
Integer Multipliation and theComplexity of Binary DeisionDiagramsBeate Bollig∗AbstratInteger multipliation as one of the basi arithmeti funtions hasbeen in the fous of several omplexity theoretial investigations andordered binary deision diagrams (OBDDs) are one of the most om-mon dynami data strutures for Boolean funtions. The BDD om-plexity of two output bits of integer multipliation, the so-alled middlebit and the most signi�ant bit, has been investigated intensively. Inthis olumn we brie�y survey results on the omplexity of restritedbinary deision diagrams for integer multipliation and onentrate ontwo reent results on the omplexity of OBDDs for the most signi�antbit. Our aim is not to be omprehensive but to deepen the knowledgeon the struture of integer multipliation.1 IntrodutionInteger multipliation is ertainly one of the most important funtions in om-puter siene and a lot of e�ort has been spent in designing good algorithmsand small iruits and in determining its omplexity. For some omputationmodels integer multipliation is a quite simple funtion. It is ontained in
NC1 and even in TC0,3 (polynomial-size threshold iruits of depth 3) butneither in AC0 (polynomial-size {∨,∧,¬}-iruits of unbounded fan-in andonstant depth) nor in TC0,2 [21℄. For more than 35 years the algorithm ofShönhage-Strassen [30℄ has been the fastest method for integer multiplia-tion running in time O(n logn log log n). Only reently, Fürer has presentedan algorithm running in time n log n · 2O(log∗ n), where the running time holdsfor multitape Turing mahines [16℄. An algorithm with the same runningtime based on modular arithmeti has been obtained by De, Kurur, Saha,
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and Sapthariski [13℄. Until now it is open whether integer multipliation ispossible in time O(n log n).De�nition 1.1. Let Bn,m denote the set of all Boolean funtions f :
{0, 1}n → {0, 1}m and Bn the speial ase that m = 1. The Boolean funtionMULi,n ∈ B2n maps two n-bit integers x = xn−1 . . . x0 and y = yn−1 . . . y0 tothe ith bit of their produt, i.e., MULi,n(x, y) = zi, where x · y = z2n−1 . . . z0and x0, y0, z0 denote the least signi�ant bits. For c ∈ {0, 1}n the Booleanfuntion MULc

i,n ∈ Bn is de�ned by MULc
i,n(x) =MULi,n(x, c).The Boolean funtion MUL-Graphn ∈ B4n maps two n-bit integers x =

xn−1 . . . x0 and y = yn−1 . . . y0, and a 2n-bit integer z = z2n−1 . . . z0 to 1 i�the produt of x and y equals z.Besides Boolean iruits and formulas, iruits whose underlying graph isa tree after a suitable dupliation of the inputs, branhing programs (BPs)are one of the standard representations for Boolean funtions. (For a historyof results on branhing programs see, e.g., the monograph of Wegener [32℄).De�nition 1.2. A branhing program (BP) on the variable set Xn =
{x1, . . . , xn} is a direted ayli graph with one soure and two sinks la-beled by the onstants 0 and 1. Eah non-sink node (or deision node) islabeled by a Boolean variable and has two outgoing edges, one labeled by 0and the other by 1. An input b ∈ {0, 1}n ativates all edges onsistent with b,i.e., the edges labeled by bi whih leave nodes labeled by xi. A omputationpath for an input b in a BP G is a path of edges ativated by the input bwhih leads from the soure to a sink. A omputation path for an input bwhih leads to the 1-sink is alled aepting path for b. The BP G representsa funtion f ∈ Bn for whih f(b) = 1 i� there exists an aepting path for theinput b. The size of a branhing program G is the number of its nodes. Thebranhing program size of a Boolean funtion f is the size of the smallest BPrepresenting f . The length of a branhing program is the maximum lengthof a path.Not only in omplexity theory but also in appliations people have used(restrited) branhing programs, where they are most often alled binary de-ision diagrams (BDDs). Representations of Boolean funtions that allowe�ient algorithms for many operations, in partiular synthesis (ombinetwo funtions by a binary operation) and equality test (do two representa-tions represent the same funtion?) are neessary. Bryant [11℄ introduedordered binary deision diagrams (OBDDs) whih have beome one of themost popular data strutures for Boolean funtions. Among the many areasof appliation are veri�ation, model heking, omputer-aided design, andsymboli graph algorithms.



Lower and upper bounds for integer multipliation are motivated by thegeneral interest in the omplexity of important arithmeti funtions. Theomplexity of two output bits of integer multipliation has been investigatedintensively in the last years. The �rst one is the middle bit of integer multipli-ation, the bit with signi�ane 2n−1, whih is the hardest bit to ompute forspae bounded models of omputation in the sense that if it an be omputedwith size s(n), then any other bit an be omputed with size at most s(2n).More preisely, any branhing program for MUL2n−1,2n an be onverted intoa branhing program representing MULi,n, 0 ≤ i ≤ 2n− 1, by relabeling thenodes and by replaing some inputs with the onstant 0. As a onsequenethe �rst large lower bounds on the size of restrited branhing programs havebeen shown for MULn−1,n. The seond one is the bit z2n−1 whih is the mostimportant bit of integer multipliation in the following sense. Sine it has thehighest value, for the approximation of the value of the produt of two n-bitnumbers x and y it is the most interesting one. On the other hand for spaebounded models of omputation z2n−1 is easy to ompute in the sense that ifit annot be omputed with size s(n), then any other bit zi, 2n − 1 > i ≥ 0,annot be omputed with size s(i/4).In the following we give some motivation for the investigation of theOBDD size of integer multipliation.The middle bit of integer multipliationA lot of e�ort has been spent in trying to verify multiplier iruits usingOBDDs. In 1998 an OBDD for the 16-bit multipliation iruit c6288, oneof the most important ISCAS (International Symposium on Ciruits andSystems) benhmark iruits, has been onstruted [39℄. To the best of ourknowledge, until now it has been impossible to onstrut OBDDs for inputlength n = 32 and even the representation of all output bits of 16-bit mul-tipliation by SBDDs, a more general OBDD model for the representationof multiple output Boolean funtions, is a hallenging task. Sine the size ofOBDDs and SBDDs an be quite sensitive to the hosen variable order, oneof the reasons might be that di�erent output bits of integer multipliationhave di�erent variable orders leading to reasonable size (for the de�nitionof OBDDs and variable orders see De�nition 2.2). Bryant [11℄ has alreadybounded the size of SBDDs for integer multipliation by proving that for eahvariable order there exists an output bit for whih the OBDD size is at least
2n/8. For many appliations it would be su�ient to represent eah outputbit by an OBDD of moderate size aording to an suitably hosen variableorder. Already Bryant has destroyed this hope in 1991 [12℄. He has shownthat OBDDs for the representation of the middle bit of integer multipliation



have at least size 2n/8 for any variable order. Nevertheless, Bryant's lowerbound does not exlude that even 256-bit multipliation an be representedin reasonable size. Therefore, the OBDD size for integer multipliation hasbeen further investigated.
The most signi�ant bit of integer multipliationIn the last years a new researh branh has emerged whih is onerned withthe theoretial design and analysis of so-alled symboli algorithms for lassi-al graph problems on OBDD-represented graph instanes (see, e.g., [17, 18℄,[28℄, and [38℄). Symboli algorithms have to solve problems on a given graphinstane by e�ient funtional operations o�ered by the OBDD data stru-ture. Therefore, at the beginning the OBDD-based algorithms have beenjusti�ed by analyzing the number of exeuted OBDD operations (see, e.g.,[17, 18℄). Sine the runtime of an operation on an OBDD G often depends onthe size of G the analysis of the over-all runtime of symboli methods inlud-ing the analysis of all OBDD sizes ourring during suh an algorithm is moresigni�ant (see, e.g., [38℄). In order to investigate the limits of symboli graphalgorithms for the all pairs shortest paths problem Sawitzki [28℄ has investi-gated the graph of integer multipliation and has presented an exponentiallower bound on its OBDD size. Afterwards he has de�ned inputs for the allpairs shortest paths problem suh that during the omputation representa-tions for MUL-Graphn are neessary. Another investigated graph problemis the following. Computing the set of nodes that are reahable from somesoure s ∈ V in a digraph G = (V, E) is an important problem in omputer-aided design, hardware veri�ation, and model heking. Proving exponentiallower bounds on the spae omplexity of a ommon lass of OBDD-based al-gorithms for this reahability problem, Sawitzki [29℄ has presented the �rstexponential lower bound on the size of π-OBDDs representing the most sig-ni�ant bit for the variable order π where the variables are tested aording toinreasing signi�ane, i.e. π = (x0, y0, x1, y1, . . . , xn−1, yn−1). For the lowerbounds on the spae omplexity of the OBDD-based algorithms he has usedthe assumption that the output OBDDs use the same variable order as theinput OBDDs. But in ontrast, pratial algorithms usually run variable re-ordering heuristis on intermediate OBDD results in order to minimize theirsize. Therefore, lower and upper bounds on the OBDD size of the most sig-ni�ant bit of multipliation with respet to an arbitrary variable order areinteresting.



OrganizationIn this olumn we give a brief overview on results onerning the omplexityof restrited branhing programs or binary deision diagrams for the funtionsMULn−1,n and MUL2n−1,n. We do not aim to be omprehensive but fouson their OBDD omplexity, in partiular new results on the most signi�antbit. Sine the artile is meant to be self-ontained, in Setion 2 we start withthe presentation of some restrited branhing program or binary deisiondiagram models. Moreover, we repeat the relevant relation between one-wayommuniation omplexity and the size of OBDDs.Setion 3 ontains results on the size of restrited branhing programsor binary deision diagrams for the middle bit of integer multipliation. Wepresent lower and upper bounds on the OBDD size and sketh results on thesize of more general models.The main results of this survey are presented in Setion 4. Using onlymethods from one-way ommuniation omplexity Sawitzki's restrited lowerbound on the size of OBDDs for MUL2n−1,n [29℄ is improved. Afterwards ageneral lower bound and upper bounds are presented. Remarks on the size ofmore general models for the most signi�ant bit omplete our investigation.Finally, in Setion 5 we summarize our results by a omparison betweenthe middle and the most signi�ant bit.2 PreliminariesIn this setion we introdue some notation. Furthermore, we give an overviewon some restrited branhing program or binary deision diagram models andprovide relevant tehnial bakground from ommuniation omplexity.2.1 NotationIn the rest of the paper we use the following notation.Let [x]lr, n − 1 ≥ l ≥ r ≥ 0, denote the bits xl . . . xr of a binary number
x = (xn−1, . . . , x0). For the ease of desription we use the notation [x]lr = z if
(xl, . . . , xr) is the binary representation of the integer z ∈ {0, . . . , 2l−r+1−1}.Sometimes, we identify [x]lr with z if the meaning is lear from the ontext.We use the notation (z)l

r for an integer z to identify the bits at position
l, . . . , r in the binary representation of z.Let ℓ ∈ {0, . . . , 2m − 1}, then ℓ denotes the number (2m − 1) − ℓ. Fora binary number x = (xn−1, . . . , x0) we use the notation x for the binarynumber (xn−1, . . . , x0).



Let aS be an assignment to variables in a set S and aS(xk) ∈ {0, 1} bethe assignment to xk ∈ S, then we de�ne ‖aS‖ :=
∑

xk∈S aS(xk) · 2
k.In the following for the sake of simpliity we do not apply �oor or eilingfuntions to numbers even when they need to be integers whenever this islear from the ontext and has no bearing on the essene of the presentedproofs.2.2 Restrited branhing programs or binary deisiondiagramsIt is well known that the logarithm of the branhing program size is essen-tially the same as the spae omplexity of the nonuniform variant of Turingmahines (see, e.g., [32℄). Hene, it is a fundamental open problem to provesuperpolynomial lower bounds on the size of branhing programs for ex-pliitly de�ned Boolean funtions, i.e., funtions ontained in NP. In orderto develop and strengthen lower bound tehniques one onsiders restritedomputation models. There are several possibilities to restrit branhing pro-grams, among them restritions on the multipliity of variable tests or theorder in whih variables may be tested.De�nition 2.1. i) A branhing program is alled (syntatially) read-k-times (BPk) if eah variable is tested on eah path at most k times.ii) A branhing program is alled s-oblivious for a sequene of variables

s = (s1, . . . , sl), si ∈ Xn, or short oblivious, if the set of deision nodesan be partitioned into disjoint sets Vi, 1 ≤ i ≤ l, suh that all nodesfrom Vi are labeled by si and the edges whih leave Vi-nodes reah asink or a Vj-node where j > i. The length of an s-oblivious branhingprogram is the length of the sequene s.Nondeterministi branhing programs and randomized branhing pro-grams are de�ned in the obvious way by introduing additional, unla-beled nodes at whih nondeterministi or randomized deisions, resp., aretaken. An approximating branhing program for a Boolean funtion f with(two-sided) error ε is a deterministi branhing program omputing an ε-approximation of f , i.e., a funtion that di�ers from f on at most an ε-fration of the inputs.For nondeterministi read-one branhing programs a further generaliza-tion of obliviousness an be obtained by restriting the order of variables insuh a way that it equals for eah input the order of variables for this inputperformed in a omplete given deterministi read-one branhing program,i.e., a BP1 where on eah path from the soure to the sinks all variables



are tested. This omplete read-one branhing program is alled graph or-der and the resulting nondeterministi read-one branhing program is alledgraph-driven. If the graph order is a tree of polynomial size, then it is alledtree-driven.Combining restritions on the multipliity of variable tests with the prop-erty of obliviousness we obtain oblivious read-one branhing programs, bet-ter known as OBDDs.De�nition 2.2. An OBDD is a branhing program with a variable ordergiven by a permutation π on the variable set. On eah path from the soureto the sinks, the variables at the nodes have to appear in the order presribedby π (where some variables may be left out). A π-OBDD is an OBDD orderedaording to π. The π-OBDD size of f denoted by π-OBDD(f) is the size ofthe smallest π-OBDD representing f . The OBDD size of f , sometimes alsoalled OBDD omplexity of f , (denoted by OBDD(f)) is the minimum of all
π-OBDD(f).The size of the minimal π-OBDD representing a Boolean funtion f on nvariables, i.e., f ∈ Bn, is desribed by the following struture theorem [31℄.Theorem 2.3. The number of xπ(i)-nodes of the minimal π-OBDD for f isthe number si of di�erent subfuntions f|xπ(1)=a1,...,xπ(i−1)=ai−1

, a1, . . . , ai−1 ∈
{0, 1}, essentially depending on xπ(i) (a funtion g depends essentially on avariable z if g|z=0 6= g|z=1).It is well known that the size of an OBDD representing a funtion fdepends on the hosen variable order. Sine in appliations the variable orderis not given in advane we have the freedom (and the problem) to hoose agood or even an optimal order for the representation of f . In general OBDDsdo not have nie algorithmi properties. There are examples known suh that
gn and hn are two Boolean funtions whih have OBDDs of linear size (fordi�erent variable orders) but fn = gn∨hn has even exponential BP1 size (foran example see, e.g., Proposition 2 in [6℄). If a variable order π is �xed, allimportant operations an be performed e�iently.SBDDs (shared binary deision diagrams) are an extension of OBDDsthat an express multiple funtions. An SBDD represents a Boolean fun-tion f ∈ Bn,m : {0, 1}n → {0, 1}m by representing simultaneously the outputfuntions f1, f2, . . . , fm of f , where the representations for the di�erent o-ordinate funtions f1, f2, . . . , fm may share nodes.



2.3 One-way ommuniation omplexity and the size ofOBDDsIn order to obtain lower bounds on the size of OBDDs one-way ommunia-tion omplexity has beome a standard tehnique (see Hromkovi£ [22℄ andKushilevitz and Nisan [23℄ for the theory of ommuniation omplexity andthe results mentioned below).The main subjet is the analysis of the following (restrited) ommuni-ation game. Consider a Boolean funtion f ∈ Bn whih is de�ned on thevariables in Xn = {x1, . . . , xn}, and let Π = (XA, XB) be a partition of Xn.Assume that Alie has only aess to the input variables in XA and Bob hasonly aess to the input variables in XB. In a one-way ommuniation proto-ol, upon a given input x, Alie is allowed to send a single message (dependingon the input variables in XA) to Bob who must then be able to ompute theanswer f(x). The one-way ommuniation omplexity of the funtion f de-noted by C(f) is the worst ase number of bits of ommuniation whih needto be transmitted by suh a protool that omputes f . It is easy to see thatan OBDD G with respet to a variable order where the variables in XA aretested before the variables in XB an be transformed into a ommuniationprotool and C(f) ≤ ⌈log |G|⌉. Therefore, linear lower bounds on the om-muniation omplexity of a funtion f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} leadto exponential lower bounds on the size of π-OBDDs where the XA-variablesare before the XB-variables in π.One entral notion of ommuniation omplexity are strong fooling setswhih play an important role in the lower bound proofs later on.De�nition 2.4. Let f : {0, 1}|XA| × {0, 1}|XB| → {0, 1}. A set S ⊆
{0, 1}|Xa| × {0, 1}|XB| is alled strong fooling set for f if f(a, b) = c for all
(a, b) ∈ S and some c ∈ {0, 1} and if for di�erent pairs (a1, b1), (a2, b2) ∈ Sat least one of f(a1, b2) and f(a2, b1) is unequal to c.Theorem 2.5. If f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} has a strong fooling setof size t, the ommuniation omplexity of f is bounded below by ⌈log t⌉.Beause of our onsiderations above, the size t of a strong fooling set for
f is a lower bound on the size of OBDDs representing f with respet to avariable order where the variables XA are tested before the variables XB.Beause of the symmetri de�nition of strong fooling sets, t is also a lowerbound on the size of OBDDs representing f with respet to a variable orderwhere the variables XB are tested before the variables XA. The ruial stepto prove large lower bounds on the OBDD omplexity of a funtion is toobtain for all partitions of the variables large lower bounds on the size of



fooling sets for subfuntions of the given funtion (best ase ommuniationomplexity).In the rest of this setion our aim is to de�ne a funtion fn with largeommuniation omplexity whih is a main ingredient in our lower boundproof on the OBDD size of the most signi�ant bit of integer multipliation.First, we take a look at known results about the ommuniation om-plexity of some popular funtions. Let EQn : {0, 1}n × {0, 1}n → {0, 1} bede�ned by EQn(a, b) = 1 i� the vetors a = (a1, . . . , an) and b = (b1, . . . , bn)are equal. It is well-known and easy to prove that C(EQn) = n. Obviouslythe same results an be ahieved if Alie gets exatly one of the variables
ai and bi, 1 ≤ i ≤ n. Similar results an be obtained for the funtionsGTn : {0, 1}n ×{0, 1}n → {0, 1} and GTn : {0, 1}n ×{0, 1}n → {0, 1}, whereGTn(a, b) = 1 i� [a]n1 > [b]n1 and GTn(a, b) = 1 i� [a]n1 ≤ [b]n1 .Now, we are ready to de�ne the funtion fn ∈ B3n on the variables
a = (a1, . . . , an), b = (b1, . . . , bn), and c = (c1, . . . , cn):

fn(a, b, c) := (EQn(a, c) ∧GTn(a, b)) ∨GTn(a, c).Using ase inspetion on the distribution of the c-variables it is not di�ultto prove that for a partition, where the a- and b-variables are separated, thereexists a strong fooling set of size 2n for fn. In other words the ommuniationomplexity of fn is not smaller than the ommuniation omplexity of GTnand the distribution of the c-variables does not simplify the task. The sameresult an be obtained if Alie gets exatly one of the variables ai and bi forall i ∈ {1, . . . , n}. In this ase it is not important whether the investigated c-variables belong to Alie or Bob but whether the onsidered a- and c-variablesor b- and c-variables are tested together.3 The middle bit of integer multipliationIn this setion we present some results on the OBDD size of the middle bitof integer multipliation. Furthermore, we investigate more general BDDmodels.3.1 On the OBDD size of the middle bit of integer mul-tipliationBryant's lower bound of 2n/8 on the OBDD size of MULn−1,n is unsatisfa-tory sine it does not rule out the possibility that 64-bit multipliers an berepresented by OBDDs ontaining only 256 nodes. Sine the aim is to use



OBDDs for realisti appliations one is interested in small onstrutions or abetter lower bound. Introduing a new tehnique based on universal hashingWoelfel [35℄ has improved the lower bound onsiderably to 2⌊n/2⌋/61−4. Thisresult implies that any OBDD for 64-bit multipliation needs more than 70million nodes and the veri�ation of 128-bit multipliers is infeasible beausemore than 3 · 1017 OBDD-nodes are neessary.The main proof idea in Bryant's and Woelfel's lower bound proofs is toshow that for every variable order π there exists an integer c ∈ {1, . . . , 2n −
1} suh that the π-OBDD size of MULc

n−1,n is exponential. Bryant hashosen c in suh a way that only two input bits of c are set to 1. Therefore,the produt of x and y an be seen as the sum of two integers obtainedby shifting x in an appropriate way. More preisely, if y is replaed bythe binary representation of c and c = 2i + 2i+d then c · x = x · 2i + x ·
2i+d. Woelfel has enlarged the possible hoies for the integer c. As a resulthe has been able to prove that for every variable order π there exists aninteger c suh that MULc

n−1,n has a large number of subfuntions obtainedby replaements of the �rst n/2 x-variables in π by onstants. SummarizingBryant's and Woelfel's lower bound proofs rely only on the existene of aonstant fator c for eah variable order π for whih MULc
n−1,n leads to alarge π-OBDD representation. If one would like to improve the lower boundthere are two possibilities. The �rst one is to onsider multiple values for c,the seond one to improve the lower bound for the π-OBDD size of MULc

n−1,nfor an suitably hosen onstant c. Woelfel has shown that the latter approahannot yield signi�ant better lower bounds beause the variable order π =
(x0, x1, . . . , xn−1) leads to OBDDs of size at most 3 · 2n/2 for eah integer c.By ombining this result with the observation that the k most signi�antbits of one input vetor are not important any more if the k least signi�antbits of the other input vetor are known, Woelfel has obtained the �rst non-trivial upper bound of (7/3) · 2(4/3)n on the size of OBDDs for MULn−1,nwith respet to the variable order π = (y0, . . . , yn−1, x0, . . . , xn−1). Amanoand Maruoka [3℄ have improved this upper bound to 2.8 · 2(6/5)n for so-alledquasi-redued or omplete OBDDs, i.e., OBDDs where on eah path from thesoure to the sinks all variables have to be tested, and the pairwise asendingvariable order π = (x0, y0, . . . , xn−1, yn−1). (It is not di�ult to see that thesize of a quasi-redued OBDD an be at most n + 1 times larger than thesize of a redued OBDD for a given funtion f with respet to the samevariable order.) Despite the onsiderable amount of researh dealing withthe omplexity of the middle bit of multipliation, the gap between lower andupper bounds on its OBDD size is still large. Furthermore, even Woelfel'simproved lower bound does not really justify why OBDDs for multipliers ofinput length n = 64 annot be onstruted nowadays using urrent standard



PC hardware. Sauerho� [26℄ has shown that the upper bound of Amanoand Maruoka [3℄ is in fat asymptotially optimal for the order hosen bythem whih is believed to be one of the best ones. For n = 64 his bound islarger than 1.62 · 1021. This surely explains why an OBDD with respet tothis variable order annot be generated. Nevertheless, there is the possibilitythat there are onsiderably better variable orders.3.2 On the size of more general BDD models for themiddle bit of integer multipliationIn learning theory and geneti programming OBDDs are used to represent ap-proximations of Boolean funtions. Gronemeier [20℄ has shown that for everyvariable order π the approximation of some output bits of integer multipli-ation with respet to the uniform distribution and onstant error requires
π-OBDDs of exponential size. Nevertheless, approximating the middle bit ofinteger multipliation with polynomially small error is easy even for read-onebranhing programs [27℄.Although there has been onsiderable progress in the development of lowerbound proofs by the investigation of weakly restrited BDD models, the lowerbound methods often only work for a quite limited lass of funtions. Besidesthe interest in �nding lower bounds as large as possible or proving superpoly-nomial lower bounds for more and more general BDD models, it is importantto apply the existing methods to (pratially) important funtions. Lowerbound proofs for suh funtions may help to develop new or re�ned prooftehniques, or an lead to new insights into the properties of the onsid-ered funtions. This is the motivation for the further investigation of theomplexity of integer multipliation for more general BDD models.Methods from ommuniation omplexity have been used to prove largelower bounds in several binary deision diagram models. Bryant [12℄ has usedthe fooling set method to obtain lower bounds on the ommuniation om-plexity of the middle bit of multipliation whih implies an exponential lowerbound of size 2n/8 for OBDDs representing MULn−1,n. Inorporating Ram-sey theoreti arguments of Alon and Maass [2℄ and using the rank method ofommuniation omplexity Gergov [19℄ has extended Bryant's lower boundto arbitrary nondeterministi linear-length oblivious BPs. His lower boundis still non-polynomial for length o(n log n/ log log n). Sine Woelfel's largerlower bound on the OBDD size of MULn−1,n has not been proved using strongfooling sets his result annot generalized in the same way as Bryant's to non-deterministi linear-length oblivious branhing programs. In [1℄ Gergov'sredution has been applied to dedue that also randomized OBDDs require



exponential size and it has been shown that in ontrast the graph of integermultipliation MUL-Graphn has randomized OBDDs of polynomial size. Forthe later result the fat has been used that it is easy to verify with smallerror probability whether the produt of two integers equals some given out-put applying arithmeti modulo a random hosen prime. For non-obliviousmodels Ponzio [25℄ has presented the �rst (weakly) exponential lower bound.He has shown that the omplexity of the middle bit of integer multipliationis 2Ω(n1/2) for read-one branhing programs. In [6℄ the �rst exponential lowerbound on the size of a nondeterministi non-oblivious read-one branhingprogram model, namely for nondeterministi tree-driven BP1s, has been pre-sented. An extension of the proof shows that all subfuntions of MULn−1,nobtained by the replaement of up to (n/ log n)1/2−ǫ variables, ǫ > 0 any on-stant, have exponential size for nondeterministi OBDDs. Sine the resultalso holds for the parity-aeptane mode, where the funtion value equals1 for an input i� the number of its aepting paths is odd, this has beenthe �rst non-trivial lower bound for an important funtion on non-obliviousrestrited BP1s with an unlimited number of parity nodes.The fat that integer multipliation de�nes a universal hash lass[14, 15, 36℄, alled multipliative hash lass, has also been used by Bolligand Woelfel [9℄ to improve the exponential lower bound on the size of BP1sup to 2⌊
n−9

4
⌋ whih is even larger than Bryant's lower bound on the OBDDsize. Moreover, the analysis seems to be muh easier than the ountingtehnique used by Ponzio. At the beginning one reason for the di�ulties inproving exponential lower bounds on the size of binary deision diagrammod-els representing MULn−1,n ould have been arisen from the fat that integermultipliation an express many di�erent shifting and adding ombinationssuh that the e�et of partial assignments and therefore the subfuntionsare not easy to analyze. Using methods whih rely on universal hashing ithas been shown that even if almost a quarter of the variables of eah fatorhas been replaed by onstants, eah result of the produt bits between thepositions n − 1 and (3/4)n (the results for MULn−1,n to MUL(3/4)n,n) is stillpossible. Using an algebrai approah in [8℄ a lower bound of 2⌊(n−46)/12⌋ ·n−1for a restrited nondeterministi BP1 model with parity aeptane mode,alled parity graph-driven BP1s, has been shown. This result has been mo-tivated by the fat that until now no superpolynomial lower bound on thesize of unrestrited nondeterministi BP1s with parity aeptane mode foran expliitly de�ned Boolean funtion has been known. Sine exponentiallower bounds on the size of unrestrited nondeterministi read-one branh-ing programs whih represent MULn−1,n had been unknown, one step towardsproving suh bounds was to investigate BP models �inbetween� deterministi



and nondeterministi BP1s and a model where some but not all variablesmay be tested multiple times [10, 37℄. Finally, Sauerho� and Woelfel [27℄have ahieved a major breakthrough presenting exponential lower bounds onthe size of nondeterministi and randomized BPks for MULn−1,n.Wegener and Woelfel [34℄ have onsidered unrestrited branhing pro-grams and Boolean formulas over the basis B2 of all binary operations. Sinemore than 40 years the best lower bounds for expliitly de�ned funtions arefor general branhing programs of order n2/ log2 n and for Boolean formulas oforder n2/ log n. These results have been proved with Nehiporuk's tehnique[24℄. It is well known that this method annot yield better lower bounds.In [34℄ the following results have been presented. Any branhing programfor MULn−1,n has at least Ω(n3/2/ log n) nodes and any Boolean formula forMULn−1,n has size at least Ω(n3/2). Furthermore, it has been proved that us-ing Nehiporuk's tehnique it is impossible to prove better lower bounds than
Ω(n5/3/ log n) and Ω(n5/3) for the branhing program and Boolean formulasize of MULn−1,n. These are non-trivial limits of Nehiporuk's tehnique.Until now it is still an open question whether the lower bound method hasbeen applied in the best possible way in [34℄.
4 The most signi�ant bit of integer multipli-ationAlthough many exponential lower bounds on the OBDD size of Boolean fun-tions are known and the lower bound methods are simple, it is often a moredi�ult task to prove large lower bounds for some prede�ned and interest-ing funtions. The most signi�ant bit of integer multipliation is a goodexample. Despite the well-known lower bounds on the OBDD size of theso-alled middle bit of multipliation ([12℄, [35℄), only reently it has beenshown that the OBDD omplexity of the most signi�ant bit is also expo-nential [5℄ answering an open question posed by Wegener [32℄. Here, we startour investigation by an improved lower bound on the size of π-OBDDs forMUL2n−1,n, where π is a �xed variable order. Using ommuniation om-plexity the proof is very simple and elementary. Afterwards we present thebest general lower bound on the OBDD size for MUL2n−1,n known so far andonlude our onsiderations by the best known upper bound.



4.1 Lower bounds on the OBDD size of the most signif-iant bit of integer multipliationIn this setion we start our investigation of lower bounds on the size ofOBDDs for MUL2n−1,n by presenting a lower bound for some �xed variableorder. Afterwards we present a general lower bound whih is muh smallerbut also exponential. The ideas of the general lower bound have been pre-sented in [4℄.Using tehniques from analytial number theory Sawitzki [29℄ has pre-sented a lower bound of 2n/6 on the size of π-OBDDs representing themost signi�ant bit of integer multipliation for the variable order π wherethe variables are tested aording to inreasing signi�ane, i.e., π =
(x0, y0, x1, y1, . . . , xn−1, yn−1). Here, we prove a larger lower bound in aneasier way and without analytial number theory.Theorem 4.1. Let π = (x0, y0, x1, y1, . . . , xn−1, yn−1). The π-OBDD size forthe representation of MUL2n−1,n is Ω(2n/4).Proof. We start with the following two useful observations. For a number
2n−1 + ℓ2n/2 the orresponding smallest number suh that the produt of thetwo numbers is at least 22n−1 is 2n− ℓ2n/2+1 +4ℓ2−

⌊
4ℓ3

2n/2−1+ℓ

⌋. Furthermore,
2n/2 > 4ℓ2 −

⌊
4ℓ3

2n/2−1 + ℓ

⌋

> 4(ℓ − 1)2for 0 < ℓ ≤ 2n/4−1. Using these two fats it is not di�ult to onstrut astrong fooling set of size 2n/4−1:Let XU := {xn−1, xn−2, . . . , xn/2}, YU := {yn−1, yn−2, . . . , yn/2}, XL :=
{xn/2−1, xn/2−2, . . . , x0}, and YL := {yn/2−1, yn/2−2, . . . , y0}. We de�ne ZA :=
XU ∪ YU and ZB := XL ∪ YL. The Set S ontains all pairs (a, b) for ℓ ∈
{1, 2, . . . , 2n/4−1} with the following properties:1. a is an assignment that onsists of a partial assignment ax to the vari-ables in XU and a partial assignment ay to the YU -variables where

‖ax‖ = 2n−1 + ℓ2n/2 and ‖ay‖ = 2n − ℓ2n/2+1 and2. b is an assignment that onsists of a partial assignment bx to the vari-ables in XL and a partial assignment by to the YL-variables where
‖bx‖ = 0 and ‖by‖ = 4ℓ2 −

⌊
4ℓ3

2n/2−1+ℓ

⌋.For all pairs in S the funtion value of MUL2n−1,n is 1. Let (a1, b1) and
(a2, b2) be two di�erent pairs in S. If the value of the partial assignment of



the XU -variables aording to a1 is 2n−1 + ℓ12
n/2 and the value of the partialassignment of the XU -variables aording to a2 is 2n−1+ℓ22

n/2, where w.l.o.g.
ℓ1 < ℓ2, the funtion value of MUL2n−1,n(a2, b1) is 0. Therefore, S is a foolingset of size 2n/4−1.Beause of the symmetri de�nition of strong fooling sets we also obtaina lower bound of 2n/4−1 on the size of π′-OBDDs for the most signi�ant bit,where π′ = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0).Now, we prove the general lower bound.Theorem 4.2. The OBDD size for the representation of MUL2n−1,n is
Ω(2n/60).Proof. We start with a (simpli�ed) presentation of the main proof ideas fora lower bound of Ω(2n/96) and present afterwards the idea how to improvethis lower bound up to Ω(2n/60).Our aim is to show for an arbitrary variable order π that a π-OBDDfor MUL2n−1,n ontains a π-OBDD for the Boolean funtion fn′ de�ned inSetion 2.3:

fn′(a, b, c) = (EQn′(a, c) ∧GTn′(a, b)) ∨GTn′(a, c),where for eah position i the variables ai and bi are suitably separated in πand n′ = Θ(n). Therefore, the size of the π-OBDD for MUL2n−1,n has to belarge. The vetor a is a subvetor of one of the inputs x and y for MUL2n−1,n,the vetors b and c of the other input.We use the idea of the following redution from multipliation to squaringpresented by Wegener [33℄, where squaring omputes the square of an m-bitinput. For two m-bit numbers u and w the number ℓ := u · 22(m+1) + w isde�ned. Then
ℓ2 = u2 · 24(m+1) + uw22(m+1)+1 + w2.Sine w2 and uw are numbers of length 2m, the binary representation of theprodut uw an be found in the binary representation of ℓ2. (Figure 1 showsthe bit omposition of the number ℓ2.)A key observation is the following one. The number ⌊

4ℓ3

2n/2−1+ℓ

⌋ is smallerthan ℓ if ℓ ≤ 2n/4−3/2. As a onsequene if bℓ is the binary representationof ℓ, bℓ2 is the binary representation of ℓ2, L the length of bℓ, and if thereexists j, where j ≥ L − 2, and [bℓ2 ]j = 1, there is no di�erene in the upperhalf of the binary representations of the numbers 4ℓ2 and 4ℓ2 −
⌊

4ℓ3

2n/2−1+ℓ

⌋.



ℓ20000
w2u2

2m − 1 04m + 2

u · w

4m + 46m + 3 2m + 3

Figure 1: The bit omposition of the number ℓ2More preisely, if b′ is the binary representation of 4ℓ2 and b′′ is the binaryrepresentation of 4ℓ2 −
⌊

4ℓ3

2n/2−1+ℓ

⌋, then [b′]2L+1
j+1 = [b′′]2L+1

j+1 .Next, we investigate requirements that have to be ful�lled for inputs xand y, where MUL2n−1,n(x, y) = 1. If x represents a number 2n−1 + ℓ2n/2,
1 ≤ ℓ ≤ 2n/4−3/2, the upper half of y has to represent a number of at least
2n/2 − 2ℓ, i.e., [y]n−1

n/2 ≥ 2n/2 − 2ℓ. If the upper half of y represents a numbergreater than 2n/2 − 2ℓ, the funtion value MUL2n−1,n(x, y) is 1. Let j be theminimum integer in the set {i | n/2 ≤ i < (3/4)n − 3/2 and xi = 1}. If
[y]n−1

j+2 > [x]n−2
j+1 , the funtion value MUL2n−1,n is 0. If [y]n−1

j+2 < [x]n−2
j+1 , thefuntion value MUL2n−1,n is 1. If yj+1 = 1, [y]n−1

j+2 = [x]n−2
j+1 , and [y]jn/2 = 0,

[y]
n/2−1
0 has to represent a number of at least 4ℓ2 −

⌊
4ℓ3

2n/2−1+ℓ

⌋.In order to use Wegener's observation on squaring mentioned above weonly onsider integers ℓ where ℓ = u22(m+1) + w, u, w < 2m and m = n/12 −
5/6. (Later on we show that m an be enlarged whih leads to a larger lowerbound.) For this reason we replae the variables xn/2+m, . . . , xn/2+2m+1 by 0.(See Figure 2 for the omposition of the number x.) Afterwards we replaesome of the x-variables and the orresponding y-variables by onstants, where
yi+1 is the orresponding y-variable to xi, suh that a ertain part of uw isequal to a ertain part of 2d · w for d suitably hosen. Furthermore, wehoose w in suh a way that the assignments to the variables at position
3m + 5, . . . , 6m + 5 are the same in the binary representations of 4ℓ2 and
4ℓ2 −

⌊
4ℓ3

2n/2−1+ℓ

⌋. Moreover, for di�erent integers ℓ1 and ℓ2 (whih meansdi�erent assignments to the w-variables) the assignments to the variables atposition 3m+5, . . . , (7/2)m+4 in the binary representations of 4ℓ2
1 and 4ℓ2

2 aredi�erent. (Figure 3 illustrates some of the replaements of the y-variables.)Now we make our proof idea more preise. We rename [x]
n/2+(n/12)−11/6
n/2by [w]m−1

0 and [x]
n/2+n/4−3/2
n/2+n/6+1/3 by [u]m−1

0 . If ℓ = u · 22(m+1) + w the produt
u ·w an be found at position 2m+5, . . . , 4m+4 in the binary representation



x

00 0 0 0. . . . . .

u w

. . . 0
ℓ

3
4n − 3

2
n
2 − 1n − 11 0

Figure 2: The omposition of the input x1 . . . 1 . . .00 1 1
w′

yu2 . . .

6m + 5 02m + 1
4m + 5 3m + 4

7
2m + 4

Figure 3: The e�et of the replaements of some of the y-variables, where
u = [u]m−1

0 (w′ has to be at least (2d · w)
(3/2)m−1
m )of 4ℓ2. The ruial step is to hoose an appropriate subset of the inputvariables in order to show that there exists a large strong fooling set. Let

S := {wm/2, . . . , wm−1, y3m+5, . . . , y(7/2)m+4} and T be the set of the �rst
|T | variables aording to π, where there are m/2 variables from S, and
B be the set of the remaining variables. Let WS,T be the w-variables in
S ∩ T , WS,B the w-variables in S ∩ B. Similar the sets YS,T and YS,B arede�ned. Using simple ounting arguments we an prove that there exists adistane parameter d suh that there are at least m/8 pairs (wi, y2m+5+i+d) in
WS,T ×YS,B ∪WS,B ×YS,T (for a similar proof see, e.g., [12℄). Let I be the setof indies, where wi belongs to suh a pair. We replae the u-variables suhthat [u]m−1

0 = 2d and the variables y4m+6, . . . , y6m+5 suh that [y]6m+5
4m+6 = 22d.The variables xn/2+i, i ∈ I, are alled free x-variables, the variables

yn/2+i+1 and y2m+5+i+d, i ∈ I, free y-variables. The free x-variables willplay the role of the a-variables, the free variables yn/2+i+1, i ∈ I, the roleof the c-, and the remaining free y-variables the role of the b-variables inthe redution from the funtion fn′ mentioned above to MUL2n−1,n. Nowwe present the redution. (Figure 4 shows some of the replaements to theinputs x and y of MUL2n−1,n.)- The variables yn−1 and xn−1 are set to 1,- xn/2+m−d−1 (whih orresponds to wm−d−1) and yn/2+m−d are set to 1,



- xn/2+2m+d (whih orresponds to ud) is set to 1, the orrespond-ing variable yn/2+2(m+1)+d+1 is set to 0, y4m+6+2d to 1, the vari-ables y(7/2)m+5, . . . , y4m+5+2d and y4m+7+2d, . . . , y6m+5 to 0 (as a result
[y]6m+5

4m+6 = 22d).- The variables yn/2, . . . , yn/2+m−d−1 are set to 0.- Besides the free x-variables the remaining x-variables are replaed by0.- Besides the free y-variables the remaining y-variables are replaed by1.What is the e�et of the replaements?- The inputs x and y represent numbers that are at least 2n−1, sineotherwise the funtion value MUL2n−1,n(x, y) is 0.- Sine wm−d−1 = 1 and [u]m−1
0 = 2d, 4ℓ2 and 4ℓ2 −

⌊
4ℓ3

2n/2−1+ℓ

⌋, where
ℓ = u · 22(m+1) + w, do not di�er in one of the bits at position 3m +
5, . . . , 6m + 5 of their binary representations.- Sine xn/2+m−d−1 = 1 and yn/2+m−d = 1, xn/2 = . . . = xn/2+m−d−2 = 0and yn/2 = . . . = yn/2+m−d−1 = 0, [x]n−2

n/2+m = [y]n−1
n/2+m+1, [x]

n/2+m−1
n/2+m−d hasto be at least [y]

n/2+m
n/2+m−d+1 for inputs x and y, where MUL2n−1,n(x, y) =

1. If [x]
n/2+m−1
n/2+m−d > [y]

n/2+m
n/2+m−d+1, MUL2n−1,n(x, y) = 1.- Sine [y]6m+5

4m+6 = 22d = u2 and beause of the other replaements,
[y]4m+4

3m+5 has to be at least (u · w) div 2m for inputs x and y, whereMUL2n−1,n(x, y) = 1, if [y]n−1
n/2 = 2n/2 − 2ℓ and [x]n−1

n/2 = 2n/2−1 + ℓ.Therefore, the orretness of our redution follows from our onsiderationsabove. Considering the fat that m = n/12− 5/6, we get the result that theOBDD omplexity of MUL2n−1,n is at least Ω(2n/96).Finally, we present the idea how to improve the lower bound on the OBDDomplexity of MUL2n−1,n up to Ω(2n/60). Up to now we have onsiderednumbers ℓ, where ℓ = u · 22(m+1) + w and u, w < 2m with m = (n/12) − 5/6.Using the fat that in our lower bound proof only the upper half of thebits in the binary representation of uw is important, uw div 2(3/2)m = 0,
u2 div 2(7/4)m = 0, and u2 mod 2m/4 = 0, we an hoose ℓ = u · 2m + w,
w < 2m and u < 2(7/8)m. As a result we an enlarge m up to (2/15)n.
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Figure 4: A (simpli�ed) presentation of replaements to some of the x- and
y-variables. The shaded areas ontain the free variables (and possibly othervariables)4.2 Upper bounds on the OBDD size of the most sig-ni�ant bit of integer multipliationIn this setion we prove an upper bound on the size of OBDDs aordingto an arbitrary variable order representing the most signi�ant bit of inte-ger multipliation. Afterwards we present the best known upper bound onthe size of OBDDs representing MUL2n−1,n aording to the variable order
π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0). The results of this setion have beenpresented in [7℄.We start our proof of the general upper bound with the investigationof a funtion f that is losely related to the most signi�ant bit of integermultipliation. Let n ∈ N be arbitrary but �xed in the rest of the setion.Lemma 4.3. Let f : R

+ → R
+ be de�ned as f(x) := 22n−1

x
. For arbitrary

∆x, ∆y > 0 there exists exatly one value x ∈ R
+ with f(x)−f(x+∆x) = ∆y.In other words eah distane pair (∆x, ∆y) de�nes uniquely two elementsin the de�nition set.Next, we onsider some modi�ations of the funtion f .De�nition 4.4. For c, d ∈ R and n ∈ N we de�ne the funtion fc,d : R → Rin the following way.

fc,d(x) :=
22n−1

c + x
− d.The funtion fc,d ontains the tuple (x, y) i� fc,d(x) = y.Our proof idea of the upper bound on the size of OBDDs representingMUL2n−1,n is to use the funtions fc,d in order to analyze the number of



(1)

(1)

(2)

(2)

fc′,d

fc,d

fc′,d′

(x0, y0)

Figure 5: Rotation of the graph of the funtion fc,ddi�erent subfuntions of MUL2n−1,n obtained by replaements of some x-and y-variables by onstants. For this reason we have to relate the funtions
fc,d to subfuntions of MUL2n−1,n.De�nition 4.5. For a given funtion fc,d and two arbitrary �nite sets A, B ⊆

N and A, B 6= ∅ the orresponding step funtion fA,B
c,d : A → B is de�ned as

fA,B
c,d (x) := min{y ∈ B|y ≥ fc,d(x)}.MUL2n−1,n an be uniquely desribed by fA,B

0,0 , where A, B = {0, . . . , 2n−
1}. Obviously there an be several funtions fc,d that lead to the same stepfuntion. It is easy to see that eah funtion fc,d an be haraterized by twotuples (x1, y1) and (x2, y2), where fc,d(xi) = yi and xi, yi ∈ R for i ∈ {1, 2}.Unfortunately, the length of the numbers ould be large. In order to �nd asmall representation for fc,d we modify fc,d without hanging essentially theorresponding step funtion.We start to analyze the e�et of moderate modi�ations of the parameters
c and d.



Lemma 4.6. Let c, d ∈ R
+ and A, B be two arbitrary �nite, nonempty sub-sets of N. Let yx be the largest element in B that is smaller than fc,d(x)and ǫx := f−1

c,d (yx) − x, if yx is de�ned, otherwise ǫx := ∞. We de�ne
ǫmin := min{ǫx|x ∈ A}. Then fA,B

c,d = fA,B
c+ǫmin/2,d.Lemma 4.7. Let c, d ∈ R

+ and A, B be two arbitrary �nite, nonempty sub-sets of N. For x ∈ A let ǫx := fA,B
c,d (x) − fc,d(x) if fA,B

c,d (x) is de�ned and ∞otherwise. We de�ne ǫmin := min{ǫx|x ∈ A}. Then fA,B
c,d−ǫmin

= fA,B
c,d .Lemma 4.7 tells us that it is allowed to move the graph of the funtion

fc,d upwards, right until it hits its orresponding step funtion for the �rsttime, without hanging the step funtion.Lemma 4.8. Let c, d ∈ R
+ and A, B be two arbitrary �nite, nonemptysubsets of N, suh that there exists at least one element x0 ∈ A where

fc,d(x0) = fA,B
c,d (x0), and there are at least two elements x1, x2 ∈ A where

min{y|y ∈ B} < fc,d(xi) ≤ max{y|y ∈ B}, i ∈ {1, 2}. We de�ne the follow-ing rotation operation for fc,d with respet to (x0, y0): derease c ontinuouslyto c′ and adjust d to d′ at the same time suh that fc,d(x0) = fc′,d′(x0) is al-ways ful�lled until there exists another element x′ ∈ A with fc′,d′(x
′) ∈ B.1. The rotation operation is �nite.2. The funtion fA,B

c,d an be reonstruted from fc′,d′ in the following way:
fA,B

c,d (x) =

{

min{y ∈ B|y ≥ fc′,d′(x)}, if x ≤ x0,

min{y ∈ B|y > fc′,d′(x)}, if x > x0.If we replae (c, d) to (c′, d′), the urve of the funtion fc,d seems visuallyto rotate to the graph of the funtion fc′,d′ , beause point (x0, y0) stays onthe graph, whereas all points left of x0 are shifted upwards and the otherones downwards. Nevertheless, the graph's shape does not hange sine therotation an be deomposed to a vertial and a horizontal movement (seeFigure 5). Therefore, it is still possible to use Lemma 4.3 for the identi�ationof fc′,d′ .Now we are able to prove our general upper bound on the π-OBDD sizefor MUL2n−1,n.Theorem 4.9. Let π be an arbitrary variable order. The π-OBDD size forthe representation of MUL2n−1,n is O(2(4/3)n).



2n − 1

2n − 1

‖a‖

‖b‖

2n−1 + 1

2n−1 + 1Figure 6: Signi�ant points for the evaluation of MUL2n−1,nProof. Our aim is to prove an upper bound of 22(n−i)+2(n−j)+2 on the numberof subfuntions of MUL2n−1,n obtained by replaements of i x- and j y-variables by onstants.We assume in the following that i 6= 0 and j 6= 0, sine otherwise weare done. If i = n an upper bound of 2n−j is easy to prove and we aredone, similarly an upper bound of 2n−i an be shown for j = n. Therefore,we also assume in the following that i 6= n and j 6= n. Let XS be theset of i arbitrary x-variables and YS be the set of j arbitrary y-variables,
XT := {x0, . . . xn−1}\XS, and YT := {y0, . . . , yn−1}\YS.MUL2n−1,n answers the question, whether for a given assignment (a, b) ofthe variables, the produt ‖a‖ · ‖b‖ is at least 22n−1. Therefore, the funtionMUL2n−1,n an be desribed by speifying for every possible assignment aof the x-variables, the assignment b of the y-variables with ‖b‖ =

⌈
22n−1

‖a‖

⌉.Figure 6 shows MUL2n−1,n, where for a value ‖a‖ the smallest orrespondingvalue ‖b‖ that ful�lls MUL2n−1,n is dotted. Suh pairs of assignments arealled signi�ant points. (For sake of simpliity the possible values are atleast 2n−1 beause for smaller numbers the produt annot be at least 22n−1.)Let c := ‖aXS
‖ and d := ‖bYS

‖. We de�ne AT as the set of possible
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Figure 7: Two di�erent step funtionsvalues ‖aXT
‖ that an be expressed by the variables from XT . Let BT bede�ned in the same way. AT and BT are independent of the hoie of c and

d, i.e., a grid an be de�ned for the ‖aXT
‖- and ‖bXT

‖-values, whih hasthe same appearane for all possible assignments c and d. A subfuntionof MUL2n−1,n obtained by replaing the variables in XS to aS and YS to bSan be desribed by the pairs of AT - and BT -values (‖aXT
‖ , ‖bYT

‖), so that
‖bYT

‖ is the minimal value that ful�lls ‖bYT
‖ ≥ 22n−1

c+‖aXT ‖
− d. Therefore, thesubfuntion of MUL2n−1,n an be haraterized by the step funtion fAT ,BT

c,d(see De�nition 4.5) for the underlying funtion fc,d.Figure 7 shows an example for two di�erent step funtions that resultfrom two di�erent assignments to the variables in XS ∪ YS.Sine the subfuntions obtained by replaing the variables in XS and YSby onstants an uniquely be desribed by their step funtions, our aim isto prove the existene of a small representation suh that the orrespondingstep funtion and therefore the orresponding subfuntion of MUL2n−1,n anbe reonstruted later on. As eah representation impliates at most one



possible step funtion, the number of di�erent representations is an upperbound on the number of di�erent subfuntions.The idea is to transform the funtion fc,d in a moderate way into a fun-tion fc′,d′ , suh that fc′,d′ ontains at least two points from AT ×BT and thestep funtion fAT ,BT

c,d an easily be obtained from fc′,d′. In the following weassume that for at least two AT -values, the funtion value fc,d is greater than
0 and smaller or equal to the greatest value in BT . The other ases will beonsidered later on. If c equals 0, we have to make some extra onsiderations.Sine the funtion fc,d is not de�ned for the value ‖aXT

‖ = 0, we use Lemma4.6 to move the graph a tiny distane to the left. As a result we obtain thefuntion fc′,d and fAT ,BT

c′,d = fAT ,BT

c,d .Aording to Lemma 4.7 the graph is moved upwards by dereasing theparameter d, right until the graph uts the graph of its step funtion. Let fc′,d′be the resulting funtion and fAT ,BT

c′,d′ its step funtion. Obviously fAT ,BT

c′,d′ =

fAT ,BT

c′,d . We now have at least one element p1 ∈ AT , so that fc′,d′(p1) =

fAT ,BT

c′,d′ (p1) = q1.If fc′,d′ ontains another point (p2, q2) ∈ AT × BT , we an be sure that
q2 is not equal to q1 beause the funtion is stritly monotoni. In this asewe stop the transformation and enode the step funtion fA,B

c′,d′ by the triple
((p1, q1), (p2, q2), 1) where the last bit indiates that we stopped at this point.Otherwise we modify the funtion fc′,d′ again to hit a seond point of
AT × BT . Using Lemma 4.8 the graph is rotated lokwise by dereasing c′and adjusting d′, so that the point (p1, q1) stays on the graph. We get a newfuntion fc′′,d′′ and another point (p2, q2) ∈ AT × BT with fc′′,d′′(p2) = q2.Now we have ahieved that the funtion fc′′,d′′ ontains two tuples (p1, q1)and (p2, q2) that an be addressed by the variables in XT ∪YT . The distanebetween these points is independent of the assignment to the variables in
XS ∪ YS. In order to apply Lemma 4.3 we have to be sure, that (p1, q1) and
(p2, q2) an be used to identify a shifted utting of the initial graph 22n−1

x
,i.e., 22n−1

x
→ 22n−1

c′′+x
− d′′, with positive numbers in the denominator. Themodi�ation of d is not ritial, beause it does not have any in�uene onthe denominator. For the values c we assure at the beginning that c is greaterthat 0 (either beause c = ‖aXS

‖ is greater than 0 or by using ǫmin/2). Justthe rotation operation dereases c. But as we ontinuously hek, whetherthe value of fc′′,d′′ hits a point in AT ×BT , it is impossible that the funtion'spole will be translated aross any point of the grid. Therefore, Lemma 4.3an be used to identify the underlying funtion fc′′,d′′ with (p1, q1) and (p2, q2).Our last step is now the reonstrution of the original step funtion
fAT ,BT

c,d . If we have just moved the graph upwards without rotating it, thenfor every x ∈ AT the orresponding value of the step funtion fAt,BT

c,d is the
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(p2, q2)

(p1, q1)

Figure 8: Reonstrution of the step funtionsmallest value of BT that is at least fc′,d′(x). In the other ase we an usethe seond statement of Lemma 4.8 to reonstrut the original step funtion.Figure 8 illustrates the reonstrution of the step funtion fAT ,BT

c,d .As we have seen a triple that onsists of two points and an additionalbit an enode any possible step funtion that itself represents a subfuntionof MUL2n−1,n obtained by replaing i x- and j y-variables by onstants. Asthis subfuntion an by uniquely reonstruted by this representative, thereannot be two di�erent subfuntions with the same representation. Themaximal number of these representation is
2n−i · 2n−j
︸ ︷︷ ︸

(p1,q1)

· 2n−i · 2n−j
︸ ︷︷ ︸

(p2,q2)

· 2
︸︷︷︸bit z

= 22(n−i)+2(n−j)+1.Up to now we have assumed that for at least two AT -values the funtion
fc,d is greater than 0 and smaller or equal to the greatest value in BT . A sub-funtion that is not of this type an be haraterized by only one point (p, q)of the step funtion fAT ,BT

c,d . Summarizing there are less than 22(n−i)+2(n−j)+2di�erent subfuntions.



Obviously there are at most 2i+j di�erent subfuntions obtained by thereplaement of i + j variables by onstants. Using the minimum of the twoupper bounds for eah layer we obtain the result that the π-OBDD size forMUL2n−1,n is O(2(4/3)n) for any variable order π.Combining Theorem 4.9 with an upper bound of 2i+6 on the number ofsubfuntions obtained by the replaement of the variables xn−1, . . . , xn−i and
yn−1, . . . , yn−i by onstants presented in [3℄, we get the following result.Corollary 4.10. Let π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0). The π-OBDDsize for the representation of MUL2n−1,n is O(2(4/5)n).4.3 More general models and the most signi�ant bit ofinteger multipliationSimilar to the results presented in [19℄ for the middle bit of integer multi-pliation the lower bound on the OBDD size of the most signi�ant bit anbe extended to arbitrary oblivious binary deision diagrams of linear length.The omplexity of MUL2n−1,n for more general non-oblivious models thanOBDDs is open.Intuitively the most signi�ant bit of integer multipliation seems to bemuh easier than the middle bit. Using the same proof method as desribedby Wegener and Woelfel [34℄ it an be shown that it is impossible to provea better lower bound than Ω(n3/2/ log n) and Ω(n3/2) for the branhing pro-gram and Boolean formula size of the most signi�ant bit using Nehiporuk'stehnique. Until now non-trivial lower bounds for the branhing program andBoolean formula size are unknown.5 A omparison between the middle and themost signi�ant bit of integer multipliationIn this setion we �nish our onsiderations with a brief omparison betweenthe funtions MULn−1,n and MUL2n−1,n. For the most signi�ant bit re-plaing a onstant number of variables by onstants may lead to a onstantsubfuntion but for the middle bit we an replae almost an arbitrary quar-ter of the variables for eah fator by onstants without obtaining a on-stant subfuntion. The best known variable order for the most signi�antbit is π = (xn−1, yn−1, xn−2, . . . , x0, y0) and the π-OBDD size of MUL2n−1,nis O(2(4/5)n). For the middle bit of integer multipliation the best knownvariable order is π′ = (x0, y0, x1, . . . , xn−1, yn−1) and the π′-OBDD size of



MULn−1,n is Θ(2(6/5)n). For eah variable order there exists an assignment
c to the variables of one fator suh that the orresponding OBDD size ofMULc

n−1,n is Ω(2n/2). In ontrast it is not di�ult to prove that for eahvariable order the orresponding OBDD size of MULc
2n−1,n is O(n2) for eahassignment c. For the middle bit also large lower bounds for more generalBDD models are known whereas exponential lower bounds for non-obliviousmodels are unknown for the most signi�ant bit.ConlusionWe have already learned in primary shool how to multiply integers, nev-ertheless, the omplexity of integer multipliation is a fasinating subjet.Here, we have tried to deepen the knowledge on the set of subfuntions ofthe most signi�ant bit of integer multipliation in order to obtain the bestlower and upper bounds on its OBDD size.AknowledgmentsI would like to thank Stefan Droste for proofreading a preliminary version ofthis survey.Referenes[1℄ F.M. Ablayev and M. Karpinski. A lower bound for integer multipli-ation on randomized ordered read-one branhing programs. Infor-mation and Computation 186(1), 78�89, 2003.[2℄ N. Alon and W. Maass (1988). Meanders and their appliations inlower bound arguments. Journal of Computer and System Sienes37, 118�129, 1988.[3℄ K. Amano and A. Maruoka. Better upper bounds on the QOBDD sizeof integer multipliation. Disrete Applied Mathematis 155, 1224�1232, 2007.[4℄ B. Bollig. Larger lower bounds on the OBDD omplexity of integermultipliation. In Pro. of LATA, LNCS 5457, 212�223, 2009.[5℄ B. Bollig. On the OBDD omplexity of the most signi�ant bit ofinteger multipliation. In Pro. of TAMC, LNCS 4978, 306-317, 2008.[6℄ B. Bollig. Restrited nondeterministi read-one branhing programsand an exponential lower bound for integer multipliation. RAIROTheoretial Informatis and Appliations 35, 149�162, 2001.
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