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Abstract

The Graph Isomorphism problem restricted toplanar graphs has been
known to be solvable in polynomial time many years ago. In terms of com-
plexity classes however, the exact complexity of the problem has been estab-
lished only very recently. It was proved in [6] that planar graph isomorphism
can be computed within logarithmic space. Since there is a matching hard-
ness result [12], this shows that the problem is complete forL. Although
this could be considered as a result in algorithmics its proof relies on several
important new developments in the area of logarithmic spacecomplexity
classes and reflects the close connections between algorithms and complex-
ity theory. In this column we give an overview of this result mentioning the
developments that led to it.

1 Introduction

The Graph Isomorphism problem asks whether two given graphsare isomorphic
or in other words whether there is a bijection between the nodes of the two graphs,
preserving the adjacency relation. Graph Isomorphism is one of the few problems
in NP that is not known to be inP or NP-complete. On the other hand, for many
restricted graph classes like trees, graphs of bounded degree or partialk-trees, ef-
ficient algorithms for the isomorphism problem are known. Weconsider in this
column the class of planar graphs and for simplicity restrict ourselves to undi-
rected simple graphs. A graph is planar if it can be drawn in the plane without
any crossing edges. A special class of planar graphs is that of 3-connected planar
graphs. A graph isk-connected if it remains connected after deletingk arbitrary
vertices. It was shown in 1933 that 3-connected planar graphs have exactly two
planar embeddings [22]. This fact was used by Weinberg in 1966 to give anO(n2)
algorithm for testing isomorphism of 3-connected planar graphs [21] (althrough
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the paper,n is the number of vertices of the input graphs). The idea of thealgo-
rithm is simple, the two given graphs are embedded in the plane and it is tested
whether the embedding of the first graph is isomorphic to one of the two possible
embeddings of the second graph. It suffices to fix an arbitrary edgee in one graph
and run through all the edgese′ of the other graph, i.e. test whether there exists an
automorphism which mapse ontoe′. With this method it is also possible to effi-
ciently assign codes to 3-connected planar graphs as a way toidentify them. This
means that there is an efficiently computable function mapping graphs to strings
or codes, so that two graphs are mapped to the same code if and only if they are
isomorphic. Hopcroft and Tarjan extended Weinberg’s algorithm and gave the
first polynomial time algorithm for the isomorphism of planar graphs [8]. In their
algorithm the graphs are divided first in connected components, these are subdi-
vided in biconnected components and finally these components are partitioned in
triconnected components. An initial connected component has articulation points
separating its biconnected components from each other. These initial components
are represented by a tree-like structure containing vertices for articulation points
and vertices for biconnected components. In a similar way, the biconnected com-
ponents are represented by tree structures containing vertices for its triconnected
components and vertices for pairs of nodes (called separating pairs) which are
separating these components. A triconnected component is either a 3-connected
graph, a cycle or a 3-bond. Each vertex representing a triconnected component
is then labeled with the code of the component and the whole structure can then
be tested for isomorphism in a similar way as it is done for tree isomorphism.
The original algorithm had a running time ofO(n2). This was then improved
to O(n logn) in [10] and finally Hopcroft and Wang [11] obtained a linear time
algorithm for the isomorphism of planar graphs. Recently Kukluk, Holder, and
Cook [13] gave anO(n2) algorithm for planar graph isomorphism, which is suit-
able for practical applications.

Regarding the parallel complexity of the problem, Miller and Reif [16] gave
the first NC algorithm for planar graph isomorphism. Their algorithm runs in
time O(logn) with a polynomial number of processors in the CRCW PRAM
model. This corresponds to the complexity classAC1 of problems computable
by unbounded fan-in circuits of polynomial size and logarithmic depth. More
recently, using a completely different approach based on descriptive complexity,
Grohe and Verbitsky [7] provided a new method for testing isomorphism of planar
graphs also withinAC1. They proved that for a classG of graphs, if every graph
in the class is definable in first order logic with a finite number of variables and
logarithmic quantifier depth, then the isomorphism problemfor G is in AC1. Ver-
bitsky [20] showed that the class of planar 3-connected graphs is definable with 15
variables and logarithmic quantifier depth. Together with theAC1 reduction from
planar isomorphism to 3-connected planar isomorphism from[16] this provides a



different way to show that planar isomorphism lies inAC1.
We describe in this survey some of the results leading to the improvement of

the upper bound fromAC1 to logarithmic space. Located betweenL andAC1,
the complexity classUL played an important part in the development of the re-
sults. UL (unambiguous logarithmic space) is the class of problems computable
by a logarithmic space nondeterministic machine having at most one accepting
computation path for each input. The relation between the considered complexity
classes is as follows:

L ⊆ UL ⊆ AC1.

We denote byFL the class of functions computable within logarithmic space.
All the isomorphism results described in this overview can in fact be extended

to graph canonization results. For a classG of graphs we say that a functionf :
G → {0, 1}∗ computes acomplete invariant for the class if for everyG,H ∈ G
it holds thatG andH are isomorphic if and only iff (G) = f (H). If moreover f
computes for eachG a graphf (G) isomorphic toG then we callf a canonizing
function and f (G) a canon.

We recall in Section 2 several facts that were used in the proof of the results.
Similar as in the developments leading to polynomial time test for planar graph
isomorphism, the first logarithmic space isomorphism algorithms worked for trees
and 3-connected graphs. These are overviewed in Sections 2 and 3. Finally the
logarithmic space algorithm for planar graph isomorphism is explained in Sec-
tion 4.

2 Some previous results

2.1 Tree isomorphism in L

Lindell gave in [14] a logarithmic space algorithm for tree isomorphism and can-
onization. Some of the ideas in this algorithm are used also in the new results.
Lindell defined a canonical ordering between trees. For a tree T , we represent its
root byt and the out-degree oft by #t. The size of the tree is denoted|T |. The tree
isomorphism ordering<T from Lindell is defined in the following way: Given two
treesS andT , we sayS <T T if:

i) |S | < |T | or

ii) |S | = |T | and #s < #t, or

iii) |S | = |T |, #s = #t = k and (S 1, . . . , S k) < (T1, . . . , Tk) lexicographically,
wereS 1 6T S 2 6T . . . 6T S k, andT1 6T T2 6T . . . 6T Tk, are the ordered
subtrees ofS andT rooted at the children ofs andt.



It is not hard to see that if neitherS <T T nor T <S S then S and T are
isomorphic. Obviously the first two tests in the definition oftree ordering can be
done in logarithmic space. Lindell proved that this is also true for the third step.
This is done with the following variant of depth first search:

• Partition the children into classes, according to their size. Find the number
of children of s and t of minimal size. If these numbers do not coincide
then declare the tree with the largest number of minimal sizechildren to be
the smaller one. Otherwise, check the next size class until an inequality is
found or all the children have been considered.

• If s and t have the same number of children of each size, then we compare
the children in each size class in increasing order of the sizes recursively
as follows: Letk be the number of children in one size class. We can
supposek > 0.

– If k = 1 then only one recursive call is made and no extra space is needed
for this.

– If k > 1 then for each node in the size class inS we compute its order pro-
file. This consists of three countersc<, c> andc= indicating the num-
ber of children in the corresponding size class ofT being respectively
smaller than, larger than or equal to the node under consideration. The
counters are updated by making cross comparisons. We start with the
children with minimal order profile, those withc> = 0. They form
an isomorphism class. The size of this class is compared across the
trees by comparing the values of thec= counters. If they match, both
trees have the same number of minimal children. To compare larger
children in the same size class, the value ofc= in the last step works as
a threshold. This is used to search for the next minimal children of s
and t. The process is then repeated and the threshold is incremented
until reachingk, at which point we proceed to the next size class. If
all the size classes are visited without detecting an inequality then the
trees are isomorphic.

2.2 Planarity testing and distance computation

A graph isplanar if it can be drawn on the plane so that no edges cross. Such a
drawing is aplanar embedding. Allender and Mahajan [3] showed that the prob-
lem of determining if a given graph is planar, can be computedin the complexity
classSL (symmetric logarithmic space). Some year later Reingold [18] proved



that the classedSL andL coincide, thus bringing the planarity recognition prob-
lem toL.

Let Ev be the set of edges (u, v) in the graphG = (V, E) incident tov. A rotation
scheme for a graphG is a setρ of permutations,ρ = {ρv | v ∈ V}, whereρv is a
permutation onEv that has only one cycle (which is called arotation). Let ρ−1 be
the set of inverse rotations,ρ−1

= {ρ−1
v | v ∈ V}. A rotation schemeρ describes

an embedding of graphG in the plane. If the embedding is planar, we callρ
a planar rotation scheme. The pair (G, ρ) is called acombinatorial embedding
for G. Allender and Mahajan also showed the following useful result:

Theorem 2.1. [3] There is a logarithmic space algorithm that on input a planar
graph G produces a planar rotation scheme ρ for G.

A planar 3-connected graph has exactly two planar rotation schemes [22],
some rotation schemeρ and its inverseρ−1.

An important tool in the first isomorphism tests for 3-connected planar graphs
is the computation of distances in planar graphs within the classUL. This the-
orem builds on a series of results dealing with the reachability problem in di-
rected planar graphs, [2],[17] that lead to the algorithm from Bourke, Tewari
and Vinodchandran [4] to compute the reachability problem for planar graphs
within UL ∩ coUL.

Theorem 2.2. [19] The distance between two given vertices in a planar graph
can be computed in UL ∩ coUL.

2.3 Universal exploration sequences

The celebrated result from Reingold [18] showing that the reachability problem
in undirected graphs can be computed inL, has an important consequence for the
construction of universal exploration sequences in logarithmic space. This fact is
used in some of the isomorphism algorithms.

For ad-regular graphG, a numbering of the edges and a starting edgee0, a
sequence (τ1, τ2, . . . , τl) ∈ {0, . . . , d − 1}l defines a walkv−1, v0, . . . , vk in G in the
following way: starting ate0 = (v−1, v0), for eachi if (vi−1, vi) is thek-th edge ofvi
then (vi, vi+1) is thek + τi-th edge ofvi modulod.

A sequence (τ1, τ2, . . . , τl) ∈ {0, . . . , d − 1}l is called an (n, d) universal explo-
ration sequence if for every connectedd-regular graph with at mostn vertices, any
numbering of its edges and any starting edge, the walk obtained from the sequence
explores all the vertices in the graph.

We use the fact that such universal exploration sequences exist and can be
computed in logarithmic space.



Theorem 2.3. [18] There exists a logarithmic space algorithm that on in-
put (1n, 1d) produces an (n, d)-universal exploration sequence of polynomial size.

3 Planar 3-connected Graph Isomorphism

Weinberg’s [21] O(n2) algorithm for testing isomorphism of planar 3-connected
graphs constructs for a graphG a code with respect to each one of its edges and
both rotation schemes. Of all these codes, the lexicographical smallest one is used
as a canonical form forG. Weinberg’s algorithm does not work within logspace,
because the vertices and edges have to be stored. Thierauf and Wagner showed
in [19] how to construct a different code inUL. Some months later, using Rein-
golds results on logarithmic space universal exploration sequences [18], Datta,
Limaye and Nimbhorkar improved this to an isomorphism algorithm for planar 3-
connected graphs that works in logarithmic space [5]. We describe both results in
this section.

3.1 An isomorphism algorithm in UL ∩ coUL

Theorem 3.1. [19] The isomorphism problem for planar, 3-connected graphs is
in UL ∩ coUL.

Let (s, t) be a designated edge andρ be a rotation scheme forG. The con-
struction has three steps: First, we compute a canonical spanning treeT for G.
Second, with help of this spanning tree and the rotation function ρ we perform a
depth-first traversal on the edges of the graph and constructa canonical listL of
all edges ofG. Finally, we rename the vertices depending on the position of their
first occurrence in the listL.

We will see that the spanning tree in step 1 can be computed in (the functional
version of)UL ∩ coUL. The list and the renaming in step 2 and step 3 can be
computed inFL.

The overall algorithm has to decide whether two given graphsG andH are
isomorphic. To do so, we fix (s, t) andρ for G and cycle through all edges ofH
as designated edge and the two possible embeddings ofH. ThenG and H are
isomorphic if and only if the canonical forms forG andH match. It is not hard to
see that this outer loop works in logspace.

Step 1: Construction of a canonical spanning tree

We show that the following problem can be solved in unambiguous logspace.
Given, an undirected graphG = (V, E), a rotation schemeρ for G, and a designated
edge (s, t) ∈ E, output a canonical spanning treeT ⊆ E of G, which does not



depend on the input representation ofρ for G, any representation will result in the
same spanning treeT .

The idea to construct the spanning tree is to traverseG with a breadth-first
search starting at nodes. The neighbors of a node are visited in the order given
by the rotation schemeρ. Since the algorithm should work in logspace, we cannot
afford to store all the nodes that we already visited, as in a standard breadth-first
search. We get around this problem by working with distancesbetween nodes.

We start with the nodes at distance 1 froms. That is, write (s, v) on the output
tape, for allv ∈ Γ(s). Now let d > 2 and assume that we have already con-
structedT up to nodes at distance6 d − 1 from s. Then we consider the nodes at
distanced from s. Letw be a node with distanced(s, w) = d. We connectw to the
tree constructed so far by computing a shortest path froms to w. Ambiguities are
resolved by using the first feasible edge according toρ. We start with (s, t) as the
active edge (u, v).

• If d(u, w) > d(v, w), then (u, v) is the first edge encountered that is on a
shortest path fromu tow. Therefore we go fromu to v and start searching the
next edge fromv. As starting edge we takeρv(v, u), the successor of (v, u).
This is the new active edge.

• If d(u, w) 6 d(v, w), then (u, v) is not on a shortest path fromu to w. Then
we proceed withρu(u, v) as the new active edge.

After d − 1 steps in direction ofw, the nodev of the active edge (u, v) is a pre-
decessor ofw on a shortest path froms to w. Then we write (v, w) on the output
tape.

The spanning treeT is canonical, because its construction depends only onρ,
edge (s, t), and edge setE. The following figure shows an example of a spanning
treeT for a graphG with rotation functionρwhich arranges the edges in clockwise
order around each vertex ofG.

ρv3

ρv2

ρv1

ρt

= ( (s, t) (s, v1) (s, v2) )
= ( (t, s) (t, v3) (t, v1) )
= ( (v1, s) (v1, t) (v1, v3) (v1, v2) )
= ( (v2, s) (v2, v1) (v2, v3) )
= ( (v3, t) (v3, v2) (v3, v1) )

ρs

ρ = {ρs, ρt, ρv1, ρv2, ρv3}

v1

v3

t

s

v2

Figure 1: A 3-connected planar graph and its planar rotationscheme.



Except for the computation of the distances, the algorithm works in logspace.
We have to store the values ofd, k, u andv, and the position ofw, plus some extra
space for doing calculations. Thierauf and Wagner also proved, that distances in
planar graphs can be computed inUL ∩ coUL. This is based on the results from
Reinhard and Allender [17] and Bourke, Tewari, and Vinodchandran [4], that the
reachability problem for planar directed graphs is inUL∩ coUL. SinceLUL∩coUL

=

UL ∩ coUL the canonical spanning tree can be computed inUL ∩ coUL.

Step 2: Computation of a canonical list of all edges

With G = (V, E), a rotation schemeρ for G, a spanning treeT ⊆ E of G and
a designated edge (s, t) ∈ T we compute a canonical listL of all edges inE.
The list L then still contains the original vertex names inG, it does not depend
otherwise on the input representation ofρ, G or T .

The idea is to traverse the spanning tree in a depth-first manner. At each
vertexu we visit all incident edges ofu in a cyclic manner according toρu until
the next edgee of the spanning tree is reached. We go down the tree alonge and
recursively do the same at the node reached. At some point we will encountere
again and come back tou. Then we continue to output the edges incident tou.

More formally, we start the traversal with edge (s, t) as the active edge (u, v).
We write (u, v) on the output tape and then compute the next active edge as follows:

• If (u, v) ∈ T then we walk depth-first inT from u to v, consider the edge (v, u)
and takeρv(v, u) its successor according toρv.

• If (u, v) < T then we proceed breadth-first withρu(u, v).

This step is repeated until we entirely traversedE and the active edge is again (s, t).
Every undirected edge is encountered exactly once in each direction. According
to Figure 1 the canonical listL is the following.

L = (s, t)(t, v3)(v3, v2)(v3, v1)(v3, t)(t, v1)(t, s)
(s, v1)(v1, t)(v1, v3)(v1, v2)(v1, s)
(s, v2)(v2, v1)(v2, v3)(v2, s)

Step 3: Renaming the vertices

The last step is to rename the vertices in the listL so that they become indepen-
dent of the names they have inG. This is achieved as follows: consider the first
occurrence (from left) of nodev in L. Let k − 1 be the number of pairwise dif-
ferent nodes to the left ofv. Then all occurrences ofv are replaced byk. Recall,
thatL starts with the edge (s, t). Hence, all occurrences ofs get replaced by 1, all
occurrences oft by 2, and so on. Call the new listcode(G, ρ, s, t).



Given L as input, the listcode(G, ρ, s, t) can be computed in logspace. We
start with the first nodev (which is s) and a counterk, that counts the number of
different nodes we have seen so far. In the beginning, we setk = 1.

• If v occurs for the first time, then we outputk and increasek by 1.

• If v occurs already to the left of the current position then we have to deter-
mine the number, thatv got at its first occurrence. To do so, we determine
the first appearance ofv and then count the number of different nodes to the
left of v at its first appearance.

Then we go to the next node inL.
Consider the example from above. The code constructed from list L for G is

as follows.

L = (s, t) (t, v3) (v3, v2) (v3, v1) (v3, t) (t, v1) (t, s)
code(G, ρ, s, t) = (1, 2) (2, 3) (3, 4) (3, 5) (3, 2) (2, 5) (2, 1)

sequel ofL (s, v1) (v1, t) (v1, v3) (v1, v2) (v1, s)
sequel ofcode (1, 5) (5, 2) (5, 3) (5, 4) (5, 1)

sequel ofL (s, v2) (v2, v1) (v2, v3) (v2, s)
sequel ofcode (1, 4) (4, 5) (4, 3) (4, 1)

It remains to argue that the new names of the nodes are independent of their
names inG. Let H be a graph which is isomorphic toG, and letϕ be an isomor-
phism betweenG andH. Note thatρ ◦ ϕ is a rotation scheme forH. Consider
the computation of the code for graphH with rotation schemeρ ◦ ϕ and desig-
nated edge (ϕ(s), ϕ(t)). The spanning tree computed in step 1 will beϕ(T ) and
the list computed in step 2 will beϕ(L). Now the above renaming procedure
will give the same number to nodev in L and to nodeϕ(v) in ϕ(L). For exam-
ple, the nodesϕ(s) and ϕ(t) will get number 1 and 2, respectively. It follows
thatcode(G, ρ, s, t) = code(H, ρ ◦ ϕ, ϕ(s), ϕ(t)). We summarize:

Theorem 3.2. [19] Let G and H be connected, undirected graphs, let ρG be a
rotation scheme for G and (s, t) be an edge in G. Then G and H are isomor-
phic iff there exists a rotation scheme ρH for H and an edge (u, v) in H such that
code(G, ρG, s, t) = code(H, ρH, u, v).

With a very different approach, Datta, Limaye and Nimbhorkar [5] improved
the previous result fromUL ∩ coUL to L. Their method is in some sense much
easier since it avoids the spanning tree construction eliminating the distance com-
putations (the part inUL ∩ coUL). It uses however the concept of universal ex-
ploration sequence and the non-trivial fact that such sequences can be computed
in L.



Theorem 3.3. [5] The isomorphism problem for planar, 3-connected graphs is
in L.

The idea of the algorithm is to use a universal sequence [18] in order to con-
struct a canonical code for a given planar 3-connected graphG. Since Reingolds’s
construction requires the graph to have constant degree, there is a preprocesing
step in whichG is transformed into a 3-regular colored graphG′ with the property
that two graphs are isomorphic if and only if their transformations are also isomor-
phic (with a color preserving isomorphism). In a second stepa canonical code is
computed. The code is specific to the choice of a planar embedding ρ for G, a
starting node and a starting edge. Since there are only polynomially many pos-
sible choices for these parameters, for two given graphsG andH, a logarithmic
space procedure can cycle through all the possibilities anddecide that the graphs
are isomorphic if and only if the canonical codes match for any of the choices.

Step 1: Making the graph 3-regular

Given a 3-connected planar graphG = (V, E) and a planar embeddingρ we con-
struct a 3-regular planar graphG′ with the edges colored with two colors.G′

might not be 3-connected, however the planar embedding fromG will be inher-
ited toG′. Every vertexv of G is replaced inG′ by a cycle{v1, . . . , vd} (d is the
degree ofv). The d edgese1, . . . , ed incident with v in G are now respectively
incident to{v1, . . . , vd} in G′. The edges of the cycles are colored with color 1
and the edgese1, . . . , ed with color 2. The obtained graphG′ is 3-regular and it
is not hard to see that two graphsG and H are isomorphic if and only if their
transformationG′ andH′ are isomorphic with a color preserving isomorphism.

Step 2: Obtaining the canonical code

On input an edge-colored graphG with n vertices, maximum degree 3, a planar
embeddingρ, a starting vertexv and a starting edgee = (u, v), we want to construct
a canon forG. For this, we compute first in logarithmic space an (n, 3)-universal
exploration sequenceU. Then, starting atv ande we transverseG according toU
andρ giving the listL of the visited vertices as label. We can rename the vertices
according to their first occurrence inL, as it is done in step 3 from Theorem 3.1.
Finally, we can cycle over every possible pair (i, j), checking whether it is an edge
in the renamed list and outputting its color if this is the case. This output can be
considered as a canonical colored adjacency matrix forG.

The authors prove that this method is correct by showing the following: For
two graphsG1 andG2 with their respective embeddingρ1, ρ2, with starting ver-
ticesv1, v2 and edgese1, e2, if the canons coincide then the graphs are isomorphic,



and moreover, ifG1 is isomorphic toG2, then there is some choice of the parame-
ters that makes their respective canons equal.

4 Planar Graph Isomorphism

In this section we describe the log-space algorithm for planar graph isomorphism.
A previous step towards this result was a logarithmic space isomorphism test for
partial 2-trees [1]. Partial 2-trees are a subclass of the planar graphs coinciding
with that of series-parallel graphs and contain all outer-planar graphs. For proving
this result Arvind, Das and Köbler represent a partial 2-tree as a tree of cycles.
Similar to Lindell’s algorithm [14] they compare two such tree representations up
to isomorphism, defining a canonical ordering procedure, which finally gives a
canonization algorithm.

In the isomorphism algorithm for general planar graphs a similar representa-
tion is used, namely a tree of triconnected components. Atriconnected component
is a 3-connected graph, a cycle or a 3-bond, i.e. two verticesconnected by three
edges.

We give a log-space algorithm for thegraph canonization problem for planar
graphs, to which planar graph isomorphism reduces. The canonization involves
assigning to each graph an isomorphism invariant string of polynomial length.

The algorithm decomposes first the planar graph into its biconnected com-
ponents and constructs abiconnected component tree in log-space [1]. Then, it
further decomposes the biconnected planar components intotheir triconnected
components to obtain a triconnected component tree in log-space. Hopcroft and
Tarjan [9] presented a sequential algorithm for the decomposition of a biconnected
planar graph into its triconnected components. This methodcan be adapted to
work in log-space. The algorithm recursively removes separating pairs from the
graph and puts a copy of the separating pair in each of thesplit components so
formed, i.e. the nodes in the separating pair are connected by a virtual edge. The
decomposition stops when the split components become triconnected. Define a
node for each separating pair and each component and connecta separating pair
node with a triconnected component node if the separating pair is contained in the
component. The resulting graph is a tree, thetriconnected component tree. This
decomposition is unique [15]. Datta et. al. [6] prove, that such a decomposition
can be computed in log-space. Figure 2 shows an example of thedecomposi-
tion of a biconnected planar graphG. Its triconnected components areG1, . . . ,G4

and the corresponding triconnected component tree isT . In G, the pairs (a, b)
and (c, d) are the separating pairs. Since the 3-connected separating pair (c, d) is
connected by an edge inG, we also get{c, d} as triple-bondG3. The virtual edges
corresponding to the separating pairs are drawn with dashedlines.
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Figure 2:Decomposition of a biconnected planar graph into a triconnected com-
ponent tree.

The triconnected components can be canonized in log-space [5]. Hence, for
triconnected component trees, compute their canonical invariant in log-space, i.e.
two biconnected graphs are isomorphic if their trees are found to be equal.

In section 4.1, we summarize, how to canonize biconnected planar graphs by
applying tree canonization ideas from [14] to their triconnected component trees.
Note, that pairwise isomorphism of two trees labelled with the canons of their
components does not imply isomorphism of the correspondinggraphs. Lindell ’s
algorithm and complexity analysis had to be modified in a non-trivial way for this
step to work in log-space.

In section 4.2, we describe, how to canonize planar graphs using their bicon-
nected component trees, again using the basic structure of Lindell ’s algorithm.
The comparison algorithm refers to the biconnected component tree of the planar
graph and when comparing biconnected components, to their triconnected com-
ponent trees. This requires a detailed analysis of the interferences of both tree
structures.

4.1 Canonization of biconnected planar graphs

Let S and T be two triconnected component trees for the biconnected planar
graphsG and H, respectively. S and T are rooted at separating pair nodes,
say s = (a, b) and t = (a′, b ′). Therefore we also writeS (a,b) andT(a′,b ′). They
have separating pair nodes at odd levels and triconnected component nodes at even
levels. Figure 3 shows two trees to be compared.

Similar as in Lindell’s algorithm, we define the isomorphismorder of two
triconnected component treesS andT rooted at separating pairss = (a, b) andt =
(a′, b ′). S (a,b) <T T(a′,b ′) if:

1. |S (a,b)| < |T(a′,b ′)| or
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2. |S (a,b)| = |T(a′,b ′)| but #s < #t or

3. |S (a,b)| = |T(a′,b ′)|, #s = #t = k, but (S G1, . . . , S Gk) <T (TH1, . . . , THk) lexico-
graphically, where we assume thatS G1 6T . . . 6T S Gk andTH1 6T . . . 6T THk

are the ordered subtrees ofS (a,b) andT(a′,b ′), respectively. To compute the
order between the subtreesS Gi andTHi we compare lexicographically the
canons ofGi andHi andrecursively the subtrees rooted at the children ofGi

andHi. Note that these children are again separating pair nodes.

4. |S (a,b)| = |T(a′ ,b ′)|, #s = #t = k, (S G1 6T . . . 6T S Gk) =T (TH1 6T . . . 6T THk),
but (O1, . . . ,Op) < (O1

′, . . . ,Op
′) lexicographically, whereO j and O j

′

are the orientation counters of thejth isomorphism classesI j and I′j of all
the S Gi ’s and theTHi ’s. (The concept of orientation counter is explained
later).

We say that two triconnected component treesS e andTe′ areequal according
to the isomorphism order, denoted byS e =T Te′ , if neitherS e <T Te′ norTe′ <T S e

holds. Two trees are=T-equal, precisely when the underlying graphs are isomor-
phic.

We summarize now, how we can compute the isomorphism order when we
compare subtrees rooted at separating pairs, e.g.S (a,b) andT(a′,b ′), and when we
compare subtrees rooted at triconnected components, e.g.S Gi andTH j .

ComparingS (a,b) andT(a′,b′) is similar to the comparison of subtrees in Lin-
dell’s algorithm. We make a cross-comparison of the children and store the coun-
tersc<, c=, c> for their order profile.

Assume, both subtrees are of equal size, i.e.|S Gi | = |TH j | = N, both rooted at
triconnected component nodesGi andH j, respectively.



First, we compare the types ofGi andH j. We say that bonds6T cycles and
cycles6T 3-connected components. 3-bonds are always equal. If both are cy-
cles or 3-connected components then we construct the canonsof Gi andH j and
compare all of them bit-by-bit.

To canonize a cycle, we traverse it starting from the virtualedge which cor-
responds to its parent (i.e. the parent node ofGi), and then traversing the entire
cycle along the edges encountered. There are two possible traversals depending
on which direction of the starting edge is chosen. Thus, a cycle has two possible
canons.

To canonize a 3-connected componentGi, we use the log-space algorithm
from Datta, Limaye, and Nimbhorkar [5]. The canon depends onthe direction of
the starting edge and additionally, on the embedding of the componentGi. For 3-
connected components, there are two possible embeddings. Hence, we have up to
four possible canons.

In the bit-by-bit comparison, we have to distinguish several cases. When we
reach virtual edges in the comparison steps, we go into recursion at the subtrees
rooted at the corresponding separating pairs. If we find in the recursion that one of
the subtrees is smaller than the other, then we have found an inequality between
the current canons we compare. We eliminate the canons whichare not found to
be minimal. At the end, if there remains a canon forGi and for H j, then both
subtreesS Gi andTH j are equal up to step 3.

Orientation counters. Here it does not suffice to stop after step 3. We need a
further comparison step to ensure thatG andH are indeed isomorphic. We give
an example illustrating this in Figure 4. Assume thats and t have two children
each,G1, G2 andH1, H2 such thatG1 � H1 andG2 � H2. Still we cannot con-
clude thatG and H are isomorphic because it is possible that the isomorphism
betweenG1 andH1 mapsa to a′ andb to b ′, but the isomorphism betweenG2

and H2 mapsa to b ′ andb to a′. Then these two isomorphisms cannot be ex-
tended to an isomorphism betweenG andH.

To handle this problem, we introduce the notion of anorientation of a sep-
arating pair. A separating pair gets an orientation from subtrees rootedat its
children. Also, every subtree rooted at a triconnected component node gives an
orientation to the parent separating pair. If the orientation is consistent, then we
defineS (a,b) =T T(a′,b ′) and we will show thatG andH are isomorphic in this case.

We define theorientation given to the parent separating pair of Gi andH j as
the direction in which the minimum canon traverses this edge. If the minimum
canons are obtained for both choices of directions of the edge then we say thatS Gi

andTH j aresymmetric about their parent separating pair, and thus do not give an
orientation.
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We define theorientation given to the virtual edge in the parent triconnected
component of the corresponding separating pair node (a, b) or (a′, b ′) by consid-
ering all the orientations given to the separating pair of their childrenG1, . . . ,Gk,
respectively. We first order the subtrees, sayS G1 6T · · · 6T S Gk andTH1 6T · · · 6T
THk , and partition them into isomorphism classes, sayI1, . . . , Ip and I′1, . . . , I

′
p.

Let I j be the smallest isomorphism class such that there are more components that
give the orientationa → b to the parent thanb → a (or vice versa). Then, we
definea→ b to be thereference orientation (b→ a otherwise). For each isomor-
phism classI j, we compute now the orientation countersO j = (c→j , c

←
j ) such that

c→j is the number of children inI j which give the reference orientation andc←j is
the number of children inI j which give the reverse orientation.

Recall the example of Figure 4. The graphsG andH have the same tricon-
nected component trees but are not isomorphic. InS (a,b), the 3-bonds form one
isomorphism classI1 and the other two components form the second isomorphism
classI2, as they all are pairwise isomorphic. The non-isomorphism is detected by
comparing the directions given to the parent separating pair. We havep = 2 iso-
morphism classes and for the orientation counters we haveO1 = O1

′
= (0, 0),

whereasO2 = (2, 0) andO2
′
= (1, 1) and henceO2

′ is lexicographically smaller
thanO2. Therefore we haveT(a′,b ′) <T S (a,b).

Complexity. We argue now, that we can do the four comparison steps in log-
space. The first and the second step are similar to Lindell’s algorithm. We define
the size of a separating pair node as 2 and thesize of a triconnected component
as the number of vertices in the component. For the third and fourth step, we have
the following cases:

• When we compare two triconnected componentsGi andH j, then we have up
to four canons. Suppose, we construct and compare two canonsCg andCh



and reach separating pairs (a, b) and (a′, b ′). We store the canons which are
not eliminated, which of themCg andCh are and the direction of the virtual
edges (a, b) and (a′, b ′). Hence, we needO(1) bits.

• When we compare two separating pairs (a, b) and (a′, b ′), then we make
a cross-comparison as in Lindell’s algorithm. Hence, we need coun-
tersc<, c=, c> to store the order profile. This way, we get the isomorphism
classes. We further store the orientation countersO j andO j

′ for I j andI′j.
We needO(log |I j|) bits on the work-tape for all the counters.

However, we cannot guarantee yet, that the algorithm works in log-space.
Let S C be the subtree rooted at nodeC in a triconnected component tree. The
problem is, that the subtrees (i.e. the children ofC) where we go into recursion
might be of size> |S C |/2, we call this alarge child.

To get around this problem, we first check whether the nodesC andC ′ have
a large child. If so then we compare them a priori and store theresult of their
comparison and the orientation given to the parent. BecauseC andC ′ have at
most one large child, this needs onlyO(1) additional bits. In the comparison ofC
andC ′, whenever we would go into recursion at those large children, we just look
at the work-tape for the result instead.

As seen above, while comparing two trees of sizeN, the algorithm uses no
space for making a recursive call for a subtree of size largerthan N/2, and it
usesO(logk j) space if the subtrees are of size at mostN/k j, wherek j > 2. Hence
we get the same recurrence for the spaceS(N) as Lindell:

S(N) 6 max
j
S

(
N
k j

)
+ O(logk j),

wherek j > 2 for all j. ThusS(N) = O(logN). Note that the numbern of nodes
of G is in general smaller thanN, because the separating pair nodes occur in all
components split off by this pair. But we certainly haven < N 6 O(n2) [9]. This
leads to the following theorem.

Theorem 4.1. [6] The isomorphism order between two triconnected component
trees of biconnected planar graphs can be computed in log-space.

The canon. Once we know the ordering among the subtrees, it is straightfor-
ward to output the canon of the triconnected component treeT . We traverseT in
the tree isomorphism order as in Lindell’s algorithm, outputting the canon of each
of the nodes along with virtual edges and delimiters. That is, we output a ‘[’ while
going down a subtree, and ‘]’ while going up a subtree.



We need to choose a separating pair as root for the tree. Sincethere is no
distinguished separating pair, we simply cycle through allof them and select the
one, which leads to the minimum canon. Let (a, b) be this separating pair. The
canonization procedure has two steps. In the first step we compute what we call
a canonical list for S (a,b). This is a list of the edges ofG, also including virtual
edges. In the second step we compute the final canon from the canonical list.
Canon of separating pair nodes. Consider a subtreeS (a,b) rooted at (a, b). We
start with computing the reference orientation of (a, b) with oracle calls to the
canonical ordering algorithm and output the edge in this direction. Then we re-
cursively output the canonical lists of the subtrees of node(a, b) according to the
increasing isomorphism order. Among isomorphic siblings,those which give the
reference orientation to the parent come first. We denote this canonical list of
edgesl(S , a, b). If there is no reference orientation for a child, take the orientation
of the parent (a, b).
Canon of triconnected component nodes. Consider the subtreeS Gi rooted atGi.
Let (a, b) be the parent separating pair ofS Gi with reference orientation (a, b).
If Gi is a 3-bond then outputl(Gi, a, b) = (a, b). If Gi is a cycle then out-
put l(Gi, a, b) = (a, b)(b, v1)(v1, v2) . . . (vn, a). If Gi is a 3-connected component
then compute the minimum of two canons with an oracle call. That is with re-
spect to the given reference orientation (a, b) and both embeddings forGi. Output
this canon asl(Gi, a, b). Virtual edges are output in the direction of the reference
orientation given to them, if any. Finally, we output the subtrees in the order we
have virtual edges in the canon.

We give an example. Consider the canonical listl(S , a, b) of edges for the
treeS (a,b) of Figure 3. Letsi be the edge connecting the verticesai with bi. We also
write for shortl ′(S i, si) which is one ofl(S i, ai, bi) or l(S i, bi, ai). The direction
of si is as described above. Letl0 = 0. Then we have:

l(S , a, b) = [ (a, b) l(S G1, a, b) . . . l(S Gk , a, b) ], where

l(S Gi , a, b) = [ l(Gi, a, b) [l ′(S li−1+1, sli−1+1)] . . . [l ′(S li , sli)] ] ]

4.2 Canonization of planar graphs

Consider the decomposition of a connected planar graph. Foreach articulation
point and biconnected component we define nodes i.e.articulation point nodes
andbiconnected component nodes. An articulation point node fora is connected
by an edge to the nodes of biconnected components wherea is contained as a
vertex. The resulting graph is a tree, thebiconnected component tree. The main
difference to the triconnected component tree is, that for articulation point nodes,
there is no concept of orientation as for separating pairs.



We define the isomorphism order for two biconnected component treesS a

andTa′ rooted at nodess andt corresponding to articulation pointsa anda′, re-
spectively. Also see Figure 5. Let|S a| be the sum of the sizes of the nodes in the
tree. Thesize of an articulation point node a is defined as 1 and thesize of a bi-
connected component node B is the size of its triconnected component tree|T(B)|.
Let S a andTa′ be biconnected component trees rooted at articulation pointsa and
a′. DefineS a <B Ta′ if

1. |S a| < |Ta′ | or

2. |S a| = |Ta′ | but #s < #t or

3. |S a| = |Ta′ |, #s = #t = k, but (S B1, . . . , S Bk) <B (TB1
′ , . . . , TBk

′) lexicograph-
ically, where we assume thatS B1 6B · · · 6B S Bk andTB1

′ 6B · · · 6B TBk
′

are the ordered subtrees ofS a andTa′ , respectively. To compare the order
between the subtreesS Bi andTB j

′ we compare the triconnected component
treesT(Bi) of Bi andT(B j

′) of B j
′ and when we reach the first occurrences

of some articulation points then we comparerecursively the corresponding
subtrees rooted at the children ofBi andB j

′. Note, that these children are
again articulation point nodes.
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Figure 5: Biconnected component trees.

We say that two biconnected component trees areequal, denoted byS a =B Ta′ ,
if neither ofS a <B Ta′ andTa′ <B S a holds. The inductive ordering of the subtrees
of S a andTa′ proceeds exactly as in Lindell ’s algorithm, by partitioning them into
size-classes and comparing the children in the same size-class recursively.

We summarize now, how we can compute the isomorphism order when we
compare subtrees rooted at articulation points, e.g.S a andTa′ , and when we com-
pare subtrees rooted at biconnected components, e.g.S Bi andTB j

′.



ComparingS a andTa′ is similar to the case when we compare subtrees rooted
at separating pairs in triconnected component trees. We make a cross-comparison
of the children and store the countersc<, c=, c> for their order profile.

When we compare biconnected componentsBi andB j
′, then we cannot start

comparing their biconnected canons. We even cannot computetheir canons be-
cause we do not have a unique root separating pair for the trees T(Bi) andT(B j

′).
The problem occurs when we have only one fixed vertex inBi, i.e. the parent artic-
ulation point. Datta et. al. bound the number of candidates of root separating pairs
of T (Bi) andT (B j

′). For the detailed case analysis we refere to the paper. Basi-
cally, except of some special cases they show that the numberof edges is bounded
by k, when all the isomorphism classes of the children ofBi andB j

′ (i.e. children
in the biconnected component tree of nodes forBi andB j

′) are of cardinality> k.
Hence, all the isomorphism classes contain childrenC such that|S C | 6 |S Bi |/k.
If there is one size class of cardinality one, then we treat this child separately. If
there are two or more such size classes, then we even getO(1) candidates for the
root. We will need this in the complexity analysis.

Complexity according to the biconnected component tree. First, when we
compare articulation pointsa anda′ in the biconnected component tree, we have
a similar complexity analysis as in Lindell’s algorithm. For the children ofa
anda′, we storeO(logk) bits for isomorphism classes of cardinalityk > 2.

Second, when we compare biconnected componentsB and B ′ in the bicon-
nected component tree then a typical query is of the form (s, r), wheres is the
chosen root ofT(B) andr is the index of the edge in the canon, which is to be re-
trieved. If there arek choices forT(B) andT (B ′), the base machine cycles through
all of them one by one, keeping track of the minimum canon. This takesO(logk)
space. In both cases, we also consider large children (i.e. childrenC of B such
that |S C | > |S B|/2) a priori. We summarize. If we consider recursively how many
bits we store for the roots of biconnected components then weget the recursion
equation for the size function.

S(N) = max
j

{
S

(
N
k j

)
+ O(logk j)

}

wherek j > 2. Hence,S(N) = O(logN).

Complexity according to the triconnected component trees. We consider
now the comparison of triconnected component treesT(B) andT(B ′) of bicon-
nected componentsB andB ′. In the comparison ofT(B) andT(B ′), we still go
into recursion at separating pairs and when we reach virtualedges in canons for
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Figure 6:A biconnected component treeS B rooted at biconnected componentB
which has an articulation pointa as child, which occurs in the triconnected com-
ponent treeT(B) of B. In A and the other triconnected components the dashed
edges are separating pairs.

triconnected components. What is new, we go into recursion when we reach ar-
ticulation points. For an example, see Figure 6.

If an articulation pointa belongs to many separating pairs, then it can occur in
many component nodes inT(B). Recall, that we have a root for the tree. So, there
exists a unique componentA that is closest to the root, wherea is contained. Ob-
serve, that the set of component nodes wherea is contained is always a connected
subtree inT(B). The authors show, that this unique component can be computed
in log-space and that the first position wherea occurs in the canon ofA can be
found in log-space. Exactly there, we go fora into recursion. For all the other
occurrences ofa we do not go into recursion. Call this thereference copy of a
in T(B).

Assume we store separately the bits that we need insideT(B) for all bicon-
nected componentsB. For this part also a log-space bound can be proved. The
size function can therefore be refined. LetC be a node inT(B). The size of the
subtreeS C rooted at some nodeC is the sum of the size of the triconnected subtree
rooted atC in T(B), say|S C | plus the size of all the biconnected subtrees|S a|, if a
is a reference copy of an articulation points inS C. There is one more special case.
If S a is a large child forB in the biconnected component tree and forC in S C,
then we still go only once into recursion forS a a priori and store the result. In this
case, ifa has a reference copy in the subtree ofT(B) rooted atC thenS a is not
included in the size ofS C. Hence, we get the same recursion equation as before.
This finishes the complexity analysis and leads to the following theorem.

Theorem 4.2. [6] The isomorphism order between two planar graphs can be
computed in log-space.



The canon. The canonization of planar graphs proceeds exactly as in thecase
of biconnected planar graphs. A log-space procedure traverses the biconnected
component tree, makes oracle queries to the isomorphism order algorithm and
outputs a canonical list of edges, along with delimiters to separate the lists for
siblings. A log-space transducer then renames the verticesaccording to their first
occurrence in this list, to get the final canon for the biconnected component tree.
This canon depends upon the choice of the root of the biconnected component tree.
Further log-space transducers cycle through all the articulation points as roots to
find the minimum canon among them, then rename the vertices according to their
first occurrence in the canon and finally, remove the virtual edges and delimiters
to obtain a canon for the planar graph. This proves the main theorem.

Theorem 4.3. [6] A planar graph can be canonized in log-space.
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