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Abstract

Integer multiplication as one of the basic arithmetic functions has
been in the focus of several complexity theoretical investigations and
ordered binary decision diagrams (OBDDs) are one of the most com-
mon dynamic data structures for Boolean functions. The BDD com-
plexity of two output bits of integer multiplication, the so-called middle
bit and the most significant bit, has been investigated intensively. In
this column we briefly survey results on the complexity of restricted
binary decision diagrams for integer multiplication and concentrate on
two recent results on the complexity of OBDDs for the most significant
bit. Our aim is not to be comprehensive but to deepen the knowledge
on the structure of integer multiplication.

1 Introduction

Integer multiplication is certainly one of the most important functions in com-
puter science and a lot of effort has been spent in designing good algorithms
and small circuits and in determining its complexity. For some computation
models integer multiplication is a quite simple function. It is contained in
NC" and even in TC%3 (polynomial-size threshold circuits of depth 3) but
neither in ACY (polynomial-size {V, A, =}-circuits of unbounded fan-in and
constant depth) nor in 7C%? [21]. For more than 35 years the algorithm of
Schénhage-Strassen [30] has been the fastest method for integer multiplica-
tion running in time O(nlognloglogn). Only recently, Fiirer has presented
an algorithm running in time nlogn - 2°0°¢"™ \where the running time holds
for multitape Turing machines [T6]. An algorithm with the same running
time based on modular arithmetic has been obtained by De, Kurur, Saha,

*TU Dortmund, LS 2 Informatik, beate.bolligQuni-dortmund.de



and Sapthariski [T3]. Until now it is open whether integer multiplication is
possible in time O(nlogn).

Definition 1.1. Let B, ,, denote the set of all Boolean functions f :
{0,1}"™ — {0,1}™ and B, the special case that m = 1. The Boolean function
MUL;,, € By, maps two n-bit integers v = x,,_1...20 and y = y,—1 ...y to
the ith bit of their product, i.e., MUL; ,,(z,y) = 2;, where x -y = 29,1 ... 2
and xg, yo, 20 denote the least significant bits. For ¢ € {0,1}" the Boolean
function MUL{ , € B,, is defined by MUL{  (z) =MUL; (7, c).

The Boolean function MUL-Graph,, € By, maps two n-bit integers x =
Tp_1...2gand Yy = y,_1...Y, and a 2n-bit integer z = 29, 1...29 to 1 iff
the product of x and y equals z.

Besides Boolean circuits and formulas, circuits whose underlying graph is
a tree after a suitable duplication of the inputs, branching programs (BPs)
are one of the standard representations for Boolean functions. (For a history
of results on branching programs see, e.g., the monograph of Wegener [32]).

Definition 1.2. A branching program (BP) on the variable set X, =
{z1,...,2,} is a directed acyclic graph with one source and two sinks la-
beled by the constants 0 and 1. Each non-sink node (or decision node) is
labeled by a Boolean variable and has two outgoing edges, one labeled by 0
and the other by 1. An input b € {0, 1}" activates all edges consistent with b,
i.e., the edges labeled by b; which leave nodes labeled by x;. A computation
path for an input b in a BP G is a path of edges activated by the input b
which leads from the source to a sink. A computation path for an input b
which leads to the 1-sink is called accepting path for b. The BP G represents
a function f € B, for which f(b) = 1 iff there exists an accepting path for the
input b. The size of a branching program G is the number of its nodes. The
branching program size of a Boolean function f is the size of the smallest BP
representing f. The length of a branching program is the maximum length
of a path.

Not only in complexity theory but also in applications people have used
(restricted) branching programs, where they are most often called binary de-
cision diagrams (BDDs). Representations of Boolean functions that allow
efficient algorithms for many operations, in particular synthesis (combine
two functions by a binary operation) and equality test (do two representa-
tions represent the same function?) are necessary. Bryant [TT] introduced
ordered binary decision diagrams (OBDDs) which have become one of the
most popular data structures for Boolean functions. Among the many areas
of application are verification, model checking, computer-aided design, and
symbolic graph algorithms.



Lower and upper bounds for integer multiplication are motivated by the
general interest in the complexity of important arithmetic functions. The
complexity of two output bits of integer multiplication has been investigated
intensively in the last years. The first one is the middle bit of integer multipli-
cation, the bit with significance 27!, which is the hardest bit to compute for
space bounded models of computation in the sense that if it can be computed
with size s(n), then any other bit can be computed with size at most s(2n).
More precisely, any branching program for MULy,,_; 2, can be converted into
a branching program representing MUL, ,,, 0 <1 < 2n — 1, by relabeling the
nodes and by replacing some inputs with the constant 0. As a consequence
the first large lower bounds on the size of restricted branching programs have
been shown for MUL,,_; ,,. The second one is the bit 25,,_; which is the most
important bit of integer multiplication in the following sense. Since it has the
highest value, for the approximation of the value of the product of two n-bit
numbers x and y it is the most interesting one. On the other hand for space
bounded models of computation zs,_; is easy to compute in the sense that if
it cannot be computed with size s(n), then any other bit z;, 2n — 1 > i > 0,
cannot be computed with size s(i/4).

In the following we give some motivation for the investigation of the
OBDD size of integer multiplication.

The middle bit of integer multiplication

A lot of effort has been spent in trying to verify multiplier circuits using
OBDDs. In 1998 an OBDD for the 16-bit multiplication circuit 6288, one
of the most important ISCAS (International Symposium on Circuits and
Systems) benchmark circuits, has been constructed [39]. To the best of our
knowledge, until now it has been impossible to construct OBDDs for input
length n = 32 and even the representation of all output bits of 16-bit mul-
tiplication by SBDDs, a more general OBDD model for the representation
of multiple output Boolean functions, is a challenging task. Since the size of
OBDDs and SBDDs can be quite sensitive to the chosen variable order, one
of the reasons might be that different output bits of integer multiplication
have different variable orders leading to reasonable size (for the definition
of OBDDs and variable orders see Definition EZ2). Bryant [II] has already
bounded the size of SBDDs for integer multiplication by proving that for each
variable order there exists an output bit for which the OBDD size is at least
27/8_ For many applications it would be sufficient to represent each output
bit by an OBDD of moderate size according to an suitably chosen variable
order. Already Bryant has destroyed this hope in 1991 [I2]|. He has shown
that OBDDs for the representation of the middle bit of integer multiplication



have at least size 2/® for any variable order. Nevertheless, Bryant’s lower
bound does not exclude that even 256-bit multiplication can be represented
in reasonable size. Therefore, the OBDD size for integer multiplication has
been further investigated.

The most significant bit of integer multiplication

In the last years a new research branch has emerged which is concerned with
the theoretical design and analysis of so-called symbolic algorithms for classi-
cal graph problems on OBDD-represented graph instances (see, e.g., [17, [1§],
[28], and [38]). Symbolic algorithms have to solve problems on a given graph
instance by efficient functional operations offered by the OBDD data struc-
ture. Therefore, at the beginning the OBDD-based algorithms have been
justified by analyzing the number of executed OBDD operations (see, e.g.,
IT'7, [18]). Since the runtime of an operation on an OBDD G often depends on
the size of GG the analysis of the over-all runtime of symbolic methods includ-
ing the analysis of all OBDD sizes occurring during such an algorithm is more
significant (see, e.g., [38]). In order to investigate the limits of symbolic graph
algorithms for the all pairs shortest paths problem Sawitzki [28] has investi-
gated the graph of integer multiplication and has presented an exponential
lower bound on its OBDD size. Afterwards he has defined inputs for the all
pairs shortest paths problem such that during the computation representa-
tions for MUL-Graph,, are necessary. Another investigated graph problem
is the following. Computing the set of nodes that are reachable from some
source s € V in a digraph G = (V| F') is an important problem in computer-
aided design, hardware verification, and model checking. Proving exponential
lower bounds on the space complexity of a common class of OBDD-based al-
gorithms for this reachability problem, Sawitzki [29] has presented the first
exponential lower bound on the size of 7-OBDDs representing the most sig-
nificant bit for the variable order m where the variables are tested according to
increasing significance, i.e. 7 = (o, Yo, 1, Y1, - -, Tn_1,Yn—1). For the lower
bounds on the space complexity of the OBDD-based algorithms he has used
the assumption that the output OBDDs use the same variable order as the
input OBDDs. But in contrast, practical algorithms usually run variable re-
ordering heuristics on intermediate OBDD results in order to minimize their
size. Therefore, lower and upper bounds on the OBDD size of the most sig-
nificant bit of multiplication with respect to an arbitrary variable order are
interesting.



Organization

In this column we give a brief overview on results concerning the complexity
of restricted branching programs or binary decision diagrams for the functions
MUL,,_1, and MULy,_;,. We do not aim to be comprehensive but focus
on their OBDD complexity, in particular new results on the most significant
bit. Since the article is meant to be self-contained, in Section 2 we start with
the presentation of some restricted branching program or binary decision
diagram models. Moreover, we repeat the relevant relation between one-way
communication complexity and the size of OBDDs.

Section 3 contains results on the size of restricted branching programs
or binary decision diagrams for the middle bit of integer multiplication. We
present lower and upper bounds on the OBDD size and sketch results on the
size of more general models.

The main results of this survey are presented in Section 4. Using only
methods from one-way communication complexity Sawitzki’s restricted lower
bound on the size of OBDDs for MULy,,_1,, [29] is improved. Afterwards a
general lower bound and upper bounds are presented. Remarks on the size of
more general models for the most significant bit complete our investigation.

Finally, in Section 5 we summarize our results by a comparison between
the middle and the most significant bit.

2  Preliminaries

In this section we introduce some notation. Furthermore, we give an overview
on some restricted branching program or binary decision diagram models and
provide relevant technical background from communication complexity.

2.1 Notation

In the rest of the paper we use the following notation.

Let [z]', n — 1 > 1> 7 > 0, denote the bits z; ...z, of a binary number
2 = (Tp_1,..., 7). For the ease of description we use the notation [z]\ = z if
(2,...,2,) is the binary representation of the integer z € {0,...,2""*1 —1}.
Sometimes, we identify [z]. with z if the meaning is clear from the context.

We use the notation (z)! for an integer z to identify the bits at position

[,...,r in the binary representation of z.
Let ¢ € {0,...,2™ — 1}, then ¢ denotes the number (2™ — 1) — ¢. For
a binary number z = (z,_1,...,%9) we use the notation T for the binary

number (T,,_1, ..., Tp)-



Let as be an assignment to variables in a set S and ag(x;) € {0,1} be
the assignment to x; € S, then we define |las|| := >, g as(zx) - 2.

In the following for the sake of simplicity we do not apply floor or ceiling
functions to numbers even when they need to be integers whenever this is
clear from the context and has no bearing on the essence of the presented
proofs.

2.2 Restricted branching programs or binary decision
diagrams

It is well known that the logarithm of the branching program size is essen-
tially the same as the space complexity of the nonuniform variant of Turing
machines (see, e.g., [32]). Hence, it is a fundamental open problem to prove
superpolynomial lower bounds on the size of branching programs for ex-
plicitly defined Boolean functions, i.e., functions contained in NP. In order
to develop and strengthen lower bound techniques one considers restricted
computation models. There are several possibilities to restrict branching pro-
grams, among them restrictions on the multiplicity of variable tests or the
order in which variables may be tested.

Definition 2.1. i) A branching program is called (syntactically) read-k-
times (BPEk) if each variable is tested on each path at most & times.

ii) A branching program is called s-oblivious for a sequence of variables
s=1(81,...,5), s; € X, or short oblivious, if the set of decision nodes
can be partitioned into disjoint sets V;, 1 < ¢ < [, such that all nodes
from V; are labeled by s; and the edges which leave V;-nodes reach a
sink or a Vj-node where j > 4. The length of an s-oblivious branching
program is the length of the sequence s.

Nondeterministic branching programs and randomized branching pro-
grams are defined in the obvious way by introducing additional, unla-
beled nodes at which nondeterministic or randomized decisions, resp., are
taken. An approximating branching program for a Boolean function f with
(two-sided) error € is a deterministic branching program computing an e-
approximation of f, i.e., a function that differs from f on at most an e-
fraction of the inputs.

For nondeterministic read-once branching programs a further generaliza-
tion of obliviousness can be obtained by restricting the order of variables in
such a way that it equals for each input the order of variables for this input
performed in a complete given deterministic read-once branching program,
i.e., a BP1 where on each path from the source to the sinks all variables



are tested. This complete read-once branching program is called graph or-
der and the resulting nondeterministic read-once branching program is called
graph-driven. If the graph order is a tree of polynomial size, then it is called
tree-driven.

Combining restrictions on the multiplicity of variable tests with the prop-
erty of obliviousness we obtain oblivious read-once branching programs, bet-
ter known as OBDDs.

Definition 2.2. An OBDD is a branching program with a wvariable order
given by a permutation 7 on the variable set. On each path from the source
to the sinks, the variables at the nodes have to appear in the order prescribed
by 7 (where some variables may be left out). A 7-OBDD is an OBDD ordered
according to m. The m-OBDD size of f denoted by m-OBDD(f) is the size of
the smallest 7-OBDD representing f. The OBDD size of f, sometimes also
called OBDD complexity of f, (denoted by OBDD(f)) is the minimum of all
m-OBDD(f).

The size of the minimal 7-OBDD representing a Boolean function f on n
variables, i.e., f € B,, is described by the following structure theorem [3T].

Theorem 2.3. The number of x;)-nodes of the minimal m-OBDD for f is
the number s; of different subfunctions f‘xw(l):al7_,_7%(1._1):%_1, A, ...,0;_1 €
{0,1}, essentially depending on .y (a function g depends essentially on a
variable z if gl.—o # gj2=1)-

It is well known that the size of an OBDD representing a function f
depends on the chosen variable order. Since in applications the variable order
is not given in advance we have the freedom (and the problem) to choose a
good or even an optimal order for the representation of f. In general OBDDs
do not have nice algorithmic properties. There are examples known such that
gn and h,, are two Boolean functions which have OBDDs of linear size (for
different variable orders) but f,, = g,V h, has even exponential BP1 size (for
an example see, e.g., Proposition 2 in [6]). If a variable order 7 is fixed, all
important operations can be performed efficiently.

SBDDs (shared binary decision diagrams) are an extension of OBDDs
that can express multiple functions. An SBDD represents a Boolean func-
tion f € By, 1 {0,1}" — {0, 1} by representing simultaneously the output
functions fi, fo,..., f;m of f, where the representations for the different co-
ordinate functions fi, fo,..., f,, may share nodes.



2.3 One-way communication complexity and the size of
OBDDs

In order to obtain lower bounds on the size of OBDDs one-way communica-
tion complexity has become a standard technique (see Hromkovi¢ [22] and
Kushilevitz and Nisan [23] for the theory of communication complexity and
the results mentioned below).

The main subject is the analysis of the following (restricted) communi-
cation game. Consider a Boolean function f € B, which is defined on the
variables in X,, = {z1,...,x,}, and let IT = (X4, Xp) be a partition of X,.
Assume that Alice has only access to the input variables in X, and Bob has
only access to the input variables in Xz. In a one-way communication proto-
col, upon a given input z, Alice is allowed to send a single message (depending
on the input variables in X 4) to Bob who must then be able to compute the
answer f(z). The one-way communication complexity of the function f de-
noted by C(f) is the worst case number of bits of communication which need
to be transmitted by such a protocol that computes f. It is easy to see that
an OBDD G with respect to a variable order where the variables in X 4 are
tested before the variables in Xz can be transformed into a communication
protocol and C(f) < [log|G|]. Therefore, linear lower bounds on the com-
munication complexity of a function f : {0, 1}%4l x {0, 1}¥8l — {0, 1} lead
to exponential lower bounds on the size of 7-OBDDs where the X 4-variables
are before the Xpg-variables in 7.

One central notion of communication complexity are strong fooling sets
which play an important role in the lower bound proofs later on.

Definition 2.4. Let f : {0,1}Xal x {0,1}%sl — {0,1}. A set S C
{0, 13Xl % {0,1}¥8l s called strong fooling set for f if f(a,b) = c for all
(a,b) € S and some ¢ € {0,1} and if for different pairs (a,b;), (ag,bs) € S
at least one of f(ay,bs) and f(aq, by) is unequal to c.

Theorem 2.5. If f : {0, 1}X4l x {0, 1}X5l — {0, 1} has a strong fooling set
of size t, the communication complexity of f is bounded below by [logt].

Because of our considerations above, the size ¢t of a strong fooling set for
f is a lower bound on the size of OBDDs representing f with respect to a
variable order where the variables X4 are tested before the variables Xpg.
Because of the symmetric definition of strong fooling sets, ¢ is also a lower
bound on the size of OBDDs representing f with respect to a variable order
where the variables Xpg are tested before the variables X 4. The crucial step
to prove large lower bounds on the OBDD complexity of a function is to
obtain for all partitions of the variables large lower bounds on the size of



fooling sets for subfunctions of the given function (best case communication
complexity).

In the rest of this section our aim is to define a function f, with large
communication complexity which is a main ingredient in our lower bound
proof on the OBDD size of the most significant bit of integer multiplication.

First, we take a look at known results about the communication com-
plexity of some popular functions. Let EQ, : {0,1}" x {0,1}" — {0,1} be
defined by EQ,,(a,b) = 1 iff the vectors a = (aq,...,a,) and b = (by,...,b,)
are equal. It is well-known and easy to prove that C'(EQ,,) = n. Obviously
the same results can be achieved if Alice gets exactly one of the variables
a; and b;, 1 < ¢ < n. Similar results can be obtained for the functions
GT, : {0,1}" x{0,1}" — {0,1} and GT,, : {0,1}" x {0,1}" — {0, 1}, where
GT,(a,b) = 1iff [a]? > [b]} and GT,(a,b) = 1 iff [a]? < [b]7.

Now, we are ready to define the function f, € Bs, on the variables
a=(ay,...,a,), b=_(b1,...,b,), and ¢ = (c1,...,¢y):

fula,b,c) == (EQ,(a,¢) AGT,(a,b)) vV GT,(a,c).

Using case inspection on the distribution of the c-variables it is not difficult
to prove that for a partition, where the a- and b-variables are separated, there
exists a strong fooling set of size 2" for f,,. In other words the communication
complexity of f, is not smaller than the communication complexity of GT,,
and the distribution of the c-variables does not simplify the task. The same
result can be obtained if Alice gets exactly one of the variables a; and b; for
all 2 € {1,...,n}. In this case it is not important whether the investigated c-
variables belong to Alice or Bob but whether the considered a- and c-variables
or b- and c-variables are tested together.

3 The middle bit of integer multiplication

In this section we present some results on the OBDD size of the middle bit
of integer multiplication. Furthermore, we investigate more general BDD
models.

3.1 On the OBDD size of the middle bit of integer mul-
tiplication
Bryant’s lower bound of 2/% on the OBDD size of MUL,,_1,, is unsatisfac-

tory since it does not rule out the possibility that 64-bit multipliers can be
represented by OBDDs containing only 256 nodes. Since the aim is to use



OBDDs for realistic applications one is interested in small constructions or a
better lower bound. Introducing a new technique based on universal hashing
Woelfel [35] has improved the lower bound considerably to 2"/ /61 —4. This
result implies that any OBDD for 64-bit multiplication needs more than 70
million nodes and the verification of 128-bit multipliers is infeasible because
more than 3 - 10'” OBDD-nodes are necessary.

The main proof idea in Bryant’s and Woelfel’s lower bound proofs is to

show that for every variable order 7 there exists an integer ¢ € {1,...,2" —
1} such that the 7-OBDD size of MUL;,_,  is exponential. Bryant has

chosen ¢ in such a way that only two input bits of ¢ are set to 1. Therefore,
the product of z and y can be seen as the sum of two integers obtained
by shifting z in an appropriate way. More precisely, if y is replaced by
the binary representation of ¢ and ¢ = 2/ + 2" then c- 2 = - 2" + x -
214 Woelfel has enlarged the possible choices for the integer c. As a result
he has been able to prove that for every variable order 7 there exists an
integer ¢ such that MUL{_, | has a large number of subfunctions obtained
by replacements of the first n/2 z-variables in w by constants. Summarizing
Bryant’s and Woelfel’s lower bound proofs rely only on the existence of a
constant factor ¢ for each variable order 7 for which MUL{_, , leads to a
large m-OBDD representation. If one would like to improve the lower bound
there are two possibilities. The first one is to consider multiple values for c,
the second one to improve the lower bound for the 7-OBDD size of MUL] _, ,
for an suitably chosen constant c. Woelfel has shown that the latter approach
cannot yield significant better lower bounds because the variable order 7 =
(w0,71,...,7,_1) leads to OBDDs of size at most 3 - 2"/2 for each integer c.
By combining this result with the observation that the k& most significant
bits of one input vector are not important any more if the k£ least significant
bits of the other input vector are known, Woelfel has obtained the first non-
trivial upper bound of (7/3) - 24/3" on the size of OBDDs for MUL, 4,
with respect to the variable order 7 = (yo,...,Yn_1,%0,.-.,Tn_1). Amano
and Maruoka [3] have improved this upper bound to 2.8 - 26/ for so-called
quasi-reduced or complete OBDDs, i.e., OBDDs where on each path from the
source to the sinks all variables have to be tested, and the pairwise ascending
variable order m = (2o, %0, -+, Tn_1,Yn_1). (It is not difficult to see that the
size of a quasi-reduced OBDD can be at most n 4 1 times larger than the
size of a reduced OBDD for a given function f with respect to the same
variable order.) Despite the considerable amount of research dealing with
the complexity of the middle bit of multiplication, the gap between lower and
upper bounds on its OBDD size is still large. Furthermore, even Woelfel’s
improved lower bound does not really justify why OBDDs for multipliers of
input length n = 64 cannot be constructed nowadays using current standard



PC hardware. Sauerhoff [26] has shown that the upper bound of Amano
and Maruoka [3] is in fact asymptotically optimal for the order chosen by
them which is believed to be one of the best ones. For n = 64 his bound is
larger than 1.62 - 102!, This surely explains why an OBDD with respect to
this variable order cannot be generated. Nevertheless, there is the possibility
that there are considerably better variable orders.

3.2 On the size of more general BDD models for the
middle bit of integer multiplication

In learning theory and genetic programming OBDDs are used to represent ap-
proximations of Boolean functions. Gronemeier [20] has shown that for every
variable order 7 the approximation of some output bits of integer multipli-
cation with respect to the uniform distribution and constant error requires
m-OBDDs of exponential size. Nevertheless, approximating the middle bit of
integer multiplication with polynomially small error is easy even for read-once
branching programs [271].

Although there has been considerable progress in the development of lower
bound proofs by the investigation of weakly restricted BDD models, the lower
bound methods often only work for a quite limited class of functions. Besides
the interest in finding lower bounds as large as possible or proving superpoly-
nomial lower bounds for more and more general BDD models, it is important
to apply the existing methods to (practically) important functions. Lower
bound proofs for such functions may help to develop new or refined proof
techniques, or can lead to new insights into the properties of the consid-
ered functions. This is the motivation for the further investigation of the
complexity of integer multiplication for more general BDD models.

Methods from communication complexity have been used to prove large
lower bounds in several binary decision diagram models. Bryant [T2] has used
the fooling set method to obtain lower bounds on the communication com-
plexity of the middle bit of multiplication which implies an exponential lower
bound of size 2*/® for OBDDs representing MUL,_1,. Incorporating Ram-
sey theoretic arguments of Alon and Maass [2] and using the rank method of
communication complexity Gergov [I9] has extended Bryant’s lower bound
to arbitrary nondeterministic linear-length oblivious BPs. His lower bound
is still non-polynomial for length o(nlogn/loglogn). Since Woelfel’s larger
lower bound on the OBDD size of MUL,,_; ,, has not been proved using strong
fooling sets his result cannot generalized in the same way as Bryant’s to non-
deterministic linear-length oblivious branching programs. In [I] Gergov’s
reduction has been applied to deduce that also randomized OBDDs require



exponential size and it has been shown that in contrast the graph of integer
multiplication MUL-Graph,, has randomized OBDDs of polynomial size. For
the later result the fact has been used that it is easy to verify with small
error probability whether the product of two integers equals some given out-
put applying arithmetic modulo a random chosen prime. For non-oblivious
models Ponzio [25] has presented the first (weakly) exponential lower bound.
He has shown that the complexity of the middle bit of integer multiplication
is 220" for read-once branching programs. In [6] the first exponential lower
bound on the size of a nondeterministic non-oblivious read-once branching
program model, namely for nondeterministic tree-driven BP1s, has been pre-
sented. An extension of the proof shows that all subfunctions of MUL,,_4,,
obtained by the replacement of up to (n/logn)'/?=¢ variables, ¢ > 0 any con-
stant, have exponential size for nondeterministic OBDDs. Since the result
also holds for the parity-acceptance mode, where the function value equals
1 for an input iff the number of its accepting paths is odd, this has been
the first non-trivial lower bound for an important function on non-oblivious
restricted BP1s with an unlimited number of parity nodes.

The fact that integer multiplication defines a universal hash class
T2, 15 B6], called multiplicative hash class, has also been used by Bollig
and Woelfel [9] to improve the exponential lower bound on the size of BP1s
up to 21"} which is even larger than Bryant’s lower bound on the OBDD
size. Moreover, the analysis seems to be much easier than the counting
technique used by Ponzio. At the beginning one reason for the difficulties in
proving exponential lower bounds on the size of binary decision diagram mod-
els representing MUL,,_; ,, could have been arisen from the fact that integer
multiplication can express many different shifting and adding combinations
such that the effect of partial assignments and therefore the subfunctions
are not easy to analyze. Using methods which rely on universal hashing it
has been shown that even if almost a quarter of the variables of each factor
has been replaced by constants, each result of the product bits between the
positions n — 1 and (3/4)n (the results for MUL,,_1,, to MUL3/4yn,) is still
possible. Using an algebraic approach in [8] a lower bound of 2L(*=46)/12] . ;1
for a restricted nondeterministic BP1 model with parity acceptance mode,
called parity graph-driven BP1s, has been shown. This result has been mo-
tivated by the fact that until now no superpolynomial lower bound on the
size of unrestricted nondeterministic BP1s with parity acceptance mode for
an explicitly defined Boolean function has been known. Since exponential
lower bounds on the size of unrestricted nondeterministic read-once branch-
ing programs which represent MUL,,_; ,, had been unknown, one step towards
proving such bounds was to investigate BP models “inbetween” deterministic



and nondeterministic BP1s and a model where some but not all variables
may be tested multiple times [I0, B7]. Finally, Sauerhoff and Woelfel [27]
have achieved a major breakthrough presenting exponential lower bounds on
the size of nondeterministic and randomized BPks for MUL,,_, ,,.

Wegener and Woelfel [34] have considered unrestricted branching pro-
grams and Boolean formulas over the basis B of all binary operations. Since
more than 40 years the best lower bounds for explicitly defined functions are
for general branching programs of order n?/ log” n and for Boolean formulas of
order n?/logn. These results have been proved with Nechiporuk’s technique
[24]. It is well known that this method cannot yield better lower bounds.
In [34] the following results have been presented. Any branching program
for MUL,,_1, has at least Q(n*?/logn) nodes and any Boolean formula for
MUL,_; ,, has size at least Q(n3/2). Furthermore, it has been proved that us-
ing Nechiporuk’s technique it is impossible to prove better lower bounds than
Q(n®?/logn) and Q(n°?) for the branching program and Boolean formula
size of MUL,,_1,. These are non-trivial limits of Nechiporuk’s technique.
Until now it is still an open question whether the lower bound method has
been applied in the best possible way in [34].

4 The most significant bit of integer multipli-
cation

Although many exponential lower bounds on the OBDD size of Boolean func-
tions are known and the lower bound methods are simple, it is often a more
difficult task to prove large lower bounds for some predefined and interest-
ing functions. The most significant bit of integer multiplication is a good
example. Despite the well-known lower bounds on the OBDD size of the
so-called middle bit of multiplication (|T2], [35]), only recently it has been
shown that the OBDD complexity of the most significant bit is also expo-
nential [5] answering an open question posed by Wegener [32]. Here, we start
our investigation by an improved lower bound on the size of 7-OBDDs for
MULg,—1,,, where 7 is a fixed variable order. Using communication com-
plexity the proof is very simple and elementary. Afterwards we present the
best general lower bound on the OBDD size for MULjg,,_; ,, known so far and
conclude our considerations by the best known upper bound.



4.1 Lower bounds on the OBDD size of the most signif-
icant bit of integer multiplication

In this section we start our investigation of lower bounds on the size of
OBDDs for MULjy,,_; ,, by presenting a lower bound for some fixed variable
order. Afterwards we present a general lower bound which is much smaller
but also exponential. The ideas of the general lower bound have been pre-
sented in [4].

Using techniques from analytical number theory Sawitzki [29] has pre-
sented a lower bound of 2%/% on the size of m-OBDDs representing the
most significant bit of integer multiplication for the variable order m where
the variables are tested according to increasing significance, ie., m =
(o, Yo, T1, Y15+ -+, Tn-1,Yn—1). Here, we prove a larger lower bound in an
easier way and without analytical number theory.

Theorem 4.1. Let m = (xo, Yo, T1, Y1, - - - s Tn—1,Yn—-1). The m7-OBDD size for
the representation of MULsg,,_1,, is Q2n/4).

Proof. We start with the following two useful observations. For a number
27=1 4 ¢27/2 the corresponding smallest number such that the product of the

two numbers is at least 22"~ is 2% — 27/2F1 4 402 — L%J . Furthermore,
403

n/2 2
2" > 4 {7211/21 w

J > 4(0 — 1)

for 0 < ¢ < 27/4=1 Using these two facts it is not difficult to construct a
strong fooling set of size 27/4~1:

Let Xy := {Tn_1,Tn-2,. .., Tns2}, YU = {Yn-1,Un-2,- -, Yns2}, Xp =
{Znjo-1,Tpjo—2, ... 20}, and Yo := {Ypnj2-1, Ynj2—2, - - -, yo}. We define Z, :=
Xy UYy and Zp := X, UY,. The Set S contains all pairs (a,b) for ¢ €
{1,2,...,2"/471} with the following properties:

1. a is an assignment that consists of a partial assignment a, to the vari-
ables in Xy and a partial assignment a, to the Yj-variables where
|a.|| =271 + 0272 and ||a,|| = 2" — £2"/**! and

2. b is an assignment that consists of a partial assignment b, to the vari-
ables in X; and a partial assignment b, to the Y;-variables where

3
bl = 0 and [lo]] = 422 — | gty |

For all pairs in S the function value of MULy, 1, is 1. Let (ai,b;) and
(ag,by) be two different pairs in S. If the value of the partial assignment of



the X -variables according to a; is 27! + ¢;2"? and the value of the partial
assignment of the Xy -variables according to as is 271 +£52"/2 where w.l.0.g.
{y < s, the function value of MULsy,,_ (a2, ;) is 0. Therefore, S is a fooling
set of size 2/4-1, O

Because of the symmetric definition of strong fooling sets we also obtain
a lower bound of 2*/4~! on the size of 7’-OBDDs for the most significant bit,
where 7’ = (xn—la Yn—15Tn—2;Yn-2, - - - , L0, yO)

Now, we prove the general lower bound.

Theorem 4.2. The OBDD size for the representation of MULsg,_1, is
Q(Qn/GO)

Proof. We start with a (simplified) presentation of the main proof ideas for
a lower bound of (2%/%) and present afterwards the idea how to improve
this lower bound up to £2(27/%).

Our aim is to show for an arbitrary variable order 7 that a m-OBDD
for MULy,,_1,, contains a m-OBDD for the Boolean function f,  defined in
Section 223}

fu(a,b,c) = (EQ,,(a,¢) AGT,(a,b)) vV GT,(a,?),

where for each position i the variables a; and b; are suitably separated in 7
and n’ = ©(n). Therefore, the size of the 7-OBDD for MUL,,,_; ,, has to be
large. The vector a is a subvector of one of the inputs z and y for MULy,,_1 ,,,
the vectors b and c¢ of the other input.

We use the idea of the following reduction from multiplication to squaring
presented by Wegener 33|, where squaring computes the square of an m-bit
input. For two m-bit numbers u and w the number ¢ := v - 22("*+D 4 4 is
defined. Then

02 — g2 . QMmAD) 4 02(mA DL 4 2

Since w? and ww are numbers of length 2m, the binary representation of the
product uw can be found in the binary representation of ¢, (Figure [l shows
the bit composition of the number ¢2.)

A key observation is the following one. The number L%J is smaller

than ¢ if ¢ < 27/473/2. As a consequence if b, is the binary representation
of ¢, by is the binary representation of ¢2, L the length of b,, and if there
exists j, where j > L — 2, and [b2|; = 1, there is no difference in the upper

half of the binary representations of the numbers 4¢? and 4¢* — L%J.



6m+3 4d4m+4 4m+2 2m+3 2m — 1 0

0 000 2

’U,2 u-w U)2

Figure 1: The bit composition of the number ¢2

More precisely, if &' is the binary representation of 4/ and b” is the binary

representation of 402 — L2"/4+31+€J’ then B35 = V)37

Next, we investigate requirements that have to be fulfilled for inputs x
and y, where MULy, ,(7,y) = 1. If z represents a number 2"~ 4 2%/2,
1 < ¢ < 2%43/2 the upper half of y has to represent a number of at least
"2 90 ie., [y]z/_; > 27/2 — 2¢. Tf the upper half of y represents a number
greater than 2"/2 — 2/, the function value MULy, 1, (7,y) is 1. Let j be the
minimum integer in the set {i | n/2 < i < (3/4)n —3/2 and z; = 1}. If
W2 > [2]57f, the function value MULy, 1, is 0. If [g]}5 < [z]7,], the
function value MULy, 1, is 1. If ;41 = 1, [g]70y = [#]7,7, and [y]fl/2 =0,

/271 has to represent a number of at least 462 — {LJ

[y] 2n/2—1+£

In order to use Wegener’s observation on squaring mentioned above we
only consider integers £ where ¢ = u22("*) 4w, u,w < 2™ and m = n/12 —
5/6. (Later on we show that m can be enlarged which leads to a larger lower
bound.) For this reason we replace the variables @, /21m., - .., Tn/2+2m+1 by 0.
(See Figure B for the composition of the number x.) Afterwards we replace
some of the x-variables and the corresponding y-variables by constants, where
yi+1 18 the corresponding y-variable to x;, such that a certain part of uw is
equal to a certain part of 2¢ - w for d suitably chosen. Furthermore, we
choose w in such a way that the assignments to the variables at position
3m +5,...,6m + 5 are the same in the binary representations of 4¢? and

40% — {%J Moreover, for different integers ¢; and ¢y (which means

different assignments to the w-variables) the assignments to the variables at
position 3m+5, ..., (7/2)m+4 in the binary representations of 4¢% and 4/3 are
different. (Figure Blillustrates some of the replacements of the y-variables.)

: : 2+(n/12)—11/6
Now we make our proof idea more precise. We rename [x]Z?QJ’(n/ =1/

by [w]g~! and [az]%giz;éﬁg by [u]f. If £ = w - 22™*D 4 4 the product

u-w can be found at position 2m+5,...,4m+4 in the binary representation



10 ... 0 a..0 0 ... 0] z

Figure 2: The composition of the input z

4m+57 +43m—|—4

6m +5 Im

2m +1 0

u? 0...0 1... 1]1... 1]y

~

wl

Figure 3: The effect of the replacements of some of the y-variables, where
u = [u] (w' has to be at least (2¢- w)gﬂ)mfl)

of 4¢2. The crucial step is to choose an appropriate subset of the input
variables in order to show that there exists a large strong fooling set. Let
S = {Wm2, -, Win—1, Ysmtss - - - Y7/2)m+a ) and T be the set of the first
|T'| variables according to m, where there are m/2 variables from S, and
B be the set of the remaining variables. Let Wgr be the w-variables in
SNT, Wgp the w-variables in S N B. Similar the sets Ys, and Yg p are
defined. Using simple counting arguments we can prove that there exists a
distance parameter d such that there are at least m /8 pairs (w;, Yomi5+itq) in
Wsr xYspUWs g x Ysr (for a similar proof see, e.g., [I2]). Let I be the set
of indices, where w; belongs to such a pair. We replace the u-variables such
that [u]j'~" = 2¢ and the variables yum 6, . - -, Yem+5 such that [y|5rte = 2%,

The variables x,/54;, i € I, are called free wz-variables, the variables
Ynjo+it1 and Yopisiivd, © € I, free y-variables. The free z-variables will
play the role of the a-variables, the free variables y,,/24;41, © € I, the role
of the c-, and the remaining free y-variables the role of the b-variables in
the reduction from the function f,, mentioned above to MULy,_;,. Now
we present the reduction. (Figure Hl shows some of the replacements to the
inputs z and y of MULg,,_1 ,,.)

- The variables y, 1 and x,_; are set to 1,

- Tpj24m-d—1 (Which corresponds to wy,—4—1) and 4, /21m—q are set to 1,



- Tpjarom+a (Which corresponds to wug) is set to 1, the correspond-
ing variable y,/2400m41)4d+1 18 set to 0, Yumyey2a to 1, the vari-

ables Y7 /2ym+5; - - - s Yamas4+2d A0 Yami742d, - - - Yomes to 0 (as a result
[Yimis = 2%
- The variables y,,/2, . . ., Yn/24m—d—1 are set to 0.

- Besides the free z-variables the remaining x-variables are replaced by
0.

- Besides the free y-variables the remaining y-variables are replaced by
1.

What is the effect of the replacements?

- The inputs z and y represent numbers that are at least 27!, since
otherwise the function value MULy,_; ,,(x,y) is 0.

- Since wy, g1 = 1 and [u]]™' = 29, 4¢? and 40% — {%J, where

¢ =y - 22"+t 4 4, do not differ in one of the bits at position 3m +
5,...,6m + 5 of their binary representations.

- Since Tn/24m—d—1 = 1 and Yn/24m—d = 1, Tnj2 = - = Tp/24m—d—2 = 0
and yn/2 = ... = Ynj24m-da-1 = 0, [x]n/22+m = [y]n/21+m+1, [x]njﬂmfd has

to be at least @]Zgizfdﬂ

n/2+m—1 —1n/24+m
L Tf ] > [l s MULyy g (2,y) = 1.

for inputs « and y, where MULy,,_1 ,,(z,y) =

- Since [y)§mts = 22¢ = 42 and because of the other replacements,

[ylsmt2 has to be at least (u-w) div 2™ for inputs z and y, where
MULgy—1n(z,y) =1, if [y]z/_; =2"/2 — 2¢ and [:E]Z/_Ql =2n/2"1 4y,

Therefore, the correctness of our reduction follows from our considerations
above. Considering the fact that m = n/12 —5/6, we get the result that the
OBDD complexity of MULg,_;, is at least (27/%).

Finally, we present the idea how to improve the lower bound on the OBDD
complexity of MULy, 1, up to ©(2%/%°). Up to now we have considered
numbers ¢, where ¢ = u - 220"*1) 4 4 and u, w < 2™ with m = (n/12) — 5/6.
Using the fact that in our lower bound proof only the upper half of the
bits in the binary representation of ww is important, uw div 26/2™ = 0,
u? div 207/ = 0, and «?> mod 2"/* = 0, we can choose { = u - 2™ + w,
w < 2™ and u < 207/8™  Ag a result we can enlarge m up to (2/15)n.

]
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Figure 4: A (simplified) presentation of replacements to some of the z- and
y-variables. The shaded areas contain the free variables (and possibly other
variables)

4.2 Upper bounds on the OBDD size of the most sig-
nificant bit of integer multiplication

In this section we prove an upper bound on the size of OBDDs according
to an arbitrary variable order representing the most significant bit of inte-
ger multiplication. Afterwards we present the best known upper bound on
the size of OBDDs representing MULy,,_; ,, according to the variable order
T = (Tp_1,Yn-1,Tn—2,Yn—2, - - -, Lo, Yo). LThe results of this section have been
presented in [.

We start our proof of the general upper bound with the investigation
of a function f that is closely related to the most significant bit of integer
multiplication. Let n € N be arbitrary but fixed in the rest of the section.

22n—1

Lemma 4.3. Let f : Rt — R" be defined as f(x) :== =—. For arbitrary
Ax, Ay > 0 there exists exactly one value v € RY with f(x)—f(x+Ax) = Ay.

In other words each distance pair (Az, Ay) defines uniquely two elements
in the definition set.
Next, we consider some modifications of the function f.

Definition 4.4. For ¢,d € R and n € N we define the function f.;: R — R

in the following way.
22n—1

fed(z) = . d.

The function f.4 contains the tuple (z,y) iff f.q4(x) =y.

Our proof idea of the upper bound on the size of OBDDs representing
MULy,_1, is to use the functions f.4 in order to analyze the number of




Figure 5: Rotation of the graph of the function f. 4

different subfunctions of MUL,,_,, obtained by replacements of some z-
and y-variables by constants. For this reason we have to relate the functions
fe,a to subfunctions of MULy,,_1 .

Definition 4.5. For a given function f, ; and two arbitrary finite sets A, B C
N and A, B # () the corresponding step function fc‘?éB : A — B is defined as

f2P () = min{y € Bly > foa(z)}.

MULy,,—1, can be uniquely described by (féB, where A, B ={0,...,2"—
1}. Obviously there can be several functions f. 4 that lead to the same step
function. It is easy to see that each function f,, can be characterized by two
tuples (z1,y1) and (x9,ys2), where f.4(x;) = y; and z;,y; € R for ¢ € {1,2}.
Unfortunately, the length of the numbers could be large. In order to find a
small representation for f.; we modify f. 4 without changing essentially the
corresponding step function.

We start to analyze the effect of moderate modifications of the parameters

¢ and d.



Lemma 4.6. Let ¢,d € R and A, B be two arbitrary finite, nonempty sub-
sets of N. Let y, be the largest element in B that is smaller than f.4(x)

and €, = c_dl(yz) —x, if y. is defined, otherwise e, := oo. We define
€min ‘= min{e,|z € A}. Then f(fc’lB = fifmm/w.

Lemma 4.7. Let ¢,d € RT and A, B be two arbitrary finite, nonempty sub-
sets of N. For x € A let ¢, := :}&B(x) — fea(x) if f;‘c’lB(x) is defined and oo
otherwise. We define €, := min{e,|x € A}. Then fféimm = fféB.

Lemma tells us that it is allowed to move the graph of the function
fea upwards, right until it hits its corresponding step function for the first
time, without changing the step function.

Lemma 4.8. Let ¢,d € R* and A, B be two arbitrary finite, nonempty
subsets of N, such that there exists at least one element o € A where
fea(zo) = fc’lB(:co), and there are at least two elements x1,xo € A where
min{yly € B} < foa(x;) < max{y|ly € B}, i € {1,2}. We define the follow-
ing rotation operation for f. with respect to (xo,yo): decrease ¢ continuously
to ¢ and adjust d to d' at the same time such that f. (xo) = fo .o (xo) is al-
ways fulfilled until there exists another element o' € A with fo 4(2') € B.

1. The rotation operation is finite.

2. The function ffc’lB can be reconstructed from fo g in the following way:

fA,B(x) _ mln{y € B‘y Z fC/7d/('r)}7 fo S Zo,
e min{y € Bly > foa(x)}, if x> x.

If we replace (c,d) to (¢, d’), the curve of the function f,, seems visually
to rotate to the graph of the function f. 4, because point (g, o) stays on
the graph, whereas all points left of zy are shifted upwards and the other
ones downwards. Nevertheless, the graph’s shape does not change since the
rotation can be decomposed to a vertical and a horizontal movement (see
FigureH). Therefore, it is still possible to use LemmaE3 for the identification
of fc’,d’-

Now we are able to prove our general upper bound on the 7-OBDD size
for MULgy,—1,.

Theorem 4.9. Let w be an arbitrary variable order. The m-OBDD size for
the representation of MULy,_;,, is O(24/3").
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Figure 6: Significant points for the evaluation of MULy,_; ,,

Proof. Our aim is to prove an upper bound of 22(*~9+2("=7)+2 on the number
of subfunctions of MULy,_;, obtained by replacements of i z- and j y-
variables by constants.

We assume in the following that ¢ # 0 and j # 0, since otherwise we
are done. If i = n an upper bound of 2"/ is easy to prove and we are
done, similarly an upper bound of 2"~% can be shown for j = n. Therefore,
we also assume in the following that ¢ # n and j # n. Let Xg be the
set of ¢ arbitrary z-variables and Ys be the set of j arbitrary y-variables,
Xr:={xo,...xn_1}\Xg, and Y7 := {yo, ..., yn-1}\Ys.

MULy,,_1,, answers the question, whether for a given assignment (a, b) of
the variables, the product ||a|| - ||0]| is at least 22"~ Therefore, the function
MULy,_1, can be described by specifying for every possible assignment a

of the z-variables, the assignment b of the y-variables with ||b]| = [22"_1-‘_

Tal
Figure @ shows MULy,,_; ,,, where for a value ||a| the smallest corresponding
value [|b]| that fulfills MUL,,_;, is dotted. Such pairs of assignments are
called significant points. (For sake of simplicity the possible values are at
least 2"~! because for smaller numbers the product cannot be at least 22771.)

Let ¢ = |laxs|| and d := ||by,||. We define Ar as the set of possible



Figure 7: Two different step functions

values ||ax,| that can be expressed by the variables from Xr. Let Br be
defined in the same way. Ap and By are independent of the choice of ¢ and
d, i.e., a grid can be defined for the ||ax,|- and ||bx, ||-values, which has
the same appearance for all possible assignments ¢ and d. A subfunction
of MULy,,_1, obtained by replacing the variables in Xg to ag and Yg to bg
can be described by the pairs of Ap- and Bp-values (||ax,||, [|by,||), so that
by, || is the minimal value that fulfills ||by, || > —2“—— — d. Therefore, the

ot [laxr ||
subfunction of MULy,_;, can be characterized by the step function
(see Definition EJ) for the underlying function f. 4.

Figure [d shows an example for two different step functions that result
from two different assignments to the variables in Xg U Y.

Ar,B
fed "

Since the subfunctions obtained by replacing the variables in Xg and Yy
by constants can uniquely be described by their step functions, our aim is
to prove the existence of a small representation such that the corresponding
step function and therefore the corresponding subfunction of MULy,, 4, can
be reconstructed later on. As each representation implicates at most one



possible step function, the number of different representations is an upper
bound on the number of different subfunctions.

The idea is to transform the function f, 4 in a moderate way into a func-
tion fo 4, such that fs » contains at least two points from Ay X By and the
step function fAT’BT can easily be obtained from f . In the following we
assume that for at least two Ap-values, the function value f, 4 is greater than
0 and smaller or equal to the greatest value in Br. The other cases will be
considered later on. If ¢ equals 0, we have to make some extra considerations.
Since the function f, 4 is not defined for the value ||ax,| = 0, we use Lemma
FL0l to move the graph a tiny distance to the left. As a result we obtain the
function fu 4 and f,5°7 = fA00T,

According to Lemma the graph is moved upwards by decreasing the
parameter d, right until the graph cuts the graph of its step function. Let fo 4

its step function. Obviously ff,‘Z,’BT =

be the resulting function and f/% ! br

f?Z’BT. We now have at least one element p; € Ar, so that fu u(p1) =
Ar,B
foa ™ (p) = aq.

If fo 4 contains another point (p2,q2) € Ar X By, we can be sure that
@2 is not equal to ¢; because the function is strictly monotonic. In this case
we stop the transformation and encode the step function fi’f by the triple
((p1,q1), (P2, q2), 1) where the last bit indicates that we stopped at this point.

Otherwise we modify the function f» 4 again to hit a second point of
Ar X Bp. Using Lemma the graph is rotated clockwise by decreasing ¢’
and adjusting d’, so that the point (pi, q1) stays on the graph. We get a new
function f.r 4o and another point (pe, ga) € Ar X By with for g1 (p2) = qo-

Now we have achieved that the function f.. 4» contains two tuples (p1, q1)
and (po, g2) that can be addressed by the variables in X7 U Y. The distance
between these points is independent of the assignment to the variables in
XsUYs. In order to apply Lemma 3 we have to be sure, that (py, ql) and
(p2,q2) can be used to identify a shifted cutting of the initial graph 2

2n—1 2n—1
ie., 2 2,,+ — d”, with positive numbers in the denominator. The

modification of d is not critical, because it does not have any influence on
the denominator. For the values ¢ we assure at the beginning that c is greater
that 0 (either because ¢ = |lax,|| is greater than 0 or by using €,,,/2). Just
the rotation operation decreases c. But as we continuously check, whether
the value of f. 4 hits a point in Ay x By, it is impossible that the function’s
pole will be translated across any point of the grid. Therefore, Lemma
can be used to identify the underlying function f.» 4 with (p1, ¢1) and (p2, ga).

Our last step is now the reconstruction of the original step function

chdT’BT If we have just moved the graph upwards without rotating it, then

Ay,B
2T s the

for every x € Ar the corresponding value of the step function f;
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Figure 8: Reconstruction of the step function

smallest value of By that is at least f. 4(z). In the other case we can use
the second statement of Lemma EL to reconstruct the original step function.
Figure [ illustrates the reconstruction of the step function fc‘?f’BT.

As we have seen a triple that consists of two points and an additional
bit can encode any possible step function that itself represents a subfunction
of MULy,,_1 ,, obtained by replacing 7 z- and j y-variables by constants. As
this subfunction can by uniquely reconstructed by this representative, there
cannot be two different subfunctions with the same representation. The

maximal number of these representation is

gn—i  gn—j gn—i on—j o _ 92(n—i)+2(n—j)+1
(p?,rql) (p;,qu) bit z

Up to now we have assumed that for at least two Ap-values the function
fe.a1s greater than 0 and smaller or equal to the greatest value in By. A sub-
function that is not of this type can be characterized by only one point (p, q)
of the step function fc‘?f’BT. Summarizing there are less than 22(n=)+2(n—j)+2

different subfunctions.



Obviously there are at most 27/ different subfunctions obtained by the
replacement of ¢ + 7 variables by constants. Using the minimum of the two
upper bounds for each layer we obtain the result that the 7-OBDD size for
MULy, 1, is O(2%/3™) for any variable order 7. O

Combining Theorem with an upper bound of 2°*% on the number of
subfunctions obtained by the replacement of the variables z,,_1, ..., x,_; and
Yn—1,- - -, Yn—i by constants presented in [3], we get the following result.

Corollary 4.10. Let m = (Tp—1,Yn—1, Tn—2,Yn—2, - - - , o, Yo). LThe m-OBDD
size for the representation of MULy, 1, is O(214/9"),

4.3 More general models and the most significant bit of
integer multiplication

Similar to the results presented in [I9] for the middle bit of integer multi-
plication the lower bound on the OBDD size of the most significant bit can
be extended to arbitrary oblivious binary decision diagrams of linear length.
The complexity of MULy,_;, for more general non-oblivious models than
OBDDs is open.

Intuitively the most significant bit of integer multiplication seems to be
much easier than the middle bit. Using the same proof method as described
by Wegener and Woelfel [34] it can be shown that it is impossible to prove
a better lower bound than Q(n%?2/logn) and Q(n3/?) for the branching pro-
gram and Boolean formula size of the most significant bit using Nechiporuk’s
technique. Until now non-trivial lower bounds for the branching program and
Boolean formula size are unknown.

5 A comparison between the middle and the
most significant bit of integer multiplication

In this section we finish our considerations with a brief comparison between
the functions MUL,,_;,, and MULg,_;,. For the most significant bit re-
placing a constant number of variables by constants may lead to a constant
subfunction but for the middle bit we can replace almost an arbitrary quar-
ter of the variables for each factor by constants without obtaining a con-
stant subfunction. The best known variable order for the most significant
bit is 7 = (Tn_1, Yn—1, Tn—2, - - ., To, Yo) and the 7-OBDD size of MULy,_; ,
is O(2#/>m). For the middle bit of integer multiplication the best known
variable order is ' = (z¢, Yo, Z1,...,Zn_1,Yn—1) and the 7-OBDD size of



MUL, 1, is ©(26/97). For each variable order there exists an assignment
¢ to the variables of one factor such that the corresponding OBDD size of
MULZ_, ,, is ©(2"/?). In contrast it is not difficult to prove that for each
variable order the corresponding OBDD size of MULS, _; , is O(n?) for each
assignment c. For the middle bit also large lower bounds for more general
BDD models are known whereas exponential lower bounds for non-oblivious

models are unknown for the most significant bit.

Conclusion

We have already learned in primary school how to multiply integers, nev-
ertheless, the complexity of integer multiplication is a fascinating subject.
Here, we have tried to deepen the knowledge on the set of subfunctions of
the most significant bit of integer multiplication in order to obtain the best
lower and upper bounds on its OBDD size.
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