
Spae and Width in PropositionalResolutionJaobo ToránAbstratResolution is, due to its simpliity and its relation to several au-tomated theorem proving algorithms, one of the best studied propo-sitional proof systems. The most important omplexity measure of aresolution proof is its size, the number of lauses used in the proof.In the last years, in an e�ort to better understand this proof system,other omplexity measures for resolution have been introdued. Wefous this survey on the known results about two of these omplex-ity measures: spae and width. We review the relationship betweenthese measures and the size in resolution, mentioning tradeo� resultsas well as haraterizations of width and spae in terms of ombinato-rial games.1 IntrodutionThe main motivation for studying the omplexity of proving tautologies orrefuting unsatis�able formulas in onrete systems omes from the lose rela-tionship between these problems and entral questions in omplexity theory.For example, Cook and Rekhow [12℄ proved the equivalene of separatingthe omplexity lass NP from oNP and the question of obtaining superpoly-nomial lower bounds for the refutation of a family of unsatis�able formulasin every propositional proof system. Sine it is very hard to reason about ar-bitrary proof systems, researh in the area has foused on the study of simpleonrete systems. This is similar to the development of iruit omplexity,where advanes in the �eld ome from the study of onrete iruit lasses.Perhaps the simplest non-trivial propositional proof system is resolution [27℄.It has a single derivation rule and works only with lauses. This simpliitytogether with the fat that several automated theorem proving algorithmsused in pratie are based on resolution has provided the motivation forimportant researh on this proof method. Resolution is probably the beststudied propositional proof system although the power of the method is notyet ompletely understood.



The most important omplexity measure for resolution is the size or thenumber of lauses used in a refutation. This orresponds to the onept oftime in an algorithm. During the last deades some of the most in�uentialresearh in the area of proof omplexity has proved exponential lower boundsfor the resolution size of important lasses of unsatis�able formulas [20, 31,10, 3℄. Reently in an e�ort to unify some of the existing results and to gaina better understanding of this proof system other omplexity measures forresolution have been introdued. These measures are related to the notion ofmemory onsumption or spae used by an algorithm. We fous this surveyon two of these omplexity measures: width and spae.The notion of resolution width was �rst made expliit by Galil [19℄ but theimportane of the onept was pointed out more reently by Ben-Sasson andWigderson in [7℄. The width of a resolution refutation is the largest numberof literals in a lause used in the refutation. Ben-Sasson and Wigdersonproved a onnetion between the minimal width of a resolution refutation fora formula and the size of the refutation, thus providing a new method forproving lower bounds on resolution size.Esteban and Torán introdued in [17℄ the onept of resolution spae,transforming a previous de�nition from [21℄. The spae of a resolution refu-tation is the number of lauses that have to be kept simultaneously in mem-ory to infer a ontradition. As in the de�nition of spae in a Turing ma-hine, the spae used by the input lauses is not onsidered in the modeland these lauses an be downloaded to the working memory when needed.Alekhnovih, Ben-Sasson, Razborov and Wigderson [1℄ extended the de�-nition of resolution spae in several ways. They de�ned a spae notion forstronger proof systems like Propositional Calulus, and introdued �ner spaemeasures like the variable spae or the bit spae, measuring respetively theourrenes of variables and the bit size of the lauses that are simultaneouslykept in memory.In reent years several results obtaining non-trivial upper and lower boundsfor the di�erent resolution omplexity measures have been published. We re-view here some of these results and show that in spite of its very di�erentnature the three measures of size, width and spae are tightly interrelated.We also review the existing tradeo�s in the resoures as well as purely ombi-natorial haraterizations of the onepts of resolution width and tree-spaein terms of 2-person games. These beautiful haraterizations stress the im-pliitness of these measures as purely ombinatorial properties of the inputformulas, independent of the notion of resolution.



2 De�nitionsWe will onsider formulas over a set of propositional variables V . A literalis either a variable x 2 V or its negation x. A lause is a disjuntion ofliterals and a formula F in onjuntive normal form (CNF) is a onjuntionof lauses. For a literal l and a 2 f0; 1g, Fl=a represents the formula obtainedfrom F by giving to l the value a and reduing the formula in the intuitiveway.Resolution is a refutation proof system for CNF formulas. The onlyinferene rule in this proof system is the resolution rule:C _ x D _ �xC _D :Cutting variable x from lauses C _x and D_ �x one gets the resolvent lauseC _D. A resolution refutation of a CNF formula F is a sequene of lausesC1; : : : ; Cs where eah Ci is either a lause from F or is inferred from earlierlauses by the resolution rule, and Cs is the empty lause. We will denotethe empty lause by 2. Resolution is sound and omplete, whih meansthat suh a refutation for a formula exists if and only if F is unsatis�able.A resolution refutation an be seen as a direted ayli graph, in whihthe lauses are the verties, and if two lauses are resolved then there is adireted edge going from eah of the two lauses to the resolvent. If theunderlying graph in a refutation happens to be a tree, we talk about tree-like resolution. It is known that for ertain formulas general resolution anprodue exponentially shorter refutations than tree-like resolution [9, 6℄. Thereason for this is that, ontrary to general resolution, in a tree-like proof alause that is needed more than one in the refutation must be re-derivedeah time from the initial lauses.The size of a resolution refutation is the number of lauses it ontains. Foran unsatis�able formula F , size(F ) denotes the minimal size of a resolutionrefutation of F . We denote by tree-size(F ) the minimal size of a tree-likeresolution refutation of F . As mentioned above, this an be greater thansize(F ). We de�ne now resolution width and spae, the other two omplexitymeasures disussed in this survey.De�nition 1. [7℄ The width of a lause is the number of literals appearingin it. For a set of lauses C (C an be for example a formula in CNF ora resolution refutation) the width of C, denoted by initial-width(C), is themaximal width of a lause in the set C.The width needed for the resolution of an unsatis�able CNF formula F ,denoted by width(F ), is the minimal width needed in a resolution of F , thatis, the minimum of initial-width(�) over all resolution refutations � of F .



The spae needed in a resolution refutation is the number of lauses thathave to be kept simultaneously in memory (not ounting the initial lauses)in order to derive the empty lause. More formally:De�nition 2. [17, 1℄ For k 2 N , we say that an unsatis�able CNF formulaF has resolution refutation bounded by spae k if there is a sequene of CNFformulas F1; : : : ; Fs, suh that F1 � F , 2 2 Fs, in any Fi there are at mostk lauses, and for eah i < s, Fi+1 is obtained from Fi by deleting some ofits lauses, adding the resolvent of two lauses of Fi, or adding one of thelauses of F (initial lause).The spae needed for the resolution of an unsatis�able formula F , denotedspae(F ) is the minimum k for whih the formula has a refutation boundedby spae k.In [1℄ the authors introdue two re�nements of the spae measure: thevariable spae, and the bit spae. For an unsatis�able formula F , the variablespae of F , Vspae(F ) is de�ned like the spae of F above, but ounting thesum of sizes (widths) of the lauses of the formulas Fi in the resolution,instead of just the number of lauses. The bit spae ounts the length (aswords over a �nite alphabet) of the lauses kept in memory.3 WidthThe idea that a large resolution refutation must ontain wide lauses hasbeen around for many years. Already the �rst proof of an exponential lowerbound for the resolution size given by Haken [20℄ was based on the fat thatany resolution refutation for the family of formulas enoding the pigeon holepriniple must ontain many wide lauses of a ertain kind. The use of widelauses to prove resolution lower bounds was also an important ingredientin subsequent results, espeially in [3℄. In [19℄ it was proved that the refu-tation of ertain formulas require large width and it was onjetured in [22℄that a formula having only resolution refutations with large lauses annothave short refutations. But the exat relation between width and size inresolution was �rst expliitly stated by Ben-Sasson and Wigderson in [7℄.Expressing the relation between size and width they redued the problemof giving lower bounds on the size of a refutation to that of giving lowerbounds on the width. The size-width relations for resolution were inspiredby similar bounds regarding relations between the degree in the PolynomialCalulus proof system and the resolution size obtained in [11℄. With thismethod Ben-Sasson and Wigderson were able to provide a uni�ed approahto prove most of the previously known lower bounds for resolution size. They



also used the width onept to develop a simple algorithm for searhing for arefutation for a given formula F . The algorithm searhes systematially forlauses of inreasing size and works in time nO(w) where n is the number ofvariables in F and w the minimal width of any refutation of F .For the proof of the width-size relation the following tehnial lemma isneeded:Lemma 3. Let F be a formula in CNF, l be a literal in F and let F l denotethe set of lauses in F ontaining literal l. If width(Fl=1) � k � 1 andwidth(Fl=0) � k then width(F ) � maxfk; initial-width(F l)g:Proof. The set of lauses Fl=1 is obtained from F by removing literall from all the lauses in F and deleting the lauses ontaining literal l. Byhypothesis, there is a width k � 1 resolution refutation � of Fl=1. Everyinitial lause in Fl=1 is either an initial lause from F or a lause obtainedby deleting literal l from a lause in F . By adding l to the initial lausesof this seond type in Fl=1 and propagating this literal through � we obtaina legal resolution derivation �0 of l from F of width at most k. In order toderive the empty lause, now l an be resolved with all the lauses in F lobtaining Fl=0. This part has width initial-width(F l). By the assumptionthere is a resolution refutation of Fl=0 with width � k. The width of thewhole refutation is therefore maxfk;initial-width(F l)g. We an now statethe basi relation between the omplexity measures of resolution width andsize:Theorem 4. [7℄ For an unsatis�able formula F in CNF with n variableswidth(F ) � initial-width(F ) +O(pn ln(size(F ))):Proof. Let F be a formula in CNF with n variables and let k be itsinitial width. Let � be a resolution refutation of minimal size s. We de�ned and a to be d := dp2n ln se and a := (1 � d2n)�1. A lause in � is alledfat if it has more than d literals. Let �� be the set of fat lauses in �. Weprove by indution on n that width(F ) � d + k + loga(j��j): The resultfollows from this impliation sine j��j � s and therefore by the way a isand d are de�ned, loga(j��j) is bounded by p2n ln s for some onstant .The base ase n = 0 holds trivially. For the indution ase, observe thatF ontains at most 2n literals and therefore one literal l appears in at leastd2n j��j fat lauses. We onsider the two refutations of the formulas Fl=0 andFl=1 obtained from � by setting literal l to 1 and to 0 respetively. Settingl = 1 removes all the lauses inluding literal l and leaves a refutation of Fl=1with at most (1� d2n)j��j = a�1j��j fat lauses. By indution hypothesis we



have width(Fl=1) � d + k + loga(a�1j��j) = d + k + loga(j��j) � 1. Settingl = 0 produes a refutation of the formula Fl=0 with less than n variables,and again by indution on n it holds width(Fl=0) � d + k + loga(j��j). Theresult is obtained by applying Lemma 3.From this result it follows that lower bounds for the resolution width animply lower bounds for the resolution size.Corollary 5. size(F ) = exp(
( (width(F )�initial-width(F ))2n )):For the ase of tree-like resolution refutations, Ben-Sasson and Wigdersonobtain the relation:Theorem 6. tree-size(F ) � 2(initial-width(F )�width(F )).Observe that in the exponent of the right hand side of both relationswe have the di�erene between the minimal resolution width and the initialwidth of F . Beause of this fat, for the ase of families of formulas withlarge initial lauses, this method an prove only trivial size lower bounds.For formulas with onstant initial width (formulas in 3-CNF for example)Theorem 4 implies a superpolynomial lower bound in the resolution size inase one an prove a width lower bound of 
(pn lnn) where n is the numberof variables in the formula. Bonet and Galesi [8℄ have shown that this boundis basially optimal by giving a family of 3-CNF formulas MGTn, built overO(n2) variables, having polynomial size resolution refutations, but requiring
(n) width (the square root of the number of variables) to be refuted. MGTnis the negation of a graph tautology enoding the priniple that a diretedayli graph losed under transitivity must have a soure node. For thease of tree-like refutations, the optimality of the width-size relation statedin Theorem 6 was proved already in [7℄.Ben-Sasson and Wigderson use the size-width relation to provide a simpli-�ed and unifying proof of the existing lower bounds for the resolution size ofrandom k-CNF formulas, Tseitin formulas1 and formulas for the pigeonholepriniple.Another appliation of the width onept in resolution is the developmentof a dynami algorithm for searhing for a resolution refutation of an unsat-is�able formula F . The proedure seeks in a systemati way for a minimalwidth refutation for F obtaining systematially for inreasing values of w allthe lauses of width � w that an be derived from the initial set of lausesand adding them to this set. It is not hard to see that the running time of1These formulas were de�ned by Tseitin in [30℄ and express the priniple that the sumof the degrees of the verties in a graph must be even.



this algorithm is bounded by nO(width(F )), where n is the number of variablesin F . A similar proof searh algorithm with slightly better parameters wasgiven by Beame and Pitassi in [3℄. Ben-Sasson and Wigderson [7℄ prove thatthe dynami algorithm never performs muh worse than standard reursivemethods used in pratie suh as the Davis-Putnam proedures [14℄. Theyalso provide a family of formulas for whih the above explained width-basedalgorithm works exponentially faster.4 SpaeAs explained in the introdution, the resolution spae of a formula is theminimum number of lauses that have to be kept simultaneously in mem-ory in order to refute the formula. There is, however, a more natural wayto look at the spae de�nition using the pebble game on graphs, a tradi-tional model used for spae measures in omplexity theory and for registeralloation problems (see [28℄). We an give an orientation to the graph rep-resentation of a resolution refutation having the initial lauses as soures andthe empty lause as the unique sink. It was observed in [17℄ that the spaerequired for the resolution refutation of a CNF formula F (as expressed inDe�nition 2) orresponds to the minimum number of pebbles needed in thefollowing pebble game played on the graph of a refutation of F .De�nition 7. Given a onneted direted ayli graph with one sink theaim of the game is to put a pebble on the sink of the graph following this setof rules:1) A pebble an be plaed on any initial node, that is, on a node with nopredeessors.2) A pebble an be removed from any node.3) A pebble an be plaed on an internal node provided all its parent nodesare pebbled. In this ase, instead of plaing a new pebble on it, one anshift a pebble from a parent to the node.Lemma 8. [17℄ Let F be an unsatis�able CNF formula. spae(F ) oinideswith the minimum number of pebbles needed for the pebble game played onthe graph of a resolution refutation of F .An upper bound for the resolution spae of an unsatis�able formula Fwith n variables is n+1. This is so beause every suh formula an be refutedby a tree-like resolution of depth at most n, and it is a well known fat thata binary tree of depth n an be pebbled with n + 1 pebbles.



The formula on n variables ontaining all 2n possible lauses inluding then variables needs resolution spae n+1 [17℄. This bound is the worse possiblein terms of variables but is only logarithmi with respet to the number oflauses. In [29℄ it was shown that the family Tn of Tseitin formulas assoiatedto ertain expander graphs have 4n variables 256n lauses and require spaen�3 for every n. The pigeonhole formulas :PHPmn expressing the priniplethat m pigeons do not �t in n holes for m > n, have resolution spae exatlyn+1 independently of the number of holes [29℄. A general method for provingspae lower bounds that uni�es these results is shown in [1℄.Ben-Sasson and Galesi prove in [5℄ a lower bound of 
(n=�1+�) for thespae needed in the resolution of unsatis�able random k-CNF formulas over nvariables and �n lauses. An upper bound of O(n�� 1k�2 ) for the resolutionspae of the same lass of formulas is given by Zito in [32℄. A thoroughexposition of the existing upper and lower bounds for resolution spae isontained in [15℄.The haraterization of spae of a resolution refutation in terms of thepebble game played on the refutation makes it possible to measure the tree-like resolution spae for a formula F as the minimum number of pebblesneeded for the game on a tree-like refutation of F . As mentioned before, forertain lasses of formulas, there an be an exponential gap in the sizes oftree-like and general refutations. Observe that the width measure does notinrease when transforming a general resolution refutation into a tree-like onesine the lauses that might be rederived do not inrease the width of therefutation. For the ase of spae, it is shown in [18℄ that for ertain formulasthere an be a linear separation between the spae measure in tree-like andgeneral refutations.It is not lear that spae lower bounds an imply size lower bounds asin the ase of the width measure. The next result shows that this holds,however, for the ase of tree-like resolution size.Theorem 9. [17℄ For an unsatis�able formula F in CNFtree-size(F ) � 2spae(F ) � 1:Proof. We will show that the resolution tree in the refutation of F an bepebbled with d+1 pebbles, where d is the depth of the biggest omplete binarytree embedded2 in the refutation graph. As the biggest possible ompletebinary tree embedded in a tree of size s has depth dlog se, the theorem holds.It is a well known fat that d+1 pebbles su�e to pebble a omplete binary2 A tree T 0 is embedded in T if T an be obtained from T 0 by adding nodes and edgesor inserting nodes in the middle of edges of T .



tree of depth d (with the direted edges pointing to the root). In fat d + 1pebbles su�e to pebble any binary tree whose biggest embedded ompletebinary tree has depth d. In order to see this we use indution on the size ofthe tree. The base ase is obvious. Let T be refutation tree, and T1 and T2be the two subtrees from the root. Let us all d(T ) the depth of the biggestembedded omplete subtree in T .d(T ) = � max(d(T1); d(T2)) if d(T1) 6= d(T2)d(T1) + 1 if d(T1) = d(T2)By the indution hypothesis one an pebble T1 with d(T1) + 1 pebblesand T2 with d(T2) + 1 pebbles. Let us suppose that d(T1) < d(T2), thend(T ) = d(T2) and one an pebble �rst T2 with d(T2) + 1 pebbles, leave apebble in the root of T2 and then pebble T1 with d(T1)+1 pebbles. For thisseond part of the pebbling one needs d(T1) + 2 � d(T2) + 1. The otherase is similar.From this result follows that a lower bound for the resolution spae of aformula implies an exponentially larger tree-like resolution size lower bound.An upper bound for the size in terms of the spae for the ase of generalresolution is given in [17℄, but the height measure is also onsidered as aparameter in the relation. The height of a resolution refutation is the lengthof the longest path from an initial lause to the empty lause in the refutationgraph.Theorem 10. [17℄ For an unsatis�able formula F in CNFsize(F ) � �spae(F ) + height(F )spae(F ) �:A onsequene of this result is that refutations with polynomial heightand onstant spae must have polynomial size.5 Tradeo�sBen-Sasson has shown in [4℄ tradeo� results for the size, width and spaeomplexity measures applied to ertain families of formulas. He proves thatfor these formulas there are optimal resolution refutations with respet to oneof the parameters, but the optimization of one omplexity measure inreasesthe others. A entral part in the proof of this result is a surprising onnetionbetween the variable spae needed in the resolution of ertain formulas andthe blak-white pebbling measure of an underlying graph. This onnetion isstated here without proof in Lemma 13. The blak-white pebbling measure



of a iruit G introdued in [13℄ intuitively measures the spae needed for thesimulation of the iruit on a nondeterministi Turing mahine. This gameis more involved than the standard pebbling game and inludes pebbles oftwo kinds: white pebbles simulating nondeterministi steps and blak onesfor the simulation of deterministi steps. We omit here the details about thisgame and refer the interested reader to [25℄.The formulas used by Ben-Sasson to prove the tradeo� behavior are thepebbling ontraditions introdued in [7℄. They express the priniple that ina direted ayli graph, pebbling the soure nodes and following the rulethat if all the predeessors of a node v ontain a pebble then v also gets one,implies that a pebble will be plaed on the sink.De�nition 11. Let G = (V;E) be a direted ayli graph in whih everyvertex has fan-in 2 or 0 with a unique sink s. We all a graph with theseproperties a iruit-graph. Let k > 0. We assoiate k distint Boolean vari-ables v1; : : : ; vk with every vertex v 2 V . PebkG, the k-th degree pebblingontradition of G, is the onjuntion of:Soure axioms: Wki=1 vi for eah soure v.Pebbling axioms: ui _ vj _Wkl=1wl for u and v the two predeessors of w,i; j 2 f1 : : : kg.Sink axioms: si for the sink s and i 2 f1 : : : kg.Ben-Sasson shows that for ertain iruit-graphsG the tree-like resolutionof the formulas Peb1G presents the following tradeo�:Theorem 12. [4℄ For in�nitely many integers n, there exist ontraditionsFn of size n suh that:1: Fn has tree-like resolution refutations of linear size and onstant spae.2: width(Fn) = O(1).3: For any tree-like refutation � of Fn: width(�) � log(size(�)) = 
( nlog n).4: For any tree-like refutation � of Fn: width(�)� spae(�) = 
( nlog n).Proof. For proving the �rst part of the result, onsider a iruit-graph Gwith n verties and de�ne a topologial order on its verties. In the formulaPeb1G there is exatly one variable assoiated to eah vertex inG and thereforewe an identify the two. We desribe a tree-like resolution refutation with thedesired properties. Starting with the sink lause s, we keep an ative lause C



ontaining only negative literals that is always resolved with an initial lause.In eah resolution step we onsider the variable v in C orresponding to thehighest node in the lause in the topologial ordering and resolve C with theunique initial lause in Peb1G ontaining the positive literal v. This an bethe lause v in ase the node v is a soure, or the lause u _ w _ v in asev is an internal node with predeessors u and w. In both ases variable v isresolved and the new ative lause C only ontains negative literals. Observethat one a variable v is resolved from the ative lause, it will never appearthere again sine the variables in this lause will always be smaller than vin the topologial order. Sine in every resolution step a variable is deletedfrom the ative lause, there are as many resolution steps as variables in G.Counting the initial lauses, the size of the refutation is bounded by 2n. Theunderlying resolution graph is a very thin tree sine in eah step an initiallause is resolved and therefore the spae needed for pebbling this tree is 2.It is not hard to see that part 2 of the result holds for PebkG for everyiruit-graph G and every k > 0. A refutation for this formula just has toresolve the lauses following a topologial order of the verties in G start-ing with the lowest vertex in the order and obtaining for eah vertex v theintermediate lause Wki=1 vi. It follows by indution on the topologial or-der that this an be ahieved using intermediate lauses of width at mostmaxf2k; k + 2g.For proving the more involved parts 3 and 4 of the theorem, Ben-Sassonshows a beautiful onnetion between the variable spae needed for the res-olution of of Peb1G and the blak-white pebbling measure of the underlyinggraph G.Lemma 13. [4℄ For any iruit-graph GVspae(Peb1G) � blak-white pebbling number of G:It is known that for in�nitely many n there are iruit-graphs G with nverties and having blak-white pebbling number 
( nlog n) [24℄. Let G be suha iruit-graph. By Theorem 9, if Peb1G has a tree-like resolution refutationof size S, then this refutation needs spae log(S). By the above Lemma,the variable spae of the refutation must be at least nlog n and, therefore therefutation must ontain some lause of width at least nlog S log n . This provesparts 3 and 4 of Theorem 12.This result implies that tree-like resolution refutations of minimal widthfor the pebbling ontraditions will have exponential size, and therefore proof�ndings methods based on searhing for proofs of small width, as the onementioned at the end of Setion 3, will perform very badly on suh formulas.



A result similar to Theorem 12 but for the ase of general resolution isalso given by Ben-Sasson in [4℄.6 Combinatorial CharaterizationsThe omplexity measures of resolution width and tree-like resolution spaefor unsatis�able formulas in CNF have been exatly haraterized in terms of2-person ombinatorial games played on the formulas. Besides being usefulfor proving new width or spae bounds, these results are remarkable beausethey show that the two omplexity measures only depend on the struture ofthe formulas and an be de�ned independently of the notion of resolution. Inboth ases the game giving the haraterization had been previously de�nedin the literature for other purposes.6.1 A Game Charaterization of Resolution WidthAtserias and Dalmau [2℄ haraterized resolution width in terms of the ex-istential k-pebble game. This ombinatorial tool had been introdued byKolaitis and Vardi [23℄ in the ontext of Finite Model Theory. We presenthere a simpli�ed version of this game whih we all Game A.Game A is played in rounds by two players, Spoiler and Dupliator3, onan unsatis�able formula F in CNF. Both players onstrut a partial assign-ment � of the variables in F . The goal of Spoiler is to falsify one of the initiallauses of F with the onstruted assignment while keeping the partial as-signment as small as possible. Dupliator tries to keep this from happening.Initially � is the empty assignment and in eah round Spoiler an delete someof the values assigned in � and asks for the value of a variable x in F notassigned in �. Dupliator extends � with a Boolean value for x. The game�nishes when one of the initial lauses is falsi�ed by �. In this ase we saythat Dupliator sores as many points as the maximum number of variablesthat are assigned simultaneously in � at some moment in the game.De�nition 14. For an unsatis�able formula F in CNF we de�ne gameA(F )to be the maximum number of points sored by Dupliator on F against anoptimal terminating strategy of Spoiler.Theorem 15. [2℄ For an unsatis�able formula F in CNFwidth(F ) = gameA(F )� 1:3The names of the players are justi�ed in the ontext of Finite Model Theory



Proof. We �rst give a strategy for Spoiler in the game against whihDupliator sores at most width(F ) + 1 points. Consider the graph of aresolution refutation of minimal width for F . Starting at the empty lause,the strategy of Spoiler is to simulate a path from this lause to one of theinitial lauses in the refutation. Every round starts with the onstrutedpartial assignment � falsifying a lause C in this path. Spoiler asks forthe value of the variable x being resolved to generate C. By the natureof resolution any of the two possible extensions of � to x falsi�es one ofthe parent lauses of C. Depending on the hoie of Dupliator, Spoilermoves to the orresponding falsi�ed parent lause and deletes from � thevariables not appearing in the new lause. Following this strategy Spoilereventually reahes an initial lause. Observe that the number of variablesassigned simultaneously by � is at most the maximal width of a lause in therefutation plus the variable being resolved in eah round.In order to prove that width(F ) � gameA(F ) � 1 we give a strategyfor Dupliator that never falsi�es an initial lause in ase the size of theonstruted partial assignment does not beome greater than the width ofF at some point. Let k = width(F ) and let Fk�1 be the set formed by theinitial lauses in F and all the lauses that an be derived from them byresolution using only lauses of width at most k � 1. Observe that Fk�1 isunsatis�able sine it inludes the initial lauses of F , but the empty lausedoes not belong to Fk�1. When asked for the value of a variable, Dupliatorsimply has to answer a value that does not falsify a lause in Fk�1. We willshow that if the size of the onstruted partial assignment � is at most k,then this is always possible. This proves that Dupliator would always soreat least k + 1 points when playing on Fk�1, and therefore also at least asmany points when playing on F . By the way of ontradition, suppose thatSpoiler had a way to falsify a lause in Fk�1 always keeping the size of �at most k. Let r be the �rst round in whih Spoiler ahieves this. Clearlyr > 0 sine the empty lause does not belong to Fk�1. Let � be the partialassignment of size at most k� 1 onstruted just before round r. In round rSpoiler asks for the value of a new variable x. Sine for either possible answerof Dupliator one of the lauses in Fk�1 is falsi�ed, there must be two lausesC = C 0 [ fxg and D = D0 [ fxg in Fk�1 and the assignment � falsi�es bothC 0 and D0. Sine � has size at most k � 1 and C 0 [D0 is falsi�ed by �, thislause has width at most k � 1. Beause this lause an be derived by theresolution of C and D, it belongs to Fk�1. But then � would already falsifythis lause in round r � 1 and this ontradits the fat that r was the �rstround in whih a lause in Fk�1 was falsi�ed.



6.2 A Game Charaterization of Tree-like ResolutionSpaeFor the ase of tree-like resolution there is also a ombinatorial harater-ization based on a similar 2-person game. This game was introdued byImpagliazzo and Pudlák in [26℄ and has been used for proving lower boundson the size of tree-like resolution refutations [26, 6℄.The game, whih we will just all Game B, is played in rounds on anunsatis�able formula F in CNF by two players alled in this ase Prover andDelayer. The players onstrut in steps a partial assignment for the formula.Prover wants to falsify some initial lause and Delayer tries to retard thisas muh as possible. In eah round Prover hooses a variable in F and asksDelayer for a value for this variable. Delayer an answer either 0; 1 or �. Inthis last ase Prover an hoose the truth value (0 or 1) for the variable andDelayer sores one point. The variable is set to the seleted value and thenext round begins. When a variable has been assigned a value, it remainswith this value until the end of the game. The game ends when a lause inF is falsi�ed by the partial assignment onstruted this way. The goal ofDelayer is to sore as many points as possible and Prover tries to preventthis. The outome of the game is the number of points sored by Delayer.De�nition 16. Let F be an unsatis�able formula in CNF. We denote bygameB(F ) the maximum number of points that Delayer an sore while play-ing Game B on F against an optimal strategy for Prover.It was shown in [18℄ that this game provides an exat haraterization ofthe spae needed in tree-like resolution.Theorem 17. For an unsatis�able formula F in CNFtree-spae(F ) = gameB(F ) + 1:Proof. We show �rst that gameB(F ) + 1 is an upper bound for thetree-like resolution spae.Let s be the minimum spae needed in any tree-like resolution refutationof F . We give a strategy for Delayer for playing the game on F that soresat least s� 1 points with any strategy of Prover. This is shown by indutionon the number of variables in F , n.For the base ase n = 1, F ontains just one variable and therefore s � 2.Delayer just needs to answer � to the only variable asked by Prover.For n > 1, let x be the �rst variable asked by Prover and let Fx=1 andFx=0 the CNF formulas obtained after giving value 1 and 0 respetively tovariable x in F . Any tree-like refutation of F requires s pebbles and thereforeeither



i) the tree-like spae for refuting eah of Fx=1 and Fx=0 is at least s� 1 orii) for one of the formulas the tree-like resolution spae is at least s.Any other possibility would imply that F ould be refuted in spae less thans. In the �rst ase Delayer an answer � and sores one point. By indutionhypothesis Delayer an sore s � 2 more points playing the game in eitherof the formulas Fx=1 or Fx=0. In the seond ase Delayer answers the valueleading to the formula that requires tree-like resolution spae s (x = 1 forexample) and the game is played on Fx=1 in the next round.On the other hand gameB(F ) is also a lower bound for the tree-like res-olution spae. Let us onsider a tree-like resolution refutation of F , �, andsuppose that Prover and Delayer play the game on F . Delayer follows astrategy soring at least gameB(F ) points and Prover hooses the variablesin an order indued by the refutation in the following way: Prover startsat the empty lause in � and in general at the end of a round moves to alause C. In the next round Prover hooses the resolved variable x from thetwo parent lauses of C. If Delayer assigns to x a value 0 or 1 then Provermoves to the parent lause that is falsi�ed by the partial assignment and thenew round starts. If Delayer assigns x value � then Prover an hoose value0 or 1 for x and moves to the parent lause falsi�ed by the hosen partialassignment. In this ase we mark the lause with �. The game ends whenProver an move to an initial lause.For a tree-like refutation � let us denote by T (�) the subtree of � formedby all the lauses that an be visited by Prover and the edges joining them inthe desribed game (with a strategy from Delayer soring at least gameB(F )points). We show that the pebbling number of T (�) is at least gameB(F )+1pebbles. Sine T (�) is a subgraph of �, this implies that tree-like spae forF is at least gameB(F ) + 1.Observe that in any path from the empty lause to an initial lause inT (�) there are at least gameB(F ) nodes marked with � (branhing nodes).Consider any strategy for pebbling the tree T (�), and onsider the �rst mo-mentm in whih all the paths going from an initial lause to the empty lauseontain a pebble. After moment m� 1 a pebble has to be plaed on an ini-tial lause C, and before that, the path going from C to the empty lauseis the only path without pebbles. This path ontains at least gameB(F )nodes marked with *. In eah one of these nodes starts a path going to aninitial lause. All these paths are disjoint and they all ontain a pebble atinstant m�1 (otherwise there would be at momentm a path from the emptylause to some initial lause without any pebble). Together with the pebbleat moment m, this makes at least gameB(F ) + 1 pebbles.



A similar game to Game B, has been de�ned in [16℄ and applied forproving lower bounds for the spae in resolution and in Resk, a more powerfulproof system. In this new game Prover does not ask for a variable like inGame B, but for a lause, and Delayer assigns values to at least one of thevariables in the lause.6.3 Width versus SpaeAtserias and Dalmau have used the ombinatorial haraterization of res-olution width in order to prove that this omplexity measure bounds theresolution spae from below. The same result had been obtained for thesimpler ase of tree-like resolution in [17℄.Theorem 18. [2℄ For an unsatis�able formula F in CNFspae(F ) � width(F )� initial-width(F ) + 1:Proof. Let F be an unsatis�able formula in CNF and w be the widthof its largest lause. We show that if width(F ) = k + w for some k thenspae(F ) � k. By the ombinatorial haraterization of width in Theorem 15if width(F ) = k + w, then Spoiler does not have a terminating strategykeeping a partial assignment of size at most k + w when playing Game Aon F . Consider a resolution refutation of F using spae less than k + 1,F0; F1; F2; : : : Fm. We show by indution on i that the set of lauses in eahof the formulas Fi is satis�able, implying that it is not possible to refute Fwith spae less than k + 1. Let si be the number of lauses in Fi. We give astrategy for Spoiler to onstrut for eah i a partial assignment �i of size atmost si satisfying all the lauses in Fi. Sine there is no terminating strategykeeping always partial assignments of size bounded by k+w, this assignmentannot falsify an initial lause of F .F1 is an initial lause in F and therefore satis�able. �1 is a partial as-signment of size 1 giving value 1 to one of the literals in F1. This assignmentan be obtained by Spoiler by asking the value of all the variables in F1 un-til one satis�es the lause, and deleting the values of all the other assignedvariables afterwards. For the indution step, if Fi is obtained by adding theresolvent of two lauses to Fi�1 then learly �i�1 also satis�es Fi sine theparent lauses of the resolvent are satis�ed by �i�1. If the new formula isobtained by erasing some of the lauses in Fi�1 then Fi is still satis�able anda partial assignment �i of size � si an be obtained by Spoiler deleting ifneessary some of the assigned values of �i�1. The interesting ase ariseswhen Fi is obtained by adding some initial lause C to Fi�1. In this aseSpoiler extends the partial assignment �i by asking the Dupliator for the



values for all the variables in C that are not assigned at this point. There areat most w variables in the lause and therefore the partial assignment hasnow size at most si�1+w � k+w. Sine the assignment does not falsify anyinitial lause, at least one of the literals in C is true in the partial assignment.Spoiler onstruts �i by keeping a restrition of the atual assignment withsize at most si. This is always possible sine at most the assignment of avariable in eah lause is needed to satisfy the whole Fi.The width and the spae bounds in the resolution of Tseitin formulasfor ertain expander graphs basially oinide [7, 17℄. Sine these formulashave initial lauses of onstant width, this shows that the spae lower boundin terms of width from Theorem 18 is best possible. As in the ase of therelations between width and size mentioned in Setion 3, the initial widthis also part of the width-spae relation. It has to be this way sine it iseasy to onstrut formulas with large initial width that need only onstantresolution spae. For formulas in k-CNF for a onstant k this result provesthat resolution width lower bounds imply spae lower bounds, but this is notneessarily the ase for formulas with large initial lauses. A way to avoidthis problem is given in [2℄. The authors propose there a way to transforma formula F with large initial lauses into an equivalent one F 0 with initiallauses of onstant size and requiring roughly the same resolution width andspae as F . This allows the use of the above width-size relation togetherwith width lower bounds to prove spae lower bounds for formulas with largeinitial lauses.7 Conlusions and Open ProblemsResolution width and spae are alternative omplexity measures to the wellstudied resolution size and provide a better understanding of this proof sys-tem. Interesting in their own right, these measures have helped to unify manyof the existing results about the omplexity of resolution. We have reviewedin this survey the tight onnetions between the di�erent omplexity mea-sures. As in other areas in omputer siene related to memory alloationproblems, the pebbling game has proved to be a very useful tool to analyzespae requirements in resolution.Although in the last years many entral results relating these omplexitymeasures have been established, several questions are still open. An impor-tant one is whether is it possible to obtain a result relating resolution spaeand size as in Theorem 9 but for the ase of general resolution, thus showingthat large resolution spae implies large resolution size. Trying to prove theopposite, one ould searh for a family of formulas with polynomial size res-
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