
Integer Multipli
ation and theComplexity of Binary De
isionDiagramsBeate Bollig∗Abstra
tInteger multipli
ation as one of the basi
 arithmeti
 fun
tions hasbeen in the fo
us of several 
omplexity theoreti
al investigations andordered binary de
ision diagrams (OBDDs) are one of the most 
om-mon dynami
 data stru
tures for Boolean fun
tions. The BDD 
om-plexity of two output bits of integer multipli
ation, the so-
alled middlebit and the most signi�
ant bit, has been investigated intensively. Inthis 
olumn we brie�y survey results on the 
omplexity of restri
tedbinary de
ision diagrams for integer multipli
ation and 
on
entrate ontwo re
ent results on the 
omplexity of OBDDs for the most signi�
antbit. Our aim is not to be 
omprehensive but to deepen the knowledgeon the stru
ture of integer multipli
ation.1 Introdu
tionInteger multipli
ation is 
ertainly one of the most important fun
tions in 
om-puter s
ien
e and a lot of e�ort has been spent in designing good algorithmsand small 
ir
uits and in determining its 
omplexity. For some 
omputationmodels integer multipli
ation is a quite simple fun
tion. It is 
ontained in
NC1 and even in TC0,3 (polynomial-size threshold 
ir
uits of depth 3) butneither in AC0 (polynomial-size {∨,∧,¬}-
ir
uits of unbounded fan-in and
onstant depth) nor in TC0,2 [21℄. For more than 35 years the algorithm ofS
hönhage-Strassen [30℄ has been the fastest method for integer multipli
a-tion running in time O(n logn log log n). Only re
ently, Fürer has presentedan algorithm running in time n log n · 2O(log∗ n), where the running time holdsfor multitape Turing ma
hines [16℄. An algorithm with the same runningtime based on modular arithmeti
 has been obtained by De, Kurur, Saha,
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and Sapthariski [13℄. Until now it is open whether integer multipli
ation ispossible in time O(n log n).De�nition 1.1. Let Bn,m denote the set of all Boolean fun
tions f :
{0, 1}n → {0, 1}m and Bn the spe
ial 
ase that m = 1. The Boolean fun
tionMULi,n ∈ B2n maps two n-bit integers x = xn−1 . . . x0 and y = yn−1 . . . y0 tothe ith bit of their produ
t, i.e., MULi,n(x, y) = zi, where x · y = z2n−1 . . . z0and x0, y0, z0 denote the least signi�
ant bits. For c ∈ {0, 1}n the Booleanfun
tion MULc

i,n ∈ Bn is de�ned by MULc
i,n(x) =MULi,n(x, c).The Boolean fun
tion MUL-Graphn ∈ B4n maps two n-bit integers x =

xn−1 . . . x0 and y = yn−1 . . . y0, and a 2n-bit integer z = z2n−1 . . . z0 to 1 i�the produ
t of x and y equals z.Besides Boolean 
ir
uits and formulas, 
ir
uits whose underlying graph isa tree after a suitable dupli
ation of the inputs, bran
hing programs (BPs)are one of the standard representations for Boolean fun
tions. (For a historyof results on bran
hing programs see, e.g., the monograph of Wegener [32℄).De�nition 1.2. A bran
hing program (BP) on the variable set Xn =
{x1, . . . , xn} is a dire
ted a
y
li
 graph with one sour
e and two sinks la-beled by the 
onstants 0 and 1. Ea
h non-sink node (or de
ision node) islabeled by a Boolean variable and has two outgoing edges, one labeled by 0and the other by 1. An input b ∈ {0, 1}n a
tivates all edges 
onsistent with b,i.e., the edges labeled by bi whi
h leave nodes labeled by xi. A 
omputationpath for an input b in a BP G is a path of edges a
tivated by the input bwhi
h leads from the sour
e to a sink. A 
omputation path for an input bwhi
h leads to the 1-sink is 
alled a

epting path for b. The BP G representsa fun
tion f ∈ Bn for whi
h f(b) = 1 i� there exists an a

epting path for theinput b. The size of a bran
hing program G is the number of its nodes. Thebran
hing program size of a Boolean fun
tion f is the size of the smallest BPrepresenting f . The length of a bran
hing program is the maximum lengthof a path.Not only in 
omplexity theory but also in appli
ations people have used(restri
ted) bran
hing programs, where they are most often 
alled binary de-
ision diagrams (BDDs). Representations of Boolean fun
tions that allowe�
ient algorithms for many operations, in parti
ular synthesis (
ombinetwo fun
tions by a binary operation) and equality test (do two representa-tions represent the same fun
tion?) are ne
essary. Bryant [11℄ introdu
edordered binary de
ision diagrams (OBDDs) whi
h have be
ome one of themost popular data stru
tures for Boolean fun
tions. Among the many areasof appli
ation are veri�
ation, model 
he
king, 
omputer-aided design, andsymboli
 graph algorithms.



Lower and upper bounds for integer multipli
ation are motivated by thegeneral interest in the 
omplexity of important arithmeti
 fun
tions. The
omplexity of two output bits of integer multipli
ation has been investigatedintensively in the last years. The �rst one is the middle bit of integer multipli-
ation, the bit with signi�
an
e 2n−1, whi
h is the hardest bit to 
ompute forspa
e bounded models of 
omputation in the sense that if it 
an be 
omputedwith size s(n), then any other bit 
an be 
omputed with size at most s(2n).More pre
isely, any bran
hing program for MUL2n−1,2n 
an be 
onverted intoa bran
hing program representing MULi,n, 0 ≤ i ≤ 2n− 1, by relabeling thenodes and by repla
ing some inputs with the 
onstant 0. As a 
onsequen
ethe �rst large lower bounds on the size of restri
ted bran
hing programs havebeen shown for MULn−1,n. The se
ond one is the bit z2n−1 whi
h is the mostimportant bit of integer multipli
ation in the following sense. Sin
e it has thehighest value, for the approximation of the value of the produ
t of two n-bitnumbers x and y it is the most interesting one. On the other hand for spa
ebounded models of 
omputation z2n−1 is easy to 
ompute in the sense that ifit 
annot be 
omputed with size s(n), then any other bit zi, 2n − 1 > i ≥ 0,
annot be 
omputed with size s(i/4).In the following we give some motivation for the investigation of theOBDD size of integer multipli
ation.The middle bit of integer multipli
ationA lot of e�ort has been spent in trying to verify multiplier 
ir
uits usingOBDDs. In 1998 an OBDD for the 16-bit multipli
ation 
ir
uit c6288, oneof the most important ISCAS (International Symposium on Cir
uits andSystems) ben
hmark 
ir
uits, has been 
onstru
ted [39℄. To the best of ourknowledge, until now it has been impossible to 
onstru
t OBDDs for inputlength n = 32 and even the representation of all output bits of 16-bit mul-tipli
ation by SBDDs, a more general OBDD model for the representationof multiple output Boolean fun
tions, is a 
hallenging task. Sin
e the size ofOBDDs and SBDDs 
an be quite sensitive to the 
hosen variable order, oneof the reasons might be that di�erent output bits of integer multipli
ationhave di�erent variable orders leading to reasonable size (for the de�nitionof OBDDs and variable orders see De�nition 2.2). Bryant [11℄ has alreadybounded the size of SBDDs for integer multipli
ation by proving that for ea
hvariable order there exists an output bit for whi
h the OBDD size is at least
2n/8. For many appli
ations it would be su�
ient to represent ea
h outputbit by an OBDD of moderate size a

ording to an suitably 
hosen variableorder. Already Bryant has destroyed this hope in 1991 [12℄. He has shownthat OBDDs for the representation of the middle bit of integer multipli
ation



have at least size 2n/8 for any variable order. Nevertheless, Bryant's lowerbound does not ex
lude that even 256-bit multipli
ation 
an be representedin reasonable size. Therefore, the OBDD size for integer multipli
ation hasbeen further investigated.
The most signi�
ant bit of integer multipli
ationIn the last years a new resear
h bran
h has emerged whi
h is 
on
erned withthe theoreti
al design and analysis of so-
alled symboli
 algorithms for 
lassi-
al graph problems on OBDD-represented graph instan
es (see, e.g., [17, 18℄,[28℄, and [38℄). Symboli
 algorithms have to solve problems on a given graphinstan
e by e�
ient fun
tional operations o�ered by the OBDD data stru
-ture. Therefore, at the beginning the OBDD-based algorithms have beenjusti�ed by analyzing the number of exe
uted OBDD operations (see, e.g.,[17, 18℄). Sin
e the runtime of an operation on an OBDD G often depends onthe size of G the analysis of the over-all runtime of symboli
 methods in
lud-ing the analysis of all OBDD sizes o

urring during su
h an algorithm is moresigni�
ant (see, e.g., [38℄). In order to investigate the limits of symboli
 graphalgorithms for the all pairs shortest paths problem Sawitzki [28℄ has investi-gated the graph of integer multipli
ation and has presented an exponentiallower bound on its OBDD size. Afterwards he has de�ned inputs for the allpairs shortest paths problem su
h that during the 
omputation representa-tions for MUL-Graphn are ne
essary. Another investigated graph problemis the following. Computing the set of nodes that are rea
hable from somesour
e s ∈ V in a digraph G = (V, E) is an important problem in 
omputer-aided design, hardware veri�
ation, and model 
he
king. Proving exponentiallower bounds on the spa
e 
omplexity of a 
ommon 
lass of OBDD-based al-gorithms for this rea
hability problem, Sawitzki [29℄ has presented the �rstexponential lower bound on the size of π-OBDDs representing the most sig-ni�
ant bit for the variable order π where the variables are tested a

ording toin
reasing signi�
an
e, i.e. π = (x0, y0, x1, y1, . . . , xn−1, yn−1). For the lowerbounds on the spa
e 
omplexity of the OBDD-based algorithms he has usedthe assumption that the output OBDDs use the same variable order as theinput OBDDs. But in 
ontrast, pra
ti
al algorithms usually run variable re-ordering heuristi
s on intermediate OBDD results in order to minimize theirsize. Therefore, lower and upper bounds on the OBDD size of the most sig-ni�
ant bit of multipli
ation with respe
t to an arbitrary variable order areinteresting.



OrganizationIn this 
olumn we give a brief overview on results 
on
erning the 
omplexityof restri
ted bran
hing programs or binary de
ision diagrams for the fun
tionsMULn−1,n and MUL2n−1,n. We do not aim to be 
omprehensive but fo
uson their OBDD 
omplexity, in parti
ular new results on the most signi�
antbit. Sin
e the arti
le is meant to be self-
ontained, in Se
tion 2 we start withthe presentation of some restri
ted bran
hing program or binary de
isiondiagram models. Moreover, we repeat the relevant relation between one-way
ommuni
ation 
omplexity and the size of OBDDs.Se
tion 3 
ontains results on the size of restri
ted bran
hing programsor binary de
ision diagrams for the middle bit of integer multipli
ation. Wepresent lower and upper bounds on the OBDD size and sket
h results on thesize of more general models.The main results of this survey are presented in Se
tion 4. Using onlymethods from one-way 
ommuni
ation 
omplexity Sawitzki's restri
ted lowerbound on the size of OBDDs for MUL2n−1,n [29℄ is improved. Afterwards ageneral lower bound and upper bounds are presented. Remarks on the size ofmore general models for the most signi�
ant bit 
omplete our investigation.Finally, in Se
tion 5 we summarize our results by a 
omparison betweenthe middle and the most signi�
ant bit.2 PreliminariesIn this se
tion we introdu
e some notation. Furthermore, we give an overviewon some restri
ted bran
hing program or binary de
ision diagram models andprovide relevant te
hni
al ba
kground from 
ommuni
ation 
omplexity.2.1 NotationIn the rest of the paper we use the following notation.Let [x]lr, n − 1 ≥ l ≥ r ≥ 0, denote the bits xl . . . xr of a binary number
x = (xn−1, . . . , x0). For the ease of des
ription we use the notation [x]lr = z if
(xl, . . . , xr) is the binary representation of the integer z ∈ {0, . . . , 2l−r+1−1}.Sometimes, we identify [x]lr with z if the meaning is 
lear from the 
ontext.We use the notation (z)l

r for an integer z to identify the bits at position
l, . . . , r in the binary representation of z.Let ℓ ∈ {0, . . . , 2m − 1}, then ℓ denotes the number (2m − 1) − ℓ. Fora binary number x = (xn−1, . . . , x0) we use the notation x for the binarynumber (xn−1, . . . , x0).



Let aS be an assignment to variables in a set S and aS(xk) ∈ {0, 1} bethe assignment to xk ∈ S, then we de�ne ‖aS‖ :=
∑

xk∈S aS(xk) · 2
k.In the following for the sake of simpli
ity we do not apply �oor or 
eilingfun
tions to numbers even when they need to be integers whenever this is
lear from the 
ontext and has no bearing on the essen
e of the presentedproofs.2.2 Restri
ted bran
hing programs or binary de
isiondiagramsIt is well known that the logarithm of the bran
hing program size is essen-tially the same as the spa
e 
omplexity of the nonuniform variant of Turingma
hines (see, e.g., [32℄). Hen
e, it is a fundamental open problem to provesuperpolynomial lower bounds on the size of bran
hing programs for ex-pli
itly de�ned Boolean fun
tions, i.e., fun
tions 
ontained in NP. In orderto develop and strengthen lower bound te
hniques one 
onsiders restri
ted
omputation models. There are several possibilities to restri
t bran
hing pro-grams, among them restri
tions on the multipli
ity of variable tests or theorder in whi
h variables may be tested.De�nition 2.1. i) A bran
hing program is 
alled (synta
ti
ally) read-k-times (BPk) if ea
h variable is tested on ea
h path at most k times.ii) A bran
hing program is 
alled s-oblivious for a sequen
e of variables

s = (s1, . . . , sl), si ∈ Xn, or short oblivious, if the set of de
ision nodes
an be partitioned into disjoint sets Vi, 1 ≤ i ≤ l, su
h that all nodesfrom Vi are labeled by si and the edges whi
h leave Vi-nodes rea
h asink or a Vj-node where j > i. The length of an s-oblivious bran
hingprogram is the length of the sequen
e s.Nondeterministi
 bran
hing programs and randomized bran
hing pro-grams are de�ned in the obvious way by introdu
ing additional, unla-beled nodes at whi
h nondeterministi
 or randomized de
isions, resp., aretaken. An approximating bran
hing program for a Boolean fun
tion f with(two-sided) error ε is a deterministi
 bran
hing program 
omputing an ε-approximation of f , i.e., a fun
tion that di�ers from f on at most an ε-fra
tion of the inputs.For nondeterministi
 read-on
e bran
hing programs a further generaliza-tion of obliviousness 
an be obtained by restri
ting the order of variables insu
h a way that it equals for ea
h input the order of variables for this inputperformed in a 
omplete given deterministi
 read-on
e bran
hing program,i.e., a BP1 where on ea
h path from the sour
e to the sinks all variables



are tested. This 
omplete read-on
e bran
hing program is 
alled graph or-der and the resulting nondeterministi
 read-on
e bran
hing program is 
alledgraph-driven. If the graph order is a tree of polynomial size, then it is 
alledtree-driven.Combining restri
tions on the multipli
ity of variable tests with the prop-erty of obliviousness we obtain oblivious read-on
e bran
hing programs, bet-ter known as OBDDs.De�nition 2.2. An OBDD is a bran
hing program with a variable ordergiven by a permutation π on the variable set. On ea
h path from the sour
eto the sinks, the variables at the nodes have to appear in the order pres
ribedby π (where some variables may be left out). A π-OBDD is an OBDD ordereda

ording to π. The π-OBDD size of f denoted by π-OBDD(f) is the size ofthe smallest π-OBDD representing f . The OBDD size of f , sometimes also
alled OBDD 
omplexity of f , (denoted by OBDD(f)) is the minimum of all
π-OBDD(f).The size of the minimal π-OBDD representing a Boolean fun
tion f on nvariables, i.e., f ∈ Bn, is des
ribed by the following stru
ture theorem [31℄.Theorem 2.3. The number of xπ(i)-nodes of the minimal π-OBDD for f isthe number si of di�erent subfun
tions f|xπ(1)=a1,...,xπ(i−1)=ai−1

, a1, . . . , ai−1 ∈
{0, 1}, essentially depending on xπ(i) (a fun
tion g depends essentially on avariable z if g|z=0 6= g|z=1).It is well known that the size of an OBDD representing a fun
tion fdepends on the 
hosen variable order. Sin
e in appli
ations the variable orderis not given in advan
e we have the freedom (and the problem) to 
hoose agood or even an optimal order for the representation of f . In general OBDDsdo not have ni
e algorithmi
 properties. There are examples known su
h that
gn and hn are two Boolean fun
tions whi
h have OBDDs of linear size (fordi�erent variable orders) but fn = gn∨hn has even exponential BP1 size (foran example see, e.g., Proposition 2 in [6℄). If a variable order π is �xed, allimportant operations 
an be performed e�
iently.SBDDs (shared binary de
ision diagrams) are an extension of OBDDsthat 
an express multiple fun
tions. An SBDD represents a Boolean fun
-tion f ∈ Bn,m : {0, 1}n → {0, 1}m by representing simultaneously the outputfun
tions f1, f2, . . . , fm of f , where the representations for the di�erent 
o-ordinate fun
tions f1, f2, . . . , fm may share nodes.



2.3 One-way 
ommuni
ation 
omplexity and the size ofOBDDsIn order to obtain lower bounds on the size of OBDDs one-way 
ommuni
a-tion 
omplexity has be
ome a standard te
hnique (see Hromkovi£ [22℄ andKushilevitz and Nisan [23℄ for the theory of 
ommuni
ation 
omplexity andthe results mentioned below).The main subje
t is the analysis of the following (restri
ted) 
ommuni-
ation game. Consider a Boolean fun
tion f ∈ Bn whi
h is de�ned on thevariables in Xn = {x1, . . . , xn}, and let Π = (XA, XB) be a partition of Xn.Assume that Ali
e has only a

ess to the input variables in XA and Bob hasonly a

ess to the input variables in XB. In a one-way 
ommuni
ation proto-
ol, upon a given input x, Ali
e is allowed to send a single message (dependingon the input variables in XA) to Bob who must then be able to 
ompute theanswer f(x). The one-way 
ommuni
ation 
omplexity of the fun
tion f de-noted by C(f) is the worst 
ase number of bits of 
ommuni
ation whi
h needto be transmitted by su
h a proto
ol that 
omputes f . It is easy to see thatan OBDD G with respe
t to a variable order where the variables in XA aretested before the variables in XB 
an be transformed into a 
ommuni
ationproto
ol and C(f) ≤ ⌈log |G|⌉. Therefore, linear lower bounds on the 
om-muni
ation 
omplexity of a fun
tion f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} leadto exponential lower bounds on the size of π-OBDDs where the XA-variablesare before the XB-variables in π.One 
entral notion of 
ommuni
ation 
omplexity are strong fooling setswhi
h play an important role in the lower bound proofs later on.De�nition 2.4. Let f : {0, 1}|XA| × {0, 1}|XB| → {0, 1}. A set S ⊆
{0, 1}|Xa| × {0, 1}|XB| is 
alled strong fooling set for f if f(a, b) = c for all
(a, b) ∈ S and some c ∈ {0, 1} and if for di�erent pairs (a1, b1), (a2, b2) ∈ Sat least one of f(a1, b2) and f(a2, b1) is unequal to c.Theorem 2.5. If f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} has a strong fooling setof size t, the 
ommuni
ation 
omplexity of f is bounded below by ⌈log t⌉.Be
ause of our 
onsiderations above, the size t of a strong fooling set for
f is a lower bound on the size of OBDDs representing f with respe
t to avariable order where the variables XA are tested before the variables XB.Be
ause of the symmetri
 de�nition of strong fooling sets, t is also a lowerbound on the size of OBDDs representing f with respe
t to a variable orderwhere the variables XB are tested before the variables XA. The 
ru
ial stepto prove large lower bounds on the OBDD 
omplexity of a fun
tion is toobtain for all partitions of the variables large lower bounds on the size of



fooling sets for subfun
tions of the given fun
tion (best 
ase 
ommuni
ation
omplexity).In the rest of this se
tion our aim is to de�ne a fun
tion fn with large
ommuni
ation 
omplexity whi
h is a main ingredient in our lower boundproof on the OBDD size of the most signi�
ant bit of integer multipli
ation.First, we take a look at known results about the 
ommuni
ation 
om-plexity of some popular fun
tions. Let EQn : {0, 1}n × {0, 1}n → {0, 1} bede�ned by EQn(a, b) = 1 i� the ve
tors a = (a1, . . . , an) and b = (b1, . . . , bn)are equal. It is well-known and easy to prove that C(EQn) = n. Obviouslythe same results 
an be a
hieved if Ali
e gets exa
tly one of the variables
ai and bi, 1 ≤ i ≤ n. Similar results 
an be obtained for the fun
tionsGTn : {0, 1}n ×{0, 1}n → {0, 1} and GTn : {0, 1}n ×{0, 1}n → {0, 1}, whereGTn(a, b) = 1 i� [a]n1 > [b]n1 and GTn(a, b) = 1 i� [a]n1 ≤ [b]n1 .Now, we are ready to de�ne the fun
tion fn ∈ B3n on the variables
a = (a1, . . . , an), b = (b1, . . . , bn), and c = (c1, . . . , cn):

fn(a, b, c) := (EQn(a, c) ∧GTn(a, b)) ∨GTn(a, c).Using 
ase inspe
tion on the distribution of the c-variables it is not di�
ultto prove that for a partition, where the a- and b-variables are separated, thereexists a strong fooling set of size 2n for fn. In other words the 
ommuni
ation
omplexity of fn is not smaller than the 
ommuni
ation 
omplexity of GTnand the distribution of the c-variables does not simplify the task. The sameresult 
an be obtained if Ali
e gets exa
tly one of the variables ai and bi forall i ∈ {1, . . . , n}. In this 
ase it is not important whether the investigated c-variables belong to Ali
e or Bob but whether the 
onsidered a- and c-variablesor b- and c-variables are tested together.3 The middle bit of integer multipli
ationIn this se
tion we present some results on the OBDD size of the middle bitof integer multipli
ation. Furthermore, we investigate more general BDDmodels.3.1 On the OBDD size of the middle bit of integer mul-tipli
ationBryant's lower bound of 2n/8 on the OBDD size of MULn−1,n is unsatisfa
-tory sin
e it does not rule out the possibility that 64-bit multipliers 
an berepresented by OBDDs 
ontaining only 256 nodes. Sin
e the aim is to use



OBDDs for realisti
 appli
ations one is interested in small 
onstru
tions or abetter lower bound. Introdu
ing a new te
hnique based on universal hashingWoelfel [35℄ has improved the lower bound 
onsiderably to 2⌊n/2⌋/61−4. Thisresult implies that any OBDD for 64-bit multipli
ation needs more than 70million nodes and the veri�
ation of 128-bit multipliers is infeasible be
ausemore than 3 · 1017 OBDD-nodes are ne
essary.The main proof idea in Bryant's and Woelfel's lower bound proofs is toshow that for every variable order π there exists an integer c ∈ {1, . . . , 2n −
1} su
h that the π-OBDD size of MULc

n−1,n is exponential. Bryant has
hosen c in su
h a way that only two input bits of c are set to 1. Therefore,the produ
t of x and y 
an be seen as the sum of two integers obtainedby shifting x in an appropriate way. More pre
isely, if y is repla
ed bythe binary representation of c and c = 2i + 2i+d then c · x = x · 2i + x ·
2i+d. Woelfel has enlarged the possible 
hoi
es for the integer c. As a resulthe has been able to prove that for every variable order π there exists aninteger c su
h that MULc

n−1,n has a large number of subfun
tions obtainedby repla
ements of the �rst n/2 x-variables in π by 
onstants. SummarizingBryant's and Woelfel's lower bound proofs rely only on the existen
e of a
onstant fa
tor c for ea
h variable order π for whi
h MULc
n−1,n leads to alarge π-OBDD representation. If one would like to improve the lower boundthere are two possibilities. The �rst one is to 
onsider multiple values for c,the se
ond one to improve the lower bound for the π-OBDD size of MULc

n−1,nfor an suitably 
hosen 
onstant c. Woelfel has shown that the latter approa
h
annot yield signi�
ant better lower bounds be
ause the variable order π =
(x0, x1, . . . , xn−1) leads to OBDDs of size at most 3 · 2n/2 for ea
h integer c.By 
ombining this result with the observation that the k most signi�
antbits of one input ve
tor are not important any more if the k least signi�
antbits of the other input ve
tor are known, Woelfel has obtained the �rst non-trivial upper bound of (7/3) · 2(4/3)n on the size of OBDDs for MULn−1,nwith respe
t to the variable order π = (y0, . . . , yn−1, x0, . . . , xn−1). Amanoand Maruoka [3℄ have improved this upper bound to 2.8 · 2(6/5)n for so-
alledquasi-redu
ed or 
omplete OBDDs, i.e., OBDDs where on ea
h path from thesour
e to the sinks all variables have to be tested, and the pairwise as
endingvariable order π = (x0, y0, . . . , xn−1, yn−1). (It is not di�
ult to see that thesize of a quasi-redu
ed OBDD 
an be at most n + 1 times larger than thesize of a redu
ed OBDD for a given fun
tion f with respe
t to the samevariable order.) Despite the 
onsiderable amount of resear
h dealing withthe 
omplexity of the middle bit of multipli
ation, the gap between lower andupper bounds on its OBDD size is still large. Furthermore, even Woelfel'simproved lower bound does not really justify why OBDDs for multipliers ofinput length n = 64 
annot be 
onstru
ted nowadays using 
urrent standard



PC hardware. Sauerho� [26℄ has shown that the upper bound of Amanoand Maruoka [3℄ is in fa
t asymptoti
ally optimal for the order 
hosen bythem whi
h is believed to be one of the best ones. For n = 64 his bound islarger than 1.62 · 1021. This surely explains why an OBDD with respe
t tothis variable order 
annot be generated. Nevertheless, there is the possibilitythat there are 
onsiderably better variable orders.3.2 On the size of more general BDD models for themiddle bit of integer multipli
ationIn learning theory and geneti
 programming OBDDs are used to represent ap-proximations of Boolean fun
tions. Gronemeier [20℄ has shown that for everyvariable order π the approximation of some output bits of integer multipli-
ation with respe
t to the uniform distribution and 
onstant error requires
π-OBDDs of exponential size. Nevertheless, approximating the middle bit ofinteger multipli
ation with polynomially small error is easy even for read-on
ebran
hing programs [27℄.Although there has been 
onsiderable progress in the development of lowerbound proofs by the investigation of weakly restri
ted BDD models, the lowerbound methods often only work for a quite limited 
lass of fun
tions. Besidesthe interest in �nding lower bounds as large as possible or proving superpoly-nomial lower bounds for more and more general BDD models, it is importantto apply the existing methods to (pra
ti
ally) important fun
tions. Lowerbound proofs for su
h fun
tions may help to develop new or re�ned proofte
hniques, or 
an lead to new insights into the properties of the 
onsid-ered fun
tions. This is the motivation for the further investigation of the
omplexity of integer multipli
ation for more general BDD models.Methods from 
ommuni
ation 
omplexity have been used to prove largelower bounds in several binary de
ision diagram models. Bryant [12℄ has usedthe fooling set method to obtain lower bounds on the 
ommuni
ation 
om-plexity of the middle bit of multipli
ation whi
h implies an exponential lowerbound of size 2n/8 for OBDDs representing MULn−1,n. In
orporating Ram-sey theoreti
 arguments of Alon and Maass [2℄ and using the rank method of
ommuni
ation 
omplexity Gergov [19℄ has extended Bryant's lower boundto arbitrary nondeterministi
 linear-length oblivious BPs. His lower boundis still non-polynomial for length o(n log n/ log log n). Sin
e Woelfel's largerlower bound on the OBDD size of MULn−1,n has not been proved using strongfooling sets his result 
annot generalized in the same way as Bryant's to non-deterministi
 linear-length oblivious bran
hing programs. In [1℄ Gergov'sredu
tion has been applied to dedu
e that also randomized OBDDs require



exponential size and it has been shown that in 
ontrast the graph of integermultipli
ation MUL-Graphn has randomized OBDDs of polynomial size. Forthe later result the fa
t has been used that it is easy to verify with smallerror probability whether the produ
t of two integers equals some given out-put applying arithmeti
 modulo a random 
hosen prime. For non-obliviousmodels Ponzio [25℄ has presented the �rst (weakly) exponential lower bound.He has shown that the 
omplexity of the middle bit of integer multipli
ationis 2Ω(n1/2) for read-on
e bran
hing programs. In [6℄ the �rst exponential lowerbound on the size of a nondeterministi
 non-oblivious read-on
e bran
hingprogram model, namely for nondeterministi
 tree-driven BP1s, has been pre-sented. An extension of the proof shows that all subfun
tions of MULn−1,nobtained by the repla
ement of up to (n/ log n)1/2−ǫ variables, ǫ > 0 any 
on-stant, have exponential size for nondeterministi
 OBDDs. Sin
e the resultalso holds for the parity-a

eptan
e mode, where the fun
tion value equals1 for an input i� the number of its a

epting paths is odd, this has beenthe �rst non-trivial lower bound for an important fun
tion on non-obliviousrestri
ted BP1s with an unlimited number of parity nodes.The fa
t that integer multipli
ation de�nes a universal hash 
lass[14, 15, 36℄, 
alled multipli
ative hash 
lass, has also been used by Bolligand Woelfel [9℄ to improve the exponential lower bound on the size of BP1sup to 2⌊
n−9

4
⌋ whi
h is even larger than Bryant's lower bound on the OBDDsize. Moreover, the analysis seems to be mu
h easier than the 
ountingte
hnique used by Ponzio. At the beginning one reason for the di�
ulties inproving exponential lower bounds on the size of binary de
ision diagrammod-els representing MULn−1,n 
ould have been arisen from the fa
t that integermultipli
ation 
an express many di�erent shifting and adding 
ombinationssu
h that the e�e
t of partial assignments and therefore the subfun
tionsare not easy to analyze. Using methods whi
h rely on universal hashing ithas been shown that even if almost a quarter of the variables of ea
h fa
torhas been repla
ed by 
onstants, ea
h result of the produ
t bits between thepositions n − 1 and (3/4)n (the results for MULn−1,n to MUL(3/4)n,n) is stillpossible. Using an algebrai
 approa
h in [8℄ a lower bound of 2⌊(n−46)/12⌋ ·n−1for a restri
ted nondeterministi
 BP1 model with parity a

eptan
e mode,
alled parity graph-driven BP1s, has been shown. This result has been mo-tivated by the fa
t that until now no superpolynomial lower bound on thesize of unrestri
ted nondeterministi
 BP1s with parity a

eptan
e mode foran expli
itly de�ned Boolean fun
tion has been known. Sin
e exponentiallower bounds on the size of unrestri
ted nondeterministi
 read-on
e bran
h-ing programs whi
h represent MULn−1,n had been unknown, one step towardsproving su
h bounds was to investigate BP models �inbetween� deterministi




and nondeterministi
 BP1s and a model where some but not all variablesmay be tested multiple times [10, 37℄. Finally, Sauerho� and Woelfel [27℄have a
hieved a major breakthrough presenting exponential lower bounds onthe size of nondeterministi
 and randomized BPks for MULn−1,n.Wegener and Woelfel [34℄ have 
onsidered unrestri
ted bran
hing pro-grams and Boolean formulas over the basis B2 of all binary operations. Sin
emore than 40 years the best lower bounds for expli
itly de�ned fun
tions arefor general bran
hing programs of order n2/ log2 n and for Boolean formulas oforder n2/ log n. These results have been proved with Ne
hiporuk's te
hnique[24℄. It is well known that this method 
annot yield better lower bounds.In [34℄ the following results have been presented. Any bran
hing programfor MULn−1,n has at least Ω(n3/2/ log n) nodes and any Boolean formula forMULn−1,n has size at least Ω(n3/2). Furthermore, it has been proved that us-ing Ne
hiporuk's te
hnique it is impossible to prove better lower bounds than
Ω(n5/3/ log n) and Ω(n5/3) for the bran
hing program and Boolean formulasize of MULn−1,n. These are non-trivial limits of Ne
hiporuk's te
hnique.Until now it is still an open question whether the lower bound method hasbeen applied in the best possible way in [34℄.
4 The most signi�
ant bit of integer multipli-
ationAlthough many exponential lower bounds on the OBDD size of Boolean fun
-tions are known and the lower bound methods are simple, it is often a moredi�
ult task to prove large lower bounds for some prede�ned and interest-ing fun
tions. The most signi�
ant bit of integer multipli
ation is a goodexample. Despite the well-known lower bounds on the OBDD size of theso-
alled middle bit of multipli
ation ([12℄, [35℄), only re
ently it has beenshown that the OBDD 
omplexity of the most signi�
ant bit is also expo-nential [5℄ answering an open question posed by Wegener [32℄. Here, we startour investigation by an improved lower bound on the size of π-OBDDs forMUL2n−1,n, where π is a �xed variable order. Using 
ommuni
ation 
om-plexity the proof is very simple and elementary. Afterwards we present thebest general lower bound on the OBDD size for MUL2n−1,n known so far and
on
lude our 
onsiderations by the best known upper bound.



4.1 Lower bounds on the OBDD size of the most signif-i
ant bit of integer multipli
ationIn this se
tion we start our investigation of lower bounds on the size ofOBDDs for MUL2n−1,n by presenting a lower bound for some �xed variableorder. Afterwards we present a general lower bound whi
h is mu
h smallerbut also exponential. The ideas of the general lower bound have been pre-sented in [4℄.Using te
hniques from analyti
al number theory Sawitzki [29℄ has pre-sented a lower bound of 2n/6 on the size of π-OBDDs representing themost signi�
ant bit of integer multipli
ation for the variable order π wherethe variables are tested a

ording to in
reasing signi�
an
e, i.e., π =
(x0, y0, x1, y1, . . . , xn−1, yn−1). Here, we prove a larger lower bound in aneasier way and without analyti
al number theory.Theorem 4.1. Let π = (x0, y0, x1, y1, . . . , xn−1, yn−1). The π-OBDD size forthe representation of MUL2n−1,n is Ω(2n/4).Proof. We start with the following two useful observations. For a number
2n−1 + ℓ2n/2 the 
orresponding smallest number su
h that the produ
t of thetwo numbers is at least 22n−1 is 2n− ℓ2n/2+1 +4ℓ2−

⌊
4ℓ3

2n/2−1+ℓ

⌋. Furthermore,
2n/2 > 4ℓ2 −

⌊
4ℓ3

2n/2−1 + ℓ

⌋

> 4(ℓ − 1)2for 0 < ℓ ≤ 2n/4−1. Using these two fa
ts it is not di�
ult to 
onstru
t astrong fooling set of size 2n/4−1:Let XU := {xn−1, xn−2, . . . , xn/2}, YU := {yn−1, yn−2, . . . , yn/2}, XL :=
{xn/2−1, xn/2−2, . . . , x0}, and YL := {yn/2−1, yn/2−2, . . . , y0}. We de�ne ZA :=
XU ∪ YU and ZB := XL ∪ YL. The Set S 
ontains all pairs (a, b) for ℓ ∈
{1, 2, . . . , 2n/4−1} with the following properties:1. a is an assignment that 
onsists of a partial assignment ax to the vari-ables in XU and a partial assignment ay to the YU -variables where

‖ax‖ = 2n−1 + ℓ2n/2 and ‖ay‖ = 2n − ℓ2n/2+1 and2. b is an assignment that 
onsists of a partial assignment bx to the vari-ables in XL and a partial assignment by to the YL-variables where
‖bx‖ = 0 and ‖by‖ = 4ℓ2 −

⌊
4ℓ3

2n/2−1+ℓ

⌋.For all pairs in S the fun
tion value of MUL2n−1,n is 1. Let (a1, b1) and
(a2, b2) be two di�erent pairs in S. If the value of the partial assignment of



the XU -variables a

ording to a1 is 2n−1 + ℓ12
n/2 and the value of the partialassignment of the XU -variables a

ording to a2 is 2n−1+ℓ22

n/2, where w.l.o.g.
ℓ1 < ℓ2, the fun
tion value of MUL2n−1,n(a2, b1) is 0. Therefore, S is a foolingset of size 2n/4−1.Be
ause of the symmetri
 de�nition of strong fooling sets we also obtaina lower bound of 2n/4−1 on the size of π′-OBDDs for the most signi�
ant bit,where π′ = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0).Now, we prove the general lower bound.Theorem 4.2. The OBDD size for the representation of MUL2n−1,n is
Ω(2n/60).Proof. We start with a (simpli�ed) presentation of the main proof ideas fora lower bound of Ω(2n/96) and present afterwards the idea how to improvethis lower bound up to Ω(2n/60).Our aim is to show for an arbitrary variable order π that a π-OBDDfor MUL2n−1,n 
ontains a π-OBDD for the Boolean fun
tion fn′ de�ned inSe
tion 2.3:

fn′(a, b, c) = (EQn′(a, c) ∧GTn′(a, b)) ∨GTn′(a, c),where for ea
h position i the variables ai and bi are suitably separated in πand n′ = Θ(n). Therefore, the size of the π-OBDD for MUL2n−1,n has to belarge. The ve
tor a is a subve
tor of one of the inputs x and y for MUL2n−1,n,the ve
tors b and c of the other input.We use the idea of the following redu
tion from multipli
ation to squaringpresented by Wegener [33℄, where squaring 
omputes the square of an m-bitinput. For two m-bit numbers u and w the number ℓ := u · 22(m+1) + w isde�ned. Then
ℓ2 = u2 · 24(m+1) + uw22(m+1)+1 + w2.Sin
e w2 and uw are numbers of length 2m, the binary representation of theprodu
t uw 
an be found in the binary representation of ℓ2. (Figure 1 showsthe bit 
omposition of the number ℓ2.)A key observation is the following one. The number ⌊

4ℓ3

2n/2−1+ℓ

⌋ is smallerthan ℓ if ℓ ≤ 2n/4−3/2. As a 
onsequen
e if bℓ is the binary representationof ℓ, bℓ2 is the binary representation of ℓ2, L the length of bℓ, and if thereexists j, where j ≥ L − 2, and [bℓ2 ]j = 1, there is no di�eren
e in the upperhalf of the binary representations of the numbers 4ℓ2 and 4ℓ2 −
⌊

4ℓ3

2n/2−1+ℓ

⌋.
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Figure 1: The bit 
omposition of the number ℓ2More pre
isely, if b′ is the binary representation of 4ℓ2 and b′′ is the binaryrepresentation of 4ℓ2 −
⌊

4ℓ3

2n/2−1+ℓ

⌋, then [b′]2L+1
j+1 = [b′′]2L+1

j+1 .Next, we investigate requirements that have to be ful�lled for inputs xand y, where MUL2n−1,n(x, y) = 1. If x represents a number 2n−1 + ℓ2n/2,
1 ≤ ℓ ≤ 2n/4−3/2, the upper half of y has to represent a number of at least
2n/2 − 2ℓ, i.e., [y]n−1

n/2 ≥ 2n/2 − 2ℓ. If the upper half of y represents a numbergreater than 2n/2 − 2ℓ, the fun
tion value MUL2n−1,n(x, y) is 1. Let j be theminimum integer in the set {i | n/2 ≤ i < (3/4)n − 3/2 and xi = 1}. If
[y]n−1

j+2 > [x]n−2
j+1 , the fun
tion value MUL2n−1,n is 0. If [y]n−1

j+2 < [x]n−2
j+1 , thefun
tion value MUL2n−1,n is 1. If yj+1 = 1, [y]n−1

j+2 = [x]n−2
j+1 , and [y]jn/2 = 0,

[y]
n/2−1
0 has to represent a number of at least 4ℓ2 −

⌊
4ℓ3

2n/2−1+ℓ

⌋.In order to use Wegener's observation on squaring mentioned above weonly 
onsider integers ℓ where ℓ = u22(m+1) + w, u, w < 2m and m = n/12 −
5/6. (Later on we show that m 
an be enlarged whi
h leads to a larger lowerbound.) For this reason we repla
e the variables xn/2+m, . . . , xn/2+2m+1 by 0.(See Figure 2 for the 
omposition of the number x.) Afterwards we repla
esome of the x-variables and the 
orresponding y-variables by 
onstants, where
yi+1 is the 
orresponding y-variable to xi, su
h that a 
ertain part of uw isequal to a 
ertain part of 2d · w for d suitably 
hosen. Furthermore, we
hoose w in su
h a way that the assignments to the variables at position
3m + 5, . . . , 6m + 5 are the same in the binary representations of 4ℓ2 and
4ℓ2 −

⌊
4ℓ3

2n/2−1+ℓ

⌋. Moreover, for di�erent integers ℓ1 and ℓ2 (whi
h meansdi�erent assignments to the w-variables) the assignments to the variables atposition 3m+5, . . . , (7/2)m+4 in the binary representations of 4ℓ2
1 and 4ℓ2

2 aredi�erent. (Figure 3 illustrates some of the repla
ements of the y-variables.)Now we make our proof idea more pre
ise. We rename [x]
n/2+(n/12)−11/6
n/2by [w]m−1

0 and [x]
n/2+n/4−3/2
n/2+n/6+1/3 by [u]m−1

0 . If ℓ = u · 22(m+1) + w the produ
t
u ·w 
an be found at position 2m+5, . . . , 4m+4 in the binary representation



x

00 0 0 0. . . . . .

u w

. . . 0
ℓ

3
4n − 3

2
n
2 − 1n − 11 0

Figure 2: The 
omposition of the input x1 . . . 1 . . .00 1 1
w′

yu2 . . .

6m + 5 02m + 1
4m + 5 3m + 4

7
2m + 4

Figure 3: The e�e
t of the repla
ements of some of the y-variables, where
u = [u]m−1

0 (w′ has to be at least (2d · w)
(3/2)m−1
m )of 4ℓ2. The 
ru
ial step is to 
hoose an appropriate subset of the inputvariables in order to show that there exists a large strong fooling set. Let

S := {wm/2, . . . , wm−1, y3m+5, . . . , y(7/2)m+4} and T be the set of the �rst
|T | variables a

ording to π, where there are m/2 variables from S, and
B be the set of the remaining variables. Let WS,T be the w-variables in
S ∩ T , WS,B the w-variables in S ∩ B. Similar the sets YS,T and YS,B arede�ned. Using simple 
ounting arguments we 
an prove that there exists adistan
e parameter d su
h that there are at least m/8 pairs (wi, y2m+5+i+d) in
WS,T ×YS,B ∪WS,B ×YS,T (for a similar proof see, e.g., [12℄). Let I be the setof indi
es, where wi belongs to su
h a pair. We repla
e the u-variables su
hthat [u]m−1

0 = 2d and the variables y4m+6, . . . , y6m+5 su
h that [y]6m+5
4m+6 = 22d.The variables xn/2+i, i ∈ I, are 
alled free x-variables, the variables

yn/2+i+1 and y2m+5+i+d, i ∈ I, free y-variables. The free x-variables willplay the role of the a-variables, the free variables yn/2+i+1, i ∈ I, the roleof the c-, and the remaining free y-variables the role of the b-variables inthe redu
tion from the fun
tion fn′ mentioned above to MUL2n−1,n. Nowwe present the redu
tion. (Figure 4 shows some of the repla
ements to theinputs x and y of MUL2n−1,n.)- The variables yn−1 and xn−1 are set to 1,- xn/2+m−d−1 (whi
h 
orresponds to wm−d−1) and yn/2+m−d are set to 1,



- xn/2+2m+d (whi
h 
orresponds to ud) is set to 1, the 
orrespond-ing variable yn/2+2(m+1)+d+1 is set to 0, y4m+6+2d to 1, the vari-ables y(7/2)m+5, . . . , y4m+5+2d and y4m+7+2d, . . . , y6m+5 to 0 (as a result
[y]6m+5

4m+6 = 22d).- The variables yn/2, . . . , yn/2+m−d−1 are set to 0.- Besides the free x-variables the remaining x-variables are repla
ed by0.- Besides the free y-variables the remaining y-variables are repla
ed by1.What is the e�e
t of the repla
ements?- The inputs x and y represent numbers that are at least 2n−1, sin
eotherwise the fun
tion value MUL2n−1,n(x, y) is 0.- Sin
e wm−d−1 = 1 and [u]m−1
0 = 2d, 4ℓ2 and 4ℓ2 −

⌊
4ℓ3

2n/2−1+ℓ

⌋, where
ℓ = u · 22(m+1) + w, do not di�er in one of the bits at position 3m +
5, . . . , 6m + 5 of their binary representations.- Sin
e xn/2+m−d−1 = 1 and yn/2+m−d = 1, xn/2 = . . . = xn/2+m−d−2 = 0and yn/2 = . . . = yn/2+m−d−1 = 0, [x]n−2

n/2+m = [y]n−1
n/2+m+1, [x]

n/2+m−1
n/2+m−d hasto be at least [y]

n/2+m
n/2+m−d+1 for inputs x and y, where MUL2n−1,n(x, y) =

1. If [x]
n/2+m−1
n/2+m−d > [y]

n/2+m
n/2+m−d+1, MUL2n−1,n(x, y) = 1.- Sin
e [y]6m+5

4m+6 = 22d = u2 and be
ause of the other repla
ements,
[y]4m+4

3m+5 has to be at least (u · w) div 2m for inputs x and y, whereMUL2n−1,n(x, y) = 1, if [y]n−1
n/2 = 2n/2 − 2ℓ and [x]n−1

n/2 = 2n/2−1 + ℓ.Therefore, the 
orre
tness of our redu
tion follows from our 
onsiderationsabove. Considering the fa
t that m = n/12− 5/6, we get the result that theOBDD 
omplexity of MUL2n−1,n is at least Ω(2n/96).Finally, we present the idea how to improve the lower bound on the OBDD
omplexity of MUL2n−1,n up to Ω(2n/60). Up to now we have 
onsiderednumbers ℓ, where ℓ = u · 22(m+1) + w and u, w < 2m with m = (n/12) − 5/6.Using the fa
t that in our lower bound proof only the upper half of thebits in the binary representation of uw is important, uw div 2(3/2)m = 0,
u2 div 2(7/4)m = 0, and u2 mod 2m/4 = 0, we 
an 
hoose ℓ = u · 2m + w,
w < 2m and u < 2(7/8)m. As a result we 
an enlarge m up to (2/15)n.
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Figure 4: A (simpli�ed) presentation of repla
ements to some of the x- and
y-variables. The shaded areas 
ontain the free variables (and possibly othervariables)4.2 Upper bounds on the OBDD size of the most sig-ni�
ant bit of integer multipli
ationIn this se
tion we prove an upper bound on the size of OBDDs a

ordingto an arbitrary variable order representing the most signi�
ant bit of inte-ger multipli
ation. Afterwards we present the best known upper bound onthe size of OBDDs representing MUL2n−1,n a

ording to the variable order
π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0). The results of this se
tion have beenpresented in [7℄.We start our proof of the general upper bound with the investigationof a fun
tion f that is 
losely related to the most signi�
ant bit of integermultipli
ation. Let n ∈ N be arbitrary but �xed in the rest of the se
tion.Lemma 4.3. Let f : R

+ → R
+ be de�ned as f(x) := 22n−1

x
. For arbitrary

∆x, ∆y > 0 there exists exa
tly one value x ∈ R
+ with f(x)−f(x+∆x) = ∆y.In other words ea
h distan
e pair (∆x, ∆y) de�nes uniquely two elementsin the de�nition set.Next, we 
onsider some modi�
ations of the fun
tion f .De�nition 4.4. For c, d ∈ R and n ∈ N we de�ne the fun
tion fc,d : R → Rin the following way.

fc,d(x) :=
22n−1

c + x
− d.The fun
tion fc,d 
ontains the tuple (x, y) i� fc,d(x) = y.Our proof idea of the upper bound on the size of OBDDs representingMUL2n−1,n is to use the fun
tions fc,d in order to analyze the number of
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Figure 5: Rotation of the graph of the fun
tion fc,ddi�erent subfun
tions of MUL2n−1,n obtained by repla
ements of some x-and y-variables by 
onstants. For this reason we have to relate the fun
tions
fc,d to subfun
tions of MUL2n−1,n.De�nition 4.5. For a given fun
tion fc,d and two arbitrary �nite sets A, B ⊆

N and A, B 6= ∅ the 
orresponding step fun
tion fA,B
c,d : A → B is de�ned as

fA,B
c,d (x) := min{y ∈ B|y ≥ fc,d(x)}.MUL2n−1,n 
an be uniquely des
ribed by fA,B

0,0 , where A, B = {0, . . . , 2n−
1}. Obviously there 
an be several fun
tions fc,d that lead to the same stepfun
tion. It is easy to see that ea
h fun
tion fc,d 
an be 
hara
terized by twotuples (x1, y1) and (x2, y2), where fc,d(xi) = yi and xi, yi ∈ R for i ∈ {1, 2}.Unfortunately, the length of the numbers 
ould be large. In order to �nd asmall representation for fc,d we modify fc,d without 
hanging essentially the
orresponding step fun
tion.We start to analyze the e�e
t of moderate modi�
ations of the parameters
c and d.



Lemma 4.6. Let c, d ∈ R
+ and A, B be two arbitrary �nite, nonempty sub-sets of N. Let yx be the largest element in B that is smaller than fc,d(x)and ǫx := f−1

c,d (yx) − x, if yx is de�ned, otherwise ǫx := ∞. We de�ne
ǫmin := min{ǫx|x ∈ A}. Then fA,B

c,d = fA,B
c+ǫmin/2,d.Lemma 4.7. Let c, d ∈ R

+ and A, B be two arbitrary �nite, nonempty sub-sets of N. For x ∈ A let ǫx := fA,B
c,d (x) − fc,d(x) if fA,B

c,d (x) is de�ned and ∞otherwise. We de�ne ǫmin := min{ǫx|x ∈ A}. Then fA,B
c,d−ǫmin

= fA,B
c,d .Lemma 4.7 tells us that it is allowed to move the graph of the fun
tion

fc,d upwards, right until it hits its 
orresponding step fun
tion for the �rsttime, without 
hanging the step fun
tion.Lemma 4.8. Let c, d ∈ R
+ and A, B be two arbitrary �nite, nonemptysubsets of N, su
h that there exists at least one element x0 ∈ A where

fc,d(x0) = fA,B
c,d (x0), and there are at least two elements x1, x2 ∈ A where

min{y|y ∈ B} < fc,d(xi) ≤ max{y|y ∈ B}, i ∈ {1, 2}. We de�ne the follow-ing rotation operation for fc,d with respe
t to (x0, y0): de
rease c 
ontinuouslyto c′ and adjust d to d′ at the same time su
h that fc,d(x0) = fc′,d′(x0) is al-ways ful�lled until there exists another element x′ ∈ A with fc′,d′(x
′) ∈ B.1. The rotation operation is �nite.2. The fun
tion fA,B

c,d 
an be re
onstru
ted from fc′,d′ in the following way:
fA,B

c,d (x) =

{

min{y ∈ B|y ≥ fc′,d′(x)}, if x ≤ x0,

min{y ∈ B|y > fc′,d′(x)}, if x > x0.If we repla
e (c, d) to (c′, d′), the 
urve of the fun
tion fc,d seems visuallyto rotate to the graph of the fun
tion fc′,d′ , be
ause point (x0, y0) stays onthe graph, whereas all points left of x0 are shifted upwards and the otherones downwards. Nevertheless, the graph's shape does not 
hange sin
e therotation 
an be de
omposed to a verti
al and a horizontal movement (seeFigure 5). Therefore, it is still possible to use Lemma 4.3 for the identi�
ationof fc′,d′ .Now we are able to prove our general upper bound on the π-OBDD sizefor MUL2n−1,n.Theorem 4.9. Let π be an arbitrary variable order. The π-OBDD size forthe representation of MUL2n−1,n is O(2(4/3)n).
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2n−1 + 1Figure 6: Signi�
ant points for the evaluation of MUL2n−1,nProof. Our aim is to prove an upper bound of 22(n−i)+2(n−j)+2 on the numberof subfun
tions of MUL2n−1,n obtained by repla
ements of i x- and j y-variables by 
onstants.We assume in the following that i 6= 0 and j 6= 0, sin
e otherwise weare done. If i = n an upper bound of 2n−j is easy to prove and we aredone, similarly an upper bound of 2n−i 
an be shown for j = n. Therefore,we also assume in the following that i 6= n and j 6= n. Let XS be theset of i arbitrary x-variables and YS be the set of j arbitrary y-variables,
XT := {x0, . . . xn−1}\XS, and YT := {y0, . . . , yn−1}\YS.MUL2n−1,n answers the question, whether for a given assignment (a, b) ofthe variables, the produ
t ‖a‖ · ‖b‖ is at least 22n−1. Therefore, the fun
tionMUL2n−1,n 
an be des
ribed by spe
ifying for every possible assignment aof the x-variables, the assignment b of the y-variables with ‖b‖ =

⌈
22n−1

‖a‖

⌉.Figure 6 shows MUL2n−1,n, where for a value ‖a‖ the smallest 
orrespondingvalue ‖b‖ that ful�lls MUL2n−1,n is dotted. Su
h pairs of assignments are
alled signi�
ant points. (For sake of simpli
ity the possible values are atleast 2n−1 be
ause for smaller numbers the produ
t 
annot be at least 22n−1.)Let c := ‖aXS
‖ and d := ‖bYS

‖. We de�ne AT as the set of possible
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‖bT ‖

Figure 7: Two di�erent step fun
tionsvalues ‖aXT
‖ that 
an be expressed by the variables from XT . Let BT bede�ned in the same way. AT and BT are independent of the 
hoi
e of c and

d, i.e., a grid 
an be de�ned for the ‖aXT
‖- and ‖bXT

‖-values, whi
h hasthe same appearan
e for all possible assignments c and d. A subfun
tionof MUL2n−1,n obtained by repla
ing the variables in XS to aS and YS to bS
an be des
ribed by the pairs of AT - and BT -values (‖aXT
‖ , ‖bYT

‖), so that
‖bYT

‖ is the minimal value that ful�lls ‖bYT
‖ ≥ 22n−1

c+‖aXT ‖
− d. Therefore, thesubfun
tion of MUL2n−1,n 
an be 
hara
terized by the step fun
tion fAT ,BT

c,d(see De�nition 4.5) for the underlying fun
tion fc,d.Figure 7 shows an example for two di�erent step fun
tions that resultfrom two di�erent assignments to the variables in XS ∪ YS.Sin
e the subfun
tions obtained by repla
ing the variables in XS and YSby 
onstants 
an uniquely be des
ribed by their step fun
tions, our aim isto prove the existen
e of a small representation su
h that the 
orrespondingstep fun
tion and therefore the 
orresponding subfun
tion of MUL2n−1,n 
anbe re
onstru
ted later on. As ea
h representation impli
ates at most one



possible step fun
tion, the number of di�erent representations is an upperbound on the number of di�erent subfun
tions.The idea is to transform the fun
tion fc,d in a moderate way into a fun
-tion fc′,d′ , su
h that fc′,d′ 
ontains at least two points from AT ×BT and thestep fun
tion fAT ,BT

c,d 
an easily be obtained from fc′,d′. In the following weassume that for at least two AT -values, the fun
tion value fc,d is greater than
0 and smaller or equal to the greatest value in BT . The other 
ases will be
onsidered later on. If c equals 0, we have to make some extra 
onsiderations.Sin
e the fun
tion fc,d is not de�ned for the value ‖aXT

‖ = 0, we use Lemma4.6 to move the graph a tiny distan
e to the left. As a result we obtain thefun
tion fc′,d and fAT ,BT

c′,d = fAT ,BT

c,d .A

ording to Lemma 4.7 the graph is moved upwards by de
reasing theparameter d, right until the graph 
uts the graph of its step fun
tion. Let fc′,d′be the resulting fun
tion and fAT ,BT

c′,d′ its step fun
tion. Obviously fAT ,BT

c′,d′ =

fAT ,BT

c′,d . We now have at least one element p1 ∈ AT , so that fc′,d′(p1) =

fAT ,BT

c′,d′ (p1) = q1.If fc′,d′ 
ontains another point (p2, q2) ∈ AT × BT , we 
an be sure that
q2 is not equal to q1 be
ause the fun
tion is stri
tly monotoni
. In this 
asewe stop the transformation and en
ode the step fun
tion fA,B

c′,d′ by the triple
((p1, q1), (p2, q2), 1) where the last bit indi
ates that we stopped at this point.Otherwise we modify the fun
tion fc′,d′ again to hit a se
ond point of
AT × BT . Using Lemma 4.8 the graph is rotated 
lo
kwise by de
reasing c′and adjusting d′, so that the point (p1, q1) stays on the graph. We get a newfun
tion fc′′,d′′ and another point (p2, q2) ∈ AT × BT with fc′′,d′′(p2) = q2.Now we have a
hieved that the fun
tion fc′′,d′′ 
ontains two tuples (p1, q1)and (p2, q2) that 
an be addressed by the variables in XT ∪YT . The distan
ebetween these points is independent of the assignment to the variables in
XS ∪ YS. In order to apply Lemma 4.3 we have to be sure, that (p1, q1) and
(p2, q2) 
an be used to identify a shifted 
utting of the initial graph 22n−1

x
,i.e., 22n−1

x
→ 22n−1

c′′+x
− d′′, with positive numbers in the denominator. Themodi�
ation of d is not 
riti
al, be
ause it does not have any in�uen
e onthe denominator. For the values c we assure at the beginning that c is greaterthat 0 (either be
ause c = ‖aXS

‖ is greater than 0 or by using ǫmin/2). Justthe rotation operation de
reases c. But as we 
ontinuously 
he
k, whetherthe value of fc′′,d′′ hits a point in AT ×BT , it is impossible that the fun
tion'spole will be translated a
ross any point of the grid. Therefore, Lemma 4.3
an be used to identify the underlying fun
tion fc′′,d′′ with (p1, q1) and (p2, q2).Our last step is now the re
onstru
tion of the original step fun
tion
fAT ,BT

c,d . If we have just moved the graph upwards without rotating it, thenfor every x ∈ AT the 
orresponding value of the step fun
tion fAt,BT

c,d is the
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Figure 8: Re
onstru
tion of the step fun
tionsmallest value of BT that is at least fc′,d′(x). In the other 
ase we 
an usethe se
ond statement of Lemma 4.8 to re
onstru
t the original step fun
tion.Figure 8 illustrates the re
onstru
tion of the step fun
tion fAT ,BT

c,d .As we have seen a triple that 
onsists of two points and an additionalbit 
an en
ode any possible step fun
tion that itself represents a subfun
tionof MUL2n−1,n obtained by repla
ing i x- and j y-variables by 
onstants. Asthis subfun
tion 
an by uniquely re
onstru
ted by this representative, there
annot be two di�erent subfun
tions with the same representation. Themaximal number of these representation is
2n−i · 2n−j
︸ ︷︷ ︸

(p1,q1)

· 2n−i · 2n−j
︸ ︷︷ ︸

(p2,q2)

· 2
︸︷︷︸bit z

= 22(n−i)+2(n−j)+1.Up to now we have assumed that for at least two AT -values the fun
tion
fc,d is greater than 0 and smaller or equal to the greatest value in BT . A sub-fun
tion that is not of this type 
an be 
hara
terized by only one point (p, q)of the step fun
tion fAT ,BT

c,d . Summarizing there are less than 22(n−i)+2(n−j)+2di�erent subfun
tions.



Obviously there are at most 2i+j di�erent subfun
tions obtained by therepla
ement of i + j variables by 
onstants. Using the minimum of the twoupper bounds for ea
h layer we obtain the result that the π-OBDD size forMUL2n−1,n is O(2(4/3)n) for any variable order π.Combining Theorem 4.9 with an upper bound of 2i+6 on the number ofsubfun
tions obtained by the repla
ement of the variables xn−1, . . . , xn−i and
yn−1, . . . , yn−i by 
onstants presented in [3℄, we get the following result.Corollary 4.10. Let π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0). The π-OBDDsize for the representation of MUL2n−1,n is O(2(4/5)n).4.3 More general models and the most signi�
ant bit ofinteger multipli
ationSimilar to the results presented in [19℄ for the middle bit of integer multi-pli
ation the lower bound on the OBDD size of the most signi�
ant bit 
anbe extended to arbitrary oblivious binary de
ision diagrams of linear length.The 
omplexity of MUL2n−1,n for more general non-oblivious models thanOBDDs is open.Intuitively the most signi�
ant bit of integer multipli
ation seems to bemu
h easier than the middle bit. Using the same proof method as des
ribedby Wegener and Woelfel [34℄ it 
an be shown that it is impossible to provea better lower bound than Ω(n3/2/ log n) and Ω(n3/2) for the bran
hing pro-gram and Boolean formula size of the most signi�
ant bit using Ne
hiporuk'ste
hnique. Until now non-trivial lower bounds for the bran
hing program andBoolean formula size are unknown.5 A 
omparison between the middle and themost signi�
ant bit of integer multipli
ationIn this se
tion we �nish our 
onsiderations with a brief 
omparison betweenthe fun
tions MULn−1,n and MUL2n−1,n. For the most signi�
ant bit re-pla
ing a 
onstant number of variables by 
onstants may lead to a 
onstantsubfun
tion but for the middle bit we 
an repla
e almost an arbitrary quar-ter of the variables for ea
h fa
tor by 
onstants without obtaining a 
on-stant subfun
tion. The best known variable order for the most signi�
antbit is π = (xn−1, yn−1, xn−2, . . . , x0, y0) and the π-OBDD size of MUL2n−1,nis O(2(4/5)n). For the middle bit of integer multipli
ation the best knownvariable order is π′ = (x0, y0, x1, . . . , xn−1, yn−1) and the π′-OBDD size of



MULn−1,n is Θ(2(6/5)n). For ea
h variable order there exists an assignment
c to the variables of one fa
tor su
h that the 
orresponding OBDD size ofMULc

n−1,n is Ω(2n/2). In 
ontrast it is not di�
ult to prove that for ea
hvariable order the 
orresponding OBDD size of MULc
2n−1,n is O(n2) for ea
hassignment c. For the middle bit also large lower bounds for more generalBDD models are known whereas exponential lower bounds for non-obliviousmodels are unknown for the most signi�
ant bit.Con
lusionWe have already learned in primary s
hool how to multiply integers, nev-ertheless, the 
omplexity of integer multipli
ation is a fas
inating subje
t.Here, we have tried to deepen the knowledge on the set of subfun
tions ofthe most signi�
ant bit of integer multipli
ation in order to obtain the bestlower and upper bounds on its OBDD size.A
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