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AbstratMuh progress has been made on deoding algorithms for error-orreting odes in the last deade. In this artile, we give an in-trodution to some fundamental results on iterative, message-passingalgorithms for low-density parity hek odes. For ertain importantstohasti hannels, this line of work has enabled getting very lose toShannon apaity with algorithms that are extremely e�ient (bothin theory and pratie).1 IntrodutionOver the past deade or so, there has been substantial new progress on algo-rithmi aspets of oding theory. A (far from exhaustive) list of the themesthat have witnessed intense researh ativity inludes:1. A resurgene of interest in the long forgotten lass of low-density parityhek (LDPC) odes and on iterative, message-passing deoding algo-rithms for them, whih has resulted in odes with rates extremely loseto Shannon apaity together with e�ient deoding algorithms.2. Linear time enodable/deodable error-orreting odes (based on ex-panders) for worst-ase errors.3. List deoding algorithms whih orret many more worst-ase errorsbeyond the �half-the-ode-distane� bound, and whih an ahieve a-paity even against adversarial noise.1Of ourse there are some interrelations between the above diretions; in par-tiular, progress on linear-time enodable/deodable odes is based on ex-pander odes, whih are LDPC odes with additional properties. Also, listdeoding algorithms that run in linear time and orret a fration ρ of errorsfor any desired ρ < 1 have been developed using expander-based ideas [12℄.Of the above lines of work, the last two have a broader following in the the-oretial omputer siene ommunity, due to their fous on the ombinatorial,worst-ase noise model and the extraneous appliations of suh odes in on-texts besides ommuniation (suh as pseudorandomness and average-ase1The apaity-ahieving part was reently shown for odes over large alphabets, speif-ially expliit odes of rate lose to 1 − p that an be list deoded in polynomial timefrom a fration p of errors were onstruted in [14℄. For binary odes, the apaity fordeoding a fration p of errors equals 1 − H(p), but we do not know how to ahieve thisonstrutively.



omplexity). The sister omplexity theory olumn that appears in SIGACTnews featured reent surveys on both these topis [9, 32℄. A longer surveyon very reent developments in list deoding of algebrai odes will appearin [10℄. A very brief survey featuring ouple of omplexity-theoreti uses oflist deoding appears in [11℄. Appliations of oding theory to omplexitytheory, espeially those revolving around sub-linear algorithms, are surveyedin detail in [34℄.We use the opportunity provided by this olumn to fous on the �rst lineof work on iterative (also alled message-passing or belief propagation) algo-rithms for deoding LDPC odes. This is in itself a vast area with numeroustehnially sophistiated results. For a omprehensive disussion of this area,we point the reader to the upoming book by Rihardson and Urbanke [25℄,whih is an exellent resoure on this topi. The February 2001 issue of Vol-ume 47 of the IEEE Transations on Information Theory is another valuableresoure � this was a speial issue dediated to iterative deoding and inpartiular ontains the series of papers [16, 17, 23, 22℄. This sequene ofpapers is arguably one of the most important post-Gallager developments inthe analysis of iterative deoding, and it laid down the foundations for muhof the reent progress in this �eld.Dislaimer: The literature on the subjet of LDPC and related odes andbelief propagation algorithms is vast and diverse, and the author, not havingworked on the topi himself, is only aware of a small portion of it. Our aimwill be to merely provide a peek into some of the basi ontext, results, andmethods of the area. We will fous almost exlusively on LDPC odes, andimportant related onstrutions suh as LT odes, Raptor odes, Repeat-Aumulate odes, and turbo odes are either skipped or only very brie�ymentioned. While the artile should (hopefully) be devoid of major tehnialinauraies, we apologize for any inappropriate omissions in redits anditations (and welome omments from the reader if any suh major omissionsare spotted).Organization: We begin with some basi bakground information onern-ing LDPC odes, the hannel models we will study, and the goal of this line ofstudy in Setion 2. In Setion 3, we disuss how onatenated odes with anouter ode that an orret a small fration of errors an be used to approahapaity, albeit with a poor dependene on the gap to apaity. We then turnto message passing algorithms for LDPC odes and desribe their high levelstruture in Setion 4. With this in plae, we develop and analyze somespei� message passing algorithms for regular LDPC odes in Setion 5, es-tablishing theoretial thresholds for the binary erasure and binary symmetrihannels. We then turn our fous to irregular LDPC odes in Setion 6, and



disuss, among other things, how one an use them to ahieve the apaityof the binary erasure hannel. Finally, in Setion 7, we disuss how one anahieve linear enoding time for LDPC odes, and also disuss a variant alledIrregular Repeat-Aumulate (IRA) odes that are linear-time enodable bydesign and additionally o�er improved omplexity-vs-performane trade-o�s.2 Bakground2.1 Linear and LDPC odesWe will fous exlusively on binary linear odes. A binary linear ode C ofblok length n is a subspae of F
n
2 where F2 = {0, 1} is the �eld with twoelements. The rate of C, denoted R(C), equals k/n where k is the dimensionof C (as a vetor spae over F2); suh a ode is also referred to as an [n, k]ode. Being a linear subspae of dimension k, the ode C an be desribed asthe kernel of a matrix H ∈ F

(n−k)×n
2 , so that C = {c ∈ F

n
2 | Hc = 0} (we treatodewords c as olumn vetors for this desription). The matrix H is alledthe parity hek matrix of the ode C. In general, any hoie of H whose rowsform a basis of the dual spae C⊥ = {x ∈ F

n
2 | xtc = 0∀c ∈ C} desribes thesame ode. Of speial interest to us here are odes that admit a sparse parityhek matrix. In partiular, we will study low-density parity hek (LDPC)odes, whih were introdued and studied in Gallager's amazing work [8℄that was way ahead of its time. LDPC odes are desribed by a parity hekmatrix all of whose rows and olumns have at most a �xed onstant numberof 1's (the onstant is independent of n).2A onvenient way to desribe an LDPC ode is in terms of its fatorgraph.3 This is a natural bipartite graph de�ned as follows. On the left sideare n verties, alled variable nodes, one for eah odeword position. On theright are m = n − k verties, alled hek nodes, one for eah parity hek(row of the parity hek matrix). A hek node is adjaent to all variablenodes whose orresponding odeword symbols appear in this parity hek.In other words, the parity hek matrix of the ode is preisely the bipartiteadjaeny matrix of the fator graph.A speial lass of LDPC odes are regular LDPC odes where the fatorgraph is both left-regular and right-regular. Regular LDPC odes were in2We will throughout be interested in a family of odes of inreasing blok length n withrate k/n held a �xed onstant. For onveniene, we don't spell this out expliitly, but thisasymptoti fous should always be kept in mind.3This graphial representation applies for any linear ode. But the resulting graph willbe sparse, and hene amenable to linear time algorithms, only for LDPC odes.



fat the variant originally studied by Gallager [8℄, as well as in the worksof Makay and Neal [18, 19℄ and Sipser and Spielman [29, 30℄ that sparkedthe resurgene of interest in LDPC odes after over 30 years sine Gallager'swork.4 LDPC odes based on non-regular graphs, alled irregular LDPCodes, rose to prominene beginning in the work of Luby et al [16, 17℄ (study-ing odes based on irregular graphs was one of the big oneptual leaps madein these works). We will return to this aspet later in the survey. A popularhoie of regular LDPC odes (with a rate of 1/2) are (3, 6)-regular LDPCodes where variable nodes have degree 3 and hek nodes have degree 6.2.2 Channel models and their apaityDesign of good LDPC odes, together with progress in analyzing naturalmessage-passing algorithms for deoding them, has led to rapid progresstowards approahing the apaity of important stohasti hannels. We nowreview the main noise models that we will be interested in.Throughout, we deal with binary odes only. We will �nd it onvenientto use {+1,−1} (instead of {0, 1}) for the binary alphabet, where +1 orre-sponds to the bit 0 and −1 to the bit 1. Note the XOR operation beomesmultipliation in the ±1 notation.We will assume the hannel's operation to be memoryless, so that eahsymbol of the odeword is distorted independently aording to the samehannel law. So to speify the noise model, it su�es to speify how thenoise distorts a single input symbol. For us the input symbol will always beeither ±1, and so the hannels have as input alphabet X = {1,−1}. Theiroutput alphabet will be denoted by Y and will be di�erent for the di�erenthannels. Upon transmission of a odeword c ∈ X n, the word y observed bythe reeiver belongs to Yn. The reeiver must then deode y and hopefullyompute the original transmitted odeword c. The hallenge is to ahieve avanishingly small error probability (i.e., the probability of either a deodingfailure or an inorret deoding), while at the same time operating at a goodrate, hopefully lose to the apaity of the hannel.We begin with the simplest noise model, the Binary Erasure Channel(BEC). This is parameterized by a real number α, 0 ≤ α < 1. The outputalphabet is Y = {1,−1, ?}, with ? signifying an erasure. Upon input x ∈ X ,4In the long interim period, LDPC odes went into oblivion, with the exeption of two(known to us) works. Zyablov and Pinsker [35℄ proved that for random LDPC odes, withhigh probability over the hoie of the ode, Gallager's algorithm orreted a onstantfration of worst-ase errors. Tanner [33℄ presented an important generalization of Gal-lager's onstrution and his deoding algorithms, whih was later important in the workon linear time deodable expander odes [29℄.



the hannel outputs x with probability 1−α, and outputs ? with probability
α. The value α is alled the erasure probability, and we denote by BECαthe BEC with erasure probability α. For large n, the reeived word onsistsof about (1 − α)n unerased symbols with high probability, so the maximumrate at whih reliable ommuniation is possible is at most (1 − α) (thisholds even if the transmitter and reeiver knew in advane whih bits will beerased). It turns out this upper bound an be ahieved, and Elias [5℄, who�rst introdued the BEC, also proved that its apaity equals (1 − α).The Binary Symmetri Channel (BSC) is parameterized by a real number
p, 0 ≤ p < 1/2, and has output alphabet Y = {1,−1}. On input x ∈ X ,the hannel outputs bx where b = −1 with probability p and b = 1 withprobability 1 − p. The value p is alled the rossover probability. The BSCwith rossover probability p is denoted by BSCp. The apaity of BSCp iswell known to be 1 − H(p), where H(p) = −p lg p − (1 − p) lg(1 − p) is thebinary entropy funtion.Finally, we mention a hannel with ontinuous output alphabet Y alledBinary Input Additive White Gaussian Noise (BIAWGN). Here Y equals theset of real numbers, and the hannel operation is modeled as y = x + zwhere x ∈ {±1} is the input and z is a normal variable with mean 0 andvariane σ2 (i.e., has probability density funtion p(z) = 1√

2πσ2
e−

z2

2σ2 ). Wedenote by BIAWGNσ the BIAWGN with variane σ2; its apaity is a funtionof 1/σ2 alone, though there is no elementary form expression known forthe apaity (but it an be expressed as an integral that an be estimatednumerially). For rate 1/2, the largest σ (Shannon limit) for whih reliableommuniation on the BIAWGN hannel is possible is (up to the preisiongiven) σopt = 0.9787.More generally, if we allow saling of inputs, the apaity is a funtionof the �signal-to-noise� ratio EN/σ2 where EN is the energy expended perhannel use. If the inputs to the hannel are not onstrained to be ±1,but instead an take arbitrary real values, then it is well known that theapaity of the AWGN hannel equals 1
2
log2 (1 + EN/σ2) bits per hanneluse. In partiular, in order to ahieve reliable ommuniation at a rate of

1/2 over the real-input AWGN hannel, a signal-to-noise ratio of 1, or 0 dB,is required.5 For the BIAWGN hannel, this ratio inreases to 1/σ2
opt = 1.044or 0.187 dB. Aordingly, the yardstik to measure the quality of a deodingalgorithm for an LDPC ode of rate 1/2 is how lose to this limit it an leadto orret deoding with probability tending to 1 (over the realization of theBIAWGN hannel noise).The ontinuous output of a BIAWGN hannel an be quantized to yield5In deibel notation, λ > 0 is equivalent to 10 log10 λ dB.



a disrete approximation to the original value, whih an then be used indeoding. (Of ourse, this leads to loss in information, but is often done foronsiderations of deoding omplexity.) A partiularly simple quantizationis to deode a signal x into 1 if x ≥ 0 and into −1 if x < 0. This e�etivelyonverts an AWGN hannel with variane σ2 into a BSC with rossoverprobability Q(1/σ) = 1√
2π

∫∞
1/σ

e−x2/2dx. It should not ome as a surprisethat the apaity of the resulting BSC falls well short of the apaity of theBIAWGN.All the above hannels have the following output-symmetry property: Foreah possible hannel output q, p(y = q|x = 1) = p(y = −q|x = −1). (Here
p(y|x) denotes the onditional probability that the hannel output equals ygiven the hannel input is x.)We will fous a good deal of attention on the BEC. Being a very simplehannel, it serves as a good warm-up to develop the entral ideas, and at thesame time ahieving apaity on the BEC with iterative deoding of LDPCodes is tehnially non-trivial. The ideas whih were originally developedfor erasure odes in [16℄ have been generalized for more general hannels,inluding the BSC and BIAWGN, with great suess [17, 23, 22℄. Yet, todate the BEC is the only hannel known for whih one an provably getarbitrarily lose to apaity via iterative deoding of (an ensemble of) LDPCodes. So naturally, given our fous on the theoretial aspets, the BEC isof partiular interest.2.3 Spirit of the resultsThe entral goal of researh in hannel oding is the following: given a par-tiular hannel, �nd a family of odes whih have fast (ideally linear-time)enoding algorithms and whih an be reliably deoded in linear time at ratesarbitrarily lose to hannel apaity. This is, of ourse, also the goal of theline of work on LDPC odes.In �pratie� one of the things that seems to get people exited are plotsof the signal-to-noise ratio (SNR) vs bit error probability (BER) for �nite-length odes found by non-trivial optimization based on theoretial insights,followed by simulation on, say, the BIAWGN hannel. Inspired by the re-markable suess on the BEC [16℄, this approah was pioneered for LDPCodes in the presene of errors in [31, 17℄, ulminating in the demonstrationof odes for the BIAWGN hannel in [22℄ that beat turbo odes and get verylose to the Shannon limit.Sine this artile is intended for a theory audiene, our fous will be onthe �worst� hannel parameter (whih we all threshold) for whih one anprove that the deoding will be suessful with probability approahing 1



in the asymptoti limit as the blok length grows to in�nity. The relevanthannel parameters for the BEC, BSC, and BIAWGN are, respetively, theerasure probability, rossover probability, and the variane of the Gaussiannoise. The threshold is like the random apaity for a given ode (or ensembleof odes) and a partiular deoder. Normally for studying apaity we �x thehannel and ask what is the largest rate under whih reliable ommuniationis possible, whereas here we �x the rate and ask for the worst hannel underwhih probability of misommuniation tends to zero. Of ourse, the goal isto attain as a large a threshold as possible, ideally approahing the Shannonlimit (for example, 1 − α for BECα and 1 − H(p) for BSCp).3 Simple onatenated shemes to ahieve a-paity on BEC and BSCWe ould onsider the hannel oding problem solved (at least in theory) on agiven hannel if we have expliit odes, with e�ient algorithms for enodingand reliable deoding at rates within any desired ε of apaity. Ideally, therun time of the algorithms should be linear in the blok length n, and alsodepend polynomially on 1/ε. (But as we will see later, for ertain hannelslike the BEC, we an have a runtime of O(n log(1/ε)), or even better cn with
c independent of ε, if we allow randomization in the onstrution.) In thissetion, we disuss some �simple� attaks on this problem for the BEC andBSC, why they are not satisfatory, and the basi hallenges this raises (someof whih are addressed by the line of work on LDPC odes).For the BEC, one we have the desription of the generator matrix of alinear ode that ahieves apaity, we an deode in O(n3) time by solvinga linear system (the deoding sueeds if the system has a unique solution).Sine a random linear ode ahieves apaity with high probability [5℄, wean sample a random generator matrix, thus getting a ode that works withhigh probability (together with a ubi time algorithm). However, we do notknow any method to ertify that the hosen ode indeed ahieves apaity.The drawbaks with this solution are the ubi time and randomized natureof the onstrution.A onstrution using onatenated odes gets around both these shortom-ings. The idea originates in Forney's work [7℄ that was the �rst to presentodes approahing apaity with polynomial time enoding and deodingalgorithms.Let α be the erasure probability of the BEC and say our goal is to on-strut a ode of rate (1−α−ε) that enables reliable ommuniation on BECα.



Let C1 be a linear time enodable/deodable binary ode of rate (1 − ε/2)that an orret a small onstant fration γ = γ(ε) > 0 of worst-ase era-sures. Suh odes were onstruted in [30, 1℄. For the onatenated oding,we do the following. For some parameter b, we blok the odeword of C1into bloks of size b, and then enode eah of these bloks by a suitable innerbinary linear ode C2 of dimension b and rate (1− α− ε/2). The inner odewill be piked so that it ahieves the apaity of the BECα, and spei�allyreovers the orret message with suess probability at least 1 − γ/2. For
b = b(ε, γ) = Ω

(

log(1/γ)
ε2

), a random ode meets this goal with high prob-ability, so we an �nd one by brute-fore searh (that takes onstant timedepending only on ε).The deoding proeeds as one would expet: �rst eah of the inner bloksis deoded, by solving a linear system, returning either deoding failure orthe orret value of the blok. (There are no errors, so when suessful, thedeoder knows it is orret.) Sine the inner bloks are hosen to be largeenough, eah inner deoding fails with probability at most γ/2. Sine thenoise on di�erent bloks are independent, by a Cherno� bound, exept withexponentially small probability, we have at most a fration γ of erasuresin the outer odeword. These are then handled by the linear-time erasuredeoder for C1.We onlude that, for the BECα, we an onstrut odes of rate 1 − α −
ε, i.e., within ε of apaity, that an be enoded and deoded in n/εO(1)time. While this is pretty good, the brute-fore searh for the inner ode isunsatisfying, and the BEC is simple enough that better runtimes (suh as
O(n log(1/ε))) are ahieved by ertain irregular LDPC odes.A similar approah an be used for the BSCp. The outer ode C1 must bepiked so that it an orret a small fration of worst-ase errors � again,suh odes of rate lose to 1 with linear time enoding and deoding areknown [30, 13℄. Everything works as above, exept that the deoding ofthe inner odes, where we �nd the odeword of C2 losest to the reeivedblok, requires a brute-fore searh and this takes 2b = 2Ω(1/ε2) time. Thisan be improved to polynomial in 1/ε by building a look-up table, but thenthe size of the look-up table, and hene the spae omplexity and time forpreomputing the table, is exponential in 1/ε.In summary, for the BSCp, we an onstrut odes of rate 1 − H(p) − ε,i.e., within ε of apaity, that an be enoded in n/εO(1) time and whih anbe reliably deoded in n21/εO(1) time. It remains an important open questionto obtain suh a result with deoding omplexity n/εO(1), or even poly(n/ε).66We remark that asymptotially, with ε �xed and n → ∞, the exponential dependeneon 1/ε an be absorbed into an additional fator with a slowly growing dependene on n.



We also want to point out that reently an alternate method using LP de-oding has been used to obtain polynomial time deoding at rates arbitrarilylose to apaity [6℄. But this also su�ers from a similar poor dependene onthe gap ε to apaity.4 Message-passing iterative deoding: An ab-strat view4.1 Basi StrutureWe now disuss the general struture of natural message-passing iterativedeoding algorithms, as disussed, for example, in [23℄. In these algorithms,messages are exhanged between the variable and hek nodes in disrete timesteps. Initially, eah variable node vj , 1 ≤ j ≤ n, has an assoiated reeivedvalue rj , whih is a random variable taking values in the hannel outputalphabet Y . Based on this, eah variable sends a message belong to somemessage alphabet M. A ommon hoie for this initial message is simplythe reeived value rj, or perhaps some quantized version of rj for ontinuousoutput hannels suh as BIAWGN. Now, eah hek node c proesses themessages it reeives from its neighbors, and sends bak a suitable message in
M to eah of its neighboring variable nodes. Upon reeipt of the messagesfrom the hek nodes, eah variable node vj uses these together with its ownreeived value rj to produe new messages that are sent to its neighboringhek nodes. This proess ontinues for many time steps, till a ertain ap onthe number of iterations is reahed. In the analysis, we are interested in theprobability of inorret deoding, suh as the bit-error probability. For everytime step i, i ∈ N, the i'th iteration onsists of a round hek-to-variable nodemessages, followed by the variable nodes responding with their messages tothe hek nodes. The 0'th iteration onsists of dummy messages from thehek nodes, followed by the variable nodes sending their reeived values tothe hek nodes.A very important ondition in the determination of the next messagebased on the messages reeived from the neighbors is that message sent by
u along an edge e does not depend on the message just reeived along edge e.This is important so that only �extrinsi� information is passed along from anode to its neighbor in eah step. It is exatly this restrition that leads tothe independene ondition that makes analysis of the deoding possible.However, sine in pratie one is interested in moderate blok length odes, say n ≤ 106,a target runtime suh as O(n/ε) seems like a lean way to pose the underlying theoretialquestion.



In light of the above restrition, the iterative deoding an be desribedin terms of the following message maps: Ψ
(ℓ)
v : Y ×Mdv−1 → M for variablenode v with degree dv for the ℓ'th iteration, ℓ ≥ 1, and Ψ

(ℓ)
c : Mdv−1 → Mfor hek node c with degree dc. Note the message maps an be di�erent fordi�erent iterations, though several powerful hoies exist where they remainthe same for all iterations (and we will mostly disuss suh deoders). Also,while the message maps an be di�erent for di�erent variable (and hek)nodes, we will use the same map (exept for the obvious dependene on thedegree, in ase of irregular graphs).The intuitive interpretation of messages is the following. A message issupposed to be an estimate or guess of a partiular odeword bit. For mes-sages that take ±1 values, the guess on the bit is simply the message itself.We an also add a third value, say 0, that would signify an erasure or ab-stention from guessing the value of the bit. More generally, messages antake values in a larger disrete domain, or even take ontinuous values. Inthese ases the sign of the message is the estimated value of the odewordbit, and its absolute value is a measure of the reliability or on�dene in theestimated bit value.4.2 Symmetry AssumptionsWe have already disussed the output-symmetry ondition of the hannelswe will be interested in, i.e., p(y = q|x = 1) = p(y = −q|x = −1). We nowmention two reasonable symmetry assumptions on the message maps, whihwill be satis�ed by the message maps underlying the deoders we disuss:

• Chek node symmetry: Signs fator out of hek node messagemaps, i.e., for all (b1, . . . , bdc−1) ∈ {1,−1}dc−1

Ψ(ℓ)
c (b1m1, · · · , bdc−1mdc−1) =

(

dc−1
∏

i=1

bi

)

Ψ(ℓ)
c (m1, · · · , mdc−1) .

• Variable node symmetry: If the signs of all messages into a variablenode are �ipped, then the sign of its output gets �ipped:
Ψ(ℓ)

v (−m0,−m1, · · · ,−mdv−1) = −Ψ(ℓ)
v (m0, m1, · · · , mdc−1) .When the above symmetry assumptions are ful�lled and the hannel isoutput-symmetri, the deoding error probability is independent of the atualodeword transmitted. Indeed, it is not hard (see, for instane [23, Lemma1℄) to show that when a odeword (x1, . . . , xn) is transmitted and (y1, . . . , yn)



is reeived where yi = xizi, the messages to and from the variable node viare equal to xi times the orresponding message when the all-ones odewordis transmitted and (z1, . . . , zn) is reeived. Therefore, the entire behavior ofthe deoder an be predited from its behavior assuming transmission of theall-ones odeword (reall that we are using {1,−1} notation for the binaryalphabet). So, for the analysis, we will assume that the all-ones odewordwas transmitted.5 Regular LDPC odes and simple iterative de-odersWe will begin with regular LDPC odes and a theoretial analysis of simplemessage-passing algorithms for deoding them.5.1 Gallager's programThe story of LDPC odes and iterative deoding begins in Gallager's re-markable Ph.D. thesis ompleted in 1960, and later published in 1963 [8℄.Gallager analyzed the behavior of a ode piked randomly from the ensem-ble of (dv, dc)-regular LDPC odes of a large blok length. He proved thatwith high probability, as dv and dc inrease, the rate vs. minimum distanetrade-o� of the ode approahes the Gilbert-Varshamov bound. Gallageralso analyzed the error probability of maximum likelihood (ML) deoding ofrandom (dc, dc)-regular LDPC odes, and showed that LDPC odes are atleast as good on the BSC as the optimum ode a somewhat higher rate (referto [8℄ for formal details onerning this statement). This demonstrated thepromise of LDPC odes independently of their deoding algorithms (sineML deoding is the optimal deoding algorithm in terms of minimizing errorprobability).To omplement this statement, Gallager also proved a �negative� resultshowing that for eah �nite dc, there is a �nite gap to apaity on the BSCwhen using regular LDPC odes with hek node degrees dc More preisely,he proved that the largest rate that an be ahieved for BSCp with errorprobability going to zero is at most 1 − H(p)
H(pdc)

where pdc
= 1+(1−2p)dc

2
. Thislaim holds even for irregular LDPC odes with dc interpreted as the maxi-mum hek node degree. This shows that the maximum hek node degreeneeds to grow with the gap ε between the rate of the ode and apaity ofthe BSC.Sine only exponential time solutions to the ML deoding problem are



known, Gallager also developed simple, iterative deoding algorithms forLDPC odes. These form the preursor to the modern day message-passingalgorithms. More generally, he laid down the foundations of the followingprogram for determining the threshold hannel parameter below whih a suit-able LDPC ode an be used in onjuntion with a given iterative deoderfor reliable information transmission.Code onstrution: Construt a family of (dv, dc)-regular fator graphswith n variable nodes (for inreasing n) with girth greater than 4ℓ(n) =
Ω(log n). An expliit onstrution of suh graphs was also given byGallager [8, Appendix C℄.Analysis of Deoder: Determine the average fration of inorret7 mes-sages passed at the i'th iteration of deoding for i ≤ ℓ = ℓ(n) (assum-ing there are no yles of length at most 4ℓ). This fration is usuallyexpressed by a system of reursive equations that depend on dv, dc andthe hannel parameter (suh as rossover probability, in ase of theBSC).Threshold omputation: Using the above equations, ompute (analyti-ally or numerially) the threshold hannel parameter below whih theexpeted fration of inorret messages approahes zero as the numberof iterations inreases. Conlude that the hosen deoder when appliedto this family of odes with ℓ(n) deoding rounds leads to bit-errorprobability approahing zero as long as the hannel parameter is belowthe threshold.The reent researh on (irregular) LDPC odes shares the same essentialfeatures of the above program. The key di�erene is that the requirementof an expliit ode desription in Step 1 is relaxed. This is beause forirregular graphs with spei� requirements on degree distribution, expliitonstrutions of large girth graphs seem very hard. Instead, a fator graphhosen randomly from a suitable ensemble is used. This raises issues suh asthe onentration of the performane of a random ode around the averagebehavior of the ensemble. It also alls for justi�ation of the large girthassumption in the deoding. We will return to these aspets when we beginour disussion of irregular LDPC odes in Setion 6.We should point out that Gallager himself used random regular LDPCodes for his experiments with iterative deoders for various hannels suhas the BSC, the BIAWGN, and the Rayleigh fading hannel. However, if we7A message is inorret if the bit value it estimates is wrong. For transmission of theall-ones odeword, this means the message has a non-positive value.



so desire, for the analyti results, even expliit onstrutions are possible.In the rest of this setion, we assume an expliit large girth fator graph isused, and fous on the analysis of some simple and natural iterative deoders.Thus the only randomness involved is the one realizing the hannel noise.5.2 Deoding on the binary erasure hannelAlthough Gallager did not expliitly study the BEC, his methods ertainlyapply to it, and we begin by studying the BEC. For the BEC, there is essen-tially a unique hoie for a non-trivial message-passing deoding algorithm.In a variable-to-hek message round, a variable whose bit value is known(either from the hannel output or from a hek node in a previous round)passes along its value to the neighboring hek nodes, and a variable whosebit value is not yet determined passes a symbol (say 0) signifying erasure.In the hek-to-variable message round, a hek node c passes to a neighbor
v an erasure if it reeives an erasure from at least one neighbor besides v,and otherwise passes the bit value b to v where b is the parity of the bitsreeived from neighbors other than v. Formally, the message maps are givenas follows:
Ψ(ℓ)

v (r, m1, . . . , mdv−1) =

{

b if at least one of r, m1, . . . , mdv−1 equals b ∈ {1,−1}
0 if r = m1 = · · · = mdv−1 = 0(Note that the map is well-de�ned sine the inputs to a variable node willnever give on�iting ±1 votes on its value.)

Ψ(ℓ)
c (m1, . . . , mdc−1) =

dc−1
∏

i=1

miWe note that an implementation of the deoder is possible that uses eahedge of the fator for message passing exatly one. Indeed, one a variablenode's value is known, the bit value is ommuniated to its neighboringhek nodes, and this node (and edges inident on it) are removed fromthe graph. Eah hek node maintains the parity of the values reeivedfrom its neighboring variables so far, and updates this after eah round ofvariable messages (note that it reeives eah variable node's value exatlyone). When a hek node has degree exatly one (i.e., values of all but oneof its variable node neighbors are now known), it ommuniates the parityvalue it has stored to its remaining neighbor, and both the hek node andthe remaining edge inident on it are deleted. This version of the iterativedeoder has been dubbed the Peeling Deoder. The running time of the



Peeling Deoder is essentially the number of edges in the fator graph, andhene it performs about dv operations per odeword bit.Let us analyze this deoding algorithm for ℓ iterations, where ℓ is a on-stant (hosen large enough to ahieve the desired bit-error probability). Wewill assume that the fator graph does not have any yle of length at most
4ℓ (whih is ertainly true if it has Ω(log n) girth).The following is ruial to our analysis.Lemma 1. For eah node, the random variables orresponding to the mes-sages reeived by it in the i'th iteration are all independent, for i ≤ ℓ.Let us justify why the above is the ase. For this, we ruially use thefat that the message sent along an edge, say from v to c, does not depend onthe message that v reeives from c. Therefore, the information reeived at ahek node c (the situation for variable nodes is idential) from its neighborsin the i'th iteration is determined by by a omputation graph rooted at c,with its dc variable node neighbors as its hildren, the dv−1 neighbors besides
c of eah these variable nodes as their hildren, the dc − 1 other neighborsof these hek nodes as their hildren, and so on. Sine the girth of thegraph is greater than 4ℓ, the omputation graph is in fat a tree. Therefore,the information reeived by c from its neighbors in the i'th iteration are allindependent.Take an arbitrary edge (v, c) between variable node v and hek node c.Let us ompute the probability pi that the message from v to c in the i'thiteration is an erasure (using indution and the argument below, one anjustify the laim that this probability, whih is taken over the hannel noise,will be independent of the edge and only depend on the iteration number, aslong as i ≤ ℓ). For i = 0, p0 = α, the probability that the bit value for v waserased by the BECα. In the (i + 1)'st iteration, v passes an erasure to c i� itwas originally erased by the hannel, and it reeived an erasure from eah ofits dv − 1 neighbors other than c. Eah of these neighboring hek nodes c′in turn sends an erasure to v i� at least one neighbor of c′ other than v sentan erasure to c′ during iteration i � due to the independene of the involvedmessages, this event ours for node c′ with probability (1 − (1 − pi)

dc−1).Again, beause the messages from various hek nodes to v in the (i + 1)'stround are independent, we have
pi+1 = α · (1 − (1 − pi)

dc−1)dv−1 . (1)By linearity of expetation, pi is the expeted fration of variable-to-hekmessages sent in the i'th iteration that are erasures. We would like to showthat limℓ→∞ pℓ = 0, so that the bit-error probability of the deoding vanishes



as the number of iterations grows. The largest erasure probability α forwhih this happens is given by the following lemma.Lemma 2. The threshold erasure probability αMP(dv, dc) for the BEC belowwhih the message-passing algorithm results in vanishing bit-erasure proba-bility is given by
αMP(dv, dc) = min

x∈[0,1]

x

(1 − (1 − x)dc−1)dv−1
. (2)Proof. By de�nition, αMP(dv, dc) = sup{α ∈ [0, 1] : limi→∞ pi = 0} where piis as de�ned reursively in (1). De�ne the funtions g(x) = x

(1−(1−x)dc−1)dv−1 ,and f(α, x) = α(1 − (1 − x)dc−1)dv−1. Also let α∗ = minx∈[0,1] g(x). We wishto prove that αMP(dv, dc) = α∗.If α < α∗, then for every x ∈ [0, 1], f(α, x) = αx
g(x)

≤ α∗x
g(x)

≤ x, and infat f(α, x) < x for x ∈ (0, 1]. Hene it follows that pi+1 = f(α, pi) ≤ pi andsine 0 ≤ f(α, x) ≤ α for all x ∈ [0, 1], the probability onverges to a value
p∞ ∈ [0, α]. Sine f is ontinuous, we have p∞ = f(α, p∞), whih implies
p∞ = 0 (sine f(α, x) < x for x > 0). This shows that αMP(dv, dc) ≥ α∗.Conversely, if α > α∗, then let x0 ∈ [0, 1] be suh that α > g(x0). Then
α ≥ f(α, x0) = αx0

g(x0)
> x0, and of ourse f(α, α) ≤ α. Sine f(α, x) is aontinuous funtion of x, we must have f(α, x∗) = x∗ for some x∗ ∈ (x0, α].For the reursion (1) with a �xed value of α, it is easy to see by indutionthat if p0 ≥ p′0, then pi ≥ p′i for all i ≥ 1. If p′0 = x∗, then we have p′i = x∗for all i. Therefore, when p0 = α ≥ x∗, we have pi ≥ x∗ for all i as well. Inother words, the error probability stays bounded below by x∗ irrespetive ofthe number of iterations. This proves that αMP(dv, dc) ≤ α∗.Together, we have exatly determined the threshold to be α∗ =

minx∈[0,1] g(x).Remark 3. Using standard alulus, we an determine αMP(dv, dc) to be
1−γ

(1−γdc−1)dv−1 where γ is the unique positive root of the polynomial p(x) =

((dv − 1)(dc − 1) − 1)xdc−2 −
∑dc−3

i=0 xi. Note that when dv = 2, p(1) = 0, sothe threshold equals 0. Thus we must pik dv ≥ 3, and hene dc ≥ 4 (to havepositive rate). For the hoie dv = 3 and dc = 4, p(x) is a quadrati and wean analytially ompute αMP(3, 4) ≈ 0.6474; note that apaity for this rateequals 3/4 = 0.75. (The best threshold one an hope for equals dv/dc sine therate is at least 1 − dv/dc.) Closed form analyti expressions for some othersmall values of (dv, dc) are given in [2℄: for example, αMP(3, 5) ≈ 0.5406(ompare to apaity of 0.6) and αMP(3, 6) ≈ 0.4294 (ompare to apaity of
0.5).



Theorem 4. For integers 3 ≤ dv < dc, there exists an expliit family ofbinary linear odes of rate at least 1− dv

dc
that an be reliably deoded in lineartime on BECα provided α < αMP(dv, dc).85.3 Deoding on the BSCThe relatively lean analysis of regular LDPC odes on the BEC is surelyenouraging. As mentioned earlier, Gallager in fat did not onsider the BECin his work. We now disuss one of his deoding algorithms for the BSC, thathas been dubbed Gallager's Algorithm A, and some simple extensions of it.5.3.1 Gallager's Algorithm AThe message alphabet of Algorithm A will equal {1,−1}, so the nodes simplypass guesses on odeword bits. The message maps are time invariant and donot depend on the iteration number, so we will omit the supersript indiatingthe iteration number in desribing the message maps. The hek nodes senda message to a variable node indiating the parity of the other neighboringvariables, or formally:

Ψc(m1, . . . , mdc−1) =

dc−1
∏

i=1

mi .The variable nodes send to a neighboring hek node their original reeivedvalue unless the inoming messages from the other hek nodes unanimouslyindiate otherwise, in whih ase it sends the negative of the reeived value.Formally,
Ψv(r, m1, . . . , mdv−1) =

{

−r if m1 = · · · = mdv−1 = −r
r otherwise .As in the ase of BEC, we will trak the expeted fration of variable-to-heknode messages that are erroneous in the i'th iteration. Sine we assume theall-ones odeword was transmitted, this is simply the expeted fration ofmessages that equal −1. Let pi be the probability (over the hannel noise)that a partiular variable-to-hek node message in iteration i equals −1 (as8Our analysis showed that the bit-error probability an be made below any desired ε > 0by piking the number of iterations to be a large enough onstant. A more areful analysisusing ℓ(n) = Ω(log n) iterations shows that bit-error probability is at most exp(−nβ) forsome onstant β = β(dv, dc). By a union bound, the entire odeword is thus orretlyreovered with high probability.



in the ase of the BEC, this is independent of the atual edge for i ≤ ℓ).Note that we have p0 = p, the rossover probability of the BSC.It is a routine alulation using the independene of the inoming mes-sages to prove the following reursive equation [8, Se. 4.3℄, [23, Se III℄:
pi+1 = p0 − p0

(

1 + (1 − 2pi)
dc−1

2

)dv−1

+ (1 − p0)

(

1 − (1 − 2pi)
dc−1

2

)dv−1(3)For a �xed value of p0, pi+1 is a inreasing funtion of pi, and for a �xed valueof pi, pi+1 is an inreasing funtion of p0. Therefore, by indution pi is aninreasing funtion of p0. De�ne the threshold value of this algorithm �A� as
pA(dv, dc) = sup{p0 ∈ [0, 1] : limℓ→∞ pℓ = 0}. By the above argument, if therossover probability p < pA(dv, dc), then the expeted fration of erroneousmessages in the ℓ'th iteration approahes 0 as ℓ → ∞.Regardless of the exat quantitative value, we want to point out thatwhen dv ≥ 3, the threshold is positive. Indeed, for dv > 2, for small enough
p0 > 0, one an see that pi+1 < pi for 0 < pi ≤ p0 and pi+1 = pi for pi = 0,whih means that limi→∞ pi = 0.Exat analyti expressions for the threshold have been omputed for somespeial ases [2℄. This is based on the haraterization of pA(dv, dc) as thesupremum of all p0 > 0 for whih

x = p0 − p0

(

1 + (1 − 2x)dc−1

2

)dv−1

+ (1 − p0)

(

1 − (1 − 2x)dc−1

2

)dv−1does not have a stritly positive solution x with x ≤ p0. Below are someexample values of the threshold (up to the stated preision). Note that therate of the ode is 1 − dv/dc and the Shannon limit is H−1(dv/dc) (where
H−1(y) for 0 ≤ y ≤ 1 is de�ned as the unique value of x ∈ [0, 1/2] suh that
H(x) = y).

dv dc pA(dv, dc) Capaity3 6 0.0395 0.114 8 1/21 0.115 10 1/36 0.114 6 1/15 0.1743 4 0.106 0.2153 5 0.0612 0.1465.3.2 Gallager's Algorithm BGallager proposed an extension to the above algorithm, whih is now alledGallager's Algorithm B, in whih a variable node deides to �ip its value in



an outgoing message when at least b of the inoming messages suggest thatit ought to �ip its value. In Algorithm A, we have b = dv − 1. The threshold
b an also depend on the iteration number, and we will denote by bi thisvalue during the i'th iteration. Formally, the variable message map in the
i'th iteration is given by

Ψ(i)
v (r, m1, . . . , mdv−1) =

{

−r if |{j : mj = −r}| ≥ bi

r otherwise .The hek node message maps remain the same. The threshold should begreater than (dv − 1)/2 sine intuitively one should �ip only when morehek nodes suggest a �ip than those that suggest the reeived value. Sowhen dv = 3, the above algorithm redues to Algorithm A.De�ning the probability of an inorret variable-to-hek node messagein the i'th iteration to be p̃i, one an show the reurrene [8, Se. 4.3℄:
p̃i+1 = p̃0 − p̃0

dv−1
∑

j=bi+1

(

dv−1
j

)

(

1 + (1 − 2p̃i)
dc−1

2

)j (
1 − (1 − 2p̃i)

dc−1

2

)dv−1−j

+ (1 − p̃0)
dv−1
∑

j=bi+1

(

dv−1
j

)

(

1 + (1 − 2p̃i)
dc−1

2

)dv−1−j (
1 − (1 − 2p̃i)

dc−1

2

)jThe ut-o� value bi+1 an then be hosen to minimize this value. The solutionto this minimization is the smallest integer bi+1 for whih
1 − p̃0

p̃0
≤
(

1 + (1 − 2p̃i)
dc−1

1 − (1 − 2p̃i)dc−1

)2bi+1−dv+1

.By the above expression, we see that as p̃i dereases, bi+1 never inreases.And, as p̃i is su�iently small, bi+1 takes the value dv/2 for even dv and
(dv + 1)/2 for odd dv. Therefore, a variable node �ips its value when amajority of the dv −1 inoming messages suggest that the reeived value wasan error. We note that this majority riterion for �ipping a variable node'sbit value was also used in deoding of expander odes [29℄.Similar to the analysis of Algorithm A, using the above reurrene, onean show that when dv ≥ 3, for su�iently small p0 > 0, we have pi+1 < piwhen 0 < pi ≤ p0, and of ourse when pi = 0, we have pi+1 = 0. Therefore,when dv ≥ 3, for small enough p0 > 0, we have limi→∞ pi = 0 and thus apositive threshold.The values of the threshold of this algorithm for small pairs (dv, dc) appearin [23℄. For the pairs (4, 8), (4, 6) and (5, 10) the thresholds are about 0.051,
0.074, and 0.041 respetively. For omparison, for these pairs Algorithm Aahieved a threshold of about 0.047, 0.066, and 0.027 respetively.



5.3.3 Using Erasures in the DeoderIn both the above algorithms, eah message made up its mind on whetherto guess 1 or −1 for a bit. But it may be judiious to sometimes abstainfrom guessing, i.e., to send an �erasure� message (with value 0), if thereis no good reason to guess one way or the other. For example, this maybe the appropriate ourse of ation if a variable node reeives one-half 1'sand one-half −1's in the inoming hek node messages. This motivates analgorithm with message alphabet {1, 0,−1} and the following message maps(in iteration ℓ):
Ψ(ℓ)

v (r, m1, m2, . . . , mdv−1) = sgn

(

w(ℓ)r +

dv−1
∑

j=1

mj

)and
Ψ(ℓ)

c (m1, m2, . . . , mdc−1) =

dc−1
∏

j=1

mj .The weight w(ℓ) ditates the relative importane given to the reeived valueompared to the suggestions by the hek nodes in the ℓ'th iteration. Theseweights add another dimension of design hoies that one an optimize.Exat expressions for the probabilities p
(−1)
i and p

(0)
i ) that a variable-to-hek message is an error (equals −1) and an erasure (equals 0) respetivelyin the i'th iteration an be written down [23℄. These an be used to pikappropriate weights w(i). For the (3, 6)-regular ode, w(1) = 2 and w(i) = 1for i ≥ 2 is reported as the optimum hoie in [23℄, and using this hoiethe resulting algorithm has a threshold of about 0.07, whih is a good im-provement over the 0.04 ahieved by Algorithm A. More impressively, this islose to the threshold of 0.084 ahieves by the �optimal� belief propagationdeoder. A heuristi to pik the weights w(i) is suggested in [23℄ and thethreshold of the resulting algorithm is omputed for small values of (dv, dc).5.4 Deoding on BIAWGNWe now brie�y turn to the BIAWGN hannel. We disussed the most ob-vious quantization of the hannel output whih onverts the hannel to aBSC with rossover probability Q(1/σ). There is a natural way to inor-porate erasures into the quantization. We pik a threshold τ around zero,and quantize the AWGN hannel output r into −1, 0 (whih orrespondsto erasure), or 1 depending on whether r ≤ −τ , −τ < r < τ , or r ≥ τ ,respetively. We an then run exatly the above message-passing algorithm



(the one using erasures). More generally, we an pik a separate threshold
τi for eah iteration i � the hoie of τi and w(i) an be optimized usingsome heuristi riteria. Using this approah, a threshold of σ∗ = 0.743 is re-ported for ommuniation using a (3, 6)-regular LDPC ode on the BIAWGNhannel. This orresponds to a raw bit-error probability of Q(1/σ∗) = 0.089,whih is almost 2% greater than the threshold rossover probability of about
0.07 ahieved on the BSC. So even with a ternary message alphabet, provid-ing soft information (instead of quantized hard bit deisions) at the input tothe deoder an be lead to a good performane gain. The belief propagationalgorithm we disuss next uses a muh large message alphabet and yieldsfurther substantial improvements for the BIAWGN.5.5 The belief propagation deoderSo far we have disussed deoders with quantized, disrete messages takingon very few values. Naturally, we an expet more powerful deoders if moredetailed information, suh as real values quantifying the likelihood of a bitbeing ±1, are passed in eah iteration. We now desribe the �belief propaga-tion� (BP) deoder whih is an instane of suh a deoder (using a ontinuousmessage alphabet). We follow the desription in [23, Se. III-B℄. In beliefpropagation, the messages sent along an edge e represent the posterior ondi-tional distribution on the bit assoiated with the variable node inident on e.This distribution orresponds to a pair of nonnegative reals p1, p−1 satisfying
p1 + p−1 = 1. This pair an be enoded as a single real number (inluding
±∞) using the log-likelihood ratio log p1

p−1
, and the messages used by the BPdeoder will follow this representation.Eah node ats under the assumption that eah message ommuniatedto it in a given round is a onditional distribution on the assoiated bit, andfurther eah suh message is onditionally independent of the others. Uponreeiving the messages, a node transmits to eah neighbor the onditionaldistribution of the bit onditioned on all information exept the informationfrom that neighbor (i.e., only extrinsi information is used in omputing amessage). If the graph has large enough girth ompared to the number ofiterations, this assumption is indeed met, and the messages at eah iterationre�et the true log-likelihood ratio given the observed values in the treeneighborhood of appropriate depth.If l1, l2, . . . , lk are the likelihood ratios of the onditional distribution of abit onditioned on independent random variables, then the likelihood ratioof the bit value onditioned on all of the random variables equals ∏k

i=1 li.Therefore, log-likelihoods of independent messages add up, and this leads to



the variable message map (whih is independent of the iteration number):
Ψv(m0, m1, . . . , mdv−1) =

dv−1
∑

i=0

miwhere m0 is the log-likelihood ratio of the bit based on the reeived value(eg., for the BSCp, m0 = r log 1−p
p

where r ∈ {1,−1} is the reeived value).The performane of the deoder is analyzed by traking the evolution ofthe probability density of the log-likelihood ratios (hene the name �den-sity evolution� for this style of analysis). By the above, given densities
P0, P1, . . . , Pdv−1 on the real quantities m0, m1, . . . , mdv−1, the density of
Ψv(m0, m1, . . . , mdv−1) is the onvolution P0 ⊗ P1 ⊗ · · · ⊗ Pdv−1 over the re-als of those densities. In the omputation, one has P1 = P2 = · · · = Pdv−1and the densities will be quantized, and the onvolution an be e�ientlyomputed using the FFT.Let us now turn to the situation for hek nodes. Given bits bi, 1 ≤ i ≤ k,with independent probability distributions (pi

1, p
i
−1), what is the distribution

(p1, p−1) of the bit b =
∏k

i=1 bi? We have the expetation
E[b] = E[

∏

i

bi] =
∏

i

E[bi] =
∏

i

(pi
1 − pi

−1) .Therefore we have p1 − p−1 =
∏k

i=1(p
i
1 − pi

−1). Now if m is the log-likelihoodratio log p1

p−1
, then p1−p−1 = em−1

em+1
= tanh(m/2). Conversely, if p1−p−1 = q,then log p1

p−1
= log 1+q

1−q
. These alulations lead to the following hek nodemap for the log-likelihood ratio:

Ψc(m1, m2, . . . , mdc−1) = log

(

1 +
∏dc−1

i=1 tanh(mi/2)

1 −∏dc−1
i=1 tanh(mi/2)

)

.It seems ompliated to trak the density of Ψc(m1, m2, . . . , mdc−1) based onthose of the mi's. However, as shown in [23℄, this an be also be realizedvia a Fourier transform, albeit with a slight hange in representation of theonditional probabilities (p1, p−1). We skip the details and instead point thereader to [23, Se. III-B℄.Using these ideas, we have an e�etive algorithm to reursively ompute,to any desired degree of auray, the probability density P (ℓ) of the log-likelihood ratio of the variable-to-hek node messages in the ℓ-th iteration,starting with an expliit desription of the initial density P (0). The initialdensity is simply the density of the log-likelihood ratio of the reeived value,



assuming transmission of the all-ones odeword; for example, for BSCp, theinitial density P (0) is given by
P (0)(x) = pδ

(

x − log
p

1 − p

)

+ (1 − p)δ

(

x − log
1 − p

p

)

,where δ(x) is the Dira delta funtion.The threshold rossover probability for the BSC and the threshold vari-ane for the BIAWGN under belief propagation deoding for various smallvalues of (dv, dc) are omputed by this method and reported in [23℄. Forthe (3, 6) LDPC ode, these thresholds are respetively p∗ = 0.084 (omparewith Shannon limit of 0.11) and σ∗ = 0.88 (ompare with Shannon limit of
0.9787).The above numerial proedure for traking the evolution of densities forbelief propagation and omputing the assoiated threshold to any desireddegree of auray has sine been applied with great suess. In [22℄, theauthors apply this method to irregular LDPC odes with optimized strutureand ahieve a threshold of σ∗ = 0.9718 with rate 1/2 for the BIAWGN, whihis a mere 0.06 dB way from the Shannon apaity limit.96 Irregular LDPC odesInterest in LDPC odes surged following the seminal paper [16℄ that initiatedthe study of irregular LDPC odes, and proved their potential by ahievingthe apaity on the BEC. Soon, it was realized that the bene�ts of irregularLDPC odes extend to more powerful hannels, and this led to a �urry ofativity. In this setion, we desribe some of the key elements of the analytiapproah used to to study message-passing deoding algorithms for irregularLDPC odes.6.1 Intuitive bene�ts of irregularityWe begin with some intuition on why one might expet improved perfor-mane by using irregular graphs. In terms of iterative deoding, from thevariable node perspetive, it seems better to have high degree, sine themore information it gets from hek nodes, the more aurately it an guessits orret value. On the other hand, from the hek node perspetive, thelower its degree, the more valuable the information it an transmit bak to9The threshold signal-to-noise ratio 1/(σ∗)2 = 0.2487 dB, and the Shannon limit forrate 1/2 is 0.187 dB.



its neighbors. (The XOR of several mildly unpreditable bits has a muhlarger unpreditability.) But in order to have good rate, there should befar fewer hek nodes than variable nodes, and therefore meeting the aboveompeting requirements is hallenging. Irregular graphs provide signi�antlymore �exibility in balaning the above inompatible degree requirements. Itseems reasonable to believe that a wide spread of degrees for variable nodesould be useful. This is beause one might expet that variable nodes withhigh degree will onverge to their orret value quikly. They an then pro-vide good information to the neighboring hek nodes, whih in turn providebetter information to lower degree variable nodes, and so on leading to aasaded wave e�et.The big hallenge is to leap from this intuition to the design of appropriateirregular graphs where this phenomenon provably ours, and to provideanalyti bounds on the performane of natural iterative deoders on suhirregular graphs.Compared to the regular ase, there are additional tehnial issues revolv-ing around how irregular graphs are parameterized, how they are onstruted(sampled), and how one deals with the lak of expliit large-girth onstru-tions. We disuss these issues in the next two subsetions.6.2 The underlying ensemblesWe now desribe how irregular LDPC odes an be parameterized and on-struted (or rather sampled). Assume we have an LDPC ode with n variablenodes with Λi variable nodes of degree i and Pi hek nodes of degree i. Wehave ∑i Λi = n, and ∑i iΛi =
∑

i iPi as both these equal the number ofedges in the graph. Also∑i Pi = n(1− r) where r is the designed rate of theode. It is onvenient to apture this information in the ompat polynomialnotation:
Λ(x) =

dmax
v
∑

i=2

Λix
i , P (x) =

dmax
c
∑

i=1

Pix
i .We all the polynomials Λ and P the variable and hek degree distributionsfrom a node perspetive. Note that Λ(1) is the number of variable nodes,

P (1) the number of hek nodes, and Λ′(1) = P ′(1) the number of edges.Given suh a degree distribution pair (Λ, P ), let LDPC(Λ, P ) denote the�standard� ensemble of bipartite (multi)graphs with Λ(1) variable nodes and
P (1) hek nodes, with Λi variable nodes and Pi hek nodes of degree i. Thisensemble is de�ned by taking Λ′(1) = P ′(1) �sokets� on eah side, alloating
i sokets to a node of degree i in some arbitrary manner, and then piking arandom mathing between the sokets.



To eah member of LDPC(Λ, P ), we assoiate the ode of whih it is thefator graph. A slight tehniality: sine we are dealing with multigraphs,in the parity hek matrix, we plae a non-zero entry at row i and olumn ji� the ith hek node is onneted to the jth variable node an odd numberof times. Therefore, we an think of the above as an ensemble of odes, andby abuse of notation also refer to it as LDPC(Λ, P ). (Note that the graphshave a uniform probability distribution, but the indued odes need not.) Inthe sequel, our LDPC odes will be obtained by drawing a random elementfrom the ensemble LDPC(Λ, P ).To onstrut a family of odes, one an imagine using a normalized de-gree distribution giving the fration of nodes of a ertain degree, and thenonsidering an inreasing number of nodes. For purposes of analysis, it endsup being onvenient to use normalized degree distributions from the edgeperspetive. Let λi and ρi denote the fration of edges inident to variablenodes and hek nodes of degree i respetively. That is, λi (resp. ρi) is theprobability that a randomly hosen edge is onneted to a variable (resp.hek) node of degree i. These distributions an be ompatly written interms of the power series de�ned below:
λ(x) =

∑

i

λix
i−1 , ρ(x) =

∑

i

ρix
i−1 .It is easily seen that λ(x) = Λ′(x)

Λ′(1)
and ρ(x) = P ′(x)

P ′(1)
. If M is the total numberof edges, then the number of variable nodes of degree i equals Mλi/i, andthus the total number of variable nodes is M

∑

i λi/i. It follows that that theaverage variable node degree equals 1
P

i λi/i
= 1

R 1
0

λ(z)dz
. Likewise, the averagehek node degree equals 1

R 1
0 ρ(z)dz

. It follows that the designed rate an beexpressed in terms of λ, ρ as
r = r(λ, ρ) = 1 −

∫ 1

0
ρ(z)dz

∫ 1

0
λ(z)dz

. (4)We also have the inverse relationships
Λ(x)

n
=

∫ x

0
λ(z)dz

∫ 1

0
λ(z)dz

,
P (x)

n(1 − r)
=

∫ x

0
ρ(z)dz

∫ 1

0
ρ(z)dz

. (5)Therefore, (Λ, P ) and (n, λ, ρ) arry the same information (in the sense wean obtain eah from the other). For the asymptoti analysis we use (n, λ, ρ)to refer to the LDPC ode ensemble. There is a slight tehniality that forsome n, the (Λ, P ) orresponding to (n, λ, ρ) may not be integral. In this



ase, rounding the individual node distributions to the losest integer hasnegligible e�et on the asymptoti performane of deoder or the rate, andso this annoyane may be safely ignored.The degree distributions λ, ρ play a prominent role in the line of work,and the performane of the deoder is analyzed and quanti�ed in terms ofthese.6.3 Conentration around average performaneGiven a degree distribution pair (λ, ρ) and a blok length n, the goal is tomimi Gallager's program (outlined in Setion 5.1), using a fator graph withdegree distribution (λ, ρ) in plae of a (dv, dc)-regular fator graph. However,the task of onstruting expliit large girth graphs obeying preise irregulardegree distributions seems extremely di�ult. Therefore, a key di�erene isto give up on expliitness, and rather sample an element from the ensemble
LDPC(n, λ, ρ), whih an be done easily as mentioned above.It is not very di�ult to show that a random ode drawn from the ensem-ble will have the needed girth (and thus be tree-like in a loal neighborhood ofevery edge/vertex) with high probability; see for instane [23, Appendix A℄.A more deliate issue is the following: For the irregular ase the neighborhoodtrees out of di�erent nodes have a variety of di�erent possible strutures, andthus analyzing the behavior of the deoder on a spei� fator graph (after ithas been sampled, even onditioning on it having large girth) seems hopeless.What is feasible, however, is to analyze the average behavior of the deoder(suh as the expeted fration, say P

(λ,ρ)
n (ℓ), of erroneous variable-to-hekmessages in the ℓ'th iteration) taken over all instanes of the ode drawnfrom the ensemble LDPC(n, λ, ρ) and the realization of the hannel noise.It an be shown that, as n → ∞, P
(λ,ρ)
n (ℓ) onverges to a ertain quantity

P
(λ,ρ)
T (ℓ), whih is de�ned as the probability (taken over both hoie of thegraph and the noise) that an inorret message is sent in the ℓ'th iterationalong an edge (v, c) assuming that the depth 2ℓ neighborhood out of v is atree.In order to de�ne the probability P

(λ,ρ)
T (ℓ) more preisely, one uses a �treeensemble� Tℓ(λ, ρ) de�ned indutively as follows. T0(λ, ρ) onsists of thetrivial tree onsisting of just a root variable node. For ℓ ≥ 1, to sample from

Tℓ(λ, ρ), �rst sample an element from Tℓ−1(λ, ρ). Next for eah variable leafnode (independently), with probability λi+1 attah i hek node hildren.Finally, for eah of the new hek leaf nodes, independently attah i variablenode hildren with probability ρi+1. The quantity P
(λ,ρ)
T (ℓ) is then formallyde�ned as the probability that the outgoing message from the root node of a



sample T from Tℓ(λ, ρ) is inorret, assuming the variable nodes are initiallylabeled with 1 and then the hannel noise ats on them independently (theprobability is thus both over the hannel noise and the hoie of the sample
T from Tℓ(λ, ρ)).The onvergene of P

(λ,ρ)
n (ℓ) to P

(λ,ρ)
T (ℓ) is a simple onsequene of thefat that, for a random hoie of the fator graph from LDPC(n, λ, ρ), thedepth 2ℓ neighborhood of an edge is tree-like with probability tending to 1as n gets larger (for more details, see [23, Thm. 2℄).The quantity P

(λ,ρ)
T (ℓ) for the ase of trees is easily omputed, similar tothe ase of regular graphs, by a reursive proedure. One an then determinethe threshold hannel parameter for whih P

(λ,ρ)
T (ℓ) → 0 as ℓ → ∞.However, this only analyzed the average behavior of the ensemble ofodes. What we would like is for a random ode drawn from the ensemble

LDPC(n, λ, ρ) to onentrate around the average behavior with high prob-ability. This would mean that almost all odes behave alike and thus theindividual behavior of almost all odes is haraterized by the average be-havior of the ensemble (whih an be omputed as outlined above). A majorsuess of this theory is that suh a onentration phenomenon indeed holds,as shown in [17℄ and later extended to a large lass of hannels in [23℄. Theproof uses martingale arguments where the edges of the fator graph andthen the inputs to the deoder are revealed one by one. We refrain from pre-senting the details here and point the reader to [17, Thm. 1℄ and [23, Thm.2℄ (the result is proved for regular ensembles in these works but extends toirregular ensembles as long as the degrees in the graph are bounded).In summary, it su�es to analyze and bound P
(λ,ρ)
T (ℓ), and if this tendsto 0 as ℓ → ∞, then in the limit of a large number of deoding iterations,for almost all odes in the ensemble, the atual bit error probability of thedeoder tends to zero for large enough blok lengths.Order of limits: A remark on the order of the limits might be in order.The proposed style of analysis aims to determine the threshold hannel pa-rameter for whih limℓ→∞ limn→∞ E[P

(λ,ρ)
n (ℓ)] = 0. That is, we �rst �x thenumber of iterations and determine the limiting performane of an ensem-ble as the blok length tends to in�nity, and then let the number of itera-tions tend to in�nity. Exhanging the order of limits gives us the quantity

limℓ→∞ limn→∞ E[P
(λ,ρ)
n (ℓ)]. It is this limit that orresponds to the more typ-ial senario in pratie where for eah �xed blok length, we let the iterativedeoder run until no further progress is ahieved. We are then interested inthe limiting performane as the blok length tends to in�nity. For the BEC,it has been shown that for both the orders of taking limits, we get the samethreshold [25, Se. 2.9.8℄. Based on empirial observations, the same has



been onjetured for hannels suh as the BSC, but a proof of this seems tobe out of sight.6.4 Analysis of average performane for the BECWe now turn to analyzing the average behavior of the ensemble LDPC(n, λ, ρ)under message-passing deoding on the BEC. (The algorithm for regularodes from Setion 5.2 extends to irregular odes in the obvious fashion �the message maps are the same exept the maps at di�erent nodes will havedi�erent number of arguments.)Lemma 5 (Performane of tree ensemble hannel on BEC). Considera degree distribution pair (λ, ρ) and a real number 0 < α < 1. De�ne x0 = αand for ℓ ≥ 1,
xℓ = αλ(1 − ρ(1 − xℓ−1)) . (6)Then, for the BEC with erasure probability α, for every ℓ ≥ 1, we have

P
(λ,ρ)
T (ℓ) = xℓ.Proof. The proof follows along the lines of the reursion (1) that we es-tablished for the regular ase. The ase ℓ = 0 is lear sine the initialvariable-to-hek message equals the reeived value whih equals an erasurewith probability α. Assume that for 0 ≤ i < ℓ, P

(λ,ρ)
T (i) = xi. In the ℓ'th it-eration, a hek-to-variable node message sent by a degree i hek node is theerasure message if any of the (i−1) inoming messages is an erasure, an eventthat ours with probability 1 − (1 − xℓ−1)

i−1 (sine the inoming messagesare independent and eah is an erasure with probability xℓ−1 by indution).Sine the edge has probability ρi to be onneted to a hek node of degree i,the erasure probability of a hek-to-variable message in the ℓ'th iteration fora randomly hosen edge is equal to∑i ρi(1− (1−xℓ−1)
i−1) = 1−ρ(1−xℓ−1).Now onsider a variable-to-hek message in the ℓ'th iteration sent by a vari-able node of degree i. This is an erasure i� the node was originally erasedand eah of the (i − 1) inoming messages are erasures. Thus it is an era-sure with probability α(1 − ρ(1 − xℓ−1))

i−1. Averaging over the edge degreedistribution λ(·), we have P
(λ,ρ)
T (ℓ) = αλ(1 − ρ(1 − xℓ−1)) = xℓ.The following lemma yields the threshold erasure probability for a givendegree distribution pair (λ, ρ). The proof is idential to Lemma 2 � wesimply use the reursion (6) in plae of (1). Note that Lemma 2 is a speialase when λ(z) = zdv−1 and ρ(z) = zdc−1.



Lemma 6. For the BEC, the threshold erasure probability αMP(λ, ρ) belowwhih the above iterative message passing algorithm leads to vanishing bit-erasure probability as the number of iterations grows is given by
αMP(λ, ρ) = min

x∈[0,1]

x

λ(1 − ρ(1 − x))
. (7)6.5 Capaity ahieving distributions for the BECHaving analyzed the performane possible on the BEC for a given degreedistribution pair (λ, ρ), we now turn to the question of what pairs (λ, ρ), ifany, have a threshold approahing apaity. Realling the designed rate from(4), the goal is to �nd (λ, ρ) for whih αMP(λ, ρ) ≈

R 1
0 ρ(z)dz

R 1
0

λ(z)dz
.We now disuss a reipe for onstruting suh degree distributions, asdisussed in [20℄ and [25, Se. 2.9.11℄ (we follow the latter desription losely).In the following we use parameters θ > 0 and a positive integer N that willbe �xed later. Let D be the spae of non-zero funtions h : [0, 1) → R

+whih are analyti around zero with a Taylor series expansion omprisingof non-negative oe�ients. Pik funtions λ̂θ(x) ∈ D and ρθ(x) ∈ D thatsatisfy ρθ(1) = 1 and̂
λθ(1 − ρθ(1 − x)) = x , ∀x ∈ [0, 1) . (8)Here are two example hoies of suh funtions:1. Heavy-Tail Poisson Distribution [16℄, dubbed �Tornado sequene� inthe literature. Here we take
λ̂θ(x) =

− ln(1 − x)

θ
=

1

θ

∞
∑

i=1

xi

i
, and

ρθ(x) = eθ(x−1) = e−θ
∞
∑

i=0

θixi

i!
.2. Chek-onentrated degree distribution [28℄. Here for θ ∈ (0, 1) so that

1/θ is an integer, we take
λ̂θ(x) = 1 − (1 − x)θ =

∞
∑

i=1

(

θ

i

)

(−1)i−1xi , and
ρθ(x) = x1/θ .



Let λ̂
(N)
θ (x) be the funtion onsisting of the �rst N terms (up to the xN−1term) of the Taylor series expansion of λ̂θ(x) around zero, and de�ne thenormalized funtion λ

(N)
θ (x) =

λ̂
(N)
θ

(x)

λ̂
(N)
θ

(1)
(for large enough N , λ̂

(N)
θ (1) > 0, andso this polynomial has positive oe�ients). For suitable parameters N, θ,the pair (λ

(N)
θ , ρθ) will be our andidate degree distribution pair.10 The non-negativity of the Taylor series oe�ients of λ̂θ(x) implies that for x ∈ [0, 1],

λ̂θ(x) ≥ λ
(N)
θ (x), whih together with (8) gives

x = λ̂θ(1 − ρθ(1 − x)) ≥ λ̂
(N)
θ (1 − ρθ(1 − x)) = λ̂

(N)
θ (1)λ

(N)
θ (1 − ρθ(1 − x)) .By the haraterization of the threshold in Lemma 6, it follows that

αMP(λ
(N)
θ , ρθ) ≥ λ̂

(N)
θ (1). Note that the designed rate equals

r = r(λ
(N)
θ , ρθ) = 1 −

∫ 1

0
ρθ(z)dz

∫ 1

0
λ

(N)
θ (z)dz

= 1 − λ̂
(N)
θ (1)

∫ 1

0
ρθ(z)dz

∫ 1

0
λ̂

(N)
θ (z)dz

.Therefore, given a target erasure probability α, to ommuniate at rateslose to apaity 1 − α, the funtions λ̂
(N)
θ and ρθ must satisfy

λ̂
(N)
θ (1) ≈ α and ∫ 1

0
ρθ(z)dz

∫ 1

0
λ̂

(N)
θ (z)dz

→ 1 as N → ∞ . (9)For example, for the Tornado sequene, λ̂
(N)
θ (1) = 1

θ

∑N−1
i=1

1
i

= H(N−1)
θwhere H(m) is the Harmoni funtion. Hene, piking θ = H(N−1)

α
ensuresthat the threshold is at least α. We have ∫ 1

0
λ̂

(N)
θ (z)dz = 1

θ

∑N−1
i=1

1
i(i+1)

=

N−1
θN

, and ∫ 1

0
ρθ(z)dz = 1−e−θ

θ
. Therefore, R 1

0 ρθ(z)dz
R 1
0 λ̂

(N)
θ

(z)dz
= (1 − e−H(N−1)/α)(1 −

1/N) → 1 as N → ∞, as desired. Thus the degree distribution pair isexpliitly given by
λ(N)(x) =

1

H(N − 1)

N−1
∑

i=1

xi

i
, ρ(N)(x) = e

H(N−1)
α

(x−1) .Note that piking N ≈ 1/ε yields a rate (1 − ε)α for reliable ommu-niation on BECα. The average variable node degree equals 1
R 1
0 λ(N)(z)dz

≈
H(N−1) ≈ ln N . Therefore, we onlude that we ahieve a rate within a mul-tipliative fator (1− ε) of apaity with deoding omplexity O(n log(1/ε)).10If the power series expansion of ρθ(x) is in�nite, one an trunate it at a su�-iently high term and laimed bound on threshold still applies. Of ourse for the hek-onentrated distribution, this is not an issue!



For the hek-onentrated distribution, if we want to ahieve
αMP(λ

(N)
θ , ρθ) ≥ α and a rate r ≥ (1 − ε)α, then it turns out that thehoie N ≈ 1/ε and 1/θ = ⌈ ln N

− ln(1−α)
⌉ works. In partiular, this means thatthe fator graph has at most O(n log(1/ε)) edges, and hene the �Peelingdeoder� will again run in O(n log(1/ε)) time.One might wonder that among the various apaity ahieving degree dis-tributions that might exist for the BEC, whih one is the �best� hoie? Itturns out that in order to ahieve a fration (1 − ε) of apaity, the averagedegree of the fator graph has to be Ω(ln(1/ε)). This is shown in [26℄ usinga variant of Gallager's argument for lower bounding the gap to apaity ofLDPC odes. In fat, rather preise lower bounds on the sparsity of the fa-tor graph are known, and the hek-onentrated distribution is optimal inthe sense that it mathes these bounds very losely; see [26℄ for the detailedalulations.In light of the above, it might seem that hek-onentrated distributionsare the �nal word in terms of the performane-omplexity trade-o�. Whilethis is true in this framework of deoding LDPC odes, it turns out by usingmore ompliated graph based odes, alled Irregular Repeat-AumulateCodes, even better trade-o�s are possible [21℄. We will brie�y return to thisaspet in Setion 7.6.6 Extensions to hannels with errorsSpurred by the remarkable suess of [16℄ in ahieving apaity of the BEC,Luby et al [17℄ investigated the performane of irregular LDPC odes for theBSC.In partiular, they onsidered the natural extension of Gallager's Algo-rithm B to irregular graphs, where in iteration i, a variable node of degree

j uses a threshold bi,j for �ipping its value. Applying essentially the samearguments as in Setion 5.3.2, but aounting for the degree distributions,one gets the following reurrene for the expeted fration pℓ of inorretvariable-to-hek messages in the ℓ'th iteration:
pi+1 = p0 − p0

dmax
v
∑

j=1

j
∑

t=bi+1,j

(

j−1
t

)

(

1 + ρ(1 − 2pi)

2

)t(
1 − ρ(1 − 2pi)

2

)j−1−t

+ (1 − p0)

dmax
v
∑

j=1

j
∑

t=bi+1,j

(

j−1
t

)

(

1 + ρ(1 − 2pi)

2

)j−1−t(
1 − ρ(1 − 2pi)

2

)tAs with the regular ase, the ut-o� value bi+1,j an then be hosen to mini-



mize the value of pi+1, whih is given by the smallest integer for whih
1 − p0

p0

≤
(

1 + ρ(1 − 2pi)

1 − ρ(1 − 2pi)

)2bi+1,j−j+1

.Note that 2bi+1,j−j+1 = bi+1,j−(j−1−bi+1,j) equals the di�erene betweenthe number of hek nodes that agree in the majority and the number thatagree in the minority. Therefore, a variable node's deision in eah iterationdepends on whether this di�erene is above a ertain threshold, regardless ofits degree.Based on this, the authors of [17℄ develop a linear programming approahto �nd a good λ given a distribution ρ, and use this to onstrut some gooddegree distributions. Then using the above reurrene they estimate thetheoretially ahievable threshold rossover probability. Following the devel-opment of the density evolution algorithm to trak the performane of beliefpropagation deoding [23℄, the authors of [22℄ used optimization tehniquesto �nd good irregular degree distributions for belief propagation deoding.The BIAWGN hannel was the primary fous in [22℄, but the authors alsolist a few examples that demonstrate the promise of the tehniques for otherhannels. In partiular, for the BSC with rate 1/2, they report a degreedistribution pair with maximum variable node degree 75 and hek-node dis-tribution ρ(x) = 0.25x9 + 0.75x10 for whih the omputed threshold is 0.106,whih is quite lose to the Shannon apaity limit 0.11. The tehniques werefurther re�ned and odes with rate 1/2 and a threshold of σ∗ ≈ 0.9781 (whoseSNR is within 0.0045 dB of apaity) were reported for the BIAWGN in [3℄� these odes use only two di�erent hek node degrees j, j + 1 for someinteger j ≥ 2.7 Linear enoding time and Repeat-Aumulate CodesThe linear deoding omplexity of LDPC odes is one of their attrative fea-tures. Being linear odes, they generially admit quadrati time enoding.In this setion, we brie�y disuss how the enoding omplexity an be im-proved, and give pointers to where results in this vein an be found in moredetail.The original Tornado odes paper [16℄ ahieved linear time enoding usinga asade of several low-density generator matrix (LDGM) odes. In LDGModes, the �fator� graph is atually used to ompute atual hek bits fromthe k message bits (instead of speifying parity heks that the odeword



bits must obey). Due to the sparse nature of the graph, the hek bits anbe omputed in linear time. These hek bits are then used as message bitsfor the next layer, and so on, till the number of hek bits beomes O(
√

k).These �nal set of hek bits are enoded using a quadrati time enodablelinear ode.We now mention an alternate approah to ahieve linear time enodingfor LDPC odes themselves (and not a asaded variant as in [16℄), basedon �nding a sparse parity hek matrix with additional nie properties. Let
H ∈ F

m×n
2 be the parity hek matrix of an LDPC ode of dimension n−m.By means of row and olumn operations, we an onvert H into a form

H̃ where the last m olumns are linearly independent, and moreover the
m × m submatrix onsisting of the last m olumns is lower triangular (with
1's on the diagonal). Using H̃, it is a simple matter of �bak-substitution� toompute the m parity bits orresponding to the n−m information bits (theenoding is systemati). The omplexity of this enoding is governed by thenumber of 1's in H̃ . In general, however, when we begin with a sparse H , theresulting matrix H̃ is no longer sparse. In a beautiful paper [24℄, Rihardsonand Urbanke propose �nding an �approximate� lower triangulation of theparity hek matrix that is still sparse. The idea is to make the top right
(m− g)× (m− g) orner of the matrix lower triangular for some small �gap�parameter g. The enoding an be done in O(n + g2) time, whih is linearif g = O(

√
n). Remarkably, for several distribution pairs (λ, ρ), inluding allthe optimized ones listed in [22℄, it is shown in [24℄ that, with high probabilityover the hoie of the ode from the ensemble LDPC(n, λ, ρ), a gap of O(

√
n)an in fat be ahieved, thus leading to linear enoding omplexity!Yet another approah to ahieve linear enoding omplexity that we wouldlike to fous on (as it has some additional appliations), is to use IrregularRepeat-Aumulate (IRA) odes. IRA odes were introdued by Jin, Khan-dekar and MEliee in [15℄, by generalizing the notion of Repeat-Aumulateodes from [4℄ in onjuntion with ideas from the study of irregular LDPCodes.IRA odes are de�ned as follows. Let (λ, ρ) be a degree distribution pair.Pik a random bipartite graph G with k information nodes on left (with afration λi of the edges being inident on information nodes of degree i), and

n > k hek nodes on the right (with a fration ρi of the edges inident beinginident on hek nodes of degree i). Atually, it turns out that one an pikthe graph to be regular on the hek node side and still ahieve apaity, sowe an even restrit ourselves to hek-degree distributions given by ρa = 1for some integer a. Using G, the enoding of the IRA ode (of dimension kand blok length n) proeeds as follows:



• Plae the k message bits on the k information nodes.
• For 1 ≤ i ≤ n, at the i'th hek node, ompute the bit vi ∈ {1,−1}whih equals the parity (i.e., produt, in ±1 notation) of the messagebits plaed on its neighbors.
• (Aumulation step) Output the odeword (w1, w2, . . . , wn) where wj =
∏j

i=1 vi. In other words, we aumulate the parities of the pre�xes ofthe bit sequene (v1, v2, . . . , vn).Note that the enoding takes O(n) time. Eah of the hek nodes hasonstant degree, and thus the vi's an be omputed in linear time. Theaumulation step an then be performed using additional O(n) operations.It is not hard to show that the rate of the IRA ode orresponding to apair (λ, ρ) as de�ned above equals R 1
0

λ(z)dz
R 1
0 ρ(z)dz

.A natural iterative deoding algorithm for IRA odes is presented andanalyzed in [4℄ (a desription also appears in [21℄). The iterative algorithmuses a graphial model for message passing that inludes the above bipar-tite graph G onneting information nodes to hek nodes, juxtaposed withanother bipartite graph onneting the hek nodes to n ode nodes labeled
x1, x2, . . . , xn. In this graph, whih is intended to re�et the aumulationproess, ode node xi for 1 ≤ i < n is onneted to the i'th and (i + 1)'thhek nodes (ones where vi, vi+1 are omputed), and node xn is onneted tothe hek node where vn is omputed.It is proved (see [21, Se. 2℄) that for the above non-systemati IRA odes,the iterative deoding on BECα onverges to vanishing bit-erasure probabilityas the blok length n → ∞, provided

λ

(

1 −
[

1 − α

1 − αR(1 − x)

]2

ρ(1 − x)

)

< x ∀x ∈ (0, 1] . (10)In the above R(x) =
∑∞

i=1 Rix
i is the power series whose oe�ient Ri equalsthe fration of hek nodes that are onneted to i information nodes in G.Realling (5), we have R(x) =

R x

0 ρ(z)dz
R 1
0

ρ(z)dz
.Using the above haraterization, degree distribution pairs (λ, ρ) for IRAodes that ahieve the apaity of the BEC have been found in [4, 27℄.1111Atually, these papers work with a systemati version of IRA where the odewordinludes the message bits in addition to the aumulated hek bits x1, . . . , xn. Suhsystemati odes have rate equal to (1 +

R

1

0
ρ(z)dz

R

1

0
λ(z)dz

)−1, and the deoding suess ondition(10) for them is slightly di�erent, with a fator α multiplying the λ(·) term on the lefthand side.



In partiular, we want to draw attention to the onstrution in [21℄ with
ρ(x) = x2 that an ahieve a rate of (1 − ε)(1 − α), i.e., within a (1 − ε)multipliative fator of the apaity of the BEC, for α ∈ [0, 0.95].12 Sine
ρ(x) = x2, all hek nodes are onneted to exatly 3 information nodes.Together with the two ode nodes they are onneted to, eah hek nodehas degree 5 in the graphial model used for iterative deoding. The totalnumber of edges in graphial model is thus 5n, and this means that theomplexity of the enoder as well as the �Peeling� implementation of thedeoder is at most 5n. In other words, the omplexity per odeword bit ofenoding and deoding is bounded by an absolute onstant, independent ofthe gap ε to apaity.8 SummaryWe have seen that LDPC odes together with natural message-passing algo-rithms onstitute a powerful approah for the hannel oding problem andto approah the apaity of a variety of hannels. For the partiularly simplebinary erasure hannel, irregular LDPC odes with arefully tailored de-gree distributions an be used to ommuniate at rates arbitrarily lose toShannon apaity. Despite the impressive strides in the asymptoti analy-sis of iterative deoding of irregular LDPC odes, for all nontrivial hannelsexept for the BEC, it is still unknown if there exist sequenes of degreedistributions that an get arbitrarily lose to the Shannon limit. By opti-mizing degree distributions numerially and then omputing their threshold(either using expliit reurrenes or using the density evolution algorithm),various rather exellent bounds on thresholds are known for the BSC andBIAWGN. These, however, still do not ome lose to answering the big the-oretial open question on whether there are apaity-ahieving ensembles ofirregular LDPC odes (say for the BSC), nor do they provide muh insightinto their struture.For irregular LDPC odes, we have expliit sequenes of ensembles ofodes that ahieve the apaity of the BEC (and ome pretty lose for theBSC and the BIAWGN hannel). The odes themselves are not fully expliit,but rather sampled from the ensemble. While the onentration boundsguarantee that almost all odes from the ensemble are likely to be good, itmay still be nie to have an expliit family of odes (rather than ensembles)with these properties. Even for ahieving apaity of the BEC, the onlyknown �expliit� odes require a brute-fore searh for a rather large onstantsized ode, and the dependene of the deoding omplexity on the gap ε to12The laim is onjetured to hold also for α ∈ (0.95, 1).
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