1− f̂D(S)

2
.If we now assume that ‖f̂D‖∞ ≥ γ (rather than ‖f̂‖∞ ≥ γ), then f an beweakly (γ/2, D)-approximated by a single parity funtion χS or its negation.Further, on input γ, the orresponding frequeny S with |f̂D(S)| = Ω(γ) anbe found by the algorithm of Lemma 4 using orale aess to fD.Lemma 9. There is a randomized algorithm A suh that for eah distri-bution D and Boolean funtion f satisfying ‖f̂D‖∞ ≥ γ and ‖fD‖∞ ≤ k,

A(k, γ, δ, fD) outputs with probability 1− δ a weak (Ω(γ), D)-approximationof f in time poly(n, k, 1/γ, log(1/δ)).Boosting [41℄ is a well-known tehnique to transform a weak learnerinto a strong learner. The tehnique an be most easily desribed in the



input: γ, ε > 0 and a weak learning algorithm Aoutput: a Boolean funtion h approximating f1. i← 0;2. while |Mi| > ε2n dorun A to produe a weak (γ, Di)-approximation hi;
i← i + 1;3. return h = sgn(

∑i
j=0 hj(x))Figure 3: The IHA-boosting algorithm

distribution-free setting, where we assume that the weak learner produesa weak (γ, D)-approximation of the target f for any distribution D. Withrespet to some �xed but unknown target distribution D, the boosting algo-rithm runs the weak learner several times with respet to di�erent distribu-tions Di, whih fores the weak learner to perform well on di�erent regions ofthe instane spae. The resulting weak (γ, Di)-approximations are then om-bined in some way to produe a strong (ε, D)-approximation of f . Obviously,the orale aess to f required by the boosting algorithm depends on howthe weak learner aesses the orale. If the weak learner asks membershipqueries, then also the boosting algorithm needs to ask membership queries.If the weak learner needs only aess to EX(f, Di), then it is usually possibleto apply a �ltering tehnique in order to simulate the EX(f, Di) orale byasking queries to EX(f, D). This means that eah example (x, f(x)) drawnfrom EX(f, D) is disarded by the boosting algorithm with a ertain prob-ability depending on (x, f(x)) and Di, and only the remaining examples arepassed on to the weak learner.There are several boosting strategies whih mainly di�er in how the dis-tributions Di are de�ned, and in how the �nal hypothesis is obtained fromthe weak hypotheses. The IHA-boosting algorithm (see Figure 3) uses a par-tiularly well-suited boosting strategy whih is based on a onstrution of ahard-ore distribution due to Impagliazzo [18℄. The boosting ability of thisonstrution has been pointed out by Klivans and Servedio [26℄. In order toahieve strong learning with respet to the uniform target distribution, theIHA-boosting algorithm uses the following distributionsDi. Suppose that theweak learning algorithm has already produed the hypotheses h0, . . . , hi−1 forsome i ≥ 0, and let h = sgn(
∑i−1

j=0 hj(x)) denote the majority vote of these



hypotheses. First onsider the margin
Ni(x) = f(x)

i−1
∑

j=0

hj(x),by whih h agrees with the target f on an instane x. Note that h disagreeswith f on x only if Ni(x) is negative. Next we de�ne a measure Mi onthe instane spae {0, 1}n whih assigns weight 0 to the instanes with largemargin, weight 1 to the instanes with negative margin, and intermediateweights to instanes with non-negative but small margin. More preisely,
Mi(x) =











0, Ni(x) ≥ 1/γ,

1, Ni(x) ≤ 0,

1− γNi(x), otherwise.Notie that M0(x) = 1 for all x. The distribution Di is now obtained bystandardizing the measure Mi by the weight |Mi| =
∑

x Mi(x) of Mi,
Di(x) =

Mi(x)

|Mi|
.Whenever the IHA-boosting algorithm is going to run the weak learner A, it�rst heks whether the measure Mi satis�es |Mi| ≤ ε2n. Observe that theurrent majority vote h disagrees with f on x only if Ni(x) ≥ 0. In this ase

Mi(x) = 1 and hene the approximation error of h an be bounded by
Pr[h(x) 6= f(x)] ≤ 2−n

∑

x

Mi(x) = 2−n|Mi|.Thus, the ondition |Mi| ≤ ε2n guarantees that the boosting algorithm hasfound the desired ε-approximation of f .Impagliazzo [18℄ showed that the abort ondition |Mi| ≤ ε2n is met afterat most O(1/γ2ε2) runs of A. Sine for all x we have that Di(x) ≤ 1/|Mi|,the∞-norm of the distributions Di is bounded by 1/|Mi| and hene the weaklearner A is run only on distributions Di satisfying ‖2nDi‖∞ ≤ 1/ε.An algorithmi di�ulty is the omputation of the exponentially largesum |Mi| whih is required to hek the abort ondition. This di�ultyan be overome by �rst expressing 2−n|Mi| as the expeted value E[Mi(x)]for a uniformly hosen x. Then we only have to observe that a randomexample (x, Mi(x)) an be easily obtained from a random example (x, f(x)).Furthermore, Mi(x) takes only values in the range [0, 1]. Hene, with highprobability we an get an aurate estimate for 2−n|Mi| by drawing a small



sample from EX(f). Now, by using an estimate rather than the exat valueof 2−n|Mi|, it is easy to adjust the abort ondition so that (1) the output his still an ε-approximation of f and (2) the modi�ed abort ondition an stillbe met after at most O(1/γ2ε2) runs of A with distributions Di, where (3)eah Di still satis�es ‖2nDi‖∞ = O(1/ε).Now suppose that f is a Boolean funtion satisfying for all distributions
D the bound

‖f̂D‖∞ ≥ γ.The Harmoni Sieve for learning f , as suggested in [26℄, runs the IHA-boosting algorithm1 based on the weak learner A provided by Lemma 9.Reall that A produes with su�iently high probability a weak (Ω(γ), Di)-approximation of the target f in time poly(n, k, 1/γ, log(1/δ)), provided that
A gets an upper bound k on the ∞-norm of fDi

and has aess to the orale
fDi

. Further, reall that fDi
is de�ned as fDi

(x) = 2nDi(x)f(x) and eahdistribution Di satis�es ‖2nDi‖∞ = O(1/ε). Hene, ‖fDi
‖∞ = O(1/ε) andwe an easily provide A with the required bound k. The resulting runningtime of A beomes poly(n, 1/γ, 1/ε, log(1/δ)).The remaining obstale is the fat that the boosting algorithm annotprovide the weak learner with the exat values of fDi

(x). However, it anompute an aurate approximation of fDi
(x) = 2nMi(x)/|Mi| by using thealready alulated estimate for 2−n|Mi| together with the value Mi(x). Notethat the latter value an be exatly omputed from f(x) by using a singlemembership query to f . It an be shown that using a su�iently aurateapproximation of fDi

does not have a signi�ant impat on the learningability of A (f. [19℄). Thus, with high probability, A indeed produes ineah iteration a weak (Ω(γ), Di)-approximation of f whih an be used bythe boosting algorithm to produe an ε-approximation. The running timeof the Harmoni Sieve is roughly O(1/γ2ε2) times the time required for eahsimulation of A whih is poly(n, 1/γ, 1/ε, log(1/δ)). Thus, the HarmoniSieve ahieves the following performane.Theorem 10. (f. [19℄) For eah Boolean funtion f satisfying for all dis-tributions D the bound ‖f̂D‖∞ ≥ γ, the Harmoni Sieve on inputs ε, γ, δand orale aess to f outputs with probability 1− δ an O(ε)-approximationof f in time poly(n, 1/ε, 1/γ, log(1/δ)).Jakson [19℄ showed that for every m-term DNF f and for all distribu-tions D on {0, 1}n it holds that ‖f̂D‖∞ = maxS |ED[fχS]| ≥ 1/(2m + 1).Hene, the Harmoni Sieve an be used to e�iently learn DNF formulaswith membership queries.1In [19℄, Jakson used the F1 boosting algorithm of Freund [13℄.



Corollary 11. [19℄ The lass of m-term DNF formulas is learnable withmembership queries in time poly(n, m, 1/ε, log(1/δ)).We notie that in the random walk model [1℄, the need for membershipqueries an be avoided by using the Bounded Sieve of Bshouty and Feld-man [7℄. The random walk model is a variant of the PAC model where theexamples are generated by performing a random walk on the ube (hene,they are not independent). The idea is to searh for large oe�ients byperforming a breadth-�rst searh on the Boolean hyperube rather than adepth-�rst searh on the binary tree. Using the ruial property that theFourier spetrum of a DNF provides a large oe�ient within the low-orderspetrum, Bshouty et al. [8℄ showed that the Bounded Sieve an be used toe�iently learn DNF formulas in the random walk model. This property ofDNF formulas will also play an important role in the next subsetion.3.4 Exhaustive SearhThe main drawbak of the Harmoni Sieve is its need for membership querieswhih are used by the underlying KM-algorithm to guide the searh for largeoe�ients. The expensive use of membership queries an be avoided, if thelow-order spetrum of the target ontains a large oe�ient. More preisely,let f be a Boolean funtion satisfying for eah distribution D the bound
max
|S|≤t
|f̂D(S)| ≥ γ.Then f an be weakly (γ/2, D)-approximated by a single parity funtion χSor its negation where |S| ≤ t. Hene, it su�es to perform an exhaustivesearh over all frequenies S with |S| ≤ t; similar to the low-degree algorithm.This immediately yields the following weak learning result.Lemma 12. [20℄ There is a randomized algorithm A suh that for eahdistribution D and Boolean funtion f satisfying max|S|≤t |f̂D(S)| ≥ γ,

A(t, γ, δ, EX(f, D)) outputs with probability 1− δ a weak (Ω(γ), D)-approxi-mation of f in time poly(nt, 1/γ, log(1/δ)).Applying the IHA boosting algorithm to the weak learning algorithm ofLemma 12, we an exploit the fat that the boosting algorithm only usesdistributions Di with ‖2nDi‖∞ = O(1/ε). This yields the following stronglearning result without membership queries.Theorem 13. [20℄ There is a randomized algorithm A suh that for eahBoolean funtion f satisfying for all distributions D with ‖2nD‖∞ = O(1/ε)the bound max|S|≤t |f̂D(S)| ≥ γ, A(t, γ, ε, δ, EX(f)) outputs with probability
1− δ an ε-approximation of f in time poly(nt, 1/ε, 1/γ, log(1/δ)).



An MAC0 iruit onsists of a majority-gate over a polynomial numberof AC0 iruits. Jakson et al. [20℄ showed that for every distribution D andfor every Boolean funtion f omputable by an MAC0 iruit of size M anddepth d it holds that
max
|S|≤t
|f̂D(S)| = Ω(1/Mnt),where t = O(log(M‖2nD‖∞))d−1. In partiular, t = O(log(M/ε))d−1 forevery distribution D satisfying ‖2nD‖∞ ≤ 1/ε. Thus we get the followingimprovement of Corollary 2.Corollary 14. [20℄ The lass of MAC0 iruits of size M and depth d islearnable in time

poly(nO(log(M/ε))d−1

, log(1/δ)).By Corollary 14 it immediately follows that m-term DNF formulas arelearnable in time poly(nO(log(m/ε)), log(1/δ)) without membership queries. Letus remark that a similar result already has been obtained by Verbeurgt [44℄,though by using a di�erent approah.An algorithm similar to the one in Theorem 13 an also be applied inthe model of statistial queries [23℄. In this model it is possible to obtain
f̂(S) within additive error τ by asking a single statistial query. The pa-rameter τ is alled the tolerane of the query. It an be shown that m-termDNF formulas are learnable with nO(log(m/ε)) statistial queries, provided that
τ−1 = poly(m/ε) [28℄. This has been improved to τ−1 = O(m/ε) in [31℄.Interestingly, learning m-term DNF formulas requires nΩ(log(m)) statistialqueries as long as the tolerane is su�iently large [4℄.3.5 ProblemsLet us lose this setion by highlighting some important problems and sug-gestions for further researh onerning the learnability of DNF formulaswithout membership queries. For the sake of larity of exposition we omitthe referene to the parameters ε and δ.Clearly, the ultimate goal is to ahieve the analogue of Jakson's learn-ability result for DNF formulas without using membership queries.Problem 15. Are m-term DNF formulas learnable in time poly(n, m)?Less ambiguous, but still a major break-through would be a polynomial-time learning algorithm for DNF formulas with a non-onstant number
m(n) of terms. In Setion 4.3 we will present an algorithm whih ahievesthis goal for the sublass of monotone DNF formulas with running-time
poly(n, (m log n)ϕ(m)) for ϕ(m) =

√

m log(m).



Problem 16. Is the lass of m-term DNF formulas learnable in time
poly(n, (m log n)ϕ(m)), where ϕ does not depend on n?In Setion 3.4 we saw that m-term DNF formulas are learnable in time
poly(nlog m). This is the best known learning result for general m-term DNFwithout membership queries. So even an improvement to poly(n(log m)α

) forsome α < 1 would be very interesting.As a �rst step towards solving Problem 16, one might attak the easierproblem of learning deision trees instead of DNF formulas.Problem 17. Is the lass of deision trees with m nodes learnable in time
poly(n, (m log n)ϕ(m)), where ϕ does not depend on n?As we will see in setion 4.4, the sublass of monotone deision trees with
m nodes is learnable in time poly(n, m).4 Monotone funtions and in�ueneThe sensitivity of a Boolean funtion f is a measure of how strongly f(x)reats to a hange of its variables. It is losely related to the notion ofin�uene of single variables on the value of f . Interestingly, the sensitivity(as well as the in�uene) an be expressed in terms of the Fourier oe�ientsof f yielding good approximations for funtions having low sensitivity. Thisapproah works espeially well for monotone funtions, sine in this ase, thein�uene values of the individual variables x1, . . . , xn onstitute the Fourierspetrum on the singleton frequenies {x1}, . . . , {xn}.In this setion we review some important learning results for monotoneBoolean funtions that are based on sensitivity arguments, inluding Bshoutyand Tamon's [9℄ work on monotone funtions, Servedio's learnability resultfor monotone DNF [40℄, and the very reent learning algorithm of O'Donnelland Servedio for monotone deision trees [39℄. We start with a disussion ofthe in�uene and sensitivity of a Boolean funtion f .In�uene and sensitivityThe onept of in�uene of a variable on a Boolean funtion was intro-dued by Ben-Or and Linial [3℄. Let f be a Boolean funtion on n vari-ables x1, . . . , xn. The in�uene Ij(f) of xj on f is de�ned as the probabil-ity that �ipping the j-th bit in a uniformly at random hosen assignment
x = (x1, . . . , xn) hanges the value of f . More formally,

Ij(f) = Pr[f(x) 6= f(x⊕ ej)],



where x is uniformly at random hosen from {0, 1}n and ej denotes the as-signment 0j−110n−j−1. The total in�uene of f is de�ned as I(f) =
∑

j Ij(f).It is easy to see that I(f) equals the average sensitivity of f on all assign-ments x ∈ {0, 1}n, where the sensitivity of f on x = (x1, . . . , xn) is de�ned asthe number of bits in x whose �ipping auses f to hange its value. Note that
I(f) further oinides with the fration of edges in the Boolean hyperubethat onnet assignments x and x′ having di�erent values under f . Let usonsider the in�uene of some basi funtions.
• The ditatorship funtion χi maps (x1, . . . , xn) 7→ (−1)xi. Clearly,

Ij(χi) = 1 if i = j, and Ij(χi) = 0 otherwise. Hene, the ditatorshipfuntion has total in�uene I(χi) = 1.
• The in�uene of a single variable xj on the parity funtion χ[n] is

Ij(χ[n]) = 1 and hene the total in�uene I(χ[n]) sums up to n.
• The in�uene of xj on the majority funtion MAJn is

Ij(MAJn) =
(

n−1
⌊n/2⌋

) /

2n−1 ,implying that I(MAJn) <
√

2n/π for n ≥ 2. In fat, it is not hardto show (e.g., see [15℄) that for any monotone n-ary Boolean funtion
f , I(f) ≤ I(MAJn) implying I(f) <

√

2n/π. We will prove a slightlyweaker bound in Proposition 20.
• The in�uene of a k-junta, i.e., of a funtion f depending only on a�xed set R of at most k variables, is learly bounded by I(f) ≤ k,sine all variables xj with j 6∈ R have in�uene Ij(f) = 0.As has been observed in [22℄, the in�uene of xj on a Boolean funtion foinides with the weight of the Fourier spetrum on all frequenies ontain-ing j. In fat, sine f̂⊕y(S) = χS(y)f̂(S) (f. Equation (2) in Setion 2), thefuntion fj = (f − f⊕ej

)/2 has the oe�ients
f̂j(S) =

f̂(S)− f̂⊕ej
(S)

2
=

f̂(S)− χS(ej)f̂(S)

2
=

{

f̂(S), j ∈ S

0, otherwise. (5)From Parseval's identity it follows that
Ij(f) = E[|fj|] = E[f 2

j ] = 2−n
∑

x

fj(x)2 =
∑

S

f̂j(S)2 =
∑

S : j∈S

f̂(S)2.



Proposition 18. For any Boolean funtion f ,
Ij(f) = ‖fj‖2 =

∑

S : j∈S

f̂(S)2.Hene, the total in�uene is I(f) =
∑

S |S|f̂(S)2.For monotone f , the in�uene Ij(f) oinides with the Fourier oef-�ient f̂(j). Here we adopt the onvention that f is alled monotone,if �ipping any 0-bit in x to 1 does not hange the value of f(x) fromtrue to false (reall that true is represented by the number −1 and falseby 1). For a bit b ∈ {0, 1} we use fj,b to denote the Boolean funtion
fj,b(x) = f(x1, . . . , xj−1, b, xj+1, . . . , n). Now it is easy to see that

|f − f⊕ej
| = (fj,0 − fj,1) = (f − f⊕ej

)χj ,and hene, using (5), the in�uene of xj evaluates to
Ij(f) = E

[ |f − f⊕ej
|

2

]

=
E[fχj − f⊕ej

χj ]

2
=

f̂(j)− f̂⊕ej
(j)

2
= f̂j(j) = f̂(j).Proposition 19. For any monotone Boolean funtion f ,

Ij(f) = f̂(j).Hene, the total in�uene is I(f) =
∑

j f̂(j).Letting R = {j ∈ [n] | Ij(f) > 0} be the set of relevant variables of fand denoting the number of relevant variables by k, it follows from Cauhy-Shwarz's inequality and Parseval's identity that
I(f)2 =

(

∑

j∈R

Ij(f)
)2 ≤ k

∑

j∈R

Ij(f)2 = k
∑

j∈R

f̂(j)2 ≤ k.Hene the total in�uene of a monotone funtion an be bounded as follows.Proposition 20. For any monotone k-junta f ,
I(f) ≤

√
k.



4.1 Monotone Boolean funtionsAs we have seen, the low-degree algorithm sueeds on all targets havingsmall weight on the high frequenies of their Fourier spetrum. As we willsee in the proof of following proposition, the high frequeny weight an bebounded in terms of the in�uene. Thus, a small bound on the in�ueneguarantees a good performane of the low-degree algorithm.Proposition 21. Let f be a Boolean funtion satisfying I(f) ≤ l. Then
∑

|S|≥l/ε

f̂(S)2 ≤ ε.Proof. We an bound the high frequeny weight for any bound t as follows.
∑

|S|≥t

f̂(S)2 ≤
∑

|S|≥t

|S|f̂(S)2/t ≤
∑

S

|S|f̂(S)2/t = I(f)/t.Hene, the laim follows by hoosing t = l/ε.By applying the low-degree algorithm, Proposition 21 immediately yieldsthe following theorem.Theorem 22. There is a randomized algorithm A suh that for eah Booleanfuntion f satisfying I(f) ≤ l, A(l, ε, δ, EX(f)) outputs with probability 1−δan O(ε)-approximation for f in time poly(nl/ε, log(1/δ)).By Proposition 20, for a monotone funtion f we have the bound I(f) ≤√
n, whih immediately yields the following learning result of Bshouty andTamon.Corollary 23. [9℄ The lass of monotone Boolean funtions is learnable intime poly(n

√
n/ε, log(1/δ)).In Setion 4.4 we will present an algorithm for monotone Boolean fun-tions running in time poly(n, 2(l/ε)2) rather than poly(nl/ε) as in Theorem 22.4.2 Monotone juntasBy Proposition 20 we know that the in�uene of a monotone k-junta isbounded by √k. Hene, the algorithm of Theorem 22 �nds a low degree

O(ε)-approximation g for f in time poly(n
√

k/ε, log(1/δ)). Bshouty and Ta-mon [9℄ observed that by ignoring variables of su�iently small in�uene, therunning-time an be improved to poly(k
√

k/ε, log(1/δ)).



For a bound θ ≥ 0 let
R(θ) = {j ∈ [n] | Ij(f) > θ}denote the set of variables having in�uene greater than θ. Then it is easy tobound the Fourier weight of a k-junta on the frequenies ontaining at leastone variable of small in�uene.Proposition 24. For any k-junta f ,

∑

S 6⊆R(ε/k)

f̂(S)2 ≤ ε.Proof. Sine for a k-junta the number |R| of relevant variables is boundedby k and sine eah variable xj with j 6∈ R(θ) has in�uene Ij(f) ≤ θ, itfollows that
∑

S 6⊆R(θ)

f̂(S)2 ≤
∑

j 6∈R(θ)

∑

S : j∈S

f̂(S)2 =
∑

j∈R−R(θ)

Ij(f) ≤ θk.Hene, the laim follows by hoosing θ = ε/k.In the following we will frequently onsider the olletion of all frequenies
S of order at most t ontaining only variables having in�uene greater than
θ, whih we denote by

G(θ, t) = {S ⊆ R(θ) | |S| ≤ t}.The following proposition shows that a k-junta f with in�uene I(f) ≤ lan be O(ε)-approximated by taking only the oe�ients orresponding tofrequenies inside G(ε/k, l/ε).Proposition 25. Let f be a k-junta satisfying I(f) ≤ l. Then
∑

S 6∈G(ε/k,l/ε)

f̂(S)2 ≤ 2ε.Proof. Using Propositions 21 and 24 it immediately follows that
∑

S 6∈G(ε/k,l/ε)

f̂(S)2 ≤
∑

S 6⊆R(ε/k)

f̂(S)2 +
∑

|S|≥l/ε

f̂(S)2 ≤ 2ε.



If f is monotone, we an ollet all variables having large in�uene by es-timating the Fourier oe�ients of all singleton frequenies. More preisely,in order to �nd all variables xj having in�uene Ij(f) ≥ θ, we ompute esti-mates aj for the Fourier oe�ients f̂(j) by drawing su�iently many exam-ples from the orale EX(f) and ollet all variables xj with aj ≥ 3θ/4. Then,with high probability, we get all variables xj with Ij(f) ≥ θ and no variables
xj with Ij(f) ≤ θ/2. This algorithm has been alled Find-Variables byServedio [40℄.Proposition 26. For eah monotone Boolean funtion f , Find-Variableson inputs θ, δ and aess to EX(f), outputs with probability 1 − δ in time
poly(n, 1/θ, log(1/δ)) a set R∗ with R(θ) ⊆ R∗ ⊆ R(θ/2).In order to ompute an ε-approximation for a monotone k-junta f , we�rst use Find-Variables with θ = ε/k to obtain with high probability avariable set R∗ ⊆ R(ε/2k) ontaining all variables xj with Ij(f) ≥ ε/k.Sine R∗ ⊆ R(ε/2k) implies that R∗ ontains only relevant variables, the sizeof G∗ = {S ⊆ R∗ | |S| ≤ l/ε} is polynomial in kl/ε. Hene, we an applythe generalized low-degree algorithm to get the following learning result formonotone k-juntas having small in�uene.Theorem 27. There is a randomized algorithm A suh that for eah mono-tone k-junta f with I(f) ≤ l, A(k, l, ε, δ, EX(f)) outputs with probability
1− δ an O(ε)-approximation for f in time poly(n, kl/ε, log(1/δ)).Corollary 28. [9℄ The lass of monotone k-juntas is learnable in time

poly(n, k
√

k/ε, log(1/δ)).4.3 Monotone funtions that are lose to juntasBy re�ning the arguments used in the preeding subsetion we will nowsee that the generalized low-degree algorithm also sueeds on monotoneBoolean funtions that are su�iently lose to a monotone k-junta [9℄. Asa onsequene, the generalized low-degree algorithm (in onjuntion withFind-Variables) beomes appliable to monotone m-term DNF formulas.We all a funtion f an (ε, k)-junta, if f is ε-lose to a k-junta. We �rstshow that for an (ε, k)-junta, the number of variables xj having in�uene
Ij(f) ≥ ε is bounded by k.Proposition 29. For any (ε, k)-junta, |R(ε)| ≤ k.



Proof. Let h be a k-junta that is ε-lose to f . Observe that for any variable
xj with Ij(h) = 0 it holds that ĥ(S) = 0 if j ∈ S. Hene,

Ij(f) =
∑

S : j∈S

f̂(S)2 =
∑

S : j∈S

(f̂(S)− ĥ(S))2 ≤ ‖f − h‖2 ≤ ε.This shows that any variable in R(ε) must be relevant for h.In the next proposition we bound the weight of the high order Fourierspetrum of f under the assumption that f is lose to some funtion g witha small weight on this region.Proposition 30. For any funtion f that is ε-lose to some Boolean funtion
g with ∑

|S|≥t ĝ(S)2 ≤ ε,
∑

|S|≥t

f̂(S)2 ≤ 4ε.Proof. Using the inequality f̂ 2 = (f̂ − ĝ + ĝ)2 ≤ 2(f̂ − ĝ)2 + 2ĝ2 (Cauhy-Shwarz) it follows that
∑

|S|≥t

f̂(S)2 ≤ 2
∑

|S|≥t

(f̂(S)− ĝ(S))2 + 2
∑

|S|≥t

ĝ(S)2 ≤ 4ε.Now assume that f is an (ε/n, k)-junta with the additional property thatit is ε-lose to some Boolean funtion g whose Fourier weight on the frequen-ies S with |S| ≥ t is bounded by ε. Then by using Proposition 24 with k = nas well as Proposition 30, it follows that the frequeny olletion G(ε/n, t)has the property
∑

S 6∈G(ε/n,t)

f̂(S)2 ≤
∑

S 6⊆R(ε/n)

f̂(S)2 +
∑

|S|≥t

f̂(S)2 = O(ε).This means that f an be O(ε)-approximated by using only Fourier oe�-ients orresponding to frequenies in G(ε/n, t). Sine by Proposition 29 thesize of R(ε/n) is bounded by k, it further follows that the size of G(ε/n, t) isbounded by kt. Thus we an use the algorithm Find-Variables to omputea superset R∗ of R(ε/2n) ontaining only variables in R(ε/n) in order to getthe following learning result.Theorem 31. There is a randomized algorithm A suh that for eahmonotone (ε/n, k)-junta f that is ε-lose to some Boolean funtion g with
∑

|S|≥t ĝ(S)2 ≤ ε, A(k, t, ε, δ, EX(f)) outputs with probability 1− δ an O(ε)-approximation for f in time poly(n, kt, log(1/δ)).



Sine by Proposition 21, I(g) ≤ l implies that the Fourier weight of g onthe frequenies S with |S| > l/ε is bounded by ε, we also obtain the followingorollary.Corollary 32. There is a randomized algorithm A suh that for eah mono-tone (ε/n, k)-junta f that is ε-lose to some Boolean funtion g with in�u-ene I(g) ≤ l, A(k, l, ε, δ, EX(f)) outputs with probability 1 − δ an O(ε)-approximation for f in time poly(n, kl/ε, log(1/δ)).Sine for any ε > 0, an m-term DNF is an (ε, m log(m/ε))-junta, Corol-lary 32 implies the following learning result for monotone m-term DNF, whihis in fat a onsequene of a stronger result from [9℄.Corollary 33. [9℄ The lass of monotone m-term DNF formulas is learnablein time
poly(n, (m log(n/ε))

√
m log(m/ε)/ε, log(1/δ)).Hene, for m = O((log n)2/(log log n)3) and onstant ε, monotone m-termDNF formulas are learnable in polynomial time.Servedio [40℄ used a bound of Mansour [36℄ to show that any m-termDNF f is ε-lose to a Boolean funtion g satisfying ∑

|S|>t ĝ(S)2 ≤ ε for t =

O(log(m/ε) log(1/ε)). By Theorem 31, this implies the following exponentialimprovement of Corollary 33.Corollary 34. [40℄ The lass of monotone m-term DNF formulas is learnablein time
poly(n, (m log(n/ε))log(m/ε) log(1/ε), log(1/δ)).Hene, monotone O(2

√
log n)-term DNF formulas are learnable in polynomialtime.4.4 Monotone funtions with bounded in�ueneSine k-juntas have low in�uene, it is lear that all funtions that are suf-�iently lose to some k-junta also must have low in�uene. As shown byFriedgut [14℄, also the onverse is true: any Boolean funtion f having low in-�uene must be lose to a k-junta where k only depends on the in�uene andnot on the arity of f . More preisely, if I(f) ≤ l then f is a (ε, 2O(ε/l))-junta.Very reently, this relationship has been used by O'Donnell and Servedio [39℄to demonstrate the appliability of the generalized low-degree algorithm tothe lass of monotone deision trees.The proof of Friedgut's result yields the following approximability resultfor Boolean funtions with bounded in�uene.



Proposition 35. [14℄ For any Boolean funtion f with I(f) ≤ l,
∑

S 6∈G(θ,t)

f̂(S)2 = O(ε),where θ = (ε2−l/ε/l)3 and t = l/ε.Proof. For a given ε we want to derive a bound on θ suh that at most an εfration of the weight of the Fourier spetrum of f is outside of the olletion
G(θ, t). Let H = {S ⊆ [n] | S 6⊆ R(θ) ∧ |S| < t} and note that S 6∈ G(θ, t)implies that either |S| ≥ t or S ∈ H . Now it follows by Proposition 21 that

∑

S 6∈G(θ,t)

f̂(S)2 ≤
∑

|S|≥t

f̂(S)2 +
∑

S∈H

f̂(S)2 ≤ ε +
∑

S∈H

f̂(S)2,Hene, it su�es to hoose θ small enough suh that the Fourier weight of
f on H is bounded by O(ε). Using Bekner-Bonami (f. inequality (4) inSetion 2) and letting Hj = {S ⊆ [n] | j ∈ S ∧ |S| < t} it follows for eahposition j that

∑

S∈Hj

2−tf̂(S)2 ≤
∑

S : j∈S

2−|S|f̂(S)2 = ‖T1/
√

2fj‖2 ≤ (‖fj‖2)4/3 = Ij(f)4/3,implying that ∑

S∈Hj
f̂(S)2 ≤ 2tIj(f)4/3. Note that for eah S ∈ H there issome j 6∈ R(θ) suh that S ∈ Hj. Hene, summing up and using the bounds

I(f) ≤ l and Ij(f) ≤ θ for all j 6∈ R(θ) we get
∑

S∈H

f̂(S)2 ≤
∑

j 6∈R(θ)

∑

S∈Hj

f̂(S)2 ≤
∑

j 6∈R(θ)

2tIj(f)4/3 ≤ 2tθ1/3
∑

j

Ij(f) ≤ 2tθ1/3l.Thus, hoosing θ = (ε2−t/l)3 yields the desired bound. Sine t = l/ε, thesize of R(θ) is bounded by l/θ = l423l/ε/ε3 = 2O(l/ε) and it follows that thesize of G is bounded by 2O(l/ε)2 .As an immediate onsequene we an state the following learning result.Theorem 36. There is a randomized algorithm A suh that for eah mono-tone Boolean funtion f with I(f) ≤ l, A(l, ε, δ, EX(f)) outputs with proba-bility 1− δ an O(ε)-approximation for f in time poly(n, 2(l/ε)2 , log(1/δ)).As shown by O'Donnell and Servedio [39℄, any Boolean funtion f om-putable by a deision tree of size m has the property that ∑

i f̂(i) ≤ √log m.If f is monotone, this implies that I(f) =
∑

i f̂(i) ≤ √log m.



Corollary 37. [39℄ The lass of monotone deision trees of size m is learn-able in time
poly(n, m(1/ε)2 , log(1/δ)).Hene, for onstant ε, monotone deision trees are learnable in polynomialtime.4.5 ProblemsLet us onlude with some interesting problems onerning the learnabil-ity of monotone DNF formulas and juntas. As in Setion 3.5 we omit theparameters ε and δ for larity reasons.Monotone DNFIn the light of O'Donnell and Servedio's e�ient learning algorithm for mono-tone deision trees [39℄ an interesting question to ask is whether this resultan be extended to monotone DNF formulas.Problem 38. Are monotone m-term DNF formulas learnable in time

poly(n, m)?It is further shown in [39℄ that the in�uene bound I(f) ≤ √log m annotbe extended to monotone m-term DNF formulas or even to funtions f thatare omputable by both an m-term DNF as well as by an m-lause CNF.Thus, Problem 38 annot be solved by solely relying on Theorem 36.The urrently best learning algorithm for monotone m-term DNFis the one of Corollary 34 due to Servedio [40℄ whih runs in time
poly(n, (m log n)ϕ(m)) where ϕ(m) = log m. It would be very interestingto improve this result to an algorithm having �xed parameterized omplexityin the sense of Downey and Fellows [11℄.Problem 39. Are monotone m-term DNF formulas learnable in time
poly(n, ϕ(m)), where ϕ does not depend on n?JuntasAs we saw in Setion 4.2, the analogue of Problem 39 for monotone k-juntashas been solved by Bshouty and Tamon [9℄ by providing an algorithm runningin time poly(n, ϕ(k)) for ϕ(k) = k

√
k (f. Corollary 28). An immediatequestion is whether this an be extended to general juntas.Problem 40. Are k-juntas learnable in time poly(n, ϕ(k)), where ϕ does notdepend on n?



We want to emphasize that Problem 40 is a very important questionwhose answer would have immediate appliations to the learnability of DNFformulas (as every DNF formula is lose to a junta) as well as to the importantarea of feature seletion (f. [5℄). In fat, Mossel et al. [37℄ onsider theproblem of learning juntas as the single most important problem in uniformdistribution learning. A slightly less ambiguous goal is to learn k-juntas intime poly(n, (k log n)ϕ(k)). This would imply that juntas with a non-onstantnumber k(n) of relevant variables are learnable in polynomial time.The urrently best learning algorithm for k-juntas is due to Mossel etal. [37℄ and runs in time O(nαk) for some α < 0.7. So even an improvementto an α < 0.5 would be a signi�ant progress.Problem 41. Are k-juntas learnable in time O(nαk) for some α < 0.5?For the speial ase of symmetri juntas, Mossel et al. [37℄ used a result ofvon zur Gathen and Rohe [45℄ to bound the running-time by nαk for some
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