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1 Introdu
tionLearning via the Fourier transform is a basi
 tool when learning in the PACmodel under the uniform distribution. It has been su

essfully applied tovarious natural 
on
ept 
lasses ranging from de
ision trees to 
onstant depth
ir
uits. The most remarkable example is Ja
kson's Harmoni
 Sieve algo-rithm [19℄ for learning DNF formulas in polynomial time with membershipqueries. Learning via the Fourier transform has thus provided a su

ess-ful atta
k on the notoriously open problem of learning DNF formulas in thedistribution-free PAC model without membership queries. The fastest knownalgorithm for this problem runs in time 2Õ(n1/3) [27℄.The Fourier spe
trum of Boolean fun
tions has been �rst applied in the-oreti
al 
omputer s
ien
e by Kahn, Kalai and Linial [22℄ to answer a ques-tion posed by Ben-David and Linial [3℄ 
on
erning the sensitivity of Booleanfun
tions. The �rst appli
ation in 
omputational learning is due to Linial,Mansour and Nisan [33℄. The Fourier transform of a Boolean fun
tion f 
anbe regarded as a representation of f as a linear 
ombination over the basisof all parity fun
tions. Ea
h 
oe�
ient is given by the 
orrelation between fand the 
orresponding basis fun
tion. Learning 
an then be a
hieved throughestimating the Fourier 
oe�
ients based on a su�
iently large sample of f .For simple 
on
ept 
lasses it is often possible to establish a 
ertain prop-erty of the 
on
epts in terms of their Fourier transform, whi
h implies thatea
h 
on
ept in the 
lass 
an be approximated by paying attention to only asmall part of its Fourier spe
trum. The learning problem is then redu
ed toestimating the Fourier 
oe�
ients in the important part of the spe
trum.In this 
olumn we 
on
entrate on learning fun
tions with properties whi
h
an be expressed in terms of their Fourier spe
trum. In a �rst part we reviewsome basi
 algorithms, starting with the ubiquitous low-degree algorithm ofLinial et al. [33℄. Then we present the KM-algorithm of Kushilevitz andMansour [30℄ for �nding all signi�
ant Fourier 
oe�
ients. Next we des
ribeJa
kson's Harmoni
 Sieve algorithm whi
h 
ombines the KM-algorithm withboosting, and �nally we present the more re
ent algorithm of Ja
kson etal. [20℄ whi
h 
an be regarded as a simpli�ed Harmoni
 Sieve obtained byrepla
ing the KM-algorithm by an exhaustive sear
h.In a se
ond part we 
on
entrate on learning 
lasses of monotone fun
-tions based on sensitivity arguments, in
luding Bshouty and Tamon's work onmonotone fun
tions [9℄, Servedio's learnability result for monotone DNF [40℄,and the very re
ent learning algorithm of O'Donnell and Servedio for mono-tone de
ision trees [39℄ based on a sensitivity result due to Friedgut [14℄.We do not make any attempt to be 
omprehensive. However, we do hopeto 
onvin
e the reader that learning via the Fourier transform is a true su

ess



story with no end in sight.2 Notation and basi
 fa
tsIn this se
tion we �x the notation and give formal de�nitions for some of the
on
epts used in this paper. Further we state some basi
 fa
ts for furtherreferen
e.Fourier TransformWe are interested in learning Boolean 
on
ept 
lasses, i.e., ea
h 
on
ept 
anbe represented as a Boolean fun
tion f : {0, 1}n → {true, false}. We denotethe 
lass of all Boolean fun
tions of arity n by Bn. If we identify true with
1 and false with 0, then Bn forms a ve
tor spa
e of dimension 2n over the�eld F2. The regular basis for Bn 
onsists of the 2n fun
tions terma(x),
a ∈ {0, 1}n, mapping x to 1, if x = a, and to 0 otherwise. Clearly, anyBoolean fun
tion f ∈ Bn has a unique representation f =

∑

a∈{0,1}n catermawith 
oe�
ients ca = f(a). For many appli
ations it is important to have abasis with the following useful properties.
(a) �Simple� fun
tions should have small representations. E.g., if the valueof f is already determined by a small subset of its variables, then many
oe�
ients should vanish.
(b) Transforming f to a �similar� fun
tion f ′ (e.g., f ′(x) = f(x⊕a)) shouldallow for an easy 
onversion of the 
oe�
ient representations of the twofun
tions.By embedding Bn into a ri
her stru
ture, namely the ve
tor spa
e R{0,1}n

=
{f : {0, 1}n → R} over R, these properties 
an be easily a
hieved. In fa
t, ifwe require from our basis {χa | a ∈ {0, 1}n} that it 
ontains the fun
tions
χei

(x) = (−1)xi (in order to ful�ll property (a)) and that all basis fun
tions
χa have the property

χa(x⊕ b) = χa(x)χa(b), (1)then also property (b) is ful�lled. This is easy to see, sin
e for any fun
tion fwith the representation f(x) =
∑

a∈{0,1}n caχa(x) it follows that the fun
tion
f⊕b(x) = f(x⊕ b) has the representation

f⊕b(x) = f(x⊕ b) =
∑

a∈{0,1}n

caχa(x⊕ b) =
∑

a∈{0,1}n

caχa(x)χa(b), (2)



implying that the 
oe�
ients c′a of f⊕b 
an be written as c′a = χa(b)ca.Property (1) requires that the base fun
tions are homomorphisms from theAbelian group ({0, 1}n,⊕) to the multipli
ative group (R∗, ·) of non-zero realnumbers. It is easy to show that exa
tly the parity fun
tions
χa(x) = (−1)

Pn
i=1

aixi, a ∈ {0, 1}nhave this property and that these fun
tions indeed form a basis for the ve
torspa
e R{0,1}n . By identifying the ve
tor a ∈ {0, 1}n with the set S = {i ∈
[n] | ai = 1}, where we use [n] to denote the set {1, . . . , n}, we get the more
onvenient representation

χS(x) = (−1)
P

i∈S xi, S ⊆ [n].More generally it 
an be shown that for any �nite Abelian group G the 
lassof all homomorphisms from G to the multipli
ative group (C∗, ·) of non-zero
omplex numbers form a group F (under multipli
ation, with the 
onstant 1fun
tion as neutral element) that is isomorphi
 to G. Moreover, the fun
tionsin F form an orthogonal basis for the ve
tor spa
e CG over C of all fun
tions
f : G→ C. The elements of F are 
alled the 
hara
ters of G and F is 
alledthe Fourier basis for CG.In the 
ase G = ({0, 1}n,⊕) all fun
tions χS in the Fourier basis are real-valued and hen
e also form a basis for the subspa
e R{0,1}n of all fun
tions
f : {0, 1}n → R. In fa
t, using the natural notion of inner-produ
t

〈f, g〉 = 2−n
∑

x∈{0,1}n

f(x)g(x) = E[f(x)g(x)],it is easy to verify that the Fourier basis F = {χS | S ⊆ [n]} forms anorthonormal system of fun
tions, i.e.
〈χS, χT 〉 = E[χS(x)χT (x)] = E[χS∆T (x)] =

{

1, S = T,

0, otherwise, (3)implying that all parity fun
tions have unit norm ‖χS‖ = 1, where the normof a fun
tion f is indu
ed by the inner-produ
t using the rule
‖f‖ =

√

〈f, f〉 =

√

2−n
∑

x

f(x)2.More generally, for p > 0 the p-norm is de�ned as
‖f‖p = E[|f(x)|p]1/p =

(

2−n
∑

x

|f(x)|p
)1/p



and the ∞-norm is
‖f‖∞ = max

x
|f(x)|.Noti
e that the norm indu
ed by the inner-produ
t 
oin
ides with the 2-norm.We remark for further use that for 0 < p ≤ q ≤ ∞, ‖f‖p ≤ ‖f‖q. Sin
e theFourier basis is orthonormal, the Fourier 
oe�
ients f̂(S) in the Fourierexpansion

f =
∑

S⊆[n]

f̂(S)χSof f 
an be written as the inner-produ
t f̂(S) = 〈f, χS〉 of f and the basisfun
tions χS. The fun
tion f̂ : 2[n] 7→ R mapping ea
h frequen
y S ⊆ [n] tothe 
orresponding Fourier 
oe�
ient f̂(S) is 
alled the Fourier transform of
f . A 
ru
ial property of f̂ is that if f does not depend on a variable xj , thenall 
oe�
ients f̂(S) with j ∈ S vanish (
f. property (a)). Using (3) it followsfor any fun
tions f, g : {0, 1}n → R that

E[fg] = E
[(

∑

S f̂(S)χS

)(
∑

T ĝ(T )χT

)]

=
∑

S,T f̂(S)ĝ(T )E[χSχT ]

=
∑

S f̂(S)ĝ(S).Hen
e, a further 
onsequen
e of the orthonormality of the Fourier basis isParseval's identity stating that
‖f‖2 =

∑

S

f̂(S)2.If we identify true with −1 and false with 1, i.e., if we let Bn = {f : {0, 1}n →
{−1, 1}}, then Parseval's identity implies that for a Boolean fun
tion f ∈ Bn,the squares f̂(S)2 of the Fourier 
oe�
ients of f sum up to 1 and thus indu
ea probability distribution on the frequen
ies. For a 
olle
tion G ⊆ 2[n] offrequen
ies we refer to the �probability� ∑

S∈G f̂(S)2 of G as the weight ofthe Fourier spe
trum of f on G or simply as f 's Fourier weight on G.Clearly, by the linearity of the ve
tor spa
e R{0,1}n , the Fourier transformof f + g is obtained as the sum f̂ + g = f̂ + ĝ of the Fourier transforms of fand g. Hen
e, if g is obtained from a fun
tion f by removing all 
oe�
ientsoutside G, i.e., g =
∑

S∈G f̂(S)χS, then Parseval's identity implies
‖f − g‖2 =

∑

S

‖f̂ − g(S)‖2 =
∑

S

‖f̂(S)− ĝ(S)‖2 =
∑

S 6∈G

f̂(S)2.Noti
e that g need not be Boolean. But it is easy to see that we 
an approx-imate any real-valued fun
tion g by the Boolean fun
tion
sgn(g(x)) =

{

1, g(x) ≥ 0

−1, otherwise,



where
Pr[f(x) 6= sgn(g(x))] ≤ ‖f − g‖2.We 
lose this subse
tion with a useful inequality due to Be
kner and Bonami[2, 6℄. For any real δ ∈ [0, 1] let Tδ be the linear operator mapping a fun
tion

f to the fun
tion Tδ(f) =
∑

S δ|S|f̂(S)χS, i.e., Tδ in some sense redu
es theFourier weight of the high frequen
ies (where high means that |S| is large).The Be
kner-Bonami inequality states that ‖Tδ(f)‖ ≤ ‖f‖1+δ2 . Sin
e for anyfun
tion f taking only values in the range {−1, 0, 1} we have ‖f‖22 = ‖f‖ppfor all p > 0, the Be
kner-Bonami inequality implies for su
h fun
tions that
‖Tδ(f)‖2 ≤ ‖f‖21+δ2 =

(

‖f‖1+δ2

1+δ2

)2/(1+δ2)
= (‖f‖2)2/(1+δ2). (4)For further information and ba
kground on the Fourier transform of Booleanfun
tions we refer to [12, 42, 38, 10, 32℄.LearningWe 
onsider the well-known distribution-spe
i�
 variant of Valiant's Prob-ably Approximate Corre
t (PAC) learning model [43℄. Let f be a Booleanfun
tion and D be a distribution on the instan
e spa
e {0, 1}n. For ε > 0 wesay that a Boolean fun
tion h is an (ε, D)-approximation of f if PrD[h(x) 6=

f(x)] ≤ ε, where x is 
hosen a

ording to D. We use EX(f, D) to denotean ora
le whi
h, when invoked, returns a random labeled example (x, f(x))where x is 
hosen a

ording to D. A 
on
ept 
lass C ⊆ Bn is learnablewith respe
t to D if there is a randomized learning algorithm A whi
h, forall targets f ∈ C and parameters ε, δ > 0, when given inputs ε, δ and ora-
le a

ess to EX(f, D), A(ε, δ, EX(f, D)) outputs with probability 1 − δ aBoolean fun
tion h whi
h is an (ε, D)-approximation of f . Here, the proba-bility is taken over the random 
hoi
es of A and the random labeled examplesreturned by EX(f, D), where we assume that the random examples are se-le
ted independently from ea
h other and from the random 
hoi
es of A.We also 
onsider weak learnability, where the hypothesis h produ
ed bythe learning algorithmA is only slightly more a

urate than random guessing.For γ > 0 we say that a Boolean fun
tion h is a weak (γ, D)-approximation of
f if PrD[h(x) 6= f(x)] ≤ 1/2− γ. Now a 
on
ept 
lass C is weakly learnablewith advantage γ and with respe
t to D if there is a learning algorithm Asu
h that for all f ∈ C and parameters γ, δ > 0, A(γ, δ, EX(f, D)) outputswith probability 1− δ a weak (γ, D)-approximation of f .If the learning algorithm A requires dire
t a

ess to the ora
le f ratherthan EX(f, D), then we say that C is learnable with membership queries.



If D is the uniform distribution, we generally omit the referen
e to D. Formore ba
kground on learning we refer to [24℄.Prominent examples of natural 
on
ept 
lasses are de
ision trees with asingle variable at ea
h inner node, DNF formulas, and 
onstant depth AC0
ir
uits. Note that every de
ision tree with m nodes 
an be transformed intoa DNF formula with at most m terms, and that every m-term DNF formula
an be regarded as a 
onstant depth AC0 
ir
uit of size m + 1 and depth
2. For ba
kground on 
ir
uit 
omplexity we refer the reader to a standardtextbook like [46℄. For a dis
ussion of the Fourier transform of these 
on
ept
lasses we refer to the ex
ellent overview of Mansour [35℄. A more re
entoverview is provided by Ja
kson and Tamon's tutorial [21℄.Probability TheoryFor later use we state the following result to whi
h we refer to as the Cherno�-Hoe�ding bound. Let X1, . . . , Xm be independent random variables takingvalues in the real interval [a, b] and having expe
tation E[Xi] = µ. Then forany λ > 0, with probability at most 2e−2λ2m/(b−a)2 , the additive error of theestimate for µ obtained by taking the arithmeti
 mean of m observations ofthe random variables X1, . . .Xm is greater than or equal to λ,

Pr
[

∣

∣

1
m

∑m
i=1 Xi − µ

∣

∣ ≥ λ
]

≤ 2e−2λ2m/(b−a)2 .In other words, with 
on�den
e 1− 2e−2λ2m/(b−a)2 , the arithmeti
 mean pro-vides a λ-a

urate estimate for µ.Further NotationWe measure the 
loseness of two real-valued fun
tions f and g in terms ofthe 2-norm squared of the di�eren
e of f and g. That is, we say that f and gare ε-
lose if ‖f − g‖2 ≤ ε. Note that for Boolean fun
tions f and g it holdsthat ‖f − g‖2 = 4 Pr[f(x) 6= g(x)] and hen
e, f and g are ε-
lose if and onlyif f is an (ε/4)-approximation of g.3 Basi
 algorithmsIn this se
tion we review some basi
 algorithms for learning via the Fouriertransform. We start with the low-degree algorithm of Linial et al. [33℄ and itsappli
ation toAC0 
ir
uits. Next we present the KM-algorithm of Kushilevitzand Mansour [30℄ whi
h 
an be used to learn de
ision trees in polynomialtime with membership queries and its appli
ation to DNF formulas due to



Mansour [36℄. Then we des
ribe Ja
kson's Harmoni
 Sieve [20℄ whi
h learnsDNF formulas in polynomial time with membership queries. Finally webrievly review the simple exhaustive sear
h algorithm of Ja
kson, Klivansand Servedio [20℄ whi
h 
an be applied to majorities over AC0 
ir
uits.3.1 The low-degree algorithmThe �rst appli
ation of Fourier analysis in 
omputational learning theory isdue to Linial et al. [33℄. The learning result is based on an upper boundfor the 2-norm of f̂ restri
ted to high frequen
ies, where the bound dependson the 
ir
uit 
omplexity of f . So suppose that f is a Boolean fun
tionsatisfying
∑

|S|>t

f̂(S)2 ≤ ε.For the real-valued fun
tion g =
∑

|S|≤t f̂(S)χS it follows by Parseval's iden-tity that
‖f − g‖2 =

∑

|S|>t

f̂(S)2 ≤ ε,whi
h means that f 
an be ε-approximated by fading out the high frequen-
ies S with |S| > t. This observation redu
es the learning problem for fto the problem of 
omputing the Fourier 
oe�
ients f̂(S) for all low-orderfrequen
ies S with |S| ≤ t.This task 
an be a

omplished by the low-degree algorithm whi
h is themost fundamental algorithm in the 
ontext of learning via the Fourier trans-form. The algorithm is presented in Figure 1. The simple but 
ru
ial ob-servation is that ea
h 
oe�
ient f̂(S) 
an be expressed as the expe
tation
E[f(x)χS(x)], where x is 
hosen uniformly at random. Thus ea
h 
oe�
ient
f̂(S) 
an be a

urately estimated with high 
on�den
e by drawing a su�-
iently large sample from EX(f). More spe
i�
ally, the low-degree algorithmdraws a polynomial number in nt, 1/ε and log 1/δ of labeled examples from
EX(f) and 
omputes for ea
h S of size at most t an empiri
al estimate aS for
f̂(S). By applying the Cherno�-Hoe�ding bound it follows that with prob-ability 1 − δ, ea
h estimate aS is within additive error λ = (ε/nt)1/2 fromits expe
ted value f̂(S). In this 
ase the approximation g =

∑

|S|≤t aSχSsatis�es
‖f − g‖2 =

∑

S

(f̂(S)− ĝ(S))2 =
∑

|S|≤t

(f̂(S)− aS)2 +
∑

|S|>t

f̂(S)2

≤ ntλ2 + ε = 2ε,



input: frequen
y bound t, a

ura
y ε, 
on�den
e δ and a

ess to EX(f)output: a Boolean fun
tion h approximating f1. request m = 2nt

ε
ln(2nt

δ
) labeled examples (xi, f(xi)) from EX(f)2. for ea
h S ⊆ [n] with |S| ≤ t 
ompute aS = 1

m

∑m
i=1 f(xi)χS(xi)3. output h = sgn(

∑

|S|≤t aSχS)Figure 1: The low-degree algorithmand sin
e Pr[sgn(g(x)) 6= f(x)] ≤ ‖f − g‖2, it follows that the output hy-pothesis h = sgn(g) is an (ε/2)-approximation of f . The running-time isdominated by the sample size and thus polynomial in nt, 1/ε and log(1/δ).Theorem 1. For any Boolean fun
tion f satisfying
∑

|S|>t

f̂(S)2 ≤ ε,the low-degree algorithm on inputs t, ε, δ and a

ess to EX(f) outputs withprobability 1− δ an O(ε)-approximation of f in time poly(nt, 1/ε, log(1/δ)).Let us remark for further referen
e, that the low-degree algorithm 
anbe easily generalized to Boolean fun
tions f satisfying ∑

S∈G f̂(S)2 ≤ εfor an arbitrary 
olle
tion G ⊆ 2[n] of frequen
ies, provided that G isexpli
itly given as part of the input. In this 
ase, the running-time is
poly(n, |G|, 1/ε, log(1/δ)).Based on Hastad's Swit
hing Lemma [17℄, Linial et al. [33℄ showed thatfor any Boolean fun
tion f whi
h is 
omputable by an AC0 
ir
uit of depth
d and size M it holds that

∑

|S|>t

f̂(S)2 ≤ 2M2−t1/d/20.Applying the low-degree algorithm with t = O(log(M/ε)d) immediatelyyields the following learning result.Corollary 2. [33℄ The 
lass of AC0 
ir
uits of depth d and size M over nvariables is learnable in time
poly(nlog(M/ε)d

, log(1/δ)).



Sin
e an m-term DNF formula is 
omputable by a 
ir
uit of size m + 1and depth 2 it further follows that m-term DNF formulas are learnable intime poly(nlog(m/ε)2 , log(1/δ)).By a result due to Kharitonov [25℄, Corollary 2 
annot be signi�
antlyimproved under a plausible 
ryptographi
 assumption. However, as we willsee in Se
tion 3.4, the exponent d 
an be redu
ed to d−1. This will imply that
m-term DNF formulas are in fa
t learnable in time poly(nlog(m/ε), log(1/δ)).3.2 The KM-AlgorithmFor su�
iently simple fun
tions it is sometimes possible to bound the 1-normof the Fourier transform. A ni
e example provide de
ision trees, for whi
hthe 1-norm of the Fourier transform 
an be bounded by the number of nodesin the tree by fairly elementary methods [30℄. So suppose that f is a Booleanfun
tion satisfying

‖f̂‖1 ≤ k.Then 
learly,
∑

|f̂(S)|≤ε/k

f̂(S)2 ≤ (ε/k)
∑

|f̂(S)|≤ε/k

f̂(S) ≤ ε,whi
h means that f 
an be ε-approximated by ignoring the small Fourier
oe�
ients having absolute value at most ε/k. This observation redu
es thelearning problem for f to the problem of �nding all frequen
ies S whoseFourier 
oe�
ients are larger in absolute value than some given threshold θ.This problem 
an be solved by an algorithm of Goldrei
h and Levin [16℄whi
h is a key ingredient in their proof that parity fun
tions are hard-
orepredi
ates for one-way fun
tions. The algorithm has been �rst applied inthe learning setting by Kushilevitz and Mansour [30℄. The idea behind thealgorithm is best des
ribed in terms of the re
ursive pro
edure Coef given inFigure 2, whi
h 
an be regarded as a depth-�rst sear
h on the binary tree ofdepth n. Here, ea
h node is given by its level k ∈ [n] and a set S ⊆ [1, k],where we use the notation [m, n] to des
ribe the set {m, . . . , n}. In ea
h node
(S, k) we 
onsider the sum

C(S, k) =
∑

T⊆[k+1,n]

f̂(S ∪ T )2.If k = n, then Coef has rea
hed at a leaf of the tree, and sin
e in this 
ase
C(S, k) = f̂(S)2, the pro
edure returns S if and only if C(S, k) ≥ θ2. If
(S, k) is an inner node with C(S, k) < θ2, then there is no set T ⊆ [k + 1, n]



Coef(S, k):1. if k = n and C(S, k) ≥ θ2 then return({S})2. if k < n and C(S, k) ≥ θ2 thenreturn(Coef(S, k + 1) ∪ Coef(S ∪ {k + 1}, k + 1))3. return(∅) Figure 2: The re
ursive pro
edure Coefwith |f̂(S ∪ T )| ≥ θ. Thus there is no need to further explore the subtreeof this node. Otherwise, Coef re
ursively 
ontinues the sear
h with the two
hildren (S, k + 1) and (S ∪ {k + 1}, k + 1) of (S, k). Invoking Coef withthe root node (∅, 0), the pro
edure returns the 
olle
tion of all frequen
ies
orresponding to Fourier 
oe�
ients with an absolute value greater than θ.Con
erning the number of re
ursive 
alls performed by Coef, �rst notethat by Parseval's identity,
∑

S⊆[1,k]

C(S, k) =
∑

S⊆[n]

f(S)2 = ‖f‖2 = 1,implying that in ea
h level k there are at most 1/θ2 nodes (S, k) with
C(S, k) ≥ θ2. Thus, the total number of re
ursive 
alls 
an be boundedby n/θ2. The main algorithmi
 di�
ulty, however, is the 
omputation of thesums C(S, k). This 
an be solved by expressing C(S, k) as a nested expe
ta-tion. More pre
isely, 
onsider the fun
tion g : {0, 1}n−k → R whi
h maps asu�x x ∈ {0, 1}n−k to the expe
tation Ey[f(yx)χS(y)] for a uniformly 
hosenpre�x y ∈ {0, 1}k. For any pre�x y ∈ {0, 1}k and T ⊆ [k + 1, n] we have
χS∪T (z) = χS∆T (z) = χS(y)χT (x), where z = yx. Hen
e,
f̂(S ∪ T ) = Ez[f(z)χS∪T (z)] = Ex

[

Ey[f(yx)χS(y)χT (x)]
]

= Ex[g(x)χT (x)],implying that f̂(S ∪ T ) = ĝ(T ). Now, by using Parseval's identity, we 
anexpress C(S, k) as
C(S, k) =

∑

T⊆[k+1,n]

ĝ(T )2 = Ex[g(x)2] = Ex

[

Ey[f(yx)χS(y)]2
]for uniformly 
hosen x ∈ {0, 1}n−k and y ∈ {0, 1}k. By applying theCherno�-Hoe�ding bound, this means that we 
an estimate C(S, k) by �rstestimating the inner expe
tation for a small number of random su�xes xand then estimate the outer expe
tation as the average sum of the squared



estimates for the inner expe
tation. For ea
h given su�x x, the estimate forthe inner expe
tation 
an be obtained from a small number of values f(yx)for random pre�xes y, whi
h 
an be obtained by asking the ora
le f . Byusing su�
iently a

urate estimates of C(S, k) it 
an be shown that withhigh probability, the modi�ed sear
h still runs in polynomial time and re-turns a set 
ontaining all frequen
ies S with |f̂(S)| ≥ θ. Furthermore, ea
hfrequen
y S in the set satis�es |f̂(S)| = Ω(θ), whi
h by Parseval's identityimplies that the number of frequen
ies in the returned 
olle
tion is at most
O(1/θ2).Lemma 3. [30℄ There is a randomized algorithm A su
h that for ea
hBoolean fun
tion f and threshold θ > 0, A(θ, δ, f) outputs with probabil-ity 1 − δ a 
olle
tion G ⊆ 2[n] of size O(1/θ2) 
ontaining all frequen
ies Swith |f̂(S)| ≥ θ. A runs in time poly(n, 1/θ, log(1/δ)).As observed by Ja
kson [19℄ the algorithm of Lemma 3 
an also be appliedto real-valued fun
tions f : {0, 1}n → R. In this 
ase, the number of re
ursive
alls of the pro
edure Coef is bounded by ‖f‖n/θ2 rather than n/θ2. Furthernoti
e that the 
on�den
e in the Cherno�-Hoe�ding bound depends on therange of the random variables whose mean we want to estimate. In 
ase fis real-valued, the range of these random variables is [−‖f‖2∞, ‖f‖2∞] ratherthan [−1, 1], implying that the number of labeled examples from f neededto estimate C(S, k) additionally depends on the parameter ‖f‖∞. Sin
e
‖f‖ ≤ ‖f‖∞, the running-time be
omes polynomial in n, 1/θ, log(1/δ) and
‖f‖∞. Let us state this extension to real-valued fun
tions for later use.Lemma 4. [19℄ There is a randomized algorithm A su
h that for ea
h fun
-tion f : {0, 1}n → R satisfying ‖f‖∞ ≤ k and threshold θ > 0, A(θ, δ, k, f)outputs with probability 1− δ a 
olle
tion G ⊆ 2[n] 
ontaining all frequen
ies
S with |f̂(S)| ≥ θ. A runs in time poly(n, k, 1/θ, log(1/δ)).Coming ba
k to Boolean fun
tions f ∈ Bn satisfying ‖f̂‖1 ≤ k, we 
an usethe algorithm of Lemma 3 to �nd a small 
olle
tion G 
ontaining all frequen-
ies S for whi
h |f̂(S)| ≥ ε/k in time poly(n, k, 1/ε, log(1/δ)), and then usethe generalized low-degree algorithm on G to output an O(ε)-approximationof f . This algorithm is known as the Kushilevitz-Mansour algorithm, orsimply KM-algorithm, and we state its properties in the following theorem.Theorem 5. [30℄ For ea
h Boolean fun
tion f satisfying ‖f̂‖1 ≤ k, the KM-algorithm, given inputs k, ε, δ and ora
le a

ess to f , outputs with probability
1− δ an O(ε)-approximation of f in time poly(n, k, 1/ε, log(1/δ)).As already mentioned at the beginning of this se
tion, any Boolean fun
-tion f 
omputable by a de
ision tree with m nodes satis�es ‖f̂‖1 ≤ m. Thus,



the KM-algorithm learns de
ision trees in polynomial time, although, a dis-advantage of this result is that membership queries are needed.Corollary 6. [30℄ The 
lass of de
ision trees with m nodes is learnable withmembership queries in time poly(n, m, 1/ε, log(1/δ)).For some appli
ations, it is more 
onvenient to 
onsider the sparsenessof a Boolean fun
tion f . This property is 
losely related to the 1-norm of f̂ .We say that a fun
tion f is k-sparse, if the support {S ⊆ [n] | f̂(S) 6= 0} of
f̂ has size at most k. Clearly, if f is k-sparse then ‖f̂‖1 ≤ k. On the otherhand, if ‖f̂‖1 ≤ k, then f is ε-
lose to the fun
tion g =

∑

|f̂(S)|>ε/k f̂(S)χS.By Parseval's identity, the number of frequen
ies S with |f̂(S)| > ε/k is lessthan k2/ε2. Hen
e it follows that g is (k2/ε2)-sparse. We 
all a Booleanfun
tion (ε, k)-sparse if it is ε-
lose to a k-sparse fun
tion. It is not hard toshow (see [30℄) that for any (ε, k)-sparse fun
tion f ,
∑

|f̂(S)|≤ε/k

f̂(S)2 ≤ ε + ε2/k.Thus, the KM-algorithm is appli
able to (ε, k)-sparse Boolean fun
tions.Corollary 7. [30℄ For ea
h (ε, k)-sparse fun
tion f , the KM-algorithm giveninputs k, ε, δ and ora
le a

ess to f outputs an O(ε)-approximation of f intime poly(n, k, 1/ε, log(1/δ)).Mansour [36℄ showed that ea
h DNF with terms of size at most d is
(ε, k)-sparse for k = dO(d log(1/ε)). By an argument attributed to War-muth in [44℄, every m-term DNF is ε-
lose to a DNF with terms of sizeat most log(m/ε) (by simply ignoring all terms of size larger than log(m/ε)).Hen
e, an m-term DNF f is ε-
lose to a (ε, k)-sparse fun
tion for k =
(log(m/ε))O(log(m/ε) log(1/ε)) = (m/ε)O(log log(m/ε) log(1/ε)), whi
h by the triangleinequality implies that f itself is (O(ε), k)-sparse.Corollary 8. [36℄ The 
lass of m-term DNF formulas is learnable with mem-bership queries in time poly(n, (m/ε)log log(m/ε) log(1/ε), 1/ε, log(1/δ)).3.3 The Harmoni
 SieveIn the last se
tion we des
ribed a quasipolynomial-time learning algorithm forDNF formulas based on the sparseness of these fun
tions. Another propertyof the Fourier transform of m-term DNF is that the ∞-norm 
an be lowerbounded in terms of m [4℄. This property provides the basis for Ja
kson's




elebrated polynomial-time learning algorithm for DNF formulas whi
h wepresent in this se
tion. So, for a Boolean fun
tion f satisfying
‖f̂‖∞ ≥ γ,assume that S is a frequen
y with f̂(S) ≥ γ. Expressing the 
oe�
ient f̂(S)in terms of the probability that f(x) 6= χS(x),

f̂(S) = E[f(x)χS(x)] = 1− 2 Pr[f(x) 6= χS(x)],it follows that
Pr[f(x) 6= χS(x)] ≤ 1− f̂(S)

2
.This means that the fun
tion f 
an be weakly (γ/2)-approximated by a singleparity fun
tion χS or its negation −χS, where we use χS if f̂(S) is positive,and its negation otherwise. The 
orresponding frequen
y S 
an be found bythe KM-algorithm with high probability in time poly(n, 1/γ), and the signof f̂(S) 
an be easily determined by estimating f̂(S) within additive errorless than γ. Thus, for any γ > 0 and every Boolean fun
tion f satisfying

‖f̂‖∞ ≥ γ we 
an produ
e with high probability a weak Ω(γ)-approximationof f in time poly(n, 1/γ), provided that we have a

ess to the ora
le f .This reasoning 
an be generalized to arbitrary distributions D by usingthe 
ru
ial observation that the 
orrelation ED[fχS] between f and a parity
χS with respe
t to D 
an be expressed as the 
orrelation E[fD(x)χS(x)]between the real-valued fun
tion fD(x) = 2nD(x)f(x) and χS with respe
tto the uniform distribution. Thus, ED[f(x)χS(x)] = E[fD(x)χS(x)] 
oin
ideswith the Fourier 
oe�
ient f̂D(S) of the fun
tion fD, implying that

Pr
D

[f(x) 6= χS(x)] ≤ 1− f̂D(S)

2
.If we now assume that ‖f̂D‖∞ ≥ γ (rather than ‖f̂‖∞ ≥ γ), then f 
an beweakly (γ/2, D)-approximated by a single parity fun
tion χS or its negation.Further, on input γ, the 
orresponding frequen
y S with |f̂D(S)| = Ω(γ) 
anbe found by the algorithm of Lemma 4 using ora
le a

ess to fD.Lemma 9. There is a randomized algorithm A su
h that for ea
h distri-bution D and Boolean fun
tion f satisfying ‖f̂D‖∞ ≥ γ and ‖fD‖∞ ≤ k,

A(k, γ, δ, fD) outputs with probability 1− δ a weak (Ω(γ), D)-approximationof f in time poly(n, k, 1/γ, log(1/δ)).Boosting [41℄ is a well-known te
hnique to transform a weak learnerinto a strong learner. The te
hnique 
an be most easily des
ribed in the



input: γ, ε > 0 and a weak learning algorithm Aoutput: a Boolean fun
tion h approximating f1. i← 0;2. while |Mi| > ε2n dorun A to produ
e a weak (γ, Di)-approximation hi;
i← i + 1;3. return h = sgn(

∑i
j=0 hj(x))Figure 3: The IHA-boosting algorithm

distribution-free setting, where we assume that the weak learner produ
esa weak (γ, D)-approximation of the target f for any distribution D. Withrespe
t to some �xed but unknown target distribution D, the boosting algo-rithm runs the weak learner several times with respe
t to di�erent distribu-tions Di, whi
h for
es the weak learner to perform well on di�erent regions ofthe instan
e spa
e. The resulting weak (γ, Di)-approximations are then 
om-bined in some way to produ
e a strong (ε, D)-approximation of f . Obviously,the ora
le a

ess to f required by the boosting algorithm depends on howthe weak learner a

esses the ora
le. If the weak learner asks membershipqueries, then also the boosting algorithm needs to ask membership queries.If the weak learner needs only a

ess to EX(f, Di), then it is usually possibleto apply a �ltering te
hnique in order to simulate the EX(f, Di) ora
le byasking queries to EX(f, D). This means that ea
h example (x, f(x)) drawnfrom EX(f, D) is dis
arded by the boosting algorithm with a 
ertain prob-ability depending on (x, f(x)) and Di, and only the remaining examples arepassed on to the weak learner.There are several boosting strategies whi
h mainly di�er in how the dis-tributions Di are de�ned, and in how the �nal hypothesis is obtained fromthe weak hypotheses. The IHA-boosting algorithm (see Figure 3) uses a par-ti
ularly well-suited boosting strategy whi
h is based on a 
onstru
tion of ahard-
ore distribution due to Impagliazzo [18℄. The boosting ability of this
onstru
tion has been pointed out by Klivans and Servedio [26℄. In order toa
hieve strong learning with respe
t to the uniform target distribution, theIHA-boosting algorithm uses the following distributionsDi. Suppose that theweak learning algorithm has already produ
ed the hypotheses h0, . . . , hi−1 forsome i ≥ 0, and let h = sgn(
∑i−1

j=0 hj(x)) denote the majority vote of these



hypotheses. First 
onsider the margin
Ni(x) = f(x)

i−1
∑

j=0

hj(x),by whi
h h agrees with the target f on an instan
e x. Note that h disagreeswith f on x only if Ni(x) is negative. Next we de�ne a measure Mi onthe instan
e spa
e {0, 1}n whi
h assigns weight 0 to the instan
es with largemargin, weight 1 to the instan
es with negative margin, and intermediateweights to instan
es with non-negative but small margin. More pre
isely,
Mi(x) =











0, Ni(x) ≥ 1/γ,

1, Ni(x) ≤ 0,

1− γNi(x), otherwise.Noti
e that M0(x) = 1 for all x. The distribution Di is now obtained bystandardizing the measure Mi by the weight |Mi| =
∑

x Mi(x) of Mi,
Di(x) =

Mi(x)

|Mi|
.Whenever the IHA-boosting algorithm is going to run the weak learner A, it�rst 
he
ks whether the measure Mi satis�es |Mi| ≤ ε2n. Observe that the
urrent majority vote h disagrees with f on x only if Ni(x) ≥ 0. In this 
ase

Mi(x) = 1 and hen
e the approximation error of h 
an be bounded by
Pr[h(x) 6= f(x)] ≤ 2−n

∑

x

Mi(x) = 2−n|Mi|.Thus, the 
ondition |Mi| ≤ ε2n guarantees that the boosting algorithm hasfound the desired ε-approximation of f .Impagliazzo [18℄ showed that the abort 
ondition |Mi| ≤ ε2n is met afterat most O(1/γ2ε2) runs of A. Sin
e for all x we have that Di(x) ≤ 1/|Mi|,the∞-norm of the distributions Di is bounded by 1/|Mi| and hen
e the weaklearner A is run only on distributions Di satisfying ‖2nDi‖∞ ≤ 1/ε.An algorithmi
 di�
ulty is the 
omputation of the exponentially largesum |Mi| whi
h is required to 
he
k the abort 
ondition. This di�
ulty
an be over
ome by �rst expressing 2−n|Mi| as the expe
ted value E[Mi(x)]for a uniformly 
hosen x. Then we only have to observe that a randomexample (x, Mi(x)) 
an be easily obtained from a random example (x, f(x)).Furthermore, Mi(x) takes only values in the range [0, 1]. Hen
e, with highprobability we 
an get an a

urate estimate for 2−n|Mi| by drawing a small



sample from EX(f). Now, by using an estimate rather than the exa
t valueof 2−n|Mi|, it is easy to adjust the abort 
ondition so that (1) the output his still an ε-approximation of f and (2) the modi�ed abort 
ondition 
an stillbe met after at most O(1/γ2ε2) runs of A with distributions Di, where (3)ea
h Di still satis�es ‖2nDi‖∞ = O(1/ε).Now suppose that f is a Boolean fun
tion satisfying for all distributions
D the bound

‖f̂D‖∞ ≥ γ.The Harmoni
 Sieve for learning f , as suggested in [26℄, runs the IHA-boosting algorithm1 based on the weak learner A provided by Lemma 9.Re
all that A produ
es with su�
iently high probability a weak (Ω(γ), Di)-approximation of the target f in time poly(n, k, 1/γ, log(1/δ)), provided that
A gets an upper bound k on the ∞-norm of fDi

and has a

ess to the ora
le
fDi

. Further, re
all that fDi
is de�ned as fDi

(x) = 2nDi(x)f(x) and ea
hdistribution Di satis�es ‖2nDi‖∞ = O(1/ε). Hen
e, ‖fDi
‖∞ = O(1/ε) andwe 
an easily provide A with the required bound k. The resulting runningtime of A be
omes poly(n, 1/γ, 1/ε, log(1/δ)).The remaining obsta
le is the fa
t that the boosting algorithm 
annotprovide the weak learner with the exa
t values of fDi

(x). However, it 
an
ompute an a

urate approximation of fDi
(x) = 2nMi(x)/|Mi| by using thealready 
al
ulated estimate for 2−n|Mi| together with the value Mi(x). Notethat the latter value 
an be exa
tly 
omputed from f(x) by using a singlemembership query to f . It 
an be shown that using a su�
iently a

urateapproximation of fDi

does not have a signi�
ant impa
t on the learningability of A (
f. [19℄). Thus, with high probability, A indeed produ
es inea
h iteration a weak (Ω(γ), Di)-approximation of f whi
h 
an be used bythe boosting algorithm to produ
e an ε-approximation. The running timeof the Harmoni
 Sieve is roughly O(1/γ2ε2) times the time required for ea
hsimulation of A whi
h is poly(n, 1/γ, 1/ε, log(1/δ)). Thus, the Harmoni
Sieve a
hieves the following performan
e.Theorem 10. (
f. [19℄) For ea
h Boolean fun
tion f satisfying for all dis-tributions D the bound ‖f̂D‖∞ ≥ γ, the Harmoni
 Sieve on inputs ε, γ, δand ora
le a

ess to f outputs with probability 1− δ an O(ε)-approximationof f in time poly(n, 1/ε, 1/γ, log(1/δ)).Ja
kson [19℄ showed that for every m-term DNF f and for all distribu-tions D on {0, 1}n it holds that ‖f̂D‖∞ = maxS |ED[fχS]| ≥ 1/(2m + 1).Hen
e, the Harmoni
 Sieve 
an be used to e�
iently learn DNF formulaswith membership queries.1In [19℄, Ja
kson used the F1 boosting algorithm of Freund [13℄.



Corollary 11. [19℄ The 
lass of m-term DNF formulas is learnable withmembership queries in time poly(n, m, 1/ε, log(1/δ)).We noti
e that in the random walk model [1℄, the need for membershipqueries 
an be avoided by using the Bounded Sieve of Bshouty and Feld-man [7℄. The random walk model is a variant of the PAC model where theexamples are generated by performing a random walk on the 
ube (hen
e,they are not independent). The idea is to sear
h for large 
oe�
ients byperforming a breadth-�rst sear
h on the Boolean hyper
ube rather than adepth-�rst sear
h on the binary tree. Using the 
ru
ial property that theFourier spe
trum of a DNF provides a large 
oe�
ient within the low-orderspe
trum, Bshouty et al. [8℄ showed that the Bounded Sieve 
an be used toe�
iently learn DNF formulas in the random walk model. This property ofDNF formulas will also play an important role in the next subse
tion.3.4 Exhaustive Sear
hThe main drawba
k of the Harmoni
 Sieve is its need for membership querieswhi
h are used by the underlying KM-algorithm to guide the sear
h for large
oe�
ients. The expensive use of membership queries 
an be avoided, if thelow-order spe
trum of the target 
ontains a large 
oe�
ient. More pre
isely,let f be a Boolean fun
tion satisfying for ea
h distribution D the bound
max
|S|≤t
|f̂D(S)| ≥ γ.Then f 
an be weakly (γ/2, D)-approximated by a single parity fun
tion χSor its negation where |S| ≤ t. Hen
e, it su�
es to perform an exhaustivesear
h over all frequen
ies S with |S| ≤ t; similar to the low-degree algorithm.This immediately yields the following weak learning result.Lemma 12. [20℄ There is a randomized algorithm A su
h that for ea
hdistribution D and Boolean fun
tion f satisfying max|S|≤t |f̂D(S)| ≥ γ,

A(t, γ, δ, EX(f, D)) outputs with probability 1− δ a weak (Ω(γ), D)-approxi-mation of f in time poly(nt, 1/γ, log(1/δ)).Applying the IHA boosting algorithm to the weak learning algorithm ofLemma 12, we 
an exploit the fa
t that the boosting algorithm only usesdistributions Di with ‖2nDi‖∞ = O(1/ε). This yields the following stronglearning result without membership queries.Theorem 13. [20℄ There is a randomized algorithm A su
h that for ea
hBoolean fun
tion f satisfying for all distributions D with ‖2nD‖∞ = O(1/ε)the bound max|S|≤t |f̂D(S)| ≥ γ, A(t, γ, ε, δ, EX(f)) outputs with probability
1− δ an ε-approximation of f in time poly(nt, 1/ε, 1/γ, log(1/δ)).



An MAC0 
ir
uit 
onsists of a majority-gate over a polynomial numberof AC0 
ir
uits. Ja
kson et al. [20℄ showed that for every distribution D andfor every Boolean fun
tion f 
omputable by an MAC0 
ir
uit of size M anddepth d it holds that
max
|S|≤t
|f̂D(S)| = Ω(1/Mnt),where t = O(log(M‖2nD‖∞))d−1. In parti
ular, t = O(log(M/ε))d−1 forevery distribution D satisfying ‖2nD‖∞ ≤ 1/ε. Thus we get the followingimprovement of Corollary 2.Corollary 14. [20℄ The 
lass of MAC0 
ir
uits of size M and depth d islearnable in time

poly(nO(log(M/ε))d−1

, log(1/δ)).By Corollary 14 it immediately follows that m-term DNF formulas arelearnable in time poly(nO(log(m/ε)), log(1/δ)) without membership queries. Letus remark that a similar result already has been obtained by Verbeurgt [44℄,though by using a di�erent approa
h.An algorithm similar to the one in Theorem 13 
an also be applied inthe model of statisti
al queries [23℄. In this model it is possible to obtain
f̂(S) within additive error τ by asking a single statisti
al query. The pa-rameter τ is 
alled the toleran
e of the query. It 
an be shown that m-termDNF formulas are learnable with nO(log(m/ε)) statisti
al queries, provided that
τ−1 = poly(m/ε) [28℄. This has been improved to τ−1 = O(m/ε) in [31℄.Interestingly, learning m-term DNF formulas requires nΩ(log(m)) statisti
alqueries as long as the toleran
e is su�
iently large [4℄.3.5 ProblemsLet us 
lose this se
tion by highlighting some important problems and sug-gestions for further resear
h 
on
erning the learnability of DNF formulaswithout membership queries. For the sake of 
larity of exposition we omitthe referen
e to the parameters ε and δ.Clearly, the ultimate goal is to a
hieve the analogue of Ja
kson's learn-ability result for DNF formulas without using membership queries.Problem 15. Are m-term DNF formulas learnable in time poly(n, m)?Less ambiguous, but still a major break-through would be a polynomial-time learning algorithm for DNF formulas with a non-
onstant number
m(n) of terms. In Se
tion 4.3 we will present an algorithm whi
h a
hievesthis goal for the sub
lass of monotone DNF formulas with running-time
poly(n, (m log n)ϕ(m)) for ϕ(m) =

√

m log(m).



Problem 16. Is the 
lass of m-term DNF formulas learnable in time
poly(n, (m log n)ϕ(m)), where ϕ does not depend on n?In Se
tion 3.4 we saw that m-term DNF formulas are learnable in time
poly(nlog m). This is the best known learning result for general m-term DNFwithout membership queries. So even an improvement to poly(n(log m)α

) forsome α < 1 would be very interesting.As a �rst step towards solving Problem 16, one might atta
k the easierproblem of learning de
ision trees instead of DNF formulas.Problem 17. Is the 
lass of de
ision trees with m nodes learnable in time
poly(n, (m log n)ϕ(m)), where ϕ does not depend on n?As we will see in se
tion 4.4, the sub
lass of monotone de
ision trees with
m nodes is learnable in time poly(n, m).4 Monotone fun
tions and in�uen
eThe sensitivity of a Boolean fun
tion f is a measure of how strongly f(x)rea
ts to a 
hange of its variables. It is 
losely related to the notion ofin�uen
e of single variables on the value of f . Interestingly, the sensitivity(as well as the in�uen
e) 
an be expressed in terms of the Fourier 
oe�
ientsof f yielding good approximations for fun
tions having low sensitivity. Thisapproa
h works espe
ially well for monotone fun
tions, sin
e in this 
ase, thein�uen
e values of the individual variables x1, . . . , xn 
onstitute the Fourierspe
trum on the singleton frequen
ies {x1}, . . . , {xn}.In this se
tion we review some important learning results for monotoneBoolean fun
tions that are based on sensitivity arguments, in
luding Bshoutyand Tamon's [9℄ work on monotone fun
tions, Servedio's learnability resultfor monotone DNF [40℄, and the very re
ent learning algorithm of O'Donnelland Servedio for monotone de
ision trees [39℄. We start with a dis
ussion ofthe in�uen
e and sensitivity of a Boolean fun
tion f .In�uen
e and sensitivityThe 
on
ept of in�uen
e of a variable on a Boolean fun
tion was intro-du
ed by Ben-Or and Linial [3℄. Let f be a Boolean fun
tion on n vari-ables x1, . . . , xn. The in�uen
e Ij(f) of xj on f is de�ned as the probabil-ity that �ipping the j-th bit in a uniformly at random 
hosen assignment
x = (x1, . . . , xn) 
hanges the value of f . More formally,

Ij(f) = Pr[f(x) 6= f(x⊕ ej)],



where x is uniformly at random 
hosen from {0, 1}n and ej denotes the as-signment 0j−110n−j−1. The total in�uen
e of f is de�ned as I(f) =
∑

j Ij(f).It is easy to see that I(f) equals the average sensitivity of f on all assign-ments x ∈ {0, 1}n, where the sensitivity of f on x = (x1, . . . , xn) is de�ned asthe number of bits in x whose �ipping 
auses f to 
hange its value. Note that
I(f) further 
oin
ides with the fra
tion of edges in the Boolean hyper
ubethat 
onne
t assignments x and x′ having di�erent values under f . Let us
onsider the in�uen
e of some basi
 fun
tions.
• The di
tatorship fun
tion χi maps (x1, . . . , xn) 7→ (−1)xi. Clearly,

Ij(χi) = 1 if i = j, and Ij(χi) = 0 otherwise. Hen
e, the di
tatorshipfun
tion has total in�uen
e I(χi) = 1.
• The in�uen
e of a single variable xj on the parity fun
tion χ[n] is

Ij(χ[n]) = 1 and hen
e the total in�uen
e I(χ[n]) sums up to n.
• The in�uen
e of xj on the majority fun
tion MAJn is

Ij(MAJn) =
(

n−1
⌊n/2⌋

) /

2n−1 ,implying that I(MAJn) <
√

2n/π for n ≥ 2. In fa
t, it is not hardto show (e.g., see [15℄) that for any monotone n-ary Boolean fun
tion
f , I(f) ≤ I(MAJn) implying I(f) <

√

2n/π. We will prove a slightlyweaker bound in Proposition 20.
• The in�uen
e of a k-junta, i.e., of a fun
tion f depending only on a�xed set R of at most k variables, is 
learly bounded by I(f) ≤ k,sin
e all variables xj with j 6∈ R have in�uen
e Ij(f) = 0.As has been observed in [22℄, the in�uen
e of xj on a Boolean fun
tion f
oin
ides with the weight of the Fourier spe
trum on all frequen
ies 
ontain-ing j. In fa
t, sin
e f̂⊕y(S) = χS(y)f̂(S) (
f. Equation (2) in Se
tion 2), thefun
tion fj = (f − f⊕ej

)/2 has the 
oe�
ients
f̂j(S) =

f̂(S)− f̂⊕ej
(S)

2
=

f̂(S)− χS(ej)f̂(S)

2
=

{

f̂(S), j ∈ S

0, otherwise. (5)From Parseval's identity it follows that
Ij(f) = E[|fj|] = E[f 2

j ] = 2−n
∑

x

fj(x)2 =
∑

S

f̂j(S)2 =
∑

S : j∈S

f̂(S)2.



Proposition 18. For any Boolean fun
tion f ,
Ij(f) = ‖fj‖2 =

∑

S : j∈S

f̂(S)2.Hen
e, the total in�uen
e is I(f) =
∑

S |S|f̂(S)2.For monotone f , the in�uen
e Ij(f) 
oin
ides with the Fourier 
oef-�
ient f̂(j). Here we adopt the 
onvention that f is 
alled monotone,if �ipping any 0-bit in x to 1 does not 
hange the value of f(x) fromtrue to false (re
all that true is represented by the number −1 and falseby 1). For a bit b ∈ {0, 1} we use fj,b to denote the Boolean fun
tion
fj,b(x) = f(x1, . . . , xj−1, b, xj+1, . . . , n). Now it is easy to see that

|f − f⊕ej
| = (fj,0 − fj,1) = (f − f⊕ej

)χj ,and hen
e, using (5), the in�uen
e of xj evaluates to
Ij(f) = E

[ |f − f⊕ej
|

2

]

=
E[fχj − f⊕ej

χj ]

2
=

f̂(j)− f̂⊕ej
(j)

2
= f̂j(j) = f̂(j).Proposition 19. For any monotone Boolean fun
tion f ,

Ij(f) = f̂(j).Hen
e, the total in�uen
e is I(f) =
∑

j f̂(j).Letting R = {j ∈ [n] | Ij(f) > 0} be the set of relevant variables of fand denoting the number of relevant variables by k, it follows from Cau
hy-S
hwarz's inequality and Parseval's identity that
I(f)2 =

(

∑

j∈R

Ij(f)
)2 ≤ k

∑

j∈R

Ij(f)2 = k
∑

j∈R

f̂(j)2 ≤ k.Hen
e the total in�uen
e of a monotone fun
tion 
an be bounded as follows.Proposition 20. For any monotone k-junta f ,
I(f) ≤

√
k.



4.1 Monotone Boolean fun
tionsAs we have seen, the low-degree algorithm su

eeds on all targets havingsmall weight on the high frequen
ies of their Fourier spe
trum. As we willsee in the proof of following proposition, the high frequen
y weight 
an bebounded in terms of the in�uen
e. Thus, a small bound on the in�uen
eguarantees a good performan
e of the low-degree algorithm.Proposition 21. Let f be a Boolean fun
tion satisfying I(f) ≤ l. Then
∑

|S|≥l/ε

f̂(S)2 ≤ ε.Proof. We 
an bound the high frequen
y weight for any bound t as follows.
∑

|S|≥t

f̂(S)2 ≤
∑

|S|≥t

|S|f̂(S)2/t ≤
∑

S

|S|f̂(S)2/t = I(f)/t.Hen
e, the 
laim follows by 
hoosing t = l/ε.By applying the low-degree algorithm, Proposition 21 immediately yieldsthe following theorem.Theorem 22. There is a randomized algorithm A su
h that for ea
h Booleanfun
tion f satisfying I(f) ≤ l, A(l, ε, δ, EX(f)) outputs with probability 1−δan O(ε)-approximation for f in time poly(nl/ε, log(1/δ)).By Proposition 20, for a monotone fun
tion f we have the bound I(f) ≤√
n, whi
h immediately yields the following learning result of Bshouty andTamon.Corollary 23. [9℄ The 
lass of monotone Boolean fun
tions is learnable intime poly(n

√
n/ε, log(1/δ)).In Se
tion 4.4 we will present an algorithm for monotone Boolean fun
-tions running in time poly(n, 2(l/ε)2) rather than poly(nl/ε) as in Theorem 22.4.2 Monotone juntasBy Proposition 20 we know that the in�uen
e of a monotone k-junta isbounded by √k. Hen
e, the algorithm of Theorem 22 �nds a low degree

O(ε)-approximation g for f in time poly(n
√

k/ε, log(1/δ)). Bshouty and Ta-mon [9℄ observed that by ignoring variables of su�
iently small in�uen
e, therunning-time 
an be improved to poly(k
√

k/ε, log(1/δ)).



For a bound θ ≥ 0 let
R(θ) = {j ∈ [n] | Ij(f) > θ}denote the set of variables having in�uen
e greater than θ. Then it is easy tobound the Fourier weight of a k-junta on the frequen
ies 
ontaining at leastone variable of small in�uen
e.Proposition 24. For any k-junta f ,

∑

S 6⊆R(ε/k)

f̂(S)2 ≤ ε.Proof. Sin
e for a k-junta the number |R| of relevant variables is boundedby k and sin
e ea
h variable xj with j 6∈ R(θ) has in�uen
e Ij(f) ≤ θ, itfollows that
∑

S 6⊆R(θ)

f̂(S)2 ≤
∑

j 6∈R(θ)

∑

S : j∈S

f̂(S)2 =
∑

j∈R−R(θ)

Ij(f) ≤ θk.Hen
e, the 
laim follows by 
hoosing θ = ε/k.In the following we will frequently 
onsider the 
olle
tion of all frequen
ies
S of order at most t 
ontaining only variables having in�uen
e greater than
θ, whi
h we denote by

G(θ, t) = {S ⊆ R(θ) | |S| ≤ t}.The following proposition shows that a k-junta f with in�uen
e I(f) ≤ l
an be O(ε)-approximated by taking only the 
oe�
ients 
orresponding tofrequen
ies inside G(ε/k, l/ε).Proposition 25. Let f be a k-junta satisfying I(f) ≤ l. Then
∑

S 6∈G(ε/k,l/ε)

f̂(S)2 ≤ 2ε.Proof. Using Propositions 21 and 24 it immediately follows that
∑

S 6∈G(ε/k,l/ε)

f̂(S)2 ≤
∑

S 6⊆R(ε/k)

f̂(S)2 +
∑

|S|≥l/ε

f̂(S)2 ≤ 2ε.



If f is monotone, we 
an 
olle
t all variables having large in�uen
e by es-timating the Fourier 
oe�
ients of all singleton frequen
ies. More pre
isely,in order to �nd all variables xj having in�uen
e Ij(f) ≥ θ, we 
ompute esti-mates aj for the Fourier 
oe�
ients f̂(j) by drawing su�
iently many exam-ples from the ora
le EX(f) and 
olle
t all variables xj with aj ≥ 3θ/4. Then,with high probability, we get all variables xj with Ij(f) ≥ θ and no variables
xj with Ij(f) ≤ θ/2. This algorithm has been 
alled Find-Variables byServedio [40℄.Proposition 26. For ea
h monotone Boolean fun
tion f , Find-Variableson inputs θ, δ and a

ess to EX(f), outputs with probability 1 − δ in time
poly(n, 1/θ, log(1/δ)) a set R∗ with R(θ) ⊆ R∗ ⊆ R(θ/2).In order to 
ompute an ε-approximation for a monotone k-junta f , we�rst use Find-Variables with θ = ε/k to obtain with high probability avariable set R∗ ⊆ R(ε/2k) 
ontaining all variables xj with Ij(f) ≥ ε/k.Sin
e R∗ ⊆ R(ε/2k) implies that R∗ 
ontains only relevant variables, the sizeof G∗ = {S ⊆ R∗ | |S| ≤ l/ε} is polynomial in kl/ε. Hen
e, we 
an applythe generalized low-degree algorithm to get the following learning result formonotone k-juntas having small in�uen
e.Theorem 27. There is a randomized algorithm A su
h that for ea
h mono-tone k-junta f with I(f) ≤ l, A(k, l, ε, δ, EX(f)) outputs with probability
1− δ an O(ε)-approximation for f in time poly(n, kl/ε, log(1/δ)).Corollary 28. [9℄ The 
lass of monotone k-juntas is learnable in time

poly(n, k
√

k/ε, log(1/δ)).4.3 Monotone fun
tions that are 
lose to juntasBy re�ning the arguments used in the pre
eding subse
tion we will nowsee that the generalized low-degree algorithm also su

eeds on monotoneBoolean fun
tions that are su�
iently 
lose to a monotone k-junta [9℄. Asa 
onsequen
e, the generalized low-degree algorithm (in 
onjun
tion withFind-Variables) be
omes appli
able to monotone m-term DNF formulas.We 
all a fun
tion f an (ε, k)-junta, if f is ε-
lose to a k-junta. We �rstshow that for an (ε, k)-junta, the number of variables xj having in�uen
e
Ij(f) ≥ ε is bounded by k.Proposition 29. For any (ε, k)-junta, |R(ε)| ≤ k.



Proof. Let h be a k-junta that is ε-
lose to f . Observe that for any variable
xj with Ij(h) = 0 it holds that ĥ(S) = 0 if j ∈ S. Hen
e,

Ij(f) =
∑

S : j∈S

f̂(S)2 =
∑

S : j∈S

(f̂(S)− ĥ(S))2 ≤ ‖f − h‖2 ≤ ε.This shows that any variable in R(ε) must be relevant for h.In the next proposition we bound the weight of the high order Fourierspe
trum of f under the assumption that f is 
lose to some fun
tion g witha small weight on this region.Proposition 30. For any fun
tion f that is ε-
lose to some Boolean fun
tion
g with ∑

|S|≥t ĝ(S)2 ≤ ε,
∑

|S|≥t

f̂(S)2 ≤ 4ε.Proof. Using the inequality f̂ 2 = (f̂ − ĝ + ĝ)2 ≤ 2(f̂ − ĝ)2 + 2ĝ2 (Cau
hy-S
hwarz) it follows that
∑

|S|≥t

f̂(S)2 ≤ 2
∑

|S|≥t

(f̂(S)− ĝ(S))2 + 2
∑

|S|≥t

ĝ(S)2 ≤ 4ε.Now assume that f is an (ε/n, k)-junta with the additional property thatit is ε-
lose to some Boolean fun
tion g whose Fourier weight on the frequen-
ies S with |S| ≥ t is bounded by ε. Then by using Proposition 24 with k = nas well as Proposition 30, it follows that the frequen
y 
olle
tion G(ε/n, t)has the property
∑

S 6∈G(ε/n,t)

f̂(S)2 ≤
∑

S 6⊆R(ε/n)

f̂(S)2 +
∑

|S|≥t

f̂(S)2 = O(ε).This means that f 
an be O(ε)-approximated by using only Fourier 
oe�-
ients 
orresponding to frequen
ies in G(ε/n, t). Sin
e by Proposition 29 thesize of R(ε/n) is bounded by k, it further follows that the size of G(ε/n, t) isbounded by kt. Thus we 
an use the algorithm Find-Variables to 
omputea superset R∗ of R(ε/2n) 
ontaining only variables in R(ε/n) in order to getthe following learning result.Theorem 31. There is a randomized algorithm A su
h that for ea
hmonotone (ε/n, k)-junta f that is ε-
lose to some Boolean fun
tion g with
∑

|S|≥t ĝ(S)2 ≤ ε, A(k, t, ε, δ, EX(f)) outputs with probability 1− δ an O(ε)-approximation for f in time poly(n, kt, log(1/δ)).



Sin
e by Proposition 21, I(g) ≤ l implies that the Fourier weight of g onthe frequen
ies S with |S| > l/ε is bounded by ε, we also obtain the following
orollary.Corollary 32. There is a randomized algorithm A su
h that for ea
h mono-tone (ε/n, k)-junta f that is ε-
lose to some Boolean fun
tion g with in�u-en
e I(g) ≤ l, A(k, l, ε, δ, EX(f)) outputs with probability 1 − δ an O(ε)-approximation for f in time poly(n, kl/ε, log(1/δ)).Sin
e for any ε > 0, an m-term DNF is an (ε, m log(m/ε))-junta, Corol-lary 32 implies the following learning result for monotone m-term DNF, whi
his in fa
t a 
onsequen
e of a stronger result from [9℄.Corollary 33. [9℄ The 
lass of monotone m-term DNF formulas is learnablein time
poly(n, (m log(n/ε))

√
m log(m/ε)/ε, log(1/δ)).Hen
e, for m = O((log n)2/(log log n)3) and 
onstant ε, monotone m-termDNF formulas are learnable in polynomial time.Servedio [40℄ used a bound of Mansour [36℄ to show that any m-termDNF f is ε-
lose to a Boolean fun
tion g satisfying ∑

|S|>t ĝ(S)2 ≤ ε for t =

O(log(m/ε) log(1/ε)). By Theorem 31, this implies the following exponentialimprovement of Corollary 33.Corollary 34. [40℄ The 
lass of monotone m-term DNF formulas is learnablein time
poly(n, (m log(n/ε))log(m/ε) log(1/ε), log(1/δ)).Hen
e, monotone O(2

√
log n)-term DNF formulas are learnable in polynomialtime.4.4 Monotone fun
tions with bounded in�uen
eSin
e k-juntas have low in�uen
e, it is 
lear that all fun
tions that are suf-�
iently 
lose to some k-junta also must have low in�uen
e. As shown byFriedgut [14℄, also the 
onverse is true: any Boolean fun
tion f having low in-�uen
e must be 
lose to a k-junta where k only depends on the in�uen
e andnot on the arity of f . More pre
isely, if I(f) ≤ l then f is a (ε, 2O(ε/l))-junta.Very re
ently, this relationship has been used by O'Donnell and Servedio [39℄to demonstrate the appli
ability of the generalized low-degree algorithm tothe 
lass of monotone de
ision trees.The proof of Friedgut's result yields the following approximability resultfor Boolean fun
tions with bounded in�uen
e.



Proposition 35. [14℄ For any Boolean fun
tion f with I(f) ≤ l,
∑

S 6∈G(θ,t)

f̂(S)2 = O(ε),where θ = (ε2−l/ε/l)3 and t = l/ε.Proof. For a given ε we want to derive a bound on θ su
h that at most an εfra
tion of the weight of the Fourier spe
trum of f is outside of the 
olle
tion
G(θ, t). Let H = {S ⊆ [n] | S 6⊆ R(θ) ∧ |S| < t} and note that S 6∈ G(θ, t)implies that either |S| ≥ t or S ∈ H . Now it follows by Proposition 21 that

∑

S 6∈G(θ,t)

f̂(S)2 ≤
∑

|S|≥t

f̂(S)2 +
∑

S∈H

f̂(S)2 ≤ ε +
∑

S∈H

f̂(S)2,Hen
e, it su�
es to 
hoose θ small enough su
h that the Fourier weight of
f on H is bounded by O(ε). Using Be
kner-Bonami (
f. inequality (4) inSe
tion 2) and letting Hj = {S ⊆ [n] | j ∈ S ∧ |S| < t} it follows for ea
hposition j that

∑

S∈Hj

2−tf̂(S)2 ≤
∑

S : j∈S

2−|S|f̂(S)2 = ‖T1/
√

2fj‖2 ≤ (‖fj‖2)4/3 = Ij(f)4/3,implying that ∑

S∈Hj
f̂(S)2 ≤ 2tIj(f)4/3. Note that for ea
h S ∈ H there issome j 6∈ R(θ) su
h that S ∈ Hj. Hen
e, summing up and using the bounds

I(f) ≤ l and Ij(f) ≤ θ for all j 6∈ R(θ) we get
∑

S∈H

f̂(S)2 ≤
∑

j 6∈R(θ)

∑

S∈Hj

f̂(S)2 ≤
∑

j 6∈R(θ)

2tIj(f)4/3 ≤ 2tθ1/3
∑

j

Ij(f) ≤ 2tθ1/3l.Thus, 
hoosing θ = (ε2−t/l)3 yields the desired bound. Sin
e t = l/ε, thesize of R(θ) is bounded by l/θ = l423l/ε/ε3 = 2O(l/ε) and it follows that thesize of G is bounded by 2O(l/ε)2 .As an immediate 
onsequen
e we 
an state the following learning result.Theorem 36. There is a randomized algorithm A su
h that for ea
h mono-tone Boolean fun
tion f with I(f) ≤ l, A(l, ε, δ, EX(f)) outputs with proba-bility 1− δ an O(ε)-approximation for f in time poly(n, 2(l/ε)2 , log(1/δ)).As shown by O'Donnell and Servedio [39℄, any Boolean fun
tion f 
om-putable by a de
ision tree of size m has the property that ∑

i f̂(i) ≤ √log m.If f is monotone, this implies that I(f) =
∑

i f̂(i) ≤ √log m.



Corollary 37. [39℄ The 
lass of monotone de
ision trees of size m is learn-able in time
poly(n, m(1/ε)2 , log(1/δ)).Hen
e, for 
onstant ε, monotone de
ision trees are learnable in polynomialtime.4.5 ProblemsLet us 
on
lude with some interesting problems 
on
erning the learnabil-ity of monotone DNF formulas and juntas. As in Se
tion 3.5 we omit theparameters ε and δ for 
larity reasons.Monotone DNFIn the light of O'Donnell and Servedio's e�
ient learning algorithm for mono-tone de
ision trees [39℄ an interesting question to ask is whether this result
an be extended to monotone DNF formulas.Problem 38. Are monotone m-term DNF formulas learnable in time

poly(n, m)?It is further shown in [39℄ that the in�uen
e bound I(f) ≤ √log m 
annotbe extended to monotone m-term DNF formulas or even to fun
tions f thatare 
omputable by both an m-term DNF as well as by an m-
lause CNF.Thus, Problem 38 
annot be solved by solely relying on Theorem 36.The 
urrently best learning algorithm for monotone m-term DNFis the one of Corollary 34 due to Servedio [40℄ whi
h runs in time
poly(n, (m log n)ϕ(m)) where ϕ(m) = log m. It would be very interestingto improve this result to an algorithm having �xed parameterized 
omplexityin the sense of Downey and Fellows [11℄.Problem 39. Are monotone m-term DNF formulas learnable in time
poly(n, ϕ(m)), where ϕ does not depend on n?JuntasAs we saw in Se
tion 4.2, the analogue of Problem 39 for monotone k-juntashas been solved by Bshouty and Tamon [9℄ by providing an algorithm runningin time poly(n, ϕ(k)) for ϕ(k) = k

√
k (
f. Corollary 28). An immediatequestion is whether this 
an be extended to general juntas.Problem 40. Are k-juntas learnable in time poly(n, ϕ(k)), where ϕ does notdepend on n?



We want to emphasize that Problem 40 is a very important questionwhose answer would have immediate appli
ations to the learnability of DNFformulas (as every DNF formula is 
lose to a junta) as well as to the importantarea of feature sele
tion (
f. [5℄). In fa
t, Mossel et al. [37℄ 
onsider theproblem of learning juntas as the single most important problem in uniformdistribution learning. A slightly less ambiguous goal is to learn k-juntas intime poly(n, (k log n)ϕ(k)). This would imply that juntas with a non-
onstantnumber k(n) of relevant variables are learnable in polynomial time.The 
urrently best learning algorithm for k-juntas is due to Mossel etal. [37℄ and runs in time O(nαk) for some α < 0.7. So even an improvementto an α < 0.5 would be a signi�
ant progress.Problem 41. Are k-juntas learnable in time O(nαk) for some α < 0.5?For the spe
ial 
ase of symmetri
 juntas, Mossel et al. [37℄ used a result ofvon zur Gathen and Ro
he [45℄ to bound the running-time by nαk for some
α < 2/3. The analogue of Problem 41 for symmetri
 juntas has been solvedby Lipton et al. [34℄ by providing an algorithm with running-time O(nαk)for α = 3/31. This bound has been subsequently improved to O(nk/ log k) in[29℄.Referen
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