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Abstract

The Graph Isomorphism problem restrictedptanar graphs has been
known to be solvable in polynomial time many years ago. Imsof com-
plexity classes however, the exact complexity of the proldias been estab-
lished only very recently. It was proved IA [6] that planaagn isomorphism
can be computed within logarithmic space. Since there istahimgy hard-
ness result([12], this shows that the problem is completa.foAlthough
this could be considered as a result in algorithmics its forel@s on several
important new developments in the area of logarithmic smaraplexity
classes and reflects the close connections between atgeréghd complex-
ity theory. In this column we give an overview of this resukmtioning the
developments that led to it.

1 Introduction

The Graph Isomorphism problem asks whether two given graphgsomorphic
or in other words whether there is a bijection between thesadthe two graphs,
preserving the adjacency relation. Graph Isomorphismesadithe few problems
in NP that is not known to be i® or NP-complete. On the other hand, for many
restricted graph classes like trees, graphs of bounde@e®egmpartiak-trees, ef-
ficient algorithms for the isomorphism problem are known. &vesider in this
column the class of planar graphs and for simplicity restrierselves to undi-
rected simple graphs. A graph is planar if it can be drawn énglane without
any crossing edges. A special class of planar graphs is tlBatonnected planar
graphs. A graph i&-connected if it remains connected after deletiaybitrary
vertices. It was shown in 1933 that 3-connected planar graplie exactly two
planar embeddingE[22]. This fact was used by Weinberg i 18gjive anO(n?)
algorithm for testing isomorphism of 3-connected planapds [21] (althrough
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the papern is the number of vertices of the input graphs). The idea oftge-
rithm is simple, the two given graphs are embedded in theepéand it is tested
whether the embedding of the first graph is isomorphic to drleeotwo possible
embeddings of the second graph. Iffsies to fix an arbitrary edgein one graph
and run through all the edgesof the other graph, i.e. test whether there exists an
automorphism which mapsontoe. With this method it is also possible tdfe
ciently assign codes to 3-connected planar graphs as a vidgrttify them. This
means that there is arfieiently computable function mapping graphs to strings
or codes, so that two graphs are mapped to the same code ihagnd they are
isomorphic. Hopcroft and Tarjan extended Weinberg’s algor and gave the
first polynomial time algorithm for the isomorphism of plamgaphs|[8]. In their
algorithm the graphs are divided first in connected comptehnese are subdi-
vided in biconnected components and finally these comperagatpartitioned in
triconnected components. An initial connected componastdtticulation points
separating its biconnected components from each otheselihéial components
are represented by a tree-like structure containing \e=tior articulation points
and vertices for biconnected components. In a similar weeybiconnected com-
ponents are represented by tree structures containingeg&for its triconnected
components and vertices for pairs of nodes (called sepgragirs) which are
separating these components. A triconnected componeithés @ 3-connected
graph, a cycle or a 3-bond. Each vertex representing a trexxied component
is then labeled with the code of the component and the whaletsire can then
be tested for isomorphism in a similar way as it is done foe ismorphism.
The original algorithm had a running time &f(n?). This was then improved
to O(nlogn) in [A0] and finally Hopcroft and Wand [11] obtained a lineané
algorithm for the isomorphism of planar graphs. Recentlklkk, Holder, and
Cook [13] gave arD(n?) algorithm for planar graph isomorphism, which is suit-
able for practical applications.

Regarding the parallel complexity of the problem, MilledaReif [1€] gave
the firstNC algorithm for planar graph isomorphism. Their algorithnmgun
time O(logn) with a polynomial number of processors in the CRCW PRAM
model. This corresponds to the complexity class" of problems computable
by unbounded fan-in circuits of polynomial size and lodaric depth. More
recently, using a completely fierent approach based on descriptive complexity,
Grohe and Verbitsky[7] provided a new method for testingriesgphism of planar
graphs also withithC. They proved that for a clags of graphs, if every graph
in the class is definable in first order logic with a finite numbgvariables and
logarithmic quantifier depth, then the isomorphism probfeng is in AC*. Ver-
bitsky [20] showed that the class of planar 3-connectedigrépdefinable with 15
variables and logarithmic quantifier depth. Together wigAC* reduction from
planar isomorphism to 3-connected planar isomorphism fid@hthis provides a



different way to show that planar isomorphism lie&\@r.

We describe in this survey some of the results leading tortipgavement of
the upper bound fromAC! to logarithmic space. Located betweerand ACY,
the complexity clas$)L played an important part in the development of the re-
sults. UL (unambiguous logarithmic space) is the class of problemspcbable
by a logarithmic space nondeterministic machine having @trone accepting
computation path for each input. The relation between tinsidered complexity
classes is as follows:

L c UL CACh

We denote byFL the class of functions computable within logarithmic space

All the isomorphism results described in this overview aafact be extended
to graph canonization results. For a clgssf graphs we say that a functidn:
G — {0,1}* computes aomplete invariant for the class if for even\G,H € G
it holds thatG andH are isomorphic if and only if (G) = f(H). If moreoverf
computes for eacls a graphf(G) isomorphic toG then we callf a canonizing
function and f (G) a canon.

We recall in Sectiofil]2 several facts that were used in thefmfoihe results.
Similar as in the developments leading to polynomial tinst fer planar graph
iIsomorphism, the first logarithmic space isomorphism atijors worked for trees
and 3-connected graphs. These are overviewed in Seéliond[2.aFinally the
logarithmic space algorithm for planar graph isomorphismexplained in Sec-
tion[.

2 Somepreviousresults

2.1 TreeisomorphisminL

Lindell gave in [14] a logarithmic space algorithm for treemorphism and can-
onization. Some of the ideas in this algorithm are used aidbe new results.
Lindell defined a canonical ordering between trees. Forelireve represent its
root byt and the out-degree oby #. The size of the tree is denotfd. The tree
isomorphism orderingr from Lindell is defined in the following way: Given two
treesS andT, we sayS <7 T if:

1)|S| <|T|or
i) |S| = |T| and # < #t, or

i) |S| = |T|, #s = #t = kand Sy,...,Sk) < (Ty,...,Ty) lexicographically,
wereS; <t Sy <7 ... <7 Sy, andTy <7 To <7 ... <7 Ty, are the ordered
subtrees ofs andT rooted at the children of andt.



It is not hard to see that if neith& <t T norT <g S thenS andT are
isomorphic. Obviously the first two tests in the definitionmae ordering can be
done in logarithmic space. Lindell proved that this is als® tfor the third step.
This is done with the following variant of depth first search:

e Partition the children into classes, according to theiesiEind the number
of children of s andt of minimal size. If these numbers do not coincide
then declare the tree with the largest number of minimal cliekelren to be
the smaller one. Otherwise, check the next size class untilequality is
found or all the children have been considered.

e If sandt have the same number of children of each size, then we compare
the children in each size class in increasing order of thessizcursively
as follows: Letk be the number of children in one size class. We can
suppos& > 0.

—If k = 1 then only one recursive call is made and no extra space dedee
for this.

—If k > 1 then for each node in the size clasSiwe compute its order pro-
file. This consists of three counters, c. andc. indicating the num-
ber of children in the corresponding size clas3 dieing respectively
smaller than, larger than or equal to the node under corsidar The
counters are updated by making cross comparisons. We starthe
children with minimal order profile, those witty = 0. They form
an isomorphism class. The size of this class is comparedsthe
trees by comparing the values of thecounters. If they match, both
trees have the same number of minimal children. To compagera
children in the same size class, the value.oi the last step works as
a threshold. This is used to search for the next minimal obiafs
andt. The process is then repeated and the threshold is increthent
until reachingk, at which point we proceed to the next size class. If
all the size classes are visited without detecting an indguhen the
trees are isomorphic.

2.2 Planarity testing and distance computation

A graph isplanar if it can be drawn on the plane so that no edges cross. Such a
drawing is aplanar embedding. Allender and Mahajari]3] showed that the prob-
lem of determining if a given graph is planar, can be computelde complexity
classSL (symmetric logarithmic space). Some year later Reindo#] firoved



that the classe8L andL coincide, thus bringing the planarity recognition prob-
lem toL.

Let E, be the set of edges,(v) in the graphG = (V, E) incident tov. A rotation
scheme for a graphG is a setp of permutationsp = {p, | v € V}, wherep, is a
permutation ork, that has only one cycle (which is calledatation). Letp~! be
the set of inverse rotationg;* = {p;* | v € V}. A rotation scheme describes
an embedding of grap® in the plane. If the embedding is planar, we gall
a planar rotation scheme. The pair G, p) is called acombinatorial embedding
for G. Allender and Mahajan also showed the following useful itesu

Theorem 2.1. [3] Thereisa logarithmic space algorithm that on input a planar
graph G produces a planar rotation scheme p for G.

A planar 3-connected graph has exactly two planar rotataemes [[22],
some rotation schemeand its inverse .

An important tool in the first isomorphism tests for 3-corteeqlanar graphs
Is the computation of distances in planar graphs within thestJL. This the-
orem builds on a series of results dealing with the reacitalgroblem in di-
rected planar graphs,1[Z[,[l17] that lead to the algorithonfrBourke, Tewari
and Vinodchandrari]4] to compute the reachability problemlanar graphs
within UL N coUL.

Theorem 2.2. [[19] The distance between two given vertices in a planar graph
can be computed in UL N coUL.

2.3 Universal exploration sequences

The celebrated result from Reingold 18] showing that trechability problem
in undirected graphs can be computed jmas an important consequence for the
construction of universal exploration sequences in lalgaric space. This fact is
used in some of the isomorphism algorithms.

For ad-regular graphG, a numbering of the edges and a starting egge
sequencerq, 1a,...,7) € {0,...,d — 1} defines a walk_1, vy, . .., v in G in the
following way: starting agy = (v_1, vo), for eachi if (vi_1, v;) is thek-th edge ofy
then @i, vi;1) is thek + 7i-th edge oy modulod.

A sequencet(i, 7o, ...,7) € {0,...,d — 1} is called an 1§, d) universal explo-
ration sequence if for every connected-regular graph with at mostvertices, any
numbering of its edges and any starting edge, the walk adddinom the sequence
explores all the vertices in the graph.

We use the fact that such universal exploration sequendssand can be
computed in logarithmic space.



Theorem 2.3. [[18] There exists a logarithmic space algorithm that on in-
put (1", 19) produces an (n, d)-universal exploration sequence of polynomial size.

3 Planar 3-connected Graph | somorphism

Weinberg’s [Z1] O(n?) algorithm for testing isomorphism of planar 3-connected
graphs constructs for a grafa code with respect to each one of its edges and
both rotation schemes. Of all these codes, the lexicogcapsimallest one is used
as a canonical form fa&. Weinberg’s algorithm does not work within logspace,
because the vertices and edges have to be stored. Thiekhifagmer showed

in [L9] how to construct a dlierent code irJL. Some months later, using Rein-
golds results on logarithmic space universal explorategqusnces[18], Datta,
Limaye and Nimbhorkar improved this to an isomorphism atbar for planar 3-
connected graphs that works in logarithmic space [5]. Weritgs both results in
this section.

3.1 Anisomorphism algorithm in UL N coUL

Theorem 3.1. [19] The isomorphism problem for planar, 3-connected graphsis
in UL N coUL.

Let (s, t) be a designated edge apnde a rotation scheme f@&. The con-
struction has three steps: First, we compute a canonicahgpgtreeT for G.
Second, with help of this spanning tree and the rotationtfang we perform a
depth-first traversal on the edges of the graph and constroahonical lisL of
all edges ofG. Finally, we rename the vertices depending on the positidhesr
first occurrence in the lidt.

We will see that the spanning tree in step 1 can be computederfinctional
version of)UL N coUL. The list and the renaming in step 2 and step 3 can be
computed irFL.

The overall algorithm has to decide whether two given gra@tendH are
isomorphic. To do so, we fixs(t) andp for G and cycle through all edges &f
as designated edge and the two possible embeddingls afhenG andH are
isomorphic if and only if the canonical forms f@&andH match. It is not hard to
see that this outer loop works in logspace.

Step 1: Construction of a canonical spanning tree

We show that the following problem can be solved in unamhbigul@gspace.
Given, an undirected graih = (V, E), a rotation schemefor G, and a designated
edge 6,t) € E, output a canonical spanning trédec E of G, which does not



depend on the input representationpdbr G, any representation will result in the
same spanning tree.

The idea to construct the spanning tree is to trav&seith a breadth-first
search starting at node The neighbors of a node are visited in the order given
by the rotation scheme Since the algorithm should work in logspace, we cannot
afford to store all the nodes that we already visited, as in alaranbreadth-first
search. We get around this problem by working with distahet®een nodes.

We start with the nodes at distance 1 frenThat is, write §, v) on the output
tape, for allv € T'(s). Now letd > 2 and assume that we have already con-
structedT up to nodes at distaneed — 1 from s. Then we consider the nodes at
distanced from s. Letw be a node with distana#{s, w) = d. We connectv to the
tree constructed so far by computing a shortest path tonw. Ambiguities are
resolved by using the first feasible edge according td/e start with §,t) as the
active edgey, v).

e If d(u,w) > d(v,w), then (,v) is the first edge encountered that is on a
shortest path frommto w. Therefore we go fromtov and start searching the
next edge from. As starting edge we take (v, u), the successor ob,(u).
This is the new active edge.

e If d(u,w) < d(v,w), then (i, v) is not on a shortest path fromto w. Then
we proceed withp,(u, v) as the new active edge.

After d — 1 steps in direction ofv, the nodev of the active edgeuv) is a pre-
decessor ofv on a shortest path frormto w. Then we write ¢, w) on the output
tape.

The spanning tre& is canonical, because its construction depends onjy, on
edge 6 t), and edge sdE. The following figure shows an example of a spanning
treeT for a graphG with rotation functiorp which arranges the edges in clockwise
order around each vertex G&

U3
p = {pS’ptypvlspUZ’pU;g}

ps =((st)(sv1)(sv2))
Pt (t,s) (tvs) (t,vy))
t 2 Pu (v1,9) (v1, 1) (v1,v3) (v1,02) )
Puz (v2, S) (v2, v1) (v2,03) )
Pus (vs, 1) (v3,02) (v3,01) )

AN AN AN AN

.
%
S

Figure 1. A 3-connected planar graph and its planar rotaobreme.



Except for the computation of the distances, the algorithork&in logspace.
We have to store the valuesafk, u andv, and the position ab, plus some extra
space for doing calculations. Thierauf and Wagner alsoqutpthat distances in
planar graphs can be computeddh N coUL. This is based on the results from
Reinhard and AllendefT17] and Bourke, Tewari, and Vinocdhairan [4], that the
reachability problem for planar directed graphs is/Inn coUL. Sincel.Y-"c0Vt =
UL N coUL the canonical spanning tree can be computddlLim coUL.

Step 2: Computation of a canonical list of all edges

With G = (V,E), a rotation schemg for G, a spanning tred < E of G and
a designated edges,t) € T we compute a canonical ligt of all edges inE.
The listL then still contains the original vertex namesGn it does not depend
otherwise on the input representationpofs or T.

The idea is to traverse the spanning tree in a depth-first eranAt each
vertexu we visit all incident edges af in a cyclic manner according j@, until
the next edge of the spanning tree is reached. We go down the tree aa@mgl
recursively do the same at the node reached. At some pointilvengountere
again and come back to Then we continue to output the edges incident.to

More formally, we start the traversal with edget] as the active edgeiv).
We write (U, v) on the output tape and then compute the next active edgé@sso

e If (u,v) € T then we walk depth-firstifi fromutov, consider the edge,(u)
and takep,(v, U) its successor according gQ.

e If (u,v) ¢ T then we proceed breadth-first wjph(u, v).

This step is repeated until we entirely travergeahd the active edge is agam ).
Every undirected edge is encountered exactly once in eaebtidin. According
to Figurell the canonical ligt is the following.

L= (St)(t v3)(v3, v2)(vs, v1)(v3, t)(t, v1)(t, S)
(S, v1)(v1, t)(v1, v3)(v1, v2)(v1, S)
(S, v2)(v2, v1)(v2, v3)(v2, S)

Step 3: Renaming the vertices

The last step is to rename the vertices in thelliso that they become indepen-
dent of the names they have® This is achieved as follows: consider the first
occurrence (from left) of nodein L. Letk — 1 be the number of pairwise dif-
ferent nodes to the left af Then all occurrences ofare replaced bk Recall,
thatL starts with the edges(t). Hence, all occurrences sfget replaced by 1, all
occurrences dfby 2, and so on. Call the new lisbde(G, p, S, t).



GivenL as input, the listode(G, p, s,t) can be computed in logspace. We
start with the first node (which is s) and a countek, that counts the number of
different nodes we have seen so far. In the beginning, we=sdt.

e If v occurs for the first time, then we outguaind increas& by 1.

e If v occurs already to the left of the current position then weehtavdeter-
mine the number, thatgot at its first occurrence. To do so, we determine
the first appearance ofand then count the number offiéirent nodes to the
left of v at its first appearance.

Then we go to the next node in
Consider the example from above. The code constructed fiirh for G is
as follows.

L= (st) (tvs) (vs,v2) (vs,v1) (vat) (o) (LS
code(G,p,st)= (L,2) (23) (B4) @B5 (B2 (25 (21)

sequelofL (s,v1) (vi,t) (v1,v3) (v1,02) (v, 9)
sequel okode (1,5) (52) ((53) (B4 (1)

sequeloflL  (s,v2) (v2,01) (v2,03) (v2,9)
sequel okcode (1,4) (45) (43) (41)

It remains to argue that the new names of the nodes are indepeaf their
names inG. Let H be a graph which is isomorphic @, and lety be an isomor-
phism betweers andH. Note thatp o ¢ is a rotation scheme fdd. Consider
the computation of the code for graphwith rotation scheme o ¢ and desig-
nated edgey(s), ¢(t)). The spanning tree computed in step 1 willg@) and
the list computed in step 2 will be(L). Now the above renaming procedure
will give the same number to nodein L and to nodep(v) in ¢(L). For exam-
ple, the nodesy(s) and ¢(t) will get number 1 and 2, respectively. It follows
thatcode(G, p, s, t) = code(H, p o ¢, ¢(9), ¢(t)). We summarize:

Theorem 3.2. [19] Let G and H be connected, undirected graphs, let pg be a
rotation scheme for G and (s,t) be an edge in G. Then G and H are isomor-
phic iff there exists a rotation scheme py for H and an edge (u, v) in H such that
code(G, pg, S, t) = code(H, py, U, v).

With a very diferent approach, Datta, Limaye and NimbhorKkar [5] improved
the previous result frolL N coUL to L. Their method is in some sense much
easier since it avoids the spanning tree construction editimg the distance com-
putations (the part inUL N coUL). It uses however the concept of universal ex-
ploration sequence and the non-trivial fact that such secpsecan be computed
inL.



Theorem 3.3. [5] The isomorphism problem for planar, 3-connected graphs is
inL.

The idea of the algorithm is to use a universal sequéende fil8itder to con-
struct a canonical code for a given planar 3-connected géa@ince Reingolds’s
construction requires the graph to have constant degreee th a preprocesing
step in whichG is transformed into a 3-regular colored graphwith the property
that two graphs are isomorphic if and only if their transfations are also isomor-
phic (with a color preserving isomorphism). In a second stepnonical code is
computed. The code is specific to the choice of a planar eniggdor G, a
starting node and a starting edge. Since there are only polially many pos-
sible choices for these parameters, for two given gr&plasidH, a logarithmic
space procedure can cycle through all the possibilitiesdaette that the graphs
are isomorphic if and only if the canonical codes match for @frthe choices.

Step 1. Making the graph 3-regular

Given a 3-connected planar gra@h= (V, E) and a planar embeddingwe con-
struct a 3-regular planar gragh’ with the edges colored with two color&’
might not be 3-connected, however the planar embedding @omill be inher-
ited toG’. Every vertexv of G is replaced inG’ by a cyclef{us,...,vq} (d is the
degree ofv). Thed edgese,..., ey incident withv in G are now respectively
incident to{vy,...,vq} IN G'. The edges of the cycles are colored with color 1
and the edges;, ..., e with color 2. The obtained grap@’ is 3-regular and it

is not hard to see that two grapfBsandH are isomorphic if and only if their
transformatiorG’ andH’ are isomorphic with a color preserving isomorphism.

Step 2: Obtaining the canonical code

On input an edge-colored gra@with n vertices, maximum degree 3, a planar
embedding, a starting vertex and a starting edge= (u, v), we want to construct
a canon foiG. For this, we compute first in logarithmic space an3)-universal
exploration sequencH. Then, starting at ande we transvers& according tol{
andp giving the listL of the visited vertices as label. We can rename the vertices
according to their first occurrence in as it is done in step 3 from Theoréml3.1.
Finally, we can cycle over every possible pairj}, checking whether it is an edge
in the renamed list and outputting its color if this is theecahis output can be
considered as a canonical colored adjacency matrissfor

The authors prove that this method is correct by showingahewing: For
two graphsG; andG, with their respective embedding, p», with starting ver-
ticesvy, v, and edgesy, e, if the canons coincide then the graphs are isomorphic,



and moreover, i65; is isomorphic tds,, then there is some choice of the parame-
ters that makes their respective canons equal.

4 Planar Graph Isomorphism

In this section we describe the log-space algorithm forganaph isomorphism.
A previous step towards this result was a logarithmic spsemorphism test for
partial 2-trees[]1]. Partial 2-trees are a subclass of taagslgraphs coinciding
with that of series-parallel graphs and contain all outangr graphs. For proving
this result Arvind, Das and Kobler represent a partial 2-s a tree of cycles.
Similar to Lindell’'s algorithm|[[14] they compare two suckérrepresentations up
to isomorphism, defining a canonical ordering procedurachvfinally gives a
canonization algorithm.

In the isomorphism algorithm for general planar graphs alarmepresenta-
tion is used, namely a tree of triconnected componentsicAnnected component
is a 3-connected graph, a cycle or a 3-bond, i.e. two vertoaesected by three
edges.

We give a log-space algorithm for tlgeaph canonization problem for planar
graphs, to which planar graph isomorphism reduces. Thentzaton involves
assigning to each graph an isomorphism invariant stringobyfromial length.

The algorithm decomposes first the planar graph into itsrivieoted com-
ponents and constructsbéconnected component tree in log-spacel]ll]. Then, it
further decomposes the biconnected planar componentdhatotriconnected
components to obtain a triconnected component tree inpages Hopcroft and
Tarjan [9] presented a sequential algorithm for the decaitipo of a biconnected
planar graph into its triconnected components. This mettasdbe adapted to
work in log-space. The algorithm recursively removes s#pay pairs from the
graph and puts a copy of the separating pair in each o$ghecomponents so
formed, i.e. the nodes in the separating pair are connegtaditual edge. The
decomposition stops when the split components becomentremied. Define a
node for each separating pair and each component and cansepetrating pair
node with atriconnected component node if the separating pair is contained in the
component. The resulting graph is a tree, titheonnected component tree. This
decomposition is uniqué [15]. Datta et. all [6] prove, thattsa decomposition
can be computed in log-space. Figlife 2 shows an example afett@mposi-
tion of a biconnected planar gragh Its triconnected components dsg, ..., G,
and the corresponding triconnected component trée isn G, the pairs &, b)
and ¢, d) are the separating pairs. Since the 3-connected segapain(, d) is
connected by an edge @, we also gefc, d} as triple-bondss. The virtual edges
corresponding to the separating pairs are drawn with dasiesl
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Figure 2:Decomposition of a biconnected planar graph into a tricotetecom-
ponent tree.

The triconnected components can be canonized in log-shhcélence, for
triconnected component trees, compute their canonicatigmt in log-space, i.e.
two biconnected graphs are isomorphic if their trees aradda be equal.

In sectio4]l, we summarize, how to canonize biconneciugplgraphs by
applying tree canonization ideas from][14] to their triceated component trees.
Note, that pairwise isomorphism of two trees labelled with tanons of their
components does not imply isomorphism of the correspongliaghs. Lindell’s
algorithm and complexity analysis had to be modified in a tramal way for this
step to work in log-space.

In sectiorT4P, we describe, how to canonize planar grapihg tiseir bicon-
nected component trees, again using the basic structurendéll’s algorithm.
The comparison algorithm refers to the biconnected commidnee of the planar
graph and when comparing biconnected components, to timnhected com-
ponent trees. This requires a detailed analysis of thefarerces of both tree
structures.

4.1 Canonization of biconnected planar graphs

Let S and T be two triconnected component trees for the biconnectedapla
graphsG and H, respectively. S and T are rooted at separating pair nodes,
says = (a,b) andt = (a,b’). Therefore we also writ& and Ty ). They
have separating pair nodes at odd levels and triconnectedament nodes at even
levels. FiguréI3 shows two trees to be compared.

Similar as in Lindell’s algorithm, we define the isomorphismder of two
triconnected component treBsaandT rooted at separating paiss= (a, b) andt =
(a’, b') S(a,b) <t T(a’,b’) if:

1. |S(a,b)| < |T(a’,b’)| or
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Figure 3: Triconnected component trees.

2. |S(a,b)| = |T(a’,b’)| but #s < #t or

3. |S(a,b)| = |T(a',b’)|, #Hs = #t = k, but (SGl, cee SGk) <t (THl, cee THk) lexico-
graphically, where we assume tf&, <y ... <y Sg, andTy, <7 ... <1 Ty,
are the ordered subtrees 8, andT(x ), respectively. To compute the
order between the subtre8g, and Ty, we compare lexicographically the
canons of5; andH; andrecursively the subtrees rooted at the childrerGyf
andH;. Note that these children are again separating pair nodes.

4, |S(a,b)| = |T(a',b')|; #s = #t = k, (SGl <T NN <T SGk) =T (THl <T oo <T THk),
but O1,...,0p) < (01’,...,0p") lexicographically, whereD; and O;’
are the orientation counters of tj#& isomorphism classes andl; of all
the Sg’'s and theTy,'s. (The concept of orientation counter is explained

later).

We say that two triconnected component tr€gand T areequal according
to theisomorphismorder, denoted by5e =1 T, if neitherSg <t Te NOrTe <7 Se
holds. Two trees arer-equal, precisely when the underlying graphs are isomor-
phic.

We summarize now, how we can compute the isomorphism ordenwe
compare subtrees rooted at separating pairs,Sg.g. and T(x ), and when we
compare subtrees rooted at triconnected componentS&.and Ty, .

ComparingSe ) and T 1) is Similar to the comparison of subtrees in Lin-
dell’'s algorithm. We make a cross-comparison of the chiidred store the coun-
tersc., c_, c. for their order profile.

Assume, both subtrees are of equal size|$g| = [Ty;| = N, both rooted at
triconnected component nodésandHj, respectively.



First, we compare the types & andH;. We say that bonds: cycles and
cycles<; 3-connected components. 3-bonds are always equal. If bethya
cles or 3-connected components then we construct the caridisandH; and
compare all of them bit-by-bit.

To canonize a cycle, we traverse it starting from the viredde which cor-
responds to its parent (i.e. the parent nod&gf and then traversing the entire
cycle along the edges encountered. There are two possiviersals depending
on which direction of the starting edge is chosen. Thus, &dyas two possible
canons.

To canonize a 3-connected compon&at we use the log-space algorithm
from Datta, Limaye, and Nimbhorkdrl[5]. The canon dependtherdirection of
the starting edge and additionally, on the embedding of tineponents;. For 3-
connected components, there are two possible embeddiegseHwe have up to
four possible canons.

In the bit-by-bit comparison, we have to distinguish selvesses. When we
reach virtual edges in the comparison steps, we go into seouat the subtrees
rooted at the corresponding separating pairs. If we findendleursion that one of
the subtrees is smaller than the other, then we have foundeguality between
the current canons we compare. We eliminate the canons ahéchot found to
be minimal. At the end, if there remains a canon &rand forH;, then both
subtreesSg, and Ty, are equal up to step 3.

Orientation counters. Here it does not diice to stop after step 3. We need a
further comparison step to ensure taandH are indeed isomorphic. We give
an example illustrating this in Figufé 4. Assume teandt have two children
each,G;, G, andH4, H, such thaiG; = H; andG, = H,. Still we cannot con-
clude thatG andH are isomorphic because it is possible that the isomorphism
betweenG; andH; mapsa to & andb to b’, but the isomorphism betweéds,
andH, mapsato b’ andb to &@. Then these two isomorphisms cannot be ex-
tended to an isomorphism betweBrandH.

To handle this problem, we introduce the notion ofarentation of a sep-
arating pair. A separating pair gets an orientation from subtrees roateits
children. Also, every subtree rooted at a triconnected @rapt node gives an
orientation to the parent separating pair. If the orientats consistent, then we
defineSep) =1 T2 p/y and we will show thaG andH are isomorphic in this case.

We define theorientation given to the parent separating pair of G; andH; as
the direction in which the minimum canon traverses this edgée minimum
canons are obtained for both choices of directions of the #duen we say th&g,
andTy; aresymmetric about their parent separating pair, and thus do not give an
orientation.
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We define theorientation given to the virtual edge in the parent triconnected
component of the corresponding separating pair nodgebj or (&', b’) by consid-
ering all the orientations given to the separating pair efrtbhildrenG,, .. ., Gy,
respectively. We first order the subtrees, Say <r --- <r Sg, andTy, <1 --- <1
Th,, and partition them into isomorphism classes, sgy..,l, andlf,..., 5.
Let I be the smallest isomorphism class such that there are moneaeents that
give the orientatiora — b to the parent thabh — a (or vice versa). Then, we
definea — b to be thereference orientation (b — a otherwise). For each isomor-
phlsm clasd;, we compute now the orientation count€rs= (cJ . C; <) such that

= Is the number of children ih; which give the reference orientation actjd is
the number of children i Which give the reverse orientation.

Recall the example of Figuid 4. The graghsaandH have the same tricon-
nected component trees but are not isomorphicS¢n,, the 3-bonds form one
isomorphism clask, and the other two components form the second isomorphism
classl,, as they all are pairwise isomorphic. The non-isomorphsdetected by
comparing the directions given to the parent separating j#e havep = 2 iso-
morphism classes and for the orientation counters we ave O;’ = (0,0),
whereadD, = (2,0) andO,’ = (1,1) and henc®,’ is lexicographically smaller
thanO,. Therefore we hav& by <1 S(ap).-

Complexity. We argue now, that we can do the four comparison steps in log-
space. The first and the second step are similar to Lindédj&righm. We define

the size of a separating pair node as 2 and theize of a triconnected component

as the number of vertices in the component. For the third aandt step, we have
the following cases:

e When we compare two triconnected compon&tandH;, then we have up
to four canons. Suppose, we construct and compare two c&)aasdCy,



and reach separating paies ) and @, b’). We store the canons which are
not eliminated, which of ther@, andCy, are and the direction of the virtual
edges &, b) and @, b’). Hence, we nee@®(1) bits.

e When we compare two separating paiesh) and @,b’), then we make
a cross-comparison as in Lindell's algorithm. Hence, wedneeun-
tersc., c., c. to store the order profile. This way, we get the isomorphism
classes. We further store the orientation coun@randO; ’ for I; andl;.
We needO(log|l]) bits on the work-tape for all the counters.

However, we cannot guarantee yet, that the algorithm warki®g-space.
Let Sc be the subtree rooted at no@ein a triconnected component tree. The
problem is, that the subtrees (i.e. the childrerCdfwhere we go into recursion
might be of size> |Sc|/2, we call this darge child.

To get around this problem, we first check whether the n@lasdC’ have
a large child. If so then we compare them a priori and store¢kalt of their
comparison and the orientation given to the parent. Bec&uardC’ have at
most one large child, this needs o)1) additional bits. In the comparison ©f
andC’, whenever we would go into recursion at those large childrenjust look
at the work-tape for the result instead.

As seen above, while comparing two trees of dizethe algorithm uses no
space for making a recursive call for a subtree of size latig@n N/2, and it
usesO(logk;) space if the subtrees are of size at m¥sk;, wherek; > 2. Hence
we get the same recurrence for the sp8@d) as Lindell:

N
S(N) < max S(E) + O(logk;),
! j
wherek; > 2 for all j. ThusS(N) = O(logN). Note that the number of nodes
of G is in general smaller thaN, because the separating pair nodes occur in all
components splitfd by this pair. But we certainly hawe < N < O(n?) [9]. This
leads to the following theorem.

Theorem 4.1. [[6] The isomorphism order between two triconnected component
trees of biconnected planar graphs can be computed in log-space.

The canon. Once we know the ordering among the subtrees, it is straightf
ward to output the canon of the triconnected componentliré&/e traversd in
the tree isomorphism order as in Lindell’s algorithm, ottiog the canon of each
of the nodes along with virtual edges and delimiters. Thavésoutput a ‘[’ while
going down a subtree, and ‘]" while going up a subtree.



We need to choose a separating pair as root for the tree. 8iroe is no
distinguished separating pair, we simply cycle througloaithem and select the
one, which leads to the minimum canon. Letlf) be this separating pair. The
canonization procedure has two steps. In the first step weetsnwhat we call
a canonical list for S,p,). This is a list of the edges @, also including virtual
edges. In the second step we compute the final canon from tioaical list.
Canon of separating pair nodes. Consider a subtre$, rooted at § b). We
start with computing the reference orientation aflf) with oracle calls to the
canonical ordering algorithm and output the edge in thisalion. Then we re-
cursively output the canonical lists of the subtrees of n@dk) according to the
increasing isomorphism order. Among isomorphic siblingese which give the
reference orientation to the parent come first. We denogeddunonical list of
edged(S, a, b). If there is no reference orientation for a child, take thermtation
of the parentd, b).

Canon of triconnected component nodes. Consider the subtre®, rooted aG;.

Let (a, b) be the parent separating pair 8§, with reference orientationa(b).

If Gj is a 3-bond then outpu(G;,a,b) = (a,b). If G; is a cycle then out-
put [(Gj,a,b) = (a b)(b,v1)(v1,10)...(vn,8). If Gjis a 3-connected component
then compute the minimum of two canons with an oracle callatT& with re-
spect to the given reference orientatiank) and both embeddings f@;. Output
this canon a$(G;, a, b). Virtual edges are output in the direction of the reference
orientation given to them, if any. Finally, we output the sabs in the order we
have virtual edges in the canon.

We give an example. Consider the canonical li$ a, b) of edges for the
treeS, ) of Figurel3. Lets be the edge connecting the vertiegsiith b;. We also
write for shortl ’(S;, s) which is one ofi(S;, &, b)) or I(S;, b, a). The direction
of s is as described above. Ligt= 0. Then we have:

I(S,a,b)
(S, a.b)

[ (& Db)(Sc,,ab) ... [(Sg.ab)], where
[1(Gi.ab) [I'(Sy 142 Sipen)] -+ [1(Sio 8] ]

4.2 Canonization of planar graphs

Consider the decomposition of a connected planar graph.e&ahn articulation
point and biconnected component we define nodesargculation point nodes
andbiconnected component nodes. An articulation point node foa is connected
by an edge to the nodes of biconnected components whereontained as a
vertex. The resulting graph is a tree, thieonnected component tree. The main
difference to the triconnected component tree is, that fondation point nodes,
there is no concept of orientation as for separating pairs.



We define the isomorphism order for two biconnected compbtrersS,
and T, rooted at nodes andt corresponding to articulation poinégsanda’, re-
spectively. Also see Figufé 5. L8, be the sum of the sizes of the nodes in the
tree. Thesize of an articulation point node a is defined as 1 and thséze of a bi-
connected component node B is the size of its triconnected component tyEE)|.

Let S, andT, be biconnected component trees rooted at articulatiortpaisnd
a. DefineS, <z Ty If

1. |Sa| < |Ta’| Or
2. |Sa = |To| but #s < #t or

3. IS4l = [Tal, #s=# =k, but Sg,,...,Sg) < (Tg,s-- -, I's,’) lexicograph-
ically, where we assume th&, <g --- <z S, andTg,: <g -+ <z Tg/
are the ordered subtrees®f and T, respectively. To compare the order
between the subtre&s, andTg,- we compare the triconnected component
treesT(B;) of B andT(B;’) of B;” and when we reach the first occurrences
of some articulation points then we compaeeursively the corresponding
subtrees rooted at the childrenBfandB;’. Note, that these children are
again articulation point nodes.

Figure 5: Biconnected component trees.

We say that two biconnected component treesqueal, denoted bys, =z T,
if neither of S, <z Ty andTy <z S, holds. The inductive ordering of the subtrees
of S, andT, proceeds exactly as in Lindell’s algorithm, by partitiogthem into
size-classes and comparing the children in the same sass-gtcursively.

We summarize now, how we can compute the isomorphism ordenwe
compare subtrees rooted at articulation points,®,@ndT,, and when we com-
pare subtrees rooted at biconnected componentsSg.gndTg, .



ComparingS, andTy is similar to the case when we compare subtrees rooted
at separating pairs in triconnected component trees. We imakoss-comparison
of the children and store the countetsc_, c. for their order profile.

When we compare biconnected compondtandB;’, then we cannot start
comparing their biconnected canons. We even cannot contipeitecanons be-
cause we do not have a unique root separating pair for the (&) andT(B;’).

The problem occurs when we have only one fixed vertd ine. the parent artic-
ulation point. Datta et. al. bound the number of candidatesai separating pairs

of T(B;) andT(B;’). For the detailed case analysis we refere to the paper- Basi
cally, except of some special cases they show that the nuofhkeges is bounded
by k, when all the isomorphism classes of the childreBaindB;’ (i.e. children

in the biconnected component tree of nodesHoandB; ") are of cardinality> k.
Hence, all the isomorphism classes contain childZesuch thaiSc| < |Sg|/k.

If there is one size class of cardinality one, then we treiat¢hild separately. If
there are two or more such size classes, then we eved(@ietandidates for the
root. We will need this in the complexity analysis.

Complexity according to the biconnected component tree. First, when we
compare articulation pointsanda’ in the biconnected component tree, we have
a similar complexity analysis as in Lindell’s algorithm. rRbe children ofa
anda’, we storeO(logKk) bits for isomorphism classes of cardinality 2.

Second, when we compare biconnected comporigrisd B’ in the bicon-
nected component tree then a typical query is of the fagm),(wheres is the
chosen root off(B) andr is the index of the edge in the canon, which is to be re-
trieved. If there ar& choices forT(B) andT(B’), the base machine cycles through
all of them one by one, keeping track of the minimum canons TékeO(log k)
space. In both cases, we also consider large children (iédrenC of B such
that|Sc| > |Sg|/2) a priori. We summarize. If we consider recursively how gnan
bits we store for the roots of biconnected components theget¢he recursion
equation for the size function.

S(N) = mjax{ S(kﬂ) + O(log kj)}
J
wherek; > 2. Hence,S(N) = O(logN).

Complexity according to the triconnected component trees. We consider
now the comparison of triconnected component trfe@ and T(B’) of bicon-
nected component® andB’. In the comparison of (B) andT(B’), we still go
into recursion at separating pairs and when we reach viegés in canons for



Figure 6: A biconnected component tré& rooted at biconnected compondt
which has an articulation poiatas child, which occurs in the triconnected com-
ponent treeT(B) of B. In A and the other triconnected components the dashed
edges are separating pairs.

triconnected components. What is new, we go into recursioenwve reach ar-
ticulation points. For an example, see Figure 6.

If an articulation pointa belongs to many separating pairs, then it can occur in
many component nodes (B). Recall, that we have a root for the tree. So, there
exists a unique componeaAtthat is closest to the root, wheads contained. Ob-
serve, that the set of component nodes wiagsscontained is always a connected
subtree inT(B). The authors show, that this unique component can be cadput
in log-space and that the first position whareccurs in the canon oA can be
found in log-space. Exactly there, we go #®into recursion. For all the other
occurrences o& we do not go into recursion. Call this tmeference copy of a
in T(B).

Assume we store separately the bits that we need ingiBgfor all bicon-
nected component8. For this part also a log-space bound can be proved. The
size function can therefore be refined. K&be a node inm(B). The size of the
subtreeSc rooted at some node is the sum of the size of the triconnected subtree
rooted atC in T(B), say|Sc| plus the size of all the biconnected subtrigg if a
is a reference copy of an articulation pointsSg. There is one more special case.
If S, is a large child forB in the biconnected component tree and @im Sc,
then we still go only once into recursion f8g a priori and store the result. In this
case, ifa has a reference copy in the subtreer¢B) rooted atC thenS, is not
included in the size 08c. Hence, we get the same recursion equation as before.
This finishes the complexity analysis and leads to the faligvtheorem.

Theorem 4.2. [6] The isomorphism order between two planar graphs can be
computed in log-space.



The canon. The canonization of planar graphs proceeds exactly as inabe
of biconnected planar graphs. A log-space procedure sasdhe biconnected
component tree, makes oracle queries to the isomorphiser atdorithm and
outputs a canonical list of edges, along with delimitersapasate the lists for
siblings. A log-space transducer then renames the vedimesrding to their first
occurrence in this list, to get the final canon for the bicat@& component tree.
This canon depends upon the choice of the root of the bicékedeomponent tree.
Further log-space transducers cycle through all the daticuin points as roots to
find the minimum canon among them, then rename the vertieesdiog to their
first occurrence in the canon and finally, remove the virtagles and delimiters
to obtain a canon for the planar graph. This proves the maiorém.

Theorem 4.3. [[6] A planar graph can be canonized in log-space.
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