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Abstra
tMu
h progress has been made on de
oding algorithms for error-
orre
ting 
odes in the last de
ade. In this arti
le, we give an in-trodu
tion to some fundamental results on iterative, message-passingalgorithms for low-density parity 
he
k 
odes. For 
ertain importantsto
hasti
 
hannels, this line of work has enabled getting very 
lose toShannon 
apa
ity with algorithms that are extremely e�
ient (bothin theory and pra
ti
e).1 Introdu
tionOver the past de
ade or so, there has been substantial new progress on algo-rithmi
 aspe
ts of 
oding theory. A (far from exhaustive) list of the themesthat have witnessed intense resear
h a
tivity in
ludes:1. A resurgen
e of interest in the long forgotten 
lass of low-density parity
he
k (LDPC) 
odes and on iterative, message-passing de
oding algo-rithms for them, whi
h has resulted in 
odes with rates extremely 
loseto Shannon 
apa
ity together with e�
ient de
oding algorithms.2. Linear time en
odable/de
odable error-
orre
ting 
odes (based on ex-panders) for worst-
ase errors.3. List de
oding algorithms whi
h 
orre
t many more worst-
ase errorsbeyond the �half-the-
ode-distan
e� bound, and whi
h 
an a
hieve 
a-pa
ity even against adversarial noise.1Of 
ourse there are some interrelations between the above dire
tions; in par-ti
ular, progress on linear-time en
odable/de
odable 
odes is based on ex-pander 
odes, whi
h are LDPC 
odes with additional properties. Also, listde
oding algorithms that run in linear time and 
orre
t a fra
tion ρ of errorsfor any desired ρ < 1 have been developed using expander-based ideas [12℄.Of the above lines of work, the last two have a broader following in the the-oreti
al 
omputer s
ien
e 
ommunity, due to their fo
us on the 
ombinatorial,worst-
ase noise model and the extraneous appli
ations of su
h 
odes in 
on-texts besides 
ommuni
ation (su
h as pseudorandomness and average-
ase1The 
apa
ity-a
hieving part was re
ently shown for 
odes over large alphabets, spe
if-i
ally expli
it 
odes of rate 
lose to 1 − p that 
an be list de
oded in polynomial timefrom a fra
tion p of errors were 
onstru
ted in [14℄. For binary 
odes, the 
apa
ity forde
oding a fra
tion p of errors equals 1 − H(p), but we do not know how to a
hieve this
onstru
tively.




omplexity). The sister 
omplexity theory 
olumn that appears in SIGACTnews featured re
ent surveys on both these topi
s [9, 32℄. A longer surveyon very re
ent developments in list de
oding of algebrai
 
odes will appearin [10℄. A very brief survey featuring 
ouple of 
omplexity-theoreti
 uses oflist de
oding appears in [11℄. Appli
ations of 
oding theory to 
omplexitytheory, espe
ially those revolving around sub-linear algorithms, are surveyedin detail in [34℄.We use the opportunity provided by this 
olumn to fo
us on the �rst lineof work on iterative (also 
alled message-passing or belief propagation) algo-rithms for de
oding LDPC 
odes. This is in itself a vast area with numerouste
hni
ally sophisti
ated results. For a 
omprehensive dis
ussion of this area,we point the reader to the up
oming book by Ri
hardson and Urbanke [25℄,whi
h is an ex
ellent resour
e on this topi
. The February 2001 issue of Vol-ume 47 of the IEEE Transa
tions on Information Theory is another valuableresour
e � this was a spe
ial issue dedi
ated to iterative de
oding and inparti
ular 
ontains the series of papers [16, 17, 23, 22℄. This sequen
e ofpapers is arguably one of the most important post-Gallager developments inthe analysis of iterative de
oding, and it laid down the foundations for mu
hof the re
ent progress in this �eld.Dis
laimer: The literature on the subje
t of LDPC and related 
odes andbelief propagation algorithms is vast and diverse, and the author, not havingworked on the topi
 himself, is only aware of a small portion of it. Our aimwill be to merely provide a peek into some of the basi
 
ontext, results, andmethods of the area. We will fo
us almost ex
lusively on LDPC 
odes, andimportant related 
onstru
tions su
h as LT 
odes, Raptor 
odes, Repeat-A

umulate 
odes, and turbo 
odes are either skipped or only very brie�ymentioned. While the arti
le should (hopefully) be devoid of major te
hni
alina

ura
ies, we apologize for any inappropriate omissions in 
redits and
itations (and wel
ome 
omments from the reader if any su
h major omissionsare spotted).Organization: We begin with some basi
 ba
kground information 
on
ern-ing LDPC 
odes, the 
hannel models we will study, and the goal of this line ofstudy in Se
tion 2. In Se
tion 3, we dis
uss how 
on
atenated 
odes with anouter 
ode that 
an 
orre
t a small fra
tion of errors 
an be used to approa
h
apa
ity, albeit with a poor dependen
e on the gap to 
apa
ity. We then turnto message passing algorithms for LDPC 
odes and des
ribe their high levelstru
ture in Se
tion 4. With this in pla
e, we develop and analyze somespe
i�
 message passing algorithms for regular LDPC 
odes in Se
tion 5, es-tablishing theoreti
al thresholds for the binary erasure and binary symmetri

hannels. We then turn our fo
us to irregular LDPC 
odes in Se
tion 6, and



dis
uss, among other things, how one 
an use them to a
hieve the 
apa
ityof the binary erasure 
hannel. Finally, in Se
tion 7, we dis
uss how one 
ana
hieve linear en
oding time for LDPC 
odes, and also dis
uss a variant 
alledIrregular Repeat-A

umulate (IRA) 
odes that are linear-time en
odable bydesign and additionally o�er improved 
omplexity-vs-performan
e trade-o�s.2 Ba
kground2.1 Linear and LDPC 
odesWe will fo
us ex
lusively on binary linear 
odes. A binary linear 
ode C ofblo
k length n is a subspa
e of F
n
2 where F2 = {0, 1} is the �eld with twoelements. The rate of C, denoted R(C), equals k/n where k is the dimensionof C (as a ve
tor spa
e over F2); su
h a 
ode is also referred to as an [n, k]
ode. Being a linear subspa
e of dimension k, the 
ode C 
an be des
ribed asthe kernel of a matrix H ∈ F

(n−k)×n
2 , so that C = {c ∈ F

n
2 | Hc = 0} (we treat
odewords c as 
olumn ve
tors for this des
ription). The matrix H is 
alledthe parity 
he
k matrix of the 
ode C. In general, any 
hoi
e of H whose rowsform a basis of the dual spa
e C⊥ = {x ∈ F

n
2 | xtc = 0∀c ∈ C} des
ribes thesame 
ode. Of spe
ial interest to us here are 
odes that admit a sparse parity
he
k matrix. In parti
ular, we will study low-density parity 
he
k (LDPC)
odes, whi
h were introdu
ed and studied in Gallager's amazing work [8℄that was way ahead of its time. LDPC 
odes are des
ribed by a parity 
he
kmatrix all of whose rows and 
olumns have at most a �xed 
onstant numberof 1's (the 
onstant is independent of n).2A 
onvenient way to des
ribe an LDPC 
ode is in terms of its fa
torgraph.3 This is a natural bipartite graph de�ned as follows. On the left sideare n verti
es, 
alled variable nodes, one for ea
h 
odeword position. On theright are m = n − k verti
es, 
alled 
he
k nodes, one for ea
h parity 
he
k(row of the parity 
he
k matrix). A 
he
k node is adja
ent to all variablenodes whose 
orresponding 
odeword symbols appear in this parity 
he
k.In other words, the parity 
he
k matrix of the 
ode is pre
isely the bipartiteadja
en
y matrix of the fa
tor graph.A spe
ial 
lass of LDPC 
odes are regular LDPC 
odes where the fa
torgraph is both left-regular and right-regular. Regular LDPC 
odes were in2We will throughout be interested in a family of 
odes of in
reasing blo
k length n withrate k/n held a �xed 
onstant. For 
onvenien
e, we don't spell this out expli
itly, but thisasymptoti
 fo
us should always be kept in mind.3This graphi
al representation applies for any linear 
ode. But the resulting graph willbe sparse, and hen
e amenable to linear time algorithms, only for LDPC 
odes.



fa
t the variant originally studied by Gallager [8℄, as well as in the worksof Ma
kay and Neal [18, 19℄ and Sipser and Spielman [29, 30℄ that sparkedthe resurgen
e of interest in LDPC 
odes after over 30 years sin
e Gallager'swork.4 LDPC 
odes based on non-regular graphs, 
alled irregular LDPC
odes, rose to prominen
e beginning in the work of Luby et al [16, 17℄ (study-ing 
odes based on irregular graphs was one of the big 
on
eptual leaps madein these works). We will return to this aspe
t later in the survey. A popular
hoi
e of regular LDPC 
odes (with a rate of 1/2) are (3, 6)-regular LDPC
odes where variable nodes have degree 3 and 
he
k nodes have degree 6.2.2 Channel models and their 
apa
ityDesign of good LDPC 
odes, together with progress in analyzing naturalmessage-passing algorithms for de
oding them, has led to rapid progresstowards approa
hing the 
apa
ity of important sto
hasti
 
hannels. We nowreview the main noise models that we will be interested in.Throughout, we deal with binary 
odes only. We will �nd it 
onvenientto use {+1,−1} (instead of {0, 1}) for the binary alphabet, where +1 
orre-sponds to the bit 0 and −1 to the bit 1. Note the XOR operation be
omesmultipli
ation in the ±1 notation.We will assume the 
hannel's operation to be memoryless, so that ea
hsymbol of the 
odeword is distorted independently a

ording to the same
hannel law. So to spe
ify the noise model, it su�
es to spe
ify how thenoise distorts a single input symbol. For us the input symbol will always beeither ±1, and so the 
hannels have as input alphabet X = {1,−1}. Theiroutput alphabet will be denoted by Y and will be di�erent for the di�erent
hannels. Upon transmission of a 
odeword c ∈ X n, the word y observed bythe re
eiver belongs to Yn. The re
eiver must then de
ode y and hopefully
ompute the original transmitted 
odeword c. The 
hallenge is to a
hieve avanishingly small error probability (i.e., the probability of either a de
odingfailure or an in
orre
t de
oding), while at the same time operating at a goodrate, hopefully 
lose to the 
apa
ity of the 
hannel.We begin with the simplest noise model, the Binary Erasure Channel(BEC). This is parameterized by a real number α, 0 ≤ α < 1. The outputalphabet is Y = {1,−1, ?}, with ? signifying an erasure. Upon input x ∈ X ,4In the long interim period, LDPC 
odes went into oblivion, with the ex
eption of two(known to us) works. Zyablov and Pinsker [35℄ proved that for random LDPC 
odes, withhigh probability over the 
hoi
e of the 
ode, Gallager's algorithm 
orre
ted a 
onstantfra
tion of worst-
ase errors. Tanner [33℄ presented an important generalization of Gal-lager's 
onstru
tion and his de
oding algorithms, whi
h was later important in the workon linear time de
odable expander 
odes [29℄.



the 
hannel outputs x with probability 1−α, and outputs ? with probability
α. The value α is 
alled the erasure probability, and we denote by BECαthe BEC with erasure probability α. For large n, the re
eived word 
onsistsof about (1 − α)n unerased symbols with high probability, so the maximumrate at whi
h reliable 
ommuni
ation is possible is at most (1 − α) (thisholds even if the transmitter and re
eiver knew in advan
e whi
h bits will beerased). It turns out this upper bound 
an be a
hieved, and Elias [5℄, who�rst introdu
ed the BEC, also proved that its 
apa
ity equals (1 − α).The Binary Symmetri
 Channel (BSC) is parameterized by a real number
p, 0 ≤ p < 1/2, and has output alphabet Y = {1,−1}. On input x ∈ X ,the 
hannel outputs bx where b = −1 with probability p and b = 1 withprobability 1 − p. The value p is 
alled the 
rossover probability. The BSCwith 
rossover probability p is denoted by BSCp. The 
apa
ity of BSCp iswell known to be 1 − H(p), where H(p) = −p lg p − (1 − p) lg(1 − p) is thebinary entropy fun
tion.Finally, we mention a 
hannel with 
ontinuous output alphabet Y 
alledBinary Input Additive White Gaussian Noise (BIAWGN). Here Y equals theset of real numbers, and the 
hannel operation is modeled as y = x + zwhere x ∈ {±1} is the input and z is a normal variable with mean 0 andvarian
e σ2 (i.e., has probability density fun
tion p(z) = 1√

2πσ2
e−

z2

2σ2 ). Wedenote by BIAWGNσ the BIAWGN with varian
e σ2; its 
apa
ity is a fun
tionof 1/σ2 alone, though there is no elementary form expression known forthe 
apa
ity (but it 
an be expressed as an integral that 
an be estimatednumeri
ally). For rate 1/2, the largest σ (Shannon limit) for whi
h reliable
ommuni
ation on the BIAWGN 
hannel is possible is (up to the pre
isiongiven) σopt = 0.9787.More generally, if we allow s
aling of inputs, the 
apa
ity is a fun
tionof the �signal-to-noise� ratio EN/σ2 where EN is the energy expended per
hannel use. If the inputs to the 
hannel are not 
onstrained to be ±1,but instead 
an take arbitrary real values, then it is well known that the
apa
ity of the AWGN 
hannel equals 1
2
log2 (1 + EN/σ2) bits per 
hanneluse. In parti
ular, in order to a
hieve reliable 
ommuni
ation at a rate of

1/2 over the real-input AWGN 
hannel, a signal-to-noise ratio of 1, or 0 dB,is required.5 For the BIAWGN 
hannel, this ratio in
reases to 1/σ2
opt = 1.044or 0.187 dB. A

ordingly, the yardsti
k to measure the quality of a de
odingalgorithm for an LDPC 
ode of rate 1/2 is how 
lose to this limit it 
an leadto 
orre
t de
oding with probability tending to 1 (over the realization of theBIAWGN 
hannel noise).The 
ontinuous output of a BIAWGN 
hannel 
an be quantized to yield5In de
ibel notation, λ > 0 is equivalent to 10 log10 λ dB.



a dis
rete approximation to the original value, whi
h 
an then be used inde
oding. (Of 
ourse, this leads to loss in information, but is often done for
onsiderations of de
oding 
omplexity.) A parti
ularly simple quantizationis to de
ode a signal x into 1 if x ≥ 0 and into −1 if x < 0. This e�e
tively
onverts an AWGN 
hannel with varian
e σ2 into a BSC with 
rossoverprobability Q(1/σ) = 1√
2π

∫∞
1/σ

e−x2/2dx. It should not 
ome as a surprisethat the 
apa
ity of the resulting BSC falls well short of the 
apa
ity of theBIAWGN.All the above 
hannels have the following output-symmetry property: Forea
h possible 
hannel output q, p(y = q|x = 1) = p(y = −q|x = −1). (Here
p(y|x) denotes the 
onditional probability that the 
hannel output equals ygiven the 
hannel input is x.)We will fo
us a good deal of attention on the BEC. Being a very simple
hannel, it serves as a good warm-up to develop the 
entral ideas, and at thesame time a
hieving 
apa
ity on the BEC with iterative de
oding of LDPC
odes is te
hni
ally non-trivial. The ideas whi
h were originally developedfor erasure 
odes in [16℄ have been generalized for more general 
hannels,in
luding the BSC and BIAWGN, with great su

ess [17, 23, 22℄. Yet, todate the BEC is the only 
hannel known for whi
h one 
an provably getarbitrarily 
lose to 
apa
ity via iterative de
oding of (an ensemble of) LDPC
odes. So naturally, given our fo
us on the theoreti
al aspe
ts, the BEC isof parti
ular interest.2.3 Spirit of the resultsThe 
entral goal of resear
h in 
hannel 
oding is the following: given a par-ti
ular 
hannel, �nd a family of 
odes whi
h have fast (ideally linear-time)en
oding algorithms and whi
h 
an be reliably de
oded in linear time at ratesarbitrarily 
lose to 
hannel 
apa
ity. This is, of 
ourse, also the goal of theline of work on LDPC 
odes.In �pra
ti
e� one of the things that seems to get people ex
ited are plotsof the signal-to-noise ratio (SNR) vs bit error probability (BER) for �nite-length 
odes found by non-trivial optimization based on theoreti
al insights,followed by simulation on, say, the BIAWGN 
hannel. Inspired by the re-markable su

ess on the BEC [16℄, this approa
h was pioneered for LDPC
odes in the presen
e of errors in [31, 17℄, 
ulminating in the demonstrationof 
odes for the BIAWGN 
hannel in [22℄ that beat turbo 
odes and get very
lose to the Shannon limit.Sin
e this arti
le is intended for a theory audien
e, our fo
us will be onthe �worst� 
hannel parameter (whi
h we 
all threshold) for whi
h one 
anprove that the de
oding will be su

essful with probability approa
hing 1



in the asymptoti
 limit as the blo
k length grows to in�nity. The relevant
hannel parameters for the BEC, BSC, and BIAWGN are, respe
tively, theerasure probability, 
rossover probability, and the varian
e of the Gaussiannoise. The threshold is like the random 
apa
ity for a given 
ode (or ensembleof 
odes) and a parti
ular de
oder. Normally for studying 
apa
ity we �x the
hannel and ask what is the largest rate under whi
h reliable 
ommuni
ationis possible, whereas here we �x the rate and ask for the worst 
hannel underwhi
h probability of mis
ommuni
ation tends to zero. Of 
ourse, the goal isto attain as a large a threshold as possible, ideally approa
hing the Shannonlimit (for example, 1 − α for BECα and 1 − H(p) for BSCp).3 Simple 
on
atenated s
hemes to a
hieve 
a-pa
ity on BEC and BSCWe 
ould 
onsider the 
hannel 
oding problem solved (at least in theory) on agiven 
hannel if we have expli
it 
odes, with e�
ient algorithms for en
odingand reliable de
oding at rates within any desired ε of 
apa
ity. Ideally, therun time of the algorithms should be linear in the blo
k length n, and alsodepend polynomially on 1/ε. (But as we will see later, for 
ertain 
hannelslike the BEC, we 
an have a runtime of O(n log(1/ε)), or even better cn with
c independent of ε, if we allow randomization in the 
onstru
tion.) In thisse
tion, we dis
uss some �simple� atta
ks on this problem for the BEC andBSC, why they are not satisfa
tory, and the basi
 
hallenges this raises (someof whi
h are addressed by the line of work on LDPC 
odes).For the BEC, on
e we have the des
ription of the generator matrix of alinear 
ode that a
hieves 
apa
ity, we 
an de
ode in O(n3) time by solvinga linear system (the de
oding su

eeds if the system has a unique solution).Sin
e a random linear 
ode a
hieves 
apa
ity with high probability [5℄, we
an sample a random generator matrix, thus getting a 
ode that works withhigh probability (together with a 
ubi
 time algorithm). However, we do notknow any method to 
ertify that the 
hosen 
ode indeed a
hieves 
apa
ity.The drawba
ks with this solution are the 
ubi
 time and randomized natureof the 
onstru
tion.A 
onstru
tion using 
on
atenated 
odes gets around both these short
om-ings. The idea originates in Forney's work [7℄ that was the �rst to present
odes approa
hing 
apa
ity with polynomial time en
oding and de
odingalgorithms.Let α be the erasure probability of the BEC and say our goal is to 
on-stru
t a 
ode of rate (1−α−ε) that enables reliable 
ommuni
ation on BECα.



Let C1 be a linear time en
odable/de
odable binary 
ode of rate (1 − ε/2)that 
an 
orre
t a small 
onstant fra
tion γ = γ(ε) > 0 of worst-
ase era-sures. Su
h 
odes were 
onstru
ted in [30, 1℄. For the 
on
atenated 
oding,we do the following. For some parameter b, we blo
k the 
odeword of C1into blo
ks of size b, and then en
ode ea
h of these blo
ks by a suitable innerbinary linear 
ode C2 of dimension b and rate (1− α− ε/2). The inner 
odewill be pi
ked so that it a
hieves the 
apa
ity of the BECα, and spe
i�
allyre
overs the 
orre
t message with su

ess probability at least 1 − γ/2. For
b = b(ε, γ) = Ω

(

log(1/γ)
ε2

), a random 
ode meets this goal with high prob-ability, so we 
an �nd one by brute-for
e sear
h (that takes 
onstant timedepending only on ε).The de
oding pro
eeds as one would expe
t: �rst ea
h of the inner blo
ksis de
oded, by solving a linear system, returning either de
oding failure orthe 
orre
t value of the blo
k. (There are no errors, so when su

essful, thede
oder knows it is 
orre
t.) Sin
e the inner blo
ks are 
hosen to be largeenough, ea
h inner de
oding fails with probability at most γ/2. Sin
e thenoise on di�erent blo
ks are independent, by a Cherno� bound, ex
ept withexponentially small probability, we have at most a fra
tion γ of erasuresin the outer 
odeword. These are then handled by the linear-time erasurede
oder for C1.We 
on
lude that, for the BECα, we 
an 
onstru
t 
odes of rate 1 − α −
ε, i.e., within ε of 
apa
ity, that 
an be en
oded and de
oded in n/εO(1)time. While this is pretty good, the brute-for
e sear
h for the inner 
ode isunsatisfying, and the BEC is simple enough that better runtimes (su
h as
O(n log(1/ε))) are a
hieved by 
ertain irregular LDPC 
odes.A similar approa
h 
an be used for the BSCp. The outer 
ode C1 must bepi
ked so that it 
an 
orre
t a small fra
tion of worst-
ase errors � again,su
h 
odes of rate 
lose to 1 with linear time en
oding and de
oding areknown [30, 13℄. Everything works as above, ex
ept that the de
oding ofthe inner 
odes, where we �nd the 
odeword of C2 
losest to the re
eivedblo
k, requires a brute-for
e sear
h and this takes 2b = 2Ω(1/ε2) time. This
an be improved to polynomial in 1/ε by building a look-up table, but thenthe size of the look-up table, and hen
e the spa
e 
omplexity and time forpre
omputing the table, is exponential in 1/ε.In summary, for the BSCp, we 
an 
onstru
t 
odes of rate 1 − H(p) − ε,i.e., within ε of 
apa
ity, that 
an be en
oded in n/εO(1) time and whi
h 
anbe reliably de
oded in n21/εO(1) time. It remains an important open questionto obtain su
h a result with de
oding 
omplexity n/εO(1), or even poly(n/ε).66We remark that asymptoti
ally, with ε �xed and n → ∞, the exponential dependen
eon 1/ε 
an be absorbed into an additional fa
tor with a slowly growing dependen
e on n.



We also want to point out that re
ently an alternate method using LP de-
oding has been used to obtain polynomial time de
oding at rates arbitrarily
lose to 
apa
ity [6℄. But this also su�ers from a similar poor dependen
e onthe gap ε to 
apa
ity.4 Message-passing iterative de
oding: An ab-stra
t view4.1 Basi
 Stru
tureWe now dis
uss the general stru
ture of natural message-passing iterativede
oding algorithms, as dis
ussed, for example, in [23℄. In these algorithms,messages are ex
hanged between the variable and 
he
k nodes in dis
rete timesteps. Initially, ea
h variable node vj , 1 ≤ j ≤ n, has an asso
iated re
eivedvalue rj , whi
h is a random variable taking values in the 
hannel outputalphabet Y . Based on this, ea
h variable sends a message belong to somemessage alphabet M. A 
ommon 
hoi
e for this initial message is simplythe re
eived value rj, or perhaps some quantized version of rj for 
ontinuousoutput 
hannels su
h as BIAWGN. Now, ea
h 
he
k node c pro
esses themessages it re
eives from its neighbors, and sends ba
k a suitable message in
M to ea
h of its neighboring variable nodes. Upon re
eipt of the messagesfrom the 
he
k nodes, ea
h variable node vj uses these together with its ownre
eived value rj to produ
e new messages that are sent to its neighboring
he
k nodes. This pro
ess 
ontinues for many time steps, till a 
ertain 
ap onthe number of iterations is rea
hed. In the analysis, we are interested in theprobability of in
orre
t de
oding, su
h as the bit-error probability. For everytime step i, i ∈ N, the i'th iteration 
onsists of a round 
he
k-to-variable nodemessages, followed by the variable nodes responding with their messages tothe 
he
k nodes. The 0'th iteration 
onsists of dummy messages from the
he
k nodes, followed by the variable nodes sending their re
eived values tothe 
he
k nodes.A very important 
ondition in the determination of the next messagebased on the messages re
eived from the neighbors is that message sent by
u along an edge e does not depend on the message just re
eived along edge e.This is important so that only �extrinsi
� information is passed along from anode to its neighbor in ea
h step. It is exa
tly this restri
tion that leads tothe independen
e 
ondition that makes analysis of the de
oding possible.However, sin
e in pra
ti
e one is interested in moderate blo
k length 
odes, say n ≤ 106,a target runtime su
h as O(n/ε) seems like a 
lean way to pose the underlying theoreti
alquestion.



In light of the above restri
tion, the iterative de
oding 
an be des
ribedin terms of the following message maps: Ψ
(ℓ)
v : Y ×Mdv−1 → M for variablenode v with degree dv for the ℓ'th iteration, ℓ ≥ 1, and Ψ

(ℓ)
c : Mdv−1 → Mfor 
he
k node c with degree dc. Note the message maps 
an be di�erent fordi�erent iterations, though several powerful 
hoi
es exist where they remainthe same for all iterations (and we will mostly dis
uss su
h de
oders). Also,while the message maps 
an be di�erent for di�erent variable (and 
he
k)nodes, we will use the same map (ex
ept for the obvious dependen
e on thedegree, in 
ase of irregular graphs).The intuitive interpretation of messages is the following. A message issupposed to be an estimate or guess of a parti
ular 
odeword bit. For mes-sages that take ±1 values, the guess on the bit is simply the message itself.We 
an also add a third value, say 0, that would signify an erasure or ab-stention from guessing the value of the bit. More generally, messages 
antake values in a larger dis
rete domain, or even take 
ontinuous values. Inthese 
ases the sign of the message is the estimated value of the 
odewordbit, and its absolute value is a measure of the reliability or 
on�den
e in theestimated bit value.4.2 Symmetry AssumptionsWe have already dis
ussed the output-symmetry 
ondition of the 
hannelswe will be interested in, i.e., p(y = q|x = 1) = p(y = −q|x = −1). We nowmention two reasonable symmetry assumptions on the message maps, whi
hwill be satis�ed by the message maps underlying the de
oders we dis
uss:

• Che
k node symmetry: Signs fa
tor out of 
he
k node messagemaps, i.e., for all (b1, . . . , bdc−1) ∈ {1,−1}dc−1

Ψ(ℓ)
c (b1m1, · · · , bdc−1mdc−1) =

(

dc−1
∏

i=1

bi

)

Ψ(ℓ)
c (m1, · · · , mdc−1) .

• Variable node symmetry: If the signs of all messages into a variablenode are �ipped, then the sign of its output gets �ipped:
Ψ(ℓ)

v (−m0,−m1, · · · ,−mdv−1) = −Ψ(ℓ)
v (m0, m1, · · · , mdc−1) .When the above symmetry assumptions are ful�lled and the 
hannel isoutput-symmetri
, the de
oding error probability is independent of the a
tual
odeword transmitted. Indeed, it is not hard (see, for instan
e [23, Lemma1℄) to show that when a 
odeword (x1, . . . , xn) is transmitted and (y1, . . . , yn)



is re
eived where yi = xizi, the messages to and from the variable node viare equal to xi times the 
orresponding message when the all-ones 
odewordis transmitted and (z1, . . . , zn) is re
eived. Therefore, the entire behavior ofthe de
oder 
an be predi
ted from its behavior assuming transmission of theall-ones 
odeword (re
all that we are using {1,−1} notation for the binaryalphabet). So, for the analysis, we will assume that the all-ones 
odewordwas transmitted.5 Regular LDPC 
odes and simple iterative de-
odersWe will begin with regular LDPC 
odes and a theoreti
al analysis of simplemessage-passing algorithms for de
oding them.5.1 Gallager's programThe story of LDPC 
odes and iterative de
oding begins in Gallager's re-markable Ph.D. thesis 
ompleted in 1960, and later published in 1963 [8℄.Gallager analyzed the behavior of a 
ode pi
ked randomly from the ensem-ble of (dv, dc)-regular LDPC 
odes of a large blo
k length. He proved thatwith high probability, as dv and dc in
rease, the rate vs. minimum distan
etrade-o� of the 
ode approa
hes the Gilbert-Varshamov bound. Gallageralso analyzed the error probability of maximum likelihood (ML) de
oding ofrandom (dc, dc)-regular LDPC 
odes, and showed that LDPC 
odes are atleast as good on the BSC as the optimum 
ode a somewhat higher rate (referto [8℄ for formal details 
on
erning this statement). This demonstrated thepromise of LDPC 
odes independently of their de
oding algorithms (sin
eML de
oding is the optimal de
oding algorithm in terms of minimizing errorprobability).To 
omplement this statement, Gallager also proved a �negative� resultshowing that for ea
h �nite dc, there is a �nite gap to 
apa
ity on the BSCwhen using regular LDPC 
odes with 
he
k node degrees dc More pre
isely,he proved that the largest rate that 
an be a
hieved for BSCp with errorprobability going to zero is at most 1 − H(p)
H(pdc)

where pdc
= 1+(1−2p)dc

2
. This
laim holds even for irregular LDPC 
odes with dc interpreted as the maxi-mum 
he
k node degree. This shows that the maximum 
he
k node degreeneeds to grow with the gap ε between the rate of the 
ode and 
apa
ity ofthe BSC.Sin
e only exponential time solutions to the ML de
oding problem are



known, Gallager also developed simple, iterative de
oding algorithms forLDPC 
odes. These form the pre
ursor to the modern day message-passingalgorithms. More generally, he laid down the foundations of the followingprogram for determining the threshold 
hannel parameter below whi
h a suit-able LDPC 
ode 
an be used in 
onjun
tion with a given iterative de
oderfor reliable information transmission.Code 
onstru
tion: Constru
t a family of (dv, dc)-regular fa
tor graphswith n variable nodes (for in
reasing n) with girth greater than 4ℓ(n) =
Ω(log n). An expli
it 
onstru
tion of su
h graphs was also given byGallager [8, Appendix C℄.Analysis of De
oder: Determine the average fra
tion of in
orre
t7 mes-sages passed at the i'th iteration of de
oding for i ≤ ℓ = ℓ(n) (assum-ing there are no 
y
les of length at most 4ℓ). This fra
tion is usuallyexpressed by a system of re
ursive equations that depend on dv, dc andthe 
hannel parameter (su
h as 
rossover probability, in 
ase of theBSC).Threshold 
omputation: Using the above equations, 
ompute (analyti-
ally or numeri
ally) the threshold 
hannel parameter below whi
h theexpe
ted fra
tion of in
orre
t messages approa
hes zero as the numberof iterations in
reases. Con
lude that the 
hosen de
oder when appliedto this family of 
odes with ℓ(n) de
oding rounds leads to bit-errorprobability approa
hing zero as long as the 
hannel parameter is belowthe threshold.The re
ent resear
h on (irregular) LDPC 
odes shares the same essentialfeatures of the above program. The key di�eren
e is that the requirementof an expli
it 
ode des
ription in Step 1 is relaxed. This is be
ause forirregular graphs with spe
i�
 requirements on degree distribution, expli
it
onstru
tions of large girth graphs seem very hard. Instead, a fa
tor graph
hosen randomly from a suitable ensemble is used. This raises issues su
h asthe 
on
entration of the performan
e of a random 
ode around the averagebehavior of the ensemble. It also 
alls for justi�
ation of the large girthassumption in the de
oding. We will return to these aspe
ts when we beginour dis
ussion of irregular LDPC 
odes in Se
tion 6.We should point out that Gallager himself used random regular LDPC
odes for his experiments with iterative de
oders for various 
hannels su
has the BSC, the BIAWGN, and the Rayleigh fading 
hannel. However, if we7A message is in
orre
t if the bit value it estimates is wrong. For transmission of theall-ones 
odeword, this means the message has a non-positive value.



so desire, for the analyti
 results, even expli
it 
onstru
tions are possible.In the rest of this se
tion, we assume an expli
it large girth fa
tor graph isused, and fo
us on the analysis of some simple and natural iterative de
oders.Thus the only randomness involved is the one realizing the 
hannel noise.5.2 De
oding on the binary erasure 
hannelAlthough Gallager did not expli
itly study the BEC, his methods 
ertainlyapply to it, and we begin by studying the BEC. For the BEC, there is essen-tially a unique 
hoi
e for a non-trivial message-passing de
oding algorithm.In a variable-to-
he
k message round, a variable whose bit value is known(either from the 
hannel output or from a 
he
k node in a previous round)passes along its value to the neighboring 
he
k nodes, and a variable whosebit value is not yet determined passes a symbol (say 0) signifying erasure.In the 
he
k-to-variable message round, a 
he
k node c passes to a neighbor
v an erasure if it re
eives an erasure from at least one neighbor besides v,and otherwise passes the bit value b to v where b is the parity of the bitsre
eived from neighbors other than v. Formally, the message maps are givenas follows:
Ψ(ℓ)

v (r, m1, . . . , mdv−1) =

{

b if at least one of r, m1, . . . , mdv−1 equals b ∈ {1,−1}
0 if r = m1 = · · · = mdv−1 = 0(Note that the map is well-de�ned sin
e the inputs to a variable node willnever give 
on�i
ting ±1 votes on its value.)

Ψ(ℓ)
c (m1, . . . , mdc−1) =

dc−1
∏

i=1

miWe note that an implementation of the de
oder is possible that uses ea
hedge of the fa
tor for message passing exa
tly on
e. Indeed, on
e a variablenode's value is known, the bit value is 
ommuni
ated to its neighboring
he
k nodes, and this node (and edges in
ident on it) are removed fromthe graph. Ea
h 
he
k node maintains the parity of the values re
eivedfrom its neighboring variables so far, and updates this after ea
h round ofvariable messages (note that it re
eives ea
h variable node's value exa
tlyon
e). When a 
he
k node has degree exa
tly one (i.e., values of all but oneof its variable node neighbors are now known), it 
ommuni
ates the parityvalue it has stored to its remaining neighbor, and both the 
he
k node andthe remaining edge in
ident on it are deleted. This version of the iterativede
oder has been dubbed the Peeling De
oder. The running time of the



Peeling De
oder is essentially the number of edges in the fa
tor graph, andhen
e it performs about dv operations per 
odeword bit.Let us analyze this de
oding algorithm for ℓ iterations, where ℓ is a 
on-stant (
hosen large enough to a
hieve the desired bit-error probability). Wewill assume that the fa
tor graph does not have any 
y
le of length at most
4ℓ (whi
h is 
ertainly true if it has Ω(log n) girth).The following is 
ru
ial to our analysis.Lemma 1. For ea
h node, the random variables 
orresponding to the mes-sages re
eived by it in the i'th iteration are all independent, for i ≤ ℓ.Let us justify why the above is the 
ase. For this, we 
ru
ially use thefa
t that the message sent along an edge, say from v to c, does not depend onthe message that v re
eives from c. Therefore, the information re
eived at a
he
k node c (the situation for variable nodes is identi
al) from its neighborsin the i'th iteration is determined by by a 
omputation graph rooted at c,with its dc variable node neighbors as its 
hildren, the dv−1 neighbors besides
c of ea
h these variable nodes as their 
hildren, the dc − 1 other neighborsof these 
he
k nodes as their 
hildren, and so on. Sin
e the girth of thegraph is greater than 4ℓ, the 
omputation graph is in fa
t a tree. Therefore,the information re
eived by c from its neighbors in the i'th iteration are allindependent.Take an arbitrary edge (v, c) between variable node v and 
he
k node c.Let us 
ompute the probability pi that the message from v to c in the i'thiteration is an erasure (using indu
tion and the argument below, one 
anjustify the 
laim that this probability, whi
h is taken over the 
hannel noise,will be independent of the edge and only depend on the iteration number, aslong as i ≤ ℓ). For i = 0, p0 = α, the probability that the bit value for v waserased by the BECα. In the (i + 1)'st iteration, v passes an erasure to c i� itwas originally erased by the 
hannel, and it re
eived an erasure from ea
h ofits dv − 1 neighbors other than c. Ea
h of these neighboring 
he
k nodes c′in turn sends an erasure to v i� at least one neighbor of c′ other than v sentan erasure to c′ during iteration i � due to the independen
e of the involvedmessages, this event o

urs for node c′ with probability (1 − (1 − pi)

dc−1).Again, be
ause the messages from various 
he
k nodes to v in the (i + 1)'stround are independent, we have
pi+1 = α · (1 − (1 − pi)

dc−1)dv−1 . (1)By linearity of expe
tation, pi is the expe
ted fra
tion of variable-to-
he
kmessages sent in the i'th iteration that are erasures. We would like to showthat limℓ→∞ pℓ = 0, so that the bit-error probability of the de
oding vanishes



as the number of iterations grows. The largest erasure probability α forwhi
h this happens is given by the following lemma.Lemma 2. The threshold erasure probability αMP(dv, dc) for the BEC belowwhi
h the message-passing algorithm results in vanishing bit-erasure proba-bility is given by
αMP(dv, dc) = min

x∈[0,1]

x

(1 − (1 − x)dc−1)dv−1
. (2)Proof. By de�nition, αMP(dv, dc) = sup{α ∈ [0, 1] : limi→∞ pi = 0} where piis as de�ned re
ursively in (1). De�ne the fun
tions g(x) = x

(1−(1−x)dc−1)dv−1 ,and f(α, x) = α(1 − (1 − x)dc−1)dv−1. Also let α∗ = minx∈[0,1] g(x). We wishto prove that αMP(dv, dc) = α∗.If α < α∗, then for every x ∈ [0, 1], f(α, x) = αx
g(x)

≤ α∗x
g(x)

≤ x, and infa
t f(α, x) < x for x ∈ (0, 1]. Hen
e it follows that pi+1 = f(α, pi) ≤ pi andsin
e 0 ≤ f(α, x) ≤ α for all x ∈ [0, 1], the probability 
onverges to a value
p∞ ∈ [0, α]. Sin
e f is 
ontinuous, we have p∞ = f(α, p∞), whi
h implies
p∞ = 0 (sin
e f(α, x) < x for x > 0). This shows that αMP(dv, dc) ≥ α∗.Conversely, if α > α∗, then let x0 ∈ [0, 1] be su
h that α > g(x0). Then
α ≥ f(α, x0) = αx0

g(x0)
> x0, and of 
ourse f(α, α) ≤ α. Sin
e f(α, x) is a
ontinuous fun
tion of x, we must have f(α, x∗) = x∗ for some x∗ ∈ (x0, α].For the re
ursion (1) with a �xed value of α, it is easy to see by indu
tionthat if p0 ≥ p′0, then pi ≥ p′i for all i ≥ 1. If p′0 = x∗, then we have p′i = x∗for all i. Therefore, when p0 = α ≥ x∗, we have pi ≥ x∗ for all i as well. Inother words, the error probability stays bounded below by x∗ irrespe
tive ofthe number of iterations. This proves that αMP(dv, dc) ≤ α∗.Together, we have exa
tly determined the threshold to be α∗ =

minx∈[0,1] g(x).Remark 3. Using standard 
al
ulus, we 
an determine αMP(dv, dc) to be
1−γ

(1−γdc−1)dv−1 where γ is the unique positive root of the polynomial p(x) =

((dv − 1)(dc − 1) − 1)xdc−2 −
∑dc−3

i=0 xi. Note that when dv = 2, p(1) = 0, sothe threshold equals 0. Thus we must pi
k dv ≥ 3, and hen
e dc ≥ 4 (to havepositive rate). For the 
hoi
e dv = 3 and dc = 4, p(x) is a quadrati
 and we
an analyti
ally 
ompute αMP(3, 4) ≈ 0.6474; note that 
apa
ity for this rateequals 3/4 = 0.75. (The best threshold one 
an hope for equals dv/dc sin
e therate is at least 1 − dv/dc.) Closed form analyti
 expressions for some othersmall values of (dv, dc) are given in [2℄: for example, αMP(3, 5) ≈ 0.5406(
ompare to 
apa
ity of 0.6) and αMP(3, 6) ≈ 0.4294 (
ompare to 
apa
ity of
0.5).



Theorem 4. For integers 3 ≤ dv < dc, there exists an expli
it family ofbinary linear 
odes of rate at least 1− dv

dc
that 
an be reliably de
oded in lineartime on BECα provided α < αMP(dv, dc).85.3 De
oding on the BSCThe relatively 
lean analysis of regular LDPC 
odes on the BEC is surelyen
ouraging. As mentioned earlier, Gallager in fa
t did not 
onsider the BECin his work. We now dis
uss one of his de
oding algorithms for the BSC, thathas been dubbed Gallager's Algorithm A, and some simple extensions of it.5.3.1 Gallager's Algorithm AThe message alphabet of Algorithm A will equal {1,−1}, so the nodes simplypass guesses on 
odeword bits. The message maps are time invariant and donot depend on the iteration number, so we will omit the supers
ript indi
atingthe iteration number in des
ribing the message maps. The 
he
k nodes senda message to a variable node indi
ating the parity of the other neighboringvariables, or formally:

Ψc(m1, . . . , mdc−1) =

dc−1
∏

i=1

mi .The variable nodes send to a neighboring 
he
k node their original re
eivedvalue unless the in
oming messages from the other 
he
k nodes unanimouslyindi
ate otherwise, in whi
h 
ase it sends the negative of the re
eived value.Formally,
Ψv(r, m1, . . . , mdv−1) =

{

−r if m1 = · · · = mdv−1 = −r
r otherwise .As in the 
ase of BEC, we will tra
k the expe
ted fra
tion of variable-to-
he
knode messages that are erroneous in the i'th iteration. Sin
e we assume theall-ones 
odeword was transmitted, this is simply the expe
ted fra
tion ofmessages that equal −1. Let pi be the probability (over the 
hannel noise)that a parti
ular variable-to-
he
k node message in iteration i equals −1 (as8Our analysis showed that the bit-error probability 
an be made below any desired ε > 0by pi
king the number of iterations to be a large enough 
onstant. A more 
areful analysisusing ℓ(n) = Ω(log n) iterations shows that bit-error probability is at most exp(−nβ) forsome 
onstant β = β(dv, dc). By a union bound, the entire 
odeword is thus 
orre
tlyre
overed with high probability.



in the 
ase of the BEC, this is independent of the a
tual edge for i ≤ ℓ).Note that we have p0 = p, the 
rossover probability of the BSC.It is a routine 
al
ulation using the independen
e of the in
oming mes-sages to prove the following re
ursive equation [8, Se
. 4.3℄, [23, Se
 III℄:
pi+1 = p0 − p0

(

1 + (1 − 2pi)
dc−1

2

)dv−1

+ (1 − p0)

(

1 − (1 − 2pi)
dc−1

2

)dv−1(3)For a �xed value of p0, pi+1 is a in
reasing fun
tion of pi, and for a �xed valueof pi, pi+1 is an in
reasing fun
tion of p0. Therefore, by indu
tion pi is anin
reasing fun
tion of p0. De�ne the threshold value of this algorithm �A� as
pA(dv, dc) = sup{p0 ∈ [0, 1] : limℓ→∞ pℓ = 0}. By the above argument, if the
rossover probability p < pA(dv, dc), then the expe
ted fra
tion of erroneousmessages in the ℓ'th iteration approa
hes 0 as ℓ → ∞.Regardless of the exa
t quantitative value, we want to point out thatwhen dv ≥ 3, the threshold is positive. Indeed, for dv > 2, for small enough
p0 > 0, one 
an see that pi+1 < pi for 0 < pi ≤ p0 and pi+1 = pi for pi = 0,whi
h means that limi→∞ pi = 0.Exa
t analyti
 expressions for the threshold have been 
omputed for somespe
ial 
ases [2℄. This is based on the 
hara
terization of pA(dv, dc) as thesupremum of all p0 > 0 for whi
h

x = p0 − p0

(

1 + (1 − 2x)dc−1

2

)dv−1

+ (1 − p0)

(

1 − (1 − 2x)dc−1

2

)dv−1does not have a stri
tly positive solution x with x ≤ p0. Below are someexample values of the threshold (up to the stated pre
ision). Note that therate of the 
ode is 1 − dv/dc and the Shannon limit is H−1(dv/dc) (where
H−1(y) for 0 ≤ y ≤ 1 is de�ned as the unique value of x ∈ [0, 1/2] su
h that
H(x) = y).

dv dc pA(dv, dc) Capa
ity3 6 0.0395 0.114 8 1/21 0.115 10 1/36 0.114 6 1/15 0.1743 4 0.106 0.2153 5 0.0612 0.1465.3.2 Gallager's Algorithm BGallager proposed an extension to the above algorithm, whi
h is now 
alledGallager's Algorithm B, in whi
h a variable node de
ides to �ip its value in



an outgoing message when at least b of the in
oming messages suggest thatit ought to �ip its value. In Algorithm A, we have b = dv − 1. The threshold
b 
an also depend on the iteration number, and we will denote by bi thisvalue during the i'th iteration. Formally, the variable message map in the
i'th iteration is given by

Ψ(i)
v (r, m1, . . . , mdv−1) =

{

−r if |{j : mj = −r}| ≥ bi

r otherwise .The 
he
k node message maps remain the same. The threshold should begreater than (dv − 1)/2 sin
e intuitively one should �ip only when more
he
k nodes suggest a �ip than those that suggest the re
eived value. Sowhen dv = 3, the above algorithm redu
es to Algorithm A.De�ning the probability of an in
orre
t variable-to-
he
k node messagein the i'th iteration to be p̃i, one 
an show the re
urren
e [8, Se
. 4.3℄:
p̃i+1 = p̃0 − p̃0

dv−1
∑

j=bi+1

(

dv−1
j

)

(

1 + (1 − 2p̃i)
dc−1

2

)j (
1 − (1 − 2p̃i)

dc−1

2

)dv−1−j

+ (1 − p̃0)
dv−1
∑

j=bi+1

(

dv−1
j

)

(

1 + (1 − 2p̃i)
dc−1

2

)dv−1−j (
1 − (1 − 2p̃i)

dc−1

2

)jThe 
ut-o� value bi+1 
an then be 
hosen to minimize this value. The solutionto this minimization is the smallest integer bi+1 for whi
h
1 − p̃0

p̃0
≤
(

1 + (1 − 2p̃i)
dc−1

1 − (1 − 2p̃i)dc−1

)2bi+1−dv+1

.By the above expression, we see that as p̃i de
reases, bi+1 never in
reases.And, as p̃i is su�
iently small, bi+1 takes the value dv/2 for even dv and
(dv + 1)/2 for odd dv. Therefore, a variable node �ips its value when amajority of the dv −1 in
oming messages suggest that the re
eived value wasan error. We note that this majority 
riterion for �ipping a variable node'sbit value was also used in de
oding of expander 
odes [29℄.Similar to the analysis of Algorithm A, using the above re
urren
e, one
an show that when dv ≥ 3, for su�
iently small p0 > 0, we have pi+1 < piwhen 0 < pi ≤ p0, and of 
ourse when pi = 0, we have pi+1 = 0. Therefore,when dv ≥ 3, for small enough p0 > 0, we have limi→∞ pi = 0 and thus apositive threshold.The values of the threshold of this algorithm for small pairs (dv, dc) appearin [23℄. For the pairs (4, 8), (4, 6) and (5, 10) the thresholds are about 0.051,
0.074, and 0.041 respe
tively. For 
omparison, for these pairs Algorithm Aa
hieved a threshold of about 0.047, 0.066, and 0.027 respe
tively.



5.3.3 Using Erasures in the De
oderIn both the above algorithms, ea
h message made up its mind on whetherto guess 1 or −1 for a bit. But it may be judi
ious to sometimes abstainfrom guessing, i.e., to send an �erasure� message (with value 0), if thereis no good reason to guess one way or the other. For example, this maybe the appropriate 
ourse of a
tion if a variable node re
eives one-half 1'sand one-half −1's in the in
oming 
he
k node messages. This motivates analgorithm with message alphabet {1, 0,−1} and the following message maps(in iteration ℓ):
Ψ(ℓ)

v (r, m1, m2, . . . , mdv−1) = sgn

(

w(ℓ)r +

dv−1
∑

j=1

mj

)and
Ψ(ℓ)

c (m1, m2, . . . , mdc−1) =

dc−1
∏

j=1

mj .The weight w(ℓ) di
tates the relative importan
e given to the re
eived value
ompared to the suggestions by the 
he
k nodes in the ℓ'th iteration. Theseweights add another dimension of design 
hoi
es that one 
an optimize.Exa
t expressions for the probabilities p
(−1)
i and p

(0)
i ) that a variable-to-
he
k message is an error (equals −1) and an erasure (equals 0) respe
tivelyin the i'th iteration 
an be written down [23℄. These 
an be used to pi
kappropriate weights w(i). For the (3, 6)-regular 
ode, w(1) = 2 and w(i) = 1for i ≥ 2 is reported as the optimum 
hoi
e in [23℄, and using this 
hoi
ethe resulting algorithm has a threshold of about 0.07, whi
h is a good im-provement over the 0.04 a
hieved by Algorithm A. More impressively, this is
lose to the threshold of 0.084 a
hieves by the �optimal� belief propagationde
oder. A heuristi
 to pi
k the weights w(i) is suggested in [23℄ and thethreshold of the resulting algorithm is 
omputed for small values of (dv, dc).5.4 De
oding on BIAWGNWe now brie�y turn to the BIAWGN 
hannel. We dis
ussed the most ob-vious quantization of the 
hannel output whi
h 
onverts the 
hannel to aBSC with 
rossover probability Q(1/σ). There is a natural way to in
or-porate erasures into the quantization. We pi
k a threshold τ around zero,and quantize the AWGN 
hannel output r into −1, 0 (whi
h 
orrespondsto erasure), or 1 depending on whether r ≤ −τ , −τ < r < τ , or r ≥ τ ,respe
tively. We 
an then run exa
tly the above message-passing algorithm



(the one using erasures). More generally, we 
an pi
k a separate threshold
τi for ea
h iteration i � the 
hoi
e of τi and w(i) 
an be optimized usingsome heuristi
 
riteria. Using this approa
h, a threshold of σ∗ = 0.743 is re-ported for 
ommuni
ation using a (3, 6)-regular LDPC 
ode on the BIAWGN
hannel. This 
orresponds to a raw bit-error probability of Q(1/σ∗) = 0.089,whi
h is almost 2% greater than the threshold 
rossover probability of about
0.07 a
hieved on the BSC. So even with a ternary message alphabet, provid-ing soft information (instead of quantized hard bit de
isions) at the input tothe de
oder 
an be lead to a good performan
e gain. The belief propagationalgorithm we dis
uss next uses a mu
h large message alphabet and yieldsfurther substantial improvements for the BIAWGN.5.5 The belief propagation de
oderSo far we have dis
ussed de
oders with quantized, dis
rete messages takingon very few values. Naturally, we 
an expe
t more powerful de
oders if moredetailed information, su
h as real values quantifying the likelihood of a bitbeing ±1, are passed in ea
h iteration. We now des
ribe the �belief propaga-tion� (BP) de
oder whi
h is an instan
e of su
h a de
oder (using a 
ontinuousmessage alphabet). We follow the des
ription in [23, Se
. III-B℄. In beliefpropagation, the messages sent along an edge e represent the posterior 
ondi-tional distribution on the bit asso
iated with the variable node in
ident on e.This distribution 
orresponds to a pair of nonnegative reals p1, p−1 satisfying
p1 + p−1 = 1. This pair 
an be en
oded as a single real number (in
luding
±∞) using the log-likelihood ratio log p1

p−1
, and the messages used by the BPde
oder will follow this representation.Ea
h node a
ts under the assumption that ea
h message 
ommuni
atedto it in a given round is a 
onditional distribution on the asso
iated bit, andfurther ea
h su
h message is 
onditionally independent of the others. Uponre
eiving the messages, a node transmits to ea
h neighbor the 
onditionaldistribution of the bit 
onditioned on all information ex
ept the informationfrom that neighbor (i.e., only extrinsi
 information is used in 
omputing amessage). If the graph has large enough girth 
ompared to the number ofiterations, this assumption is indeed met, and the messages at ea
h iterationre�e
t the true log-likelihood ratio given the observed values in the treeneighborhood of appropriate depth.If l1, l2, . . . , lk are the likelihood ratios of the 
onditional distribution of abit 
onditioned on independent random variables, then the likelihood ratioof the bit value 
onditioned on all of the random variables equals ∏k

i=1 li.Therefore, log-likelihoods of independent messages add up, and this leads to



the variable message map (whi
h is independent of the iteration number):
Ψv(m0, m1, . . . , mdv−1) =

dv−1
∑

i=0

miwhere m0 is the log-likelihood ratio of the bit based on the re
eived value(eg., for the BSCp, m0 = r log 1−p
p

where r ∈ {1,−1} is the re
eived value).The performan
e of the de
oder is analyzed by tra
king the evolution ofthe probability density of the log-likelihood ratios (hen
e the name �den-sity evolution� for this style of analysis). By the above, given densities
P0, P1, . . . , Pdv−1 on the real quantities m0, m1, . . . , mdv−1, the density of
Ψv(m0, m1, . . . , mdv−1) is the 
onvolution P0 ⊗ P1 ⊗ · · · ⊗ Pdv−1 over the re-als of those densities. In the 
omputation, one has P1 = P2 = · · · = Pdv−1and the densities will be quantized, and the 
onvolution 
an be e�
iently
omputed using the FFT.Let us now turn to the situation for 
he
k nodes. Given bits bi, 1 ≤ i ≤ k,with independent probability distributions (pi

1, p
i
−1), what is the distribution

(p1, p−1) of the bit b =
∏k

i=1 bi? We have the expe
tation
E[b] = E[

∏

i

bi] =
∏

i

E[bi] =
∏

i

(pi
1 − pi

−1) .Therefore we have p1 − p−1 =
∏k

i=1(p
i
1 − pi

−1). Now if m is the log-likelihoodratio log p1

p−1
, then p1−p−1 = em−1

em+1
= tanh(m/2). Conversely, if p1−p−1 = q,then log p1

p−1
= log 1+q

1−q
. These 
al
ulations lead to the following 
he
k nodemap for the log-likelihood ratio:

Ψc(m1, m2, . . . , mdc−1) = log

(

1 +
∏dc−1

i=1 tanh(mi/2)

1 −∏dc−1
i=1 tanh(mi/2)

)

.It seems 
ompli
ated to tra
k the density of Ψc(m1, m2, . . . , mdc−1) based onthose of the mi's. However, as shown in [23℄, this 
an be also be realizedvia a Fourier transform, albeit with a slight 
hange in representation of the
onditional probabilities (p1, p−1). We skip the details and instead point thereader to [23, Se
. III-B℄.Using these ideas, we have an e�e
tive algorithm to re
ursively 
ompute,to any desired degree of a

ura
y, the probability density P (ℓ) of the log-likelihood ratio of the variable-to-
he
k node messages in the ℓ-th iteration,starting with an expli
it des
ription of the initial density P (0). The initialdensity is simply the density of the log-likelihood ratio of the re
eived value,



assuming transmission of the all-ones 
odeword; for example, for BSCp, theinitial density P (0) is given by
P (0)(x) = pδ

(

x − log
p

1 − p

)

+ (1 − p)δ

(

x − log
1 − p

p

)

,where δ(x) is the Dira
 delta fun
tion.The threshold 
rossover probability for the BSC and the threshold vari-an
e for the BIAWGN under belief propagation de
oding for various smallvalues of (dv, dc) are 
omputed by this method and reported in [23℄. Forthe (3, 6) LDPC 
ode, these thresholds are respe
tively p∗ = 0.084 (
omparewith Shannon limit of 0.11) and σ∗ = 0.88 (
ompare with Shannon limit of
0.9787).The above numeri
al pro
edure for tra
king the evolution of densities forbelief propagation and 
omputing the asso
iated threshold to any desireddegree of a

ura
y has sin
e been applied with great su

ess. In [22℄, theauthors apply this method to irregular LDPC 
odes with optimized stru
tureand a
hieve a threshold of σ∗ = 0.9718 with rate 1/2 for the BIAWGN, whi
his a mere 0.06 dB way from the Shannon 
apa
ity limit.96 Irregular LDPC 
odesInterest in LDPC 
odes surged following the seminal paper [16℄ that initiatedthe study of irregular LDPC 
odes, and proved their potential by a
hievingthe 
apa
ity on the BEC. Soon, it was realized that the bene�ts of irregularLDPC 
odes extend to more powerful 
hannels, and this led to a �urry ofa
tivity. In this se
tion, we des
ribe some of the key elements of the analyti
approa
h used to to study message-passing de
oding algorithms for irregularLDPC 
odes.6.1 Intuitive bene�ts of irregularityWe begin with some intuition on why one might expe
t improved perfor-man
e by using irregular graphs. In terms of iterative de
oding, from thevariable node perspe
tive, it seems better to have high degree, sin
e themore information it gets from 
he
k nodes, the more a

urately it 
an guessits 
orre
t value. On the other hand, from the 
he
k node perspe
tive, thelower its degree, the more valuable the information it 
an transmit ba
k to9The threshold signal-to-noise ratio 1/(σ∗)2 = 0.2487 dB, and the Shannon limit forrate 1/2 is 0.187 dB.



its neighbors. (The XOR of several mildly unpredi
table bits has a mu
hlarger unpredi
tability.) But in order to have good rate, there should befar fewer 
he
k nodes than variable nodes, and therefore meeting the above
ompeting requirements is 
hallenging. Irregular graphs provide signi�
antlymore �exibility in balan
ing the above in
ompatible degree requirements. Itseems reasonable to believe that a wide spread of degrees for variable nodes
ould be useful. This is be
ause one might expe
t that variable nodes withhigh degree will 
onverge to their 
orre
t value qui
kly. They 
an then pro-vide good information to the neighboring 
he
k nodes, whi
h in turn providebetter information to lower degree variable nodes, and so on leading to a
as
aded wave e�e
t.The big 
hallenge is to leap from this intuition to the design of appropriateirregular graphs where this phenomenon provably o

urs, and to provideanalyti
 bounds on the performan
e of natural iterative de
oders on su
hirregular graphs.Compared to the regular 
ase, there are additional te
hni
al issues revolv-ing around how irregular graphs are parameterized, how they are 
onstru
ted(sampled), and how one deals with the la
k of expli
it large-girth 
onstru
-tions. We dis
uss these issues in the next two subse
tions.6.2 The underlying ensemblesWe now des
ribe how irregular LDPC 
odes 
an be parameterized and 
on-stru
ted (or rather sampled). Assume we have an LDPC 
ode with n variablenodes with Λi variable nodes of degree i and Pi 
he
k nodes of degree i. Wehave ∑i Λi = n, and ∑i iΛi =
∑

i iPi as both these equal the number ofedges in the graph. Also∑i Pi = n(1− r) where r is the designed rate of the
ode. It is 
onvenient to 
apture this information in the 
ompa
t polynomialnotation:
Λ(x) =

dmax
v
∑

i=2

Λix
i , P (x) =

dmax
c
∑

i=1

Pix
i .We 
all the polynomials Λ and P the variable and 
he
k degree distributionsfrom a node perspe
tive. Note that Λ(1) is the number of variable nodes,

P (1) the number of 
he
k nodes, and Λ′(1) = P ′(1) the number of edges.Given su
h a degree distribution pair (Λ, P ), let LDPC(Λ, P ) denote the�standard� ensemble of bipartite (multi)graphs with Λ(1) variable nodes and
P (1) 
he
k nodes, with Λi variable nodes and Pi 
he
k nodes of degree i. Thisensemble is de�ned by taking Λ′(1) = P ′(1) �so
kets� on ea
h side, allo
ating
i so
kets to a node of degree i in some arbitrary manner, and then pi
king arandom mat
hing between the so
kets.



To ea
h member of LDPC(Λ, P ), we asso
iate the 
ode of whi
h it is thefa
tor graph. A slight te
hni
ality: sin
e we are dealing with multigraphs,in the parity 
he
k matrix, we pla
e a non-zero entry at row i and 
olumn ji� the ith 
he
k node is 
onne
ted to the jth variable node an odd numberof times. Therefore, we 
an think of the above as an ensemble of 
odes, andby abuse of notation also refer to it as LDPC(Λ, P ). (Note that the graphshave a uniform probability distribution, but the indu
ed 
odes need not.) Inthe sequel, our LDPC 
odes will be obtained by drawing a random elementfrom the ensemble LDPC(Λ, P ).To 
onstru
t a family of 
odes, one 
an imagine using a normalized de-gree distribution giving the fra
tion of nodes of a 
ertain degree, and then
onsidering an in
reasing number of nodes. For purposes of analysis, it endsup being 
onvenient to use normalized degree distributions from the edgeperspe
tive. Let λi and ρi denote the fra
tion of edges in
ident to variablenodes and 
he
k nodes of degree i respe
tively. That is, λi (resp. ρi) is theprobability that a randomly 
hosen edge is 
onne
ted to a variable (resp.
he
k) node of degree i. These distributions 
an be 
ompa
tly written interms of the power series de�ned below:
λ(x) =

∑

i

λix
i−1 , ρ(x) =

∑

i

ρix
i−1 .It is easily seen that λ(x) = Λ′(x)

Λ′(1)
and ρ(x) = P ′(x)

P ′(1)
. If M is the total numberof edges, then the number of variable nodes of degree i equals Mλi/i, andthus the total number of variable nodes is M

∑

i λi/i. It follows that that theaverage variable node degree equals 1
P

i λi/i
= 1

R 1
0

λ(z)dz
. Likewise, the average
he
k node degree equals 1

R 1
0 ρ(z)dz

. It follows that the designed rate 
an beexpressed in terms of λ, ρ as
r = r(λ, ρ) = 1 −

∫ 1

0
ρ(z)dz

∫ 1

0
λ(z)dz

. (4)We also have the inverse relationships
Λ(x)

n
=

∫ x

0
λ(z)dz

∫ 1

0
λ(z)dz

,
P (x)

n(1 − r)
=

∫ x

0
ρ(z)dz

∫ 1

0
ρ(z)dz

. (5)Therefore, (Λ, P ) and (n, λ, ρ) 
arry the same information (in the sense we
an obtain ea
h from the other). For the asymptoti
 analysis we use (n, λ, ρ)to refer to the LDPC 
ode ensemble. There is a slight te
hni
ality that forsome n, the (Λ, P ) 
orresponding to (n, λ, ρ) may not be integral. In this




ase, rounding the individual node distributions to the 
losest integer hasnegligible e�e
t on the asymptoti
 performan
e of de
oder or the rate, andso this annoyan
e may be safely ignored.The degree distributions λ, ρ play a prominent role in the line of work,and the performan
e of the de
oder is analyzed and quanti�ed in terms ofthese.6.3 Con
entration around average performan
eGiven a degree distribution pair (λ, ρ) and a blo
k length n, the goal is tomimi
 Gallager's program (outlined in Se
tion 5.1), using a fa
tor graph withdegree distribution (λ, ρ) in pla
e of a (dv, dc)-regular fa
tor graph. However,the task of 
onstru
ting expli
it large girth graphs obeying pre
ise irregulardegree distributions seems extremely di�
ult. Therefore, a key di�eren
e isto give up on expli
itness, and rather sample an element from the ensemble
LDPC(n, λ, ρ), whi
h 
an be done easily as mentioned above.It is not very di�
ult to show that a random 
ode drawn from the ensem-ble will have the needed girth (and thus be tree-like in a lo
al neighborhood ofevery edge/vertex) with high probability; see for instan
e [23, Appendix A℄.A more deli
ate issue is the following: For the irregular 
ase the neighborhoodtrees out of di�erent nodes have a variety of di�erent possible stru
tures, andthus analyzing the behavior of the de
oder on a spe
i�
 fa
tor graph (after ithas been sampled, even 
onditioning on it having large girth) seems hopeless.What is feasible, however, is to analyze the average behavior of the de
oder(su
h as the expe
ted fra
tion, say P

(λ,ρ)
n (ℓ), of erroneous variable-to-
he
kmessages in the ℓ'th iteration) taken over all instan
es of the 
ode drawnfrom the ensemble LDPC(n, λ, ρ) and the realization of the 
hannel noise.It 
an be shown that, as n → ∞, P
(λ,ρ)
n (ℓ) 
onverges to a 
ertain quantity

P
(λ,ρ)
T (ℓ), whi
h is de�ned as the probability (taken over both 
hoi
e of thegraph and the noise) that an in
orre
t message is sent in the ℓ'th iterationalong an edge (v, c) assuming that the depth 2ℓ neighborhood out of v is atree.In order to de�ne the probability P

(λ,ρ)
T (ℓ) more pre
isely, one uses a �treeensemble� Tℓ(λ, ρ) de�ned indu
tively as follows. T0(λ, ρ) 
onsists of thetrivial tree 
onsisting of just a root variable node. For ℓ ≥ 1, to sample from

Tℓ(λ, ρ), �rst sample an element from Tℓ−1(λ, ρ). Next for ea
h variable leafnode (independently), with probability λi+1 atta
h i 
he
k node 
hildren.Finally, for ea
h of the new 
he
k leaf nodes, independently atta
h i variablenode 
hildren with probability ρi+1. The quantity P
(λ,ρ)
T (ℓ) is then formallyde�ned as the probability that the outgoing message from the root node of a



sample T from Tℓ(λ, ρ) is in
orre
t, assuming the variable nodes are initiallylabeled with 1 and then the 
hannel noise a
ts on them independently (theprobability is thus both over the 
hannel noise and the 
hoi
e of the sample
T from Tℓ(λ, ρ)).The 
onvergen
e of P

(λ,ρ)
n (ℓ) to P

(λ,ρ)
T (ℓ) is a simple 
onsequen
e of thefa
t that, for a random 
hoi
e of the fa
tor graph from LDPC(n, λ, ρ), thedepth 2ℓ neighborhood of an edge is tree-like with probability tending to 1as n gets larger (for more details, see [23, Thm. 2℄).The quantity P

(λ,ρ)
T (ℓ) for the 
ase of trees is easily 
omputed, similar tothe 
ase of regular graphs, by a re
ursive pro
edure. One 
an then determinethe threshold 
hannel parameter for whi
h P

(λ,ρ)
T (ℓ) → 0 as ℓ → ∞.However, this only analyzed the average behavior of the ensemble of
odes. What we would like is for a random 
ode drawn from the ensemble

LDPC(n, λ, ρ) to 
on
entrate around the average behavior with high prob-ability. This would mean that almost all 
odes behave alike and thus theindividual behavior of almost all 
odes is 
hara
terized by the average be-havior of the ensemble (whi
h 
an be 
omputed as outlined above). A majorsu

ess of this theory is that su
h a 
on
entration phenomenon indeed holds,as shown in [17℄ and later extended to a large 
lass of 
hannels in [23℄. Theproof uses martingale arguments where the edges of the fa
tor graph andthen the inputs to the de
oder are revealed one by one. We refrain from pre-senting the details here and point the reader to [17, Thm. 1℄ and [23, Thm.2℄ (the result is proved for regular ensembles in these works but extends toirregular ensembles as long as the degrees in the graph are bounded).In summary, it su�
es to analyze and bound P
(λ,ρ)
T (ℓ), and if this tendsto 0 as ℓ → ∞, then in the limit of a large number of de
oding iterations,for almost all 
odes in the ensemble, the a
tual bit error probability of thede
oder tends to zero for large enough blo
k lengths.Order of limits: A remark on the order of the limits might be in order.The proposed style of analysis aims to determine the threshold 
hannel pa-rameter for whi
h limℓ→∞ limn→∞ E[P

(λ,ρ)
n (ℓ)] = 0. That is, we �rst �x thenumber of iterations and determine the limiting performan
e of an ensem-ble as the blo
k length tends to in�nity, and then let the number of itera-tions tend to in�nity. Ex
hanging the order of limits gives us the quantity

limℓ→∞ limn→∞ E[P
(λ,ρ)
n (ℓ)]. It is this limit that 
orresponds to the more typ-i
al s
enario in pra
ti
e where for ea
h �xed blo
k length, we let the iterativede
oder run until no further progress is a
hieved. We are then interested inthe limiting performan
e as the blo
k length tends to in�nity. For the BEC,it has been shown that for both the orders of taking limits, we get the samethreshold [25, Se
. 2.9.8℄. Based on empiri
al observations, the same has



been 
onje
tured for 
hannels su
h as the BSC, but a proof of this seems tobe out of sight.6.4 Analysis of average performan
e for the BECWe now turn to analyzing the average behavior of the ensemble LDPC(n, λ, ρ)under message-passing de
oding on the BEC. (The algorithm for regular
odes from Se
tion 5.2 extends to irregular 
odes in the obvious fashion �the message maps are the same ex
ept the maps at di�erent nodes will havedi�erent number of arguments.)Lemma 5 (Performan
e of tree ensemble 
hannel on BEC). Considera degree distribution pair (λ, ρ) and a real number 0 < α < 1. De�ne x0 = αand for ℓ ≥ 1,
xℓ = αλ(1 − ρ(1 − xℓ−1)) . (6)Then, for the BEC with erasure probability α, for every ℓ ≥ 1, we have

P
(λ,ρ)
T (ℓ) = xℓ.Proof. The proof follows along the lines of the re
ursion (1) that we es-tablished for the regular 
ase. The 
ase ℓ = 0 is 
lear sin
e the initialvariable-to-
he
k message equals the re
eived value whi
h equals an erasurewith probability α. Assume that for 0 ≤ i < ℓ, P

(λ,ρ)
T (i) = xi. In the ℓ'th it-eration, a 
he
k-to-variable node message sent by a degree i 
he
k node is theerasure message if any of the (i−1) in
oming messages is an erasure, an eventthat o

urs with probability 1 − (1 − xℓ−1)

i−1 (sin
e the in
oming messagesare independent and ea
h is an erasure with probability xℓ−1 by indu
tion).Sin
e the edge has probability ρi to be 
onne
ted to a 
he
k node of degree i,the erasure probability of a 
he
k-to-variable message in the ℓ'th iteration fora randomly 
hosen edge is equal to∑i ρi(1− (1−xℓ−1)
i−1) = 1−ρ(1−xℓ−1).Now 
onsider a variable-to-
he
k message in the ℓ'th iteration sent by a vari-able node of degree i. This is an erasure i� the node was originally erasedand ea
h of the (i − 1) in
oming messages are erasures. Thus it is an era-sure with probability α(1 − ρ(1 − xℓ−1))

i−1. Averaging over the edge degreedistribution λ(·), we have P
(λ,ρ)
T (ℓ) = αλ(1 − ρ(1 − xℓ−1)) = xℓ.The following lemma yields the threshold erasure probability for a givendegree distribution pair (λ, ρ). The proof is identi
al to Lemma 2 � wesimply use the re
ursion (6) in pla
e of (1). Note that Lemma 2 is a spe
ial
ase when λ(z) = zdv−1 and ρ(z) = zdc−1.



Lemma 6. For the BEC, the threshold erasure probability αMP(λ, ρ) belowwhi
h the above iterative message passing algorithm leads to vanishing bit-erasure probability as the number of iterations grows is given by
αMP(λ, ρ) = min

x∈[0,1]

x

λ(1 − ρ(1 − x))
. (7)6.5 Capa
ity a
hieving distributions for the BECHaving analyzed the performan
e possible on the BEC for a given degreedistribution pair (λ, ρ), we now turn to the question of what pairs (λ, ρ), ifany, have a threshold approa
hing 
apa
ity. Re
alling the designed rate from(4), the goal is to �nd (λ, ρ) for whi
h αMP(λ, ρ) ≈

R 1
0 ρ(z)dz

R 1
0

λ(z)dz
.We now dis
uss a re
ipe for 
onstru
ting su
h degree distributions, asdis
ussed in [20℄ and [25, Se
. 2.9.11℄ (we follow the latter des
ription 
losely).In the following we use parameters θ > 0 and a positive integer N that willbe �xed later. Let D be the spa
e of non-zero fun
tions h : [0, 1) → R

+whi
h are analyti
 around zero with a Taylor series expansion 
omprisingof non-negative 
oe�
ients. Pi
k fun
tions λ̂θ(x) ∈ D and ρθ(x) ∈ D thatsatisfy ρθ(1) = 1 and̂
λθ(1 − ρθ(1 − x)) = x , ∀x ∈ [0, 1) . (8)Here are two example 
hoi
es of su
h fun
tions:1. Heavy-Tail Poisson Distribution [16℄, dubbed �Tornado sequen
e� inthe literature. Here we take
λ̂θ(x) =

− ln(1 − x)

θ
=

1

θ

∞
∑

i=1

xi

i
, and

ρθ(x) = eθ(x−1) = e−θ
∞
∑

i=0

θixi

i!
.2. Che
k-
on
entrated degree distribution [28℄. Here for θ ∈ (0, 1) so that

1/θ is an integer, we take
λ̂θ(x) = 1 − (1 − x)θ =

∞
∑

i=1

(

θ

i

)

(−1)i−1xi , and
ρθ(x) = x1/θ .



Let λ̂
(N)
θ (x) be the fun
tion 
onsisting of the �rst N terms (up to the xN−1term) of the Taylor series expansion of λ̂θ(x) around zero, and de�ne thenormalized fun
tion λ

(N)
θ (x) =

λ̂
(N)
θ

(x)

λ̂
(N)
θ

(1)
(for large enough N , λ̂

(N)
θ (1) > 0, andso this polynomial has positive 
oe�
ients). For suitable parameters N, θ,the pair (λ

(N)
θ , ρθ) will be our 
andidate degree distribution pair.10 The non-negativity of the Taylor series 
oe�
ients of λ̂θ(x) implies that for x ∈ [0, 1],

λ̂θ(x) ≥ λ
(N)
θ (x), whi
h together with (8) gives

x = λ̂θ(1 − ρθ(1 − x)) ≥ λ̂
(N)
θ (1 − ρθ(1 − x)) = λ̂

(N)
θ (1)λ

(N)
θ (1 − ρθ(1 − x)) .By the 
hara
terization of the threshold in Lemma 6, it follows that

αMP(λ
(N)
θ , ρθ) ≥ λ̂

(N)
θ (1). Note that the designed rate equals

r = r(λ
(N)
θ , ρθ) = 1 −

∫ 1

0
ρθ(z)dz

∫ 1

0
λ

(N)
θ (z)dz

= 1 − λ̂
(N)
θ (1)

∫ 1

0
ρθ(z)dz

∫ 1

0
λ̂

(N)
θ (z)dz

.Therefore, given a target erasure probability α, to 
ommuni
ate at rates
lose to 
apa
ity 1 − α, the fun
tions λ̂
(N)
θ and ρθ must satisfy

λ̂
(N)
θ (1) ≈ α and ∫ 1

0
ρθ(z)dz

∫ 1

0
λ̂

(N)
θ (z)dz

→ 1 as N → ∞ . (9)For example, for the Tornado sequen
e, λ̂
(N)
θ (1) = 1

θ

∑N−1
i=1

1
i

= H(N−1)
θwhere H(m) is the Harmoni
 fun
tion. Hen
e, pi
king θ = H(N−1)

α
ensuresthat the threshold is at least α. We have ∫ 1

0
λ̂

(N)
θ (z)dz = 1

θ

∑N−1
i=1

1
i(i+1)

=

N−1
θN

, and ∫ 1

0
ρθ(z)dz = 1−e−θ

θ
. Therefore, R 1

0 ρθ(z)dz
R 1
0 λ̂

(N)
θ

(z)dz
= (1 − e−H(N−1)/α)(1 −

1/N) → 1 as N → ∞, as desired. Thus the degree distribution pair isexpli
itly given by
λ(N)(x) =

1

H(N − 1)

N−1
∑

i=1

xi

i
, ρ(N)(x) = e

H(N−1)
α

(x−1) .Note that pi
king N ≈ 1/ε yields a rate (1 − ε)α for reliable 
ommu-ni
ation on BECα. The average variable node degree equals 1
R 1
0 λ(N)(z)dz

≈
H(N−1) ≈ ln N . Therefore, we 
on
lude that we a
hieve a rate within a mul-tipli
ative fa
tor (1− ε) of 
apa
ity with de
oding 
omplexity O(n log(1/ε)).10If the power series expansion of ρθ(x) is in�nite, one 
an trun
ate it at a su�-
iently high term and 
laimed bound on threshold still applies. Of 
ourse for the 
he
k-
on
entrated distribution, this is not an issue!



For the 
he
k-
on
entrated distribution, if we want to a
hieve
αMP(λ

(N)
θ , ρθ) ≥ α and a rate r ≥ (1 − ε)α, then it turns out that the
hoi
e N ≈ 1/ε and 1/θ = ⌈ ln N

− ln(1−α)
⌉ works. In parti
ular, this means thatthe fa
tor graph has at most O(n log(1/ε)) edges, and hen
e the �Peelingde
oder� will again run in O(n log(1/ε)) time.One might wonder that among the various 
apa
ity a
hieving degree dis-tributions that might exist for the BEC, whi
h one is the �best� 
hoi
e? Itturns out that in order to a
hieve a fra
tion (1 − ε) of 
apa
ity, the averagedegree of the fa
tor graph has to be Ω(ln(1/ε)). This is shown in [26℄ usinga variant of Gallager's argument for lower bounding the gap to 
apa
ity ofLDPC 
odes. In fa
t, rather pre
ise lower bounds on the sparsity of the fa
-tor graph are known, and the 
he
k-
on
entrated distribution is optimal inthe sense that it mat
hes these bounds very 
losely; see [26℄ for the detailed
al
ulations.In light of the above, it might seem that 
he
k-
on
entrated distributionsare the �nal word in terms of the performan
e-
omplexity trade-o�. Whilethis is true in this framework of de
oding LDPC 
odes, it turns out by usingmore 
ompli
ated graph based 
odes, 
alled Irregular Repeat-A

umulateCodes, even better trade-o�s are possible [21℄. We will brie�y return to thisaspe
t in Se
tion 7.6.6 Extensions to 
hannels with errorsSpurred by the remarkable su

ess of [16℄ in a
hieving 
apa
ity of the BEC,Luby et al [17℄ investigated the performan
e of irregular LDPC 
odes for theBSC.In parti
ular, they 
onsidered the natural extension of Gallager's Algo-rithm B to irregular graphs, where in iteration i, a variable node of degree

j uses a threshold bi,j for �ipping its value. Applying essentially the samearguments as in Se
tion 5.3.2, but a

ounting for the degree distributions,one gets the following re
urren
e for the expe
ted fra
tion pℓ of in
orre
tvariable-to-
he
k messages in the ℓ'th iteration:
pi+1 = p0 − p0

dmax
v
∑

j=1

j
∑

t=bi+1,j

(

j−1
t

)

(

1 + ρ(1 − 2pi)

2

)t(
1 − ρ(1 − 2pi)

2

)j−1−t

+ (1 − p0)

dmax
v
∑

j=1

j
∑

t=bi+1,j

(

j−1
t

)

(

1 + ρ(1 − 2pi)

2

)j−1−t(
1 − ρ(1 − 2pi)

2

)tAs with the regular 
ase, the 
ut-o� value bi+1,j 
an then be 
hosen to mini-



mize the value of pi+1, whi
h is given by the smallest integer for whi
h
1 − p0

p0

≤
(

1 + ρ(1 − 2pi)

1 − ρ(1 − 2pi)

)2bi+1,j−j+1

.Note that 2bi+1,j−j+1 = bi+1,j−(j−1−bi+1,j) equals the di�eren
e betweenthe number of 
he
k nodes that agree in the majority and the number thatagree in the minority. Therefore, a variable node's de
ision in ea
h iterationdepends on whether this di�eren
e is above a 
ertain threshold, regardless ofits degree.Based on this, the authors of [17℄ develop a linear programming approa
hto �nd a good λ given a distribution ρ, and use this to 
onstru
t some gooddegree distributions. Then using the above re
urren
e they estimate thetheoreti
ally a
hievable threshold 
rossover probability. Following the devel-opment of the density evolution algorithm to tra
k the performan
e of beliefpropagation de
oding [23℄, the authors of [22℄ used optimization te
hniquesto �nd good irregular degree distributions for belief propagation de
oding.The BIAWGN 
hannel was the primary fo
us in [22℄, but the authors alsolist a few examples that demonstrate the promise of the te
hniques for other
hannels. In parti
ular, for the BSC with rate 1/2, they report a degreedistribution pair with maximum variable node degree 75 and 
he
k-node dis-tribution ρ(x) = 0.25x9 + 0.75x10 for whi
h the 
omputed threshold is 0.106,whi
h is quite 
lose to the Shannon 
apa
ity limit 0.11. The te
hniques werefurther re�ned and 
odes with rate 1/2 and a threshold of σ∗ ≈ 0.9781 (whoseSNR is within 0.0045 dB of 
apa
ity) were reported for the BIAWGN in [3℄� these 
odes use only two di�erent 
he
k node degrees j, j + 1 for someinteger j ≥ 2.7 Linear en
oding time and Repeat-A

umulate CodesThe linear de
oding 
omplexity of LDPC 
odes is one of their attra
tive fea-tures. Being linear 
odes, they generi
ally admit quadrati
 time en
oding.In this se
tion, we brie�y dis
uss how the en
oding 
omplexity 
an be im-proved, and give pointers to where results in this vein 
an be found in moredetail.The original Tornado 
odes paper [16℄ a
hieved linear time en
oding usinga 
as
ade of several low-density generator matrix (LDGM) 
odes. In LDGM
odes, the �fa
tor� graph is a
tually used to 
ompute a
tual 
he
k bits fromthe k message bits (instead of spe
ifying parity 
he
ks that the 
odeword



bits must obey). Due to the sparse nature of the graph, the 
he
k bits 
anbe 
omputed in linear time. These 
he
k bits are then used as message bitsfor the next layer, and so on, till the number of 
he
k bits be
omes O(
√

k).These �nal set of 
he
k bits are en
oded using a quadrati
 time en
odablelinear 
ode.We now mention an alternate approa
h to a
hieve linear time en
odingfor LDPC 
odes themselves (and not a 
as
aded variant as in [16℄), basedon �nding a sparse parity 
he
k matrix with additional ni
e properties. Let
H ∈ F

m×n
2 be the parity 
he
k matrix of an LDPC 
ode of dimension n−m.By means of row and 
olumn operations, we 
an 
onvert H into a form

H̃ where the last m 
olumns are linearly independent, and moreover the
m × m submatrix 
onsisting of the last m 
olumns is lower triangular (with
1's on the diagonal). Using H̃, it is a simple matter of �ba
k-substitution� to
ompute the m parity bits 
orresponding to the n−m information bits (theen
oding is systemati
). The 
omplexity of this en
oding is governed by thenumber of 1's in H̃ . In general, however, when we begin with a sparse H , theresulting matrix H̃ is no longer sparse. In a beautiful paper [24℄, Ri
hardsonand Urbanke propose �nding an �approximate� lower triangulation of theparity 
he
k matrix that is still sparse. The idea is to make the top right
(m− g)× (m− g) 
orner of the matrix lower triangular for some small �gap�parameter g. The en
oding 
an be done in O(n + g2) time, whi
h is linearif g = O(

√
n). Remarkably, for several distribution pairs (λ, ρ), in
luding allthe optimized ones listed in [22℄, it is shown in [24℄ that, with high probabilityover the 
hoi
e of the 
ode from the ensemble LDPC(n, λ, ρ), a gap of O(

√
n)
an in fa
t be a
hieved, thus leading to linear en
oding 
omplexity!Yet another approa
h to a
hieve linear en
oding 
omplexity that we wouldlike to fo
us on (as it has some additional appli
ations), is to use IrregularRepeat-A

umulate (IRA) 
odes. IRA 
odes were introdu
ed by Jin, Khan-dekar and M
Elie
e in [15℄, by generalizing the notion of Repeat-A

umulate
odes from [4℄ in 
onjun
tion with ideas from the study of irregular LDPC
odes.IRA 
odes are de�ned as follows. Let (λ, ρ) be a degree distribution pair.Pi
k a random bipartite graph G with k information nodes on left (with afra
tion λi of the edges being in
ident on information nodes of degree i), and

n > k 
he
k nodes on the right (with a fra
tion ρi of the edges in
ident beingin
ident on 
he
k nodes of degree i). A
tually, it turns out that one 
an pi
kthe graph to be regular on the 
he
k node side and still a
hieve 
apa
ity, sowe 
an even restri
t ourselves to 
he
k-degree distributions given by ρa = 1for some integer a. Using G, the en
oding of the IRA 
ode (of dimension kand blo
k length n) pro
eeds as follows:



• Pla
e the k message bits on the k information nodes.
• For 1 ≤ i ≤ n, at the i'th 
he
k node, 
ompute the bit vi ∈ {1,−1}whi
h equals the parity (i.e., produ
t, in ±1 notation) of the messagebits pla
ed on its neighbors.
• (A

umulation step) Output the 
odeword (w1, w2, . . . , wn) where wj =
∏j

i=1 vi. In other words, we a

umulate the parities of the pre�xes ofthe bit sequen
e (v1, v2, . . . , vn).Note that the en
oding takes O(n) time. Ea
h of the 
he
k nodes has
onstant degree, and thus the vi's 
an be 
omputed in linear time. Thea

umulation step 
an then be performed using additional O(n) operations.It is not hard to show that the rate of the IRA 
ode 
orresponding to apair (λ, ρ) as de�ned above equals R 1
0

λ(z)dz
R 1
0 ρ(z)dz

.A natural iterative de
oding algorithm for IRA 
odes is presented andanalyzed in [4℄ (a des
ription also appears in [21℄). The iterative algorithmuses a graphi
al model for message passing that in
ludes the above bipar-tite graph G 
onne
ting information nodes to 
he
k nodes, juxtaposed withanother bipartite graph 
onne
ting the 
he
k nodes to n 
ode nodes labeled
x1, x2, . . . , xn. In this graph, whi
h is intended to re�e
t the a

umulationpro
ess, 
ode node xi for 1 ≤ i < n is 
onne
ted to the i'th and (i + 1)'th
he
k nodes (ones where vi, vi+1 are 
omputed), and node xn is 
onne
ted tothe 
he
k node where vn is 
omputed.It is proved (see [21, Se
. 2℄) that for the above non-systemati
 IRA 
odes,the iterative de
oding on BECα 
onverges to vanishing bit-erasure probabilityas the blo
k length n → ∞, provided

λ

(

1 −
[

1 − α

1 − αR(1 − x)

]2

ρ(1 − x)

)

< x ∀x ∈ (0, 1] . (10)In the above R(x) =
∑∞

i=1 Rix
i is the power series whose 
oe�
ient Ri equalsthe fra
tion of 
he
k nodes that are 
onne
ted to i information nodes in G.Re
alling (5), we have R(x) =

R x

0 ρ(z)dz
R 1
0

ρ(z)dz
.Using the above 
hara
terization, degree distribution pairs (λ, ρ) for IRA
odes that a
hieve the 
apa
ity of the BEC have been found in [4, 27℄.1111A
tually, these papers work with a systemati
 version of IRA where the 
odewordin
ludes the message bits in addition to the a

umulated 
he
k bits x1, . . . , xn. Su
hsystemati
 
odes have rate equal to (1 +

R

1

0
ρ(z)dz

R

1

0
λ(z)dz

)−1, and the de
oding su

ess 
ondition(10) for them is slightly di�erent, with a fa
tor α multiplying the λ(·) term on the lefthand side.



In parti
ular, we want to draw attention to the 
onstru
tion in [21℄ with
ρ(x) = x2 that 
an a
hieve a rate of (1 − ε)(1 − α), i.e., within a (1 − ε)multipli
ative fa
tor of the 
apa
ity of the BEC, for α ∈ [0, 0.95].12 Sin
e
ρ(x) = x2, all 
he
k nodes are 
onne
ted to exa
tly 3 information nodes.Together with the two 
ode nodes they are 
onne
ted to, ea
h 
he
k nodehas degree 5 in the graphi
al model used for iterative de
oding. The totalnumber of edges in graphi
al model is thus 5n, and this means that the
omplexity of the en
oder as well as the �Peeling� implementation of thede
oder is at most 5n. In other words, the 
omplexity per 
odeword bit ofen
oding and de
oding is bounded by an absolute 
onstant, independent ofthe gap ε to 
apa
ity.8 SummaryWe have seen that LDPC 
odes together with natural message-passing algo-rithms 
onstitute a powerful approa
h for the 
hannel 
oding problem andto approa
h the 
apa
ity of a variety of 
hannels. For the parti
ularly simplebinary erasure 
hannel, irregular LDPC 
odes with 
arefully tailored de-gree distributions 
an be used to 
ommuni
ate at rates arbitrarily 
lose toShannon 
apa
ity. Despite the impressive strides in the asymptoti
 analy-sis of iterative de
oding of irregular LDPC 
odes, for all nontrivial 
hannelsex
ept for the BEC, it is still unknown if there exist sequen
es of degreedistributions that 
an get arbitrarily 
lose to the Shannon limit. By opti-mizing degree distributions numeri
ally and then 
omputing their threshold(either using expli
it re
urren
es or using the density evolution algorithm),various rather ex
ellent bounds on thresholds are known for the BSC andBIAWGN. These, however, still do not 
ome 
lose to answering the big the-oreti
al open question on whether there are 
apa
ity-a
hieving ensembles ofirregular LDPC 
odes (say for the BSC), nor do they provide mu
h insightinto their stru
ture.For irregular LDPC 
odes, we have expli
it sequen
es of ensembles of
odes that a
hieve the 
apa
ity of the BEC (and 
ome pretty 
lose for theBSC and the BIAWGN 
hannel). The 
odes themselves are not fully expli
it,but rather sampled from the ensemble. While the 
on
entration boundsguarantee that almost all 
odes from the ensemble are likely to be good, itmay still be ni
e to have an expli
it family of 
odes (rather than ensembles)with these properties. Even for a
hieving 
apa
ity of the BEC, the onlyknown �expli
it� 
odes require a brute-for
e sear
h for a rather large 
onstantsized 
ode, and the dependen
e of the de
oding 
omplexity on the gap ε to12The 
laim is 
onje
tured to hold also for α ∈ (0.95, 1).
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ity is not as good as for irregular LDPC ensembles. For the 
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