SPACE AND WIDTH IN PROPOSITIONAL
RESOLUTION

Jacobo Toran

Abstract

Resolution is, due to its simplicity and its relation to several au-
tomated theorem proving algorithms, one of the best studied propo-
sitional proof systems. The most important complexity measure of a
resolution proof is its size, the number of clauses used in the proof.
In the last years, in an effort to better understand this proof system,
other complexity measures for resolution have been introduced. We
focus this survey on the known results about two of these complex-
ity measures: space and width. We review the relationship between
these measures and the size in resolution, mentioning tradeoff results
as well as characterizations of width and space in terms of combinato-
rial games.

1 Introduction

The main motivation for studying the complexity of proving tautologies or
refuting unsatisfiable formulas in concrete systems comes from the close rela-
tionship between these problems and central questions in complexity theory.
For example, Cook and Reckhow [12] proved the equivalence of separating
the complexity class NP from coNP and the question of obtaining superpoly-
nomial lower bounds for the refutation of a family of unsatisfiable formulas
in every propositional proof system. Since it is very hard to reason about ar-
bitrary proof systems, research in the area has focused on the study of simple
concrete systems. This is similar to the development of circuit complexity,
where advances in the field come from the study of concrete circuit classes.
Perhaps the simplest non-trivial propositional proof system is resolution [27].
It has a single derivation rule and works only with clauses. This simplicity
together with the fact that several automated theorem proving algorithms
used in practice are based on resolution has provided the motivation for
important research on this proof method. Resolution is probably the best
studied propositional proof system although the power of the method is not
yet completely understood.

The most important complexity measure for resolution is the size or the
number of clauses used in a refutation. This corresponds to the concept of
time in an algorithm. During the last decades some of the most influential
research in the area of proof complexity has proved exponential lower bounds
for the resolution size of important classes of unsatisfiable formulas |20, 31,
10, 3]. Recently in an effort to unify some of the existing results and to gain
a better understanding of this proof system other complexity measures for
resolution have been introduced. These measures are related to the notion of
memory consumption or space used by an algorithm. We focus this survey
on two of these complexity measures: width and space.

The notion of resolution width was first made explicit by Galil [19] but the
importance of the concept was pointed out more recently by Ben-Sasson and
Wigderson in [7]. The width of a resolution refutation is the largest number
of literals in a clause used in the refutation. Ben-Sasson and Wigderson
proved a connection between the minimal width of a resolution refutation for
a formula and the size of the refutation, thus providing a new method for
proving lower bounds on resolution size.

Esteban and Toran introduced in [17]| the concept of resolution space,
transforming a previous definition from [21]. The space of a resolution refu-
tation is the number of clauses that have to be kept simultaneously in mem-
ory to infer a contradiction. As in the definition of space in a Turing ma-
chine, the space used by the input clauses is not considered in the model
and these clauses can be downloaded to the working memory when needed.
Alekhnovich, Ben-Sasson, Razborov and Wigderson [1] extended the defi-
nition of resolution space in several ways. They defined a space notion for
stronger proof systems like Propositional Calculus, and introduced finer space
measures like the variable space or the bit space, measuring respectively the
occurrences of variables and the bit size of the clauses that are simultaneously
kept in memory.

In recent years several results obtaining non-trivial upper and lower bounds
for the different resolution complexity measures have been published. We re-
view here some of these results and show that in spite of its very different
nature the three measures of size, width and space are tightly interrelated.
We also review the existing tradeoffs in the resources as well as purely combi-
natorial characterizations of the concepts of resolution width and tree-space
in terms of 2-person games. These beautiful characterizations stress the im-
plicitness of these measures as purely combinatorial properties of the input
formulas, independent of the notion of resolution.

2 Definitions

We will consider formulas over a set of propositional variables V. A literal
is either a variable x € V or its negation T. A clause is a disjunction of
literals and a formula F in conjunctive normal form (CNF) is a conjunction
of clauses. For a literal [and a € {0, 1}, Fj—, represents the formula obtained
from F' by giving to [the value a and reducing the formula in the intuitive
way.

Resolution is a refutation proof system for CNF formulas. The only
inference rule in this proof system is the resolution rule:

CVux DVvz
CvVvD

Cutting variable x from clauses C'Vz and DV x one gets the resolvent clause
C'V D. A resolution refutation of a CNF formula F' is a sequence of clauses
Ci,...,Cs where each C; is either a clause from F' or is inferred from earlier
clauses by the resolution rule, and C| is the empty clause. We will denote
the empty clause by O. Resolution is sound and complete, which means
that such a refutation for a formula exists if and only if F' is unsatisfiable.
A resolution refutation can be seen as a directed acyclic graph, in which
the clauses are the vertices, and if two clauses are resolved then there is a
directed edge going from each of the two clauses to the resolvent. If the
underlying graph in a refutation happens to be a tree, we talk about tree-
like resolution. It is known that for certain formulas general resolution can
produce exponentially shorter refutations than tree-like resolution [9, 6]. The
reason for this is that, contrary to general resolution, in a tree-like proof a
clause that is needed more than once in the refutation must be re-derived
each time from the initial clauses.

The size of a resolution refutation is the number of clauses it contains. For
an unsatisfiable formula F', size(F') denotes the minimal size of a resolution
refutation of F. We denote by tree-size(F') the minimal size of a tree-like
resolution refutation of F'. As mentioned above, this can be greater than
size(F'). We define now resolution width and space, the other two complexity
measures discussed in this survey.

Definition 1. /7] The width of a clause is the number of literals appearing
in it. For a set of clauses C (C can be for example a formula in CNF or
a resolution refutation) the width of C, denoted by initial-width(C), is the
mazximal width of a clause in the set C.

The width needed for the resolution of an unsatisfiable CNF formula F,
denoted by width(F'), is the minimal width needed in a resolution of F, that
is, the minimum of initial-width(r) over all resolution refutations m of F.

The space needed in a resolution refutation is the number of clauses that
have to be kept simultaneously in memory (not counting the initial clauses)
in order to derive the empty clause. More formally:

Definition 2. [17, 1] For k € N, we say that an unsatisfiable CNF formula
F' has resolution refutation bounded by space k if there is a sequence of CNF
formulas Fy, ..., Fs, such that Fy C F, O € F, in any F; there are at most
k clauses, and for each i < s, F;11 is obtained from F; by deleting some of
its clauses, adding the resolvent of two clauses of F;, or adding one of the
clauses of F (initial clause).

The space needed for the resolution of an unsatisfiable formula F, denoted
space(F) is the minimum k for which the formula has a refutation bounded
by space k.

In [1] the authors introduce two refinements of the space measure: the
variable space, and the bit space. For an unsatisfiable formula F', the variable
space of F', Vspace(F) is defined like the space of F above, but counting the
sum of sizes (widths) of the clauses of the formulas F; in the resolution,
instead of just the number of clauses. The bit space counts the length (as
words over a finite alphabet) of the clauses kept in memory.

3 Width

The idea that a large resolution refutation must contain wide clauses has
been around for many years. Already the first proof of an exponential lower
bound for the resolution size given by Haken [20] was based on the fact that
any resolution refutation for the family of formulas encoding the pigeon hole
principle must contain many wide clauses of a certain kind. The use of wide
clauses to prove resolution lower bounds was also an important ingredient
in subsequent results, especially in [3]. In [19] it was proved that the refu-
tation of certain formulas require large width and it was conjectured in [22]
that a formula having only resolution refutations with large clauses cannot
have short refutations. But the exact relation between width and size in
resolution was first explicitly stated by Ben-Sasson and Wigderson in [7].
Expressing the relation between size and width they reduced the problem
of giving lower bounds on the size of a refutation to that of giving lower
bounds on the width. The size-width relations for resolution were inspired
by similar bounds regarding relations between the degree in the Polynomial
Calculus proof system and the resolution size obtained in [11]. With this
method Ben-Sasson and Wigderson were able to provide a unified approach
to prove most of the previously known lower bounds for resolution size. They

also used the width concept to develop a simple algorithm for searching for a
refutation for a given formula F'. The algorithm searches systematically for
clauses of increasing size and works in time n®™) where n is the number of
variables in F' and w the minimal width of any refutation of F'.

For the proof of the width-size relation the following technical lemma is
needed:

Lemma 3. Let F be a formula in CNF, [be a literal in F' and let F' denote
the set of clauses in F containing literal I. If width(Fj—;) < k — 1 and
width(Fi—) < k then width(F) < max{k, initial-width(F")}.

Proof. The set of clauses Fj—; is obtained from F' by removing literal
[from all the clauses in F and deleting the clauses containing literal [. By
hypothesis, there is a width £ — 1 resolution refutation 7 of F;—;. Every
initial clause in Fj—; is either an initial clause from F' or a clause obtained
by deleting literal I from a clause in F. By adding [to the initial clauses
of this second type in F;—; and propagating this literal through 7= we obtain
a legal resolution derivation 7’ of [from F of width at most k. In order to
derive the empty clause, now [can be resolved with all the clauses in F!
obtaining Fj—y. This part has width initial-width(F'). By the assumption
there is a resolution refutation of Fj—g with width < k. The width of the
whole refutation is therefore max{k,initial-width(F')}. m We can now state

the basic relation between the complexity measures of resolution width and
size:

Theorem 4. [7] For an unsatisfiable formula F in CNF with n variables
width(F) < initial-width(F) + O(y/nIn(size(F))).

Proof. Let F' be a formula in CNF with n variables and let k£ be its
initial width. Let 7 be a resolution refutation of minimal size s. We define
d and a to be d := [V2nIns] and a := (1 — £)7". A clause in 7 is called
fat if it has more than d literals. Let 7* be the set of fat clauses in 7. We
prove by induction on n that width(F) < d + k + log,(|7*|). The result
follows from this implication since |7*| < s and therefore by the way a is
and d are defined, log,(|7*|) is bounded by ¢v2nlns for some constant c.
The base case n = 0 holds trivially. For the induction case, observe that
F' contains at most 2n literals and therefore one literal [appears in at least
L|7*| fat clauses. We consider the two refutations of the formulas Fj_, and
F,—, obtained from 7 by setting literal [to 1 and to 0 respectively. Setting
[= 1 removes all the clauses including literal [and leaves a refutation of Fj_;

with at most (1 — 2)|7*| = a~'|7*| fat clauses. By induction hypothesis we

have width(F—;) < d + k + log,(a |7*]) = d + k + log,(|7*|) — 1. Setting
[= 0 produces a refutation of the formula F;—, with less than n variables,
and again by induction on n it holds width(F;—y) < d + k + log,(]7*|). The
result is obtained by applying Lemma 3. m

From this result it follows that lower bounds for the resolution width can
imply lower bounds for the resolution size.

(width(F)—initial-width(r))>)

n

Corollary 5. size(F') = exp((

For the case of tree-like resolution refutations, Ben-Sasson and Wigderson
obtain the relation:

Theorem 6. tree-size(F) > ginatial-width(r)—width(r))

Observe that in the exponent of the right hand side of both relations
we have the difference between the minimal resolution width and the initial
width of F'. Because of this fact, for the case of families of formulas with
large initial clauses, this method can prove only trivial size lower bounds.
For formulas with constant initial width (formulas in 3-CNF for example)
Theorem 4 implies a superpolynomial lower bound in the resolution size in
case one can prove a width lower bound of Q(v/nInn) where n is the number
of variables in the formula. Bonet and Galesi [8] have shown that this bound
is basically optimal by giving a family of 3-CNF formulas M GT,,, built over
O(n?) variables, having polynomial size resolution refutations, but requiring
Q(n) width (the square root of the number of variables) to be refuted. MGT,
is the negation of a graph tautology encoding the principle that a directed
acyclic graph closed under transitivity must have a source node. For the
case of tree-like refutations, the optimality of the width-size relation stated
in Theorem 6 was proved already in [7].

Ben-Sasson and Wigderson use the size-width relation to provide a simpli-
fied and unifying proof of the existing lower bounds for the resolution size of
random k-CNF formulas, Tseitin formulas! and formulas for the pigeonhole
principle.

Another application of the width concept in resolution is the development
of a dynamic algorithm for searching for a resolution refutation of an unsat-
isfiable formula F'. The procedure seeks in a systematic way for a minimal
width refutation for F' obtaining systematically for increasing values of w all
the clauses of width < w that can be derived from the initial set of clauses
and adding them to this set. It is not hard to see that the running time of

'These formulas were defined by Tseitin in [30] and express the principle that the sum
of the degrees of the vertices in a graph must be even.

this algorithm is bounded by nO(Width(F)), where n is the number of variables

in F'. A similar proof search algorithm with slightly better parameters was
given by Beame and Pitassi in [3|. Ben-Sasson and Wigderson [7] prove that
the dynamic algorithm never performs much worse than standard recursive
methods used in practice such as the Davis-Putnam procedures [14]. They
also provide a family of formulas for which the above explained width-based
algorithm works exponentially faster.

4 Space

As explained in the introduction, the resolution space of a formula is the
minimum number of clauses that have to be kept simultaneously in mem-
ory in order to refute the formula. There is, however, a more natural way
to look at the space definition using the pebble game on graphs, a tradi-
tional model used for space measures in complexity theory and for register
allocation problems (see [28]). We can give an orientation to the graph rep-
resentation of a resolution refutation having the initial clauses as sources and
the empty clause as the unique sink. It was observed in [17] that the space
required for the resolution refutation of a CNF formula F' (as expressed in
Definition 2) corresponds to the minimum number of pebbles needed in the
following pebble game played on the graph of a refutation of F.

Definition 7. Given a connected directed acyclic graph with one sink the
aim of the game is to put a pebble on the sink of the graph following this set
of rules:

1) A pebble can be placed on any initial node, that is, on a node with no
predecessors.

2) A pebble can be removed from any node.

3) A pebble can be placed on an internal node provided all its parent nodes
are pebbled. In this case, instead of placing a new pebble on it, one can
shift a pebble from a parent to the node.

Lemma 8. [17] Let F be an unsatisfiable CNF formula. space(F) coincides
with the minimum number of pebbles needed for the pebble game played on
the graph of a resolution refutation of F.

An upper bound for the resolution space of an unsatisfiable formula F
with n variables is n+1. This is so because every such formula can be refuted
by a tree-like resolution of depth at most n, and it is a well known fact that
a binary tree of depth n can be pebbled with n + 1 pebbles.

The formula on n variables containing all 2" possible clauses including the
n variables needs resolution space n+1 [17]. This bound is the worse possible
in terms of variables but is only logarithmic with respect to the number of
clauses. In [29] it was shown that the family 7,, of Tseitin formulas associated
to certain expander graphs have 4n variables 256n clauses and require space
n — 3 for every n. The pigeonhole formulas ~PH P expressing the principle
that m pigeons do not fit in n holes for m > n, have resolution space exactly
n+1 independently of the number of holes [29]. A general method for proving
space lower bounds that unifies these results is shown in [1].

Ben-Sasson and Galesi prove in [5] a lower bound of Q(n/A'™) for the
space needed in the resolution of unsatisfiable random k-CNF formulas over n
variables and An clauses. An upper bound of O(nA_ﬁ) for the resolution
space of the same class of formulas is given by Zito in [32]. A thorough
exposition of the existing upper and lower bounds for resolution space is
contained in [15].

The characterization of space of a resolution refutation in terms of the
pebble game played on the refutation makes it possible to measure the tree-
like resolution space for a formula F' as the minimum number of pebbles
needed for the game on a tree-like refutation of F'. As mentioned before, for
certain classes of formulas, there can be an exponential gap in the sizes of
tree-like and general refutations. Observe that the width measure does not
increase when transforming a general resolution refutation into a tree-like one
since the clauses that might be rederived do not increase the width of the
refutation. For the case of space, it is shown in [18] that for certain formulas
there can be a linear separation between the space measure in tree-like and
general refutations.

It is not clear that space lower bounds can imply size lower bounds as
in the case of the width measure. The next result shows that this holds,
however, for the case of tree-like resolution size.

Theorem 9. [17] For an unsatisfiable formula F in CNF
tree-size(F) > 25PACCF) _ 1,

Proof. We will show that the resolution tree in the refutation of F' can be
pebbled with d+1 pebbles, where d is the depth of the biggest complete binary
tree embedded? in the refutation graph. As the biggest possible complete
binary tree embedded in a tree of size s has depth [log s|, the theorem holds.
It is a well known fact that d 4+ 1 pebbles suffice to pebble a complete binary

2 A tree T' is embedded in T if T can be obtained from T" by adding nodes and edges
or inserting nodes in the middle of edges of T.

tree of depth d (with the directed edges pointing to the root). In fact d + 1
pebbles suffice to pebble any binary tree whose biggest embedded complete
binary tree has depth d. In order to see this we use induction on the size of
the tree. The base case is obvious. Let T be refutation tree, and 77 and T5
be the two subtrees from the root. Let us call d.(T) the depth of the biggest
embedded complete subtree in 7.

max(d,(T}), d.(Ty)) if d.(T}) # do(Tp)
%07:{@00+1 if do(T)) = do(Tp)

By the induction hypothesis one can pebble Ty with d.(T}) + 1 pebbles
and Ty with d.(T,) + 1 pebbles. Let us suppose that d.(T}) < d.(73), then
d.(T) = d.(T3) and one can pebble first T, with d.(73) + 1 pebbles, leave a
pebble in the root of T3 and then pebble T} with d.(T;)+ 1 pebbles. For this
second part of the pebbling one needs d.(77) + 2 < d.(T») + 1. The other
case is similar. m

From this result follows that a lower bound for the resolution space of a
formula implies an exponentially larger tree-like resolution size lower bound.
An upper bound for the size in terms of the space for the case of general
resolution is given in [17], but the height measure is also considered as a
parameter in the relation. The height of a resolution refutation is the length
of the longest path from an initial clause to the empty clause in the refutation
graph.

Theorem 10. [17] For an unsatisfiable formula F in CNF
size(F) < space(F') + height(F)
space(F)

A consequence of this result is that refutations with polynomial height
and constant space must have polynomial size.

5 Tradeoffs

Ben-Sasson has shown in [4] tradeoff results for the size, width and space
complexity measures applied to certain families of formulas. He proves that
for these formulas there are optimal resolution refutations with respect to one
of the parameters, but the optimization of one complexity measure increases
the others. A central part in the proof of this result is a surprising connection
between the variable space needed in the resolution of certain formulas and
the black-white pebbling measure of an underlying graph. This connection is
stated here without proof in Lemma 13. The black-white pebbling measure

of a circuit G introduced in [13] intuitively measures the space needed for the
simulation of the circuit on a nondeterministic Turing machine. This game
is more involved than the standard pebbling game and includes pebbles of
two kinds: white pebbles simulating nondeterministic steps and black ones
for the simulation of deterministic steps. We omit here the details about this
game and refer the interested reader to [25].

The formulas used by Ben-Sasson to prove the tradeoff behavior are the
pebbling contradictions introduced in |7]. They express the principle that in
a directed acyclic graph, pebbling the source nodes and following the rule
that if all the predecessors of a node v contain a pebble then v also gets one,
implies that a pebble will be placed on the sink.

Definition 11. Let G = (V, E) be a directed acyclic graph in which every
vertex has fan-in 2 or 0 with a unique sink s. We call a graph with these
properties a circuit-graph. Let k > 0. We associate k distinct Boolean vari-
ables vy, ..., v, with every vertex v € V. Pebk, the k-th degree pebbling
contradiction of G, is the conjunction of:

. k
Source axioms: \/;_, v; for each source v.

Pebbling axioms: u; V7,V \/f:1 wy for u and v the two predecessors of w,
i,je{l...k}.

Sink axioms: §; for the sink s andi € {1...k}.

Ben-Sasson shows that for certain circuit-graphs G the tree-like resolution
of the formulas Peb}, presents the following tradeoff:

Theorem 12. [}/ For infinitely many integers n, there exist contradictions
F, of size n such that:

1: F, has tree-like resolution refutations of linear size and constant space.
2: width(F,) = O(1).

3: For any tree-like refutation m of F,: width(r) - log(size(r)) = Q(+2-).

logn

4: For any tree-like refutation © of F,,: width(m)- space(m) = Q(-2).

logn

Proof. For proving the first part of the result, consider a circuit-graph G
with n vertices and define a topological order on its vertices. In the formula
Peby, there is exactly one variable associated to each vertex in G and therefore
we can identify the two. We describe a tree-like resolution refutation with the
desired properties. Starting with the sink clause s, we keep an active clause C

containing only negative literals that is always resolved with an initial clause.
In each resolution step we consider the variable v in C' corresponding to the
highest node in the clause in the topological ordering and resolve C' with the
unique initial clause in Pebj, containing the positive literal v. This can be
the clause v in case the node v is a source, or the clause © V w V v in case
v is an internal node with predecessors v and w. In both cases variable v is
resolved and the new active clause C' only contains negative literals. Observe
that once a variable v is resolved from the active clause, it will never appear
there again since the variables in this clause will always be smaller than v
in the topological order. Since in every resolution step a variable is deleted
from the active clause, there are as many resolution steps as variables in G.
Counting the initial clauses, the size of the refutation is bounded by 2n. The
underlying resolution graph is a very thin tree since in each step an initial
clause is resolved and therefore the space needed for pebbling this tree is 2.

It is not hard to see that part 2 of the result holds for Peb% for every
circuit-graph G and every k£ > 0. A refutation for this formula just has to
resolve the clauses following a topological order of the vertices in G start-
ing with the lowest vertex in the order and obtaining for each vertex v the
intermediate clause \/f:1 v;. It follows by induction on the topological or-
der that this can be achieved using intermediate clauses of width at most
max{2k, k + 2}.

For proving the more involved parts 3 and 4 of the theorem, Ben-Sasson
shows a beautiful connection between the variable space needed for the res-
olution of of Peb}, and the black-white pebbling measure of the underlying
graph G.

Lemma 13. [}/ For any circuit-graph G

Vspace(Peby) > black-white pebbling number of G.

It is known that for infinitely many n there are circuit-graphs G' with n
vertices and having black-white pebbling number Q(;%-) [24]. Let G be such
a circuit-graph. By Theorem 9, if Peb}, has a tree-like resolution refutation
of size S, then this refutation needs space log(S). By the above Lemma,
the variable space of the refutation must be at least - and, therefore the
refutation must contain some clause of width at least This proves
parts 3 and 4 of Theorem 12. m

This result implies that tree-like resolution refutations of minimal width
for the pebbling contradictions will have exponential size, and therefore proof
findings methods based on searching for proofs of small width, as the one
mentioned at the end of Section 3, will perform very badly on such formulas.

—_n
log Slogn*

A result similar to Theorem 12 but for the case of general resolution is
also given by Ben-Sasson in [4].

6 Combinatorial Characterizations

The complexity measures of resolution width and tree-like resolution space
for unsatisfiable formulas in CNF have been exactly characterized in terms of
2-person combinatorial games played on the formulas. Besides being useful
for proving new width or space bounds, these results are remarkable because
they show that the two complexity measures only depend on the structure of
the formulas and can be defined independently of the notion of resolution. In
both cases the game giving the characterization had been previously defined
in the literature for other purposes.

6.1 A Game Characterization of Resolution Width

Atserias and Dalmau [2] characterized resolution width in terms of the ex-
istential k-pebble game. This combinatorial tool had been introduced by
Kolaitis and Vardi [23] in the context of Finite Model Theory. We present
here a simplified version of this game which we call Game A.

Game A is played in rounds by two players, Spoiler and Duplicator?, on
an unsatisfiable formula F' in CNF. Both players construct a partial assign-
ment « of the variables in F'. The goal of Spoiler is to falsify one of the initial
clauses of F' with the constructed assignment while keeping the partial as-
signment as small as possible. Duplicator tries to keep this from happening.
Initially « is the empty assignment and in each round Spoiler can delete some
of the values assigned in « and asks for the value of a variable z in F' not
assigned in «. Duplicator extends a with a Boolean value for x. The game
finishes when one of the initial clauses is falsified by a. In this case we say
that Duplicator scores as many points as the maximum number of variables
that are assigned simultaneously in a at some moment in the game.

Definition 14. For an unsatisfiable formula F in CNF we define game,(F')
to be the mazximum number of points scored by Duplicator on F against an
optimal terminating strategy of Spoiler.

Theorem 15. [2/ For an unsatisfiable formula F' in CNF

width(F) = game,(F) — 1.

3The names of the players are justified in the context of Finite Model Theory

Proof. We first give a strategy for Spoiler in the game against which
Duplicator scores at most width(F) + 1 points. Consider the graph of a
resolution refutation of minimal width for F'. Starting at the empty clause,
the strategy of Spoiler is to simulate a path from this clause to one of the
initial clauses in the refutation. Every round starts with the constructed
partial assignment o falsifying a clause C' in this path. Spoiler asks for
the value of the variable = being resolved to generate C. By the nature
of resolution any of the two possible extensions of a to z falsifies one of
the parent clauses of C'. Depending on the choice of Duplicator, Spoiler
moves to the corresponding falsified parent clause and deletes from « the
variables not appearing in the new clause. Following this strategy Spoiler
eventually reaches an initial clause. Observe that the number of variables
assigned simultaneously by « is at most the maximal width of a clause in the
refutation plus the variable being resolved in each round.

In order to prove that width(F) < game(F) — 1 we give a strategy
for Duplicator that never falsifies an initial clause in case the size of the
constructed partial assignment does not become greater than the width of
F at some point. Let k = width(F) and let F;_; be the set formed by the
initial clauses in F' and all the clauses that can be derived from them by
resolution using only clauses of width at most £ — 1. Observe that Fj_; is
unsatisfiable since it includes the initial clauses of F', but the empty clause
does not belong to Fr_;. When asked for the value of a variable, Duplicator
simply has to answer a value that does not falsify a clause in F;,_;. We will
show that if the size of the constructed partial assignment « is at most k,
then this is always possible. This proves that Duplicator would always score
at least £ + 1 points when playing on F;_q, and therefore also at least as
many points when playing on F. By the way of contradiction, suppose that
Spoiler had a way to falsify a clause in Fj_; always keeping the size of «
at most k. Let r be the first round in which Spoiler achieves this. Clearly
r > 0 since the empty clause does not belong to F;_;. Let a be the partial
assignment of size at most k — 1 constructed just before round r. In round r
Spoiler asks for the value of a new variable x. Since for either possible answer
of Duplicator one of the clauses in Fj_; is falsified, there must be two clauses
C =C'"U{z} and D = D'U{T} in F;_; and the assignment « falsifies both
C'" and D'. Since « has size at most k£ — 1 and C' U D' is falsified by «, this
clause has width at most & — 1. Because this clause can be derived by the
resolution of C' and D, it belongs to Fj_;. But then o would already falsify
this clause in round r — 1 and this contradicts the fact that r was the first
round in which a clause in F,,_; was falsified. m

6.2 A Game Characterization of Tree-like Resolution
Space

For the case of tree-like resolution there is also a combinatorial character-
ization based on a similar 2-person game. This game was introduced by
Impagliazzo and Pudlék in [26] and has been used for proving lower bounds
on the size of tree-like resolution refutations [26, 6|.

The game, which we will just call Game B, is played in rounds on an
unsatisfiable formula F' in CNF by two players called in this case Prover and
Delayer. The players construct in steps a partial assignment for the formula.
Prover wants to falsify some initial clause and Delayer tries to retard this
as much as possible. In each round Prover chooses a variable in F' and asks
Delayer for a value for this variable. Delayer can answer either 0,1 or . In
this last case Prover can choose the truth value (0 or 1) for the variable and
Delayer scores one point. The variable is set to the selected value and the
next round begins. When a variable has been assigned a value, it remains
with this value until the end of the game. The game ends when a clause in
F is falsified by the partial assignment constructed this way. The goal of
Delayer is to score as many points as possible and Prover tries to prevent
this. The outcome of the game is the number of points scored by Delayer.

Definition 16. Let F' be an unsatisfiable formula in CNF. We denote by
gameg(F) the mazimum number of points that Delayer can score while play-
ing Game B on F' against an optimal strategy for Prover.

It was shown in [18] that this game provides an exact characterization of
the space needed in tree-like resolution.

Theorem 17. For an unsatisfiable formula F' in CNF
tree-space(F) = gameg(F) + 1.

Proof. We show first that gameg(F) 4+ 1 is an upper bound for the
tree-like resolution space.

Let s be the minimum space needed in any tree-like resolution refutation
of F. We give a strategy for Delayer for playing the game on F' that scores
at least s — 1 points with any strategy of Prover. This is shown by induction
on the number of variables in F', n.

For the base case n = 1, F' contains just one variable and therefore s < 2.
Delayer just needs to answer * to the only variable asked by Prover.

For n > 1, let x be the first variable asked by Prover and let F},_; and
F,—y the CNF formulas obtained after giving value 1 and 0 respectively to
variable z in F'. Any tree-like refutation of F' requires s pebbles and therefore
either

i) the tree-like space for refuting each of F,—; and F,—g is at least s — 1 or

ii) for one of the formulas the tree-like resolution space is at least s.

Any other possibility would imply that F' could be refuted in space less than
S.

In the first case Delayer can answer * and scores one point. By induction
hypothesis Delayer can score s — 2 more points playing the game in either
of the formulas F,—; or F,—_q. In the second case Delayer answers the value
leading to the formula that requires tree-like resolution space s (x = 1 for
example) and the game is played on F,_; in the next round.

On the other hand gameg(F) is also a lower bound for the tree-like res-
olution space. Let us consider a tree-like resolution refutation of F, m, and
suppose that Prover and Delayer play the game on F. Delayer follows a
strategy scoring at least gameg(F') points and Prover chooses the variables
in an order induced by the refutation in the following way: Prover starts
at the empty clause in 7 and in general at the end of a round moves to a
clause C. In the next round Prover chooses the resolved variable z from the
two parent clauses of C'. If Delayer assigns to x a value 0 or 1 then Prover
moves to the parent clause that is falsified by the partial assignment and the
new round starts. If Delayer assigns x value % then Prover can choose value
0 or 1 for x and moves to the parent clause falsified by the chosen partial
assignment. In this case we mark the clause with x. The game ends when
Prover can move to an initial clause.

For a tree-like refutation 7 let us denote by T'(7) the subtree of 7 formed
by all the clauses that can be visited by Prover and the edges joining them in
the described game (with a strategy from Delayer scoring at least gamepg(F)
points). We show that the pebbling number of T'(7) is at least gameg(F') + 1
pebbles. Since T'(7) is a subgraph of 7, this implies that tree-like space for
F is at least gamep(F') + 1.

Observe that in any path from the empty clause to an initial clause in
T(m) there are at least gameg(F') nodes marked with x (branching nodes).
Consider any strategy for pebbling the tree T'(7), and consider the first mo-
ment m in which all the paths going from an initial clause to the empty clause
contain a pebble. After moment m — 1 a pebble has to be placed on an ini-
tial clause C', and before that, the path going from C' to the empty clause
is the only path without pebbles. This path contains at least gameg(F)
nodes marked with *. In each one of these nodes starts a path going to an
initial clause. All these paths are disjoint and they all contain a pebble at
instant m— 1 (otherwise there would be at moment m a path from the empty
clause to some initial clause without any pebble). Together with the pebble
at moment m, this makes at least gameg(F') + 1 pebbles. m

A similar game to Game B, has been defined in [16] and applied for
proving lower bounds for the space in resolution and in Res, a more powerful
proof system. In this new game Prover does not ask for a variable like in
Game B, but for a clause, and Delayer assigns values to at least one of the
variables in the clause.

6.3 Width versus Space

Atserias and Dalmau have used the combinatorial characterization of res-
olution width in order to prove that this complexity measure bounds the
resolution space from below. The same result had been obtained for the
simpler case of tree-like resolution in [17].

Theorem 18. [2] For an unsatisfiable formula F' in CNF
space(F) > width(F) — initial-width(F) + 1.

Proof. Let F' be an unsatisfiable formula in CNF and w be the width
of its largest clause. We show that if width(F) = k 4+ w for some k then
space(F') > k. By the combinatorial characterization of width in Theorem 15
if width(F) = k + w, then Spoiler does not have a terminating strategy
keeping a partial assignment of size at most £ + w when playing Game A
on F. Consider a resolution refutation of F' using space less than k + 1,
Fy, Fi, F5, ... F,. We show by induction on 7 that the set of clauses in each
of the formulas F; is satisfiable, implying that it is not possible to refute F'
with space less than k 4+ 1. Let s; be the number of clauses in F;. We give a
strategy for Spoiler to construct for each 7 a partial assignment «; of size at
most s; satisfying all the clauses in Fj. Since there is no terminating strategy
keeping always partial assignments of size bounded by &+ w, this assignment
cannot falsify an initial clause of F.

F} is an initial clause in F' and therefore satisfiable. «; is a partial as-
signment of size 1 giving value 1 to one of the literals in F}. This assignment
can be obtained by Spoiler by asking the value of all the variables in F} un-
til one satisfies the clause, and deleting the values of all the other assigned
variables afterwards. For the induction step, if F; is obtained by adding the
resolvent of two clauses to F;_; then clearly «;_; also satisfies F; since the
parent clauses of the resolvent are satisfied by «;_;. If the new formula is
obtained by erasing some of the clauses in F;_; then Fj is still satisfiable and
a partial assignment «; of size < s; can be obtained by Spoiler deleting if
necessary some of the assigned values of a;_;. The interesting case arises
when F; is obtained by adding some initial clause C' to F; ;. In this case
Spoiler extends the partial assignment «a; by asking the Duplicator for the

values for all the variables in C' that are not assigned at this point. There are
at most w variables in the clause and therefore the partial assignment has
now size at most s; | +w < k+w. Since the assignment does not falsify any
initial clause, at least one of the literals in C'is true in the partial assignment.
Spoiler constructs «; by keeping a restriction of the actual assignment with
size at most s;. This is always possible since at most the assignment of a
variable in each clause is needed to satisfy the whole F;. m

The width and the space bounds in the resolution of Tseitin formulas
for certain expander graphs basically coincide |7, 17]. Since these formulas
have initial clauses of constant width, this shows that the space lower bound
in terms of width from Theorem 18 is best possible. As in the case of the
relations between width and size mentioned in Section 3, the initial width
is also part of the width-space relation. It has to be this way since it is
easy to construct formulas with large initial width that need only constant
resolution space. For formulas in k-CNF for a constant £ this result proves
that resolution width lower bounds imply space lower bounds, but this is not
necessarily the case for formulas with large initial clauses. A way to avoid
this problem is given in |2]. The authors propose there a way to transform
a formula F' with large initial clauses into an equivalent one F’ with initial
clauses of constant size and requiring roughly the same resolution width and
space as F. This allows the use of the above width-size relation together
with width lower bounds to prove space lower bounds for formulas with large
initial clauses.

7 Conclusions and Open Problems

Resolution width and space are alternative complexity measures to the well
studied resolution size and provide a better understanding of this proof sys-
tem. Interesting in their own right, these measures have helped to unify many
of the existing results about the complexity of resolution. We have reviewed
in this survey the tight connections between the different complexity mea-
sures. As in other areas in computer science related to memory allocation
problems, the pebbling game has proved to be a very useful tool to analyze
space requirements in resolution.

Although in the last years many central results relating these complexity
measures have been established, several questions are still open. An impor-
tant one is whether is it possible to obtain a result relating resolution space
and size as in Theorem 9 but for the case of general resolution, thus showing
that large resolution space implies large resolution size. Trying to prove the
opposite, one could search for a family of formulas with polynomial size res-

olution refutations that need large space. Good candidates for this are the
pebbling contradictions of degree 2 (cf. Definition 11). These formulas can
be refuted within polynomial size and constant width, but their resolution
space requirements are not known. A related problem is whether for every
unsatisfiable F' space(F') < width(F').

Concerning the combinatorial characterizations, we have games for the
width and the tree-like resolution space. Is there a similar characterization
for the space or variable space in general resolution? This would be nice
results to complete the picture.

Acknowledgments: 1 would like to thank Albert Atserias, Eli Ben-
Sasson, Juan Luis Esteban, Nicola Galesi and Randall Pruim for very helpful
comments and corrections on preliminary versions of this survey.

References

[1] M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, and A. Wigderson.
Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184-1211, 2002.

[2] A. Atserias and V. Dalmau. A combinatorial characterization of resolution
width. 18th IEEE Conference on Computational Complexity 239-247, 2003.

[3] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In
37th Annual IEEE Symposium on Foundations of Computer Science, 274-282,
1996.

[4] E. Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing 457-464, 2002.

[5] E. Ben-Sasson and N. Galesi. Space complexity of random formulae in reso-
lution. Random Structures and Algorithms, 23(1) 92-109, 2003.

[6] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-optimal separation
of treelike and general resolution. In Electronic Colloquium on Computational
Complexity, Report TR02-005, 2000. To appear in Combinatorica.

[7] E. Ben-Sasson and A. Wigderson. Short proofs are narrow — resolution made
simple. Journal of the ACM, 48(2):149-169, 2001.

[8] M.L. Bonet and N. Galesi. Optimality of Size-Width tradeoffs for Resolution.
Computational Complexity, 10 (2001), 261-276.

[9] M.L. Bonet, J.L. Esteban, N. Galesi and J. Johannsen. On the relative com-
plexity of resolution refinements and cutting planes proof systems. SIAM
Journal on Computing 30(5), 1462-1484, 2002.

[10] V. Chvatal and E. Szemerédi. Many hard examples for resolution. Journal of
the ACM 35, 759768, 1988.

[11]

[12]

[13]

[14]
[15]

[16]

17)
18]
19]
[20]
[21)

[22]

23]
[24]
[25]

[26]

M. Clegg, J. Edmonds and R. Impagilazzo. Using the Grobner Basis algo-
rithm to find proofs of unsatisfiability. Proc. 28th ACM symp. on Theory of
Computing, 239-251, 1996.

S.A. Cook and R.A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic 44, 36-50, 1979.

S.A. Cook and R. Sethi. Storage requirements for deterministic polynomial
time recognizable languages. Journal of Computer and System Sciences 13,

25-37, 1976.

M. Davis, G. Logemann and D. Loveland. A machine program for theorem
proving. Communications of the ACM 5, 394-397, 1962.

J.L. Esteban. Complexity measures for resolution. PhD. Thesis, Dept. L.S.I.
Universitat Politécnica de Catalunya, 2003.

J.L. Esteban, N. Galesi and J. Messner. On the complexity of resolution with
bounded conjunctions. Proc. 29th ICALP Colloguium Springer Lecture Notes
in Computer Science 2380, 220-231. Will appear in Theoretical Computer
Science.

J.L. Esteban and J. Toran. Space bounds for resolution. Information and
Computation, 171(1):84-97, 2001.

J.L. Esteban and J. Toran. Combinatorial characterization of treelike resolu-
tion space. Information Processing Letters 87(6), 295-300, 2003.

Z. Galil. On resolution with clauses of bounded size. SIAM Journal on Com-
puting 6, 444-459, 1977.

A. Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297-308, 1985.

H. Kleine-Biining and T. Lettmann. Aussagenlogik: Deduktion und Algorith-
men. B.G. Teubner, Stuttgart, 1994.

B. Krishnamurthy and R.N. Moll. Examples of hard tautologies in the propo-
sitional calculus. Proc. 13th ACM Symposium on Theory of Computation,
28-37, 1981.

Ph.G. Kolaitis and M.Y. Vardi. On the expressive power of Datalog: tools and
a case study. Journal of Computer and System Sciences 51:110-134, 1995.

T. Lengauer and R.E. Tarjan. Upper and lower bounds on time-space tradeoffs.
Proc. 11th ACM Symposium on Theory of Computing 262-277, 1979.

N. Pippenger. Pebbling. IBM Technical Report RC 8258, Watson Research
Center 1980.

P. Pudlédk and R. Impagliazzo. A lower bound for DLL algorithms for k-SAT.
Proc.11th Annual ACM-SIAM Symposium on Discrete Algorithms 128-136,
2000.

[27]

[28]
[29]

[30]

[31]

[32]

J.A. Robinson. A machine oriented logic based on the resolution principle.
Journal of the ACM 12(1), 23-41, 1965.

J. Savage. Models of Computation. Addison-Wesley, 1998.

J. Tordn. Lower bounds for the space used in resolution. In Proc. 13th Com-
puter Science Logic Conference, Springer Lecture Notes in Computer Science
1683, 362-373, 1999.

G.S. Tseitin. On the complexity of derivation in propositional calculus. In
Studies in Constructive Mathematics and Mathematical Logic, Part 2., pages
115-125. Consultants Bureau, 1968.

A. Urquhart. Hard examples for resolution. Journal of the ACM 34, 209-219,
1987

M. Zito An upper bound on the space complexity of random formulae in
resolution. In RAIRO - Theoretical Informatics and Applications 36(4), 329-
340, 2002.

