
Spa
e and Width in PropositionalResolutionJa
obo ToránAbstra
tResolution is, due to its simpli
ity and its relation to several au-tomated theorem proving algorithms, one of the best studied propo-sitional proof systems. The most important 
omplexity measure of aresolution proof is its size, the number of 
lauses used in the proof.In the last years, in an e�ort to better understand this proof system,other 
omplexity measures for resolution have been introdu
ed. Wefo
us this survey on the known results about two of these 
omplex-ity measures: spa
e and width. We review the relationship betweenthese measures and the size in resolution, mentioning tradeo� resultsas well as 
hara
terizations of width and spa
e in terms of 
ombinato-rial games.1 Introdu
tionThe main motivation for studying the 
omplexity of proving tautologies orrefuting unsatis�able formulas in 
on
rete systems 
omes from the 
lose rela-tionship between these problems and 
entral questions in 
omplexity theory.For example, Cook and Re
khow [12℄ proved the equivalen
e of separatingthe 
omplexity 
lass NP from 
oNP and the question of obtaining superpoly-nomial lower bounds for the refutation of a family of unsatis�able formulasin every propositional proof system. Sin
e it is very hard to reason about ar-bitrary proof systems, resear
h in the area has fo
used on the study of simple
on
rete systems. This is similar to the development of 
ir
uit 
omplexity,where advan
es in the �eld 
ome from the study of 
on
rete 
ir
uit 
lasses.Perhaps the simplest non-trivial propositional proof system is resolution [27℄.It has a single derivation rule and works only with 
lauses. This simpli
itytogether with the fa
t that several automated theorem proving algorithmsused in pra
ti
e are based on resolution has provided the motivation forimportant resear
h on this proof method. Resolution is probably the beststudied propositional proof system although the power of the method is notyet 
ompletely understood.



The most important 
omplexity measure for resolution is the size or thenumber of 
lauses used in a refutation. This 
orresponds to the 
on
ept oftime in an algorithm. During the last de
ades some of the most in�uentialresear
h in the area of proof 
omplexity has proved exponential lower boundsfor the resolution size of important 
lasses of unsatis�able formulas [20, 31,10, 3℄. Re
ently in an e�ort to unify some of the existing results and to gaina better understanding of this proof system other 
omplexity measures forresolution have been introdu
ed. These measures are related to the notion ofmemory 
onsumption or spa
e used by an algorithm. We fo
us this surveyon two of these 
omplexity measures: width and spa
e.The notion of resolution width was �rst made expli
it by Galil [19℄ but theimportan
e of the 
on
ept was pointed out more re
ently by Ben-Sasson andWigderson in [7℄. The width of a resolution refutation is the largest numberof literals in a 
lause used in the refutation. Ben-Sasson and Wigdersonproved a 
onne
tion between the minimal width of a resolution refutation fora formula and the size of the refutation, thus providing a new method forproving lower bounds on resolution size.Esteban and Torán introdu
ed in [17℄ the 
on
ept of resolution spa
e,transforming a previous de�nition from [21℄. The spa
e of a resolution refu-tation is the number of 
lauses that have to be kept simultaneously in mem-ory to infer a 
ontradi
tion. As in the de�nition of spa
e in a Turing ma-
hine, the spa
e used by the input 
lauses is not 
onsidered in the modeland these 
lauses 
an be downloaded to the working memory when needed.Alekhnovi
h, Ben-Sasson, Razborov and Wigderson [1℄ extended the de�-nition of resolution spa
e in several ways. They de�ned a spa
e notion forstronger proof systems like Propositional Cal
ulus, and introdu
ed �ner spa
emeasures like the variable spa
e or the bit spa
e, measuring respe
tively theo

urren
es of variables and the bit size of the 
lauses that are simultaneouslykept in memory.In re
ent years several results obtaining non-trivial upper and lower boundsfor the di�erent resolution 
omplexity measures have been published. We re-view here some of these results and show that in spite of its very di�erentnature the three measures of size, width and spa
e are tightly interrelated.We also review the existing tradeo�s in the resour
es as well as purely 
ombi-natorial 
hara
terizations of the 
on
epts of resolution width and tree-spa
ein terms of 2-person games. These beautiful 
hara
terizations stress the im-pli
itness of these measures as purely 
ombinatorial properties of the inputformulas, independent of the notion of resolution.



2 De�nitionsWe will 
onsider formulas over a set of propositional variables V . A literalis either a variable x 2 V or its negation x. A 
lause is a disjun
tion ofliterals and a formula F in 
onjun
tive normal form (CNF) is a 
onjun
tionof 
lauses. For a literal l and a 2 f0; 1g, Fl=a represents the formula obtainedfrom F by giving to l the value a and redu
ing the formula in the intuitiveway.Resolution is a refutation proof system for CNF formulas. The onlyinferen
e rule in this proof system is the resolution rule:C _ x D _ �xC _D :Cutting variable x from 
lauses C _x and D_ �x one gets the resolvent 
lauseC _D. A resolution refutation of a CNF formula F is a sequen
e of 
lausesC1; : : : ; Cs where ea
h Ci is either a 
lause from F or is inferred from earlier
lauses by the resolution rule, and Cs is the empty 
lause. We will denotethe empty 
lause by 2. Resolution is sound and 
omplete, whi
h meansthat su
h a refutation for a formula exists if and only if F is unsatis�able.A resolution refutation 
an be seen as a dire
ted a
y
li
 graph, in whi
hthe 
lauses are the verti
es, and if two 
lauses are resolved then there is adire
ted edge going from ea
h of the two 
lauses to the resolvent. If theunderlying graph in a refutation happens to be a tree, we talk about tree-like resolution. It is known that for 
ertain formulas general resolution 
anprodu
e exponentially shorter refutations than tree-like resolution [9, 6℄. Thereason for this is that, 
ontrary to general resolution, in a tree-like proof a
lause that is needed more than on
e in the refutation must be re-derivedea
h time from the initial 
lauses.The size of a resolution refutation is the number of 
lauses it 
ontains. Foran unsatis�able formula F , size(F ) denotes the minimal size of a resolutionrefutation of F . We denote by tree-size(F ) the minimal size of a tree-likeresolution refutation of F . As mentioned above, this 
an be greater thansize(F ). We de�ne now resolution width and spa
e, the other two 
omplexitymeasures dis
ussed in this survey.De�nition 1. [7℄ The width of a 
lause is the number of literals appearingin it. For a set of 
lauses C (C 
an be for example a formula in CNF ora resolution refutation) the width of C, denoted by initial-width(C), is themaximal width of a 
lause in the set C.The width needed for the resolution of an unsatis�able CNF formula F ,denoted by width(F ), is the minimal width needed in a resolution of F , thatis, the minimum of initial-width(�) over all resolution refutations � of F .



The spa
e needed in a resolution refutation is the number of 
lauses thathave to be kept simultaneously in memory (not 
ounting the initial 
lauses)in order to derive the empty 
lause. More formally:De�nition 2. [17, 1℄ For k 2 N , we say that an unsatis�able CNF formulaF has resolution refutation bounded by spa
e k if there is a sequen
e of CNFformulas F1; : : : ; Fs, su
h that F1 � F , 2 2 Fs, in any Fi there are at mostk 
lauses, and for ea
h i < s, Fi+1 is obtained from Fi by deleting some ofits 
lauses, adding the resolvent of two 
lauses of Fi, or adding one of the
lauses of F (initial 
lause).The spa
e needed for the resolution of an unsatis�able formula F , denotedspa
e(F ) is the minimum k for whi
h the formula has a refutation boundedby spa
e k.In [1℄ the authors introdu
e two re�nements of the spa
e measure: thevariable spa
e, and the bit spa
e. For an unsatis�able formula F , the variablespa
e of F , Vspa
e(F ) is de�ned like the spa
e of F above, but 
ounting thesum of sizes (widths) of the 
lauses of the formulas Fi in the resolution,instead of just the number of 
lauses. The bit spa
e 
ounts the length (aswords over a �nite alphabet) of the 
lauses kept in memory.3 WidthThe idea that a large resolution refutation must 
ontain wide 
lauses hasbeen around for many years. Already the �rst proof of an exponential lowerbound for the resolution size given by Haken [20℄ was based on the fa
t thatany resolution refutation for the family of formulas en
oding the pigeon holeprin
iple must 
ontain many wide 
lauses of a 
ertain kind. The use of wide
lauses to prove resolution lower bounds was also an important ingredientin subsequent results, espe
ially in [3℄. In [19℄ it was proved that the refu-tation of 
ertain formulas require large width and it was 
onje
tured in [22℄that a formula having only resolution refutations with large 
lauses 
annothave short refutations. But the exa
t relation between width and size inresolution was �rst expli
itly stated by Ben-Sasson and Wigderson in [7℄.Expressing the relation between size and width they redu
ed the problemof giving lower bounds on the size of a refutation to that of giving lowerbounds on the width. The size-width relations for resolution were inspiredby similar bounds regarding relations between the degree in the PolynomialCal
ulus proof system and the resolution size obtained in [11℄. With thismethod Ben-Sasson and Wigderson were able to provide a uni�ed approa
hto prove most of the previously known lower bounds for resolution size. They



also used the width 
on
ept to develop a simple algorithm for sear
hing for arefutation for a given formula F . The algorithm sear
hes systemati
ally for
lauses of in
reasing size and works in time nO(w) where n is the number ofvariables in F and w the minimal width of any refutation of F .For the proof of the width-size relation the following te
hni
al lemma isneeded:Lemma 3. Let F be a formula in CNF, l be a literal in F and let F l denotethe set of 
lauses in F 
ontaining literal l. If width(Fl=1) � k � 1 andwidth(Fl=0) � k then width(F ) � maxfk; initial-width(F l)g:Proof. The set of 
lauses Fl=1 is obtained from F by removing literall from all the 
lauses in F and deleting the 
lauses 
ontaining literal l. Byhypothesis, there is a width k � 1 resolution refutation � of Fl=1. Everyinitial 
lause in Fl=1 is either an initial 
lause from F or a 
lause obtainedby deleting literal l from a 
lause in F . By adding l to the initial 
lausesof this se
ond type in Fl=1 and propagating this literal through � we obtaina legal resolution derivation �0 of l from F of width at most k. In order toderive the empty 
lause, now l 
an be resolved with all the 
lauses in F lobtaining Fl=0. This part has width initial-width(F l). By the assumptionthere is a resolution refutation of Fl=0 with width � k. The width of thewhole refutation is therefore maxfk;initial-width(F l)g. We 
an now statethe basi
 relation between the 
omplexity measures of resolution width andsize:Theorem 4. [7℄ For an unsatis�able formula F in CNF with n variableswidth(F ) � initial-width(F ) +O(pn ln(size(F ))):Proof. Let F be a formula in CNF with n variables and let k be itsinitial width. Let � be a resolution refutation of minimal size s. We de�ned and a to be d := dp2n ln se and a := (1 � d2n)�1. A 
lause in � is 
alledfat if it has more than d literals. Let �� be the set of fat 
lauses in �. Weprove by indu
tion on n that width(F ) � d + k + loga(j��j): The resultfollows from this impli
ation sin
e j��j � s and therefore by the way a isand d are de�ned, loga(j��j) is bounded by 
p2n ln s for some 
onstant 
.The base 
ase n = 0 holds trivially. For the indu
tion 
ase, observe thatF 
ontains at most 2n literals and therefore one literal l appears in at leastd2n j��j fat 
lauses. We 
onsider the two refutations of the formulas Fl=0 andFl=1 obtained from � by setting literal l to 1 and to 0 respe
tively. Settingl = 1 removes all the 
lauses in
luding literal l and leaves a refutation of Fl=1with at most (1� d2n)j��j = a�1j��j fat 
lauses. By indu
tion hypothesis we



have width(Fl=1) � d + k + loga(a�1j��j) = d + k + loga(j��j) � 1. Settingl = 0 produ
es a refutation of the formula Fl=0 with less than n variables,and again by indu
tion on n it holds width(Fl=0) � d + k + loga(j��j). Theresult is obtained by applying Lemma 3.From this result it follows that lower bounds for the resolution width 
animply lower bounds for the resolution size.Corollary 5. size(F ) = exp(
( (width(F )�initial-width(F ))2n )):For the 
ase of tree-like resolution refutations, Ben-Sasson and Wigdersonobtain the relation:Theorem 6. tree-size(F ) � 2(initial-width(F )�width(F )).Observe that in the exponent of the right hand side of both relationswe have the di�eren
e between the minimal resolution width and the initialwidth of F . Be
ause of this fa
t, for the 
ase of families of formulas withlarge initial 
lauses, this method 
an prove only trivial size lower bounds.For formulas with 
onstant initial width (formulas in 3-CNF for example)Theorem 4 implies a superpolynomial lower bound in the resolution size in
ase one 
an prove a width lower bound of 
(pn lnn) where n is the numberof variables in the formula. Bonet and Galesi [8℄ have shown that this boundis basi
ally optimal by giving a family of 3-CNF formulas MGTn, built overO(n2) variables, having polynomial size resolution refutations, but requiring
(n) width (the square root of the number of variables) to be refuted. MGTnis the negation of a graph tautology en
oding the prin
iple that a dire
teda
y
li
 graph 
losed under transitivity must have a sour
e node. For the
ase of tree-like refutations, the optimality of the width-size relation statedin Theorem 6 was proved already in [7℄.Ben-Sasson and Wigderson use the size-width relation to provide a simpli-�ed and unifying proof of the existing lower bounds for the resolution size ofrandom k-CNF formulas, Tseitin formulas1 and formulas for the pigeonholeprin
iple.Another appli
ation of the width 
on
ept in resolution is the developmentof a dynami
 algorithm for sear
hing for a resolution refutation of an unsat-is�able formula F . The pro
edure seeks in a systemati
 way for a minimalwidth refutation for F obtaining systemati
ally for in
reasing values of w allthe 
lauses of width � w that 
an be derived from the initial set of 
lausesand adding them to this set. It is not hard to see that the running time of1These formulas were de�ned by Tseitin in [30℄ and express the prin
iple that the sumof the degrees of the verti
es in a graph must be even.



this algorithm is bounded by nO(width(F )), where n is the number of variablesin F . A similar proof sear
h algorithm with slightly better parameters wasgiven by Beame and Pitassi in [3℄. Ben-Sasson and Wigderson [7℄ prove thatthe dynami
 algorithm never performs mu
h worse than standard re
ursivemethods used in pra
ti
e su
h as the Davis-Putnam pro
edures [14℄. Theyalso provide a family of formulas for whi
h the above explained width-basedalgorithm works exponentially faster.4 Spa
eAs explained in the introdu
tion, the resolution spa
e of a formula is theminimum number of 
lauses that have to be kept simultaneously in mem-ory in order to refute the formula. There is, however, a more natural wayto look at the spa
e de�nition using the pebble game on graphs, a tradi-tional model used for spa
e measures in 
omplexity theory and for registerallo
ation problems (see [28℄). We 
an give an orientation to the graph rep-resentation of a resolution refutation having the initial 
lauses as sour
es andthe empty 
lause as the unique sink. It was observed in [17℄ that the spa
erequired for the resolution refutation of a CNF formula F (as expressed inDe�nition 2) 
orresponds to the minimum number of pebbles needed in thefollowing pebble game played on the graph of a refutation of F .De�nition 7. Given a 
onne
ted dire
ted a
y
li
 graph with one sink theaim of the game is to put a pebble on the sink of the graph following this setof rules:1) A pebble 
an be pla
ed on any initial node, that is, on a node with noprede
essors.2) A pebble 
an be removed from any node.3) A pebble 
an be pla
ed on an internal node provided all its parent nodesare pebbled. In this 
ase, instead of pla
ing a new pebble on it, one 
anshift a pebble from a parent to the node.Lemma 8. [17℄ Let F be an unsatis�able CNF formula. spa
e(F ) 
oin
ideswith the minimum number of pebbles needed for the pebble game played onthe graph of a resolution refutation of F .An upper bound for the resolution spa
e of an unsatis�able formula Fwith n variables is n+1. This is so be
ause every su
h formula 
an be refutedby a tree-like resolution of depth at most n, and it is a well known fa
t thata binary tree of depth n 
an be pebbled with n + 1 pebbles.



The formula on n variables 
ontaining all 2n possible 
lauses in
luding then variables needs resolution spa
e n+1 [17℄. This bound is the worse possiblein terms of variables but is only logarithmi
 with respe
t to the number of
lauses. In [29℄ it was shown that the family Tn of Tseitin formulas asso
iatedto 
ertain expander graphs have 4n variables 256n 
lauses and require spa
en�3 for every n. The pigeonhole formulas :PHPmn expressing the prin
iplethat m pigeons do not �t in n holes for m > n, have resolution spa
e exa
tlyn+1 independently of the number of holes [29℄. A general method for provingspa
e lower bounds that uni�es these results is shown in [1℄.Ben-Sasson and Galesi prove in [5℄ a lower bound of 
(n=�1+�) for thespa
e needed in the resolution of unsatis�able random k-CNF formulas over nvariables and �n 
lauses. An upper bound of O(n�� 1k�2 ) for the resolutionspa
e of the same 
lass of formulas is given by Zito in [32℄. A thoroughexposition of the existing upper and lower bounds for resolution spa
e is
ontained in [15℄.The 
hara
terization of spa
e of a resolution refutation in terms of thepebble game played on the refutation makes it possible to measure the tree-like resolution spa
e for a formula F as the minimum number of pebblesneeded for the game on a tree-like refutation of F . As mentioned before, for
ertain 
lasses of formulas, there 
an be an exponential gap in the sizes oftree-like and general refutations. Observe that the width measure does notin
rease when transforming a general resolution refutation into a tree-like onesin
e the 
lauses that might be rederived do not in
rease the width of therefutation. For the 
ase of spa
e, it is shown in [18℄ that for 
ertain formulasthere 
an be a linear separation between the spa
e measure in tree-like andgeneral refutations.It is not 
lear that spa
e lower bounds 
an imply size lower bounds asin the 
ase of the width measure. The next result shows that this holds,however, for the 
ase of tree-like resolution size.Theorem 9. [17℄ For an unsatis�able formula F in CNFtree-size(F ) � 2spa
e(F ) � 1:Proof. We will show that the resolution tree in the refutation of F 
an bepebbled with d+1 pebbles, where d is the depth of the biggest 
omplete binarytree embedded2 in the refutation graph. As the biggest possible 
ompletebinary tree embedded in a tree of size s has depth dlog se, the theorem holds.It is a well known fa
t that d+1 pebbles su�
e to pebble a 
omplete binary2 A tree T 0 is embedded in T if T 
an be obtained from T 0 by adding nodes and edgesor inserting nodes in the middle of edges of T .



tree of depth d (with the dire
ted edges pointing to the root). In fa
t d + 1pebbles su�
e to pebble any binary tree whose biggest embedded 
ompletebinary tree has depth d. In order to see this we use indu
tion on the size ofthe tree. The base 
ase is obvious. Let T be refutation tree, and T1 and T2be the two subtrees from the root. Let us 
all d
(T ) the depth of the biggestembedded 
omplete subtree in T .d
(T ) = � max(d
(T1); d
(T2)) if d
(T1) 6= d
(T2)d
(T1) + 1 if d
(T1) = d
(T2)By the indu
tion hypothesis one 
an pebble T1 with d
(T1) + 1 pebblesand T2 with d
(T2) + 1 pebbles. Let us suppose that d
(T1) < d
(T2), thend
(T ) = d
(T2) and one 
an pebble �rst T2 with d
(T2) + 1 pebbles, leave apebble in the root of T2 and then pebble T1 with d
(T1)+1 pebbles. For thisse
ond part of the pebbling one needs d
(T1) + 2 � d
(T2) + 1. The other
ase is similar.From this result follows that a lower bound for the resolution spa
e of aformula implies an exponentially larger tree-like resolution size lower bound.An upper bound for the size in terms of the spa
e for the 
ase of generalresolution is given in [17℄, but the height measure is also 
onsidered as aparameter in the relation. The height of a resolution refutation is the lengthof the longest path from an initial 
lause to the empty 
lause in the refutationgraph.Theorem 10. [17℄ For an unsatis�able formula F in CNFsize(F ) � �spa
e(F ) + height(F )spa
e(F ) �:A 
onsequen
e of this result is that refutations with polynomial heightand 
onstant spa
e must have polynomial size.5 Tradeo�sBen-Sasson has shown in [4℄ tradeo� results for the size, width and spa
e
omplexity measures applied to 
ertain families of formulas. He proves thatfor these formulas there are optimal resolution refutations with respe
t to oneof the parameters, but the optimization of one 
omplexity measure in
reasesthe others. A 
entral part in the proof of this result is a surprising 
onne
tionbetween the variable spa
e needed in the resolution of 
ertain formulas andthe bla
k-white pebbling measure of an underlying graph. This 
onne
tion isstated here without proof in Lemma 13. The bla
k-white pebbling measure



of a 
ir
uit G introdu
ed in [13℄ intuitively measures the spa
e needed for thesimulation of the 
ir
uit on a nondeterministi
 Turing ma
hine. This gameis more involved than the standard pebbling game and in
ludes pebbles oftwo kinds: white pebbles simulating nondeterministi
 steps and bla
k onesfor the simulation of deterministi
 steps. We omit here the details about thisgame and refer the interested reader to [25℄.The formulas used by Ben-Sasson to prove the tradeo� behavior are thepebbling 
ontradi
tions introdu
ed in [7℄. They express the prin
iple that ina dire
ted a
y
li
 graph, pebbling the sour
e nodes and following the rulethat if all the prede
essors of a node v 
ontain a pebble then v also gets one,implies that a pebble will be pla
ed on the sink.De�nition 11. Let G = (V;E) be a dire
ted a
y
li
 graph in whi
h everyvertex has fan-in 2 or 0 with a unique sink s. We 
all a graph with theseproperties a 
ir
uit-graph. Let k > 0. We asso
iate k distin
t Boolean vari-ables v1; : : : ; vk with every vertex v 2 V . PebkG, the k-th degree pebbling
ontradi
tion of G, is the 
onjun
tion of:Sour
e axioms: Wki=1 vi for ea
h sour
e v.Pebbling axioms: ui _ vj _Wkl=1wl for u and v the two prede
essors of w,i; j 2 f1 : : : kg.Sink axioms: si for the sink s and i 2 f1 : : : kg.Ben-Sasson shows that for 
ertain 
ir
uit-graphsG the tree-like resolutionof the formulas Peb1G presents the following tradeo�:Theorem 12. [4℄ For in�nitely many integers n, there exist 
ontradi
tionsFn of size n su
h that:1: Fn has tree-like resolution refutations of linear size and 
onstant spa
e.2: width(Fn) = O(1).3: For any tree-like refutation � of Fn: width(�) � log(size(�)) = 
( nlog n).4: For any tree-like refutation � of Fn: width(�)� spa
e(�) = 
( nlog n).Proof. For proving the �rst part of the result, 
onsider a 
ir
uit-graph Gwith n verti
es and de�ne a topologi
al order on its verti
es. In the formulaPeb1G there is exa
tly one variable asso
iated to ea
h vertex inG and thereforewe 
an identify the two. We des
ribe a tree-like resolution refutation with thedesired properties. Starting with the sink 
lause s, we keep an a
tive 
lause C




ontaining only negative literals that is always resolved with an initial 
lause.In ea
h resolution step we 
onsider the variable v in C 
orresponding to thehighest node in the 
lause in the topologi
al ordering and resolve C with theunique initial 
lause in Peb1G 
ontaining the positive literal v. This 
an bethe 
lause v in 
ase the node v is a sour
e, or the 
lause u _ w _ v in 
asev is an internal node with prede
essors u and w. In both 
ases variable v isresolved and the new a
tive 
lause C only 
ontains negative literals. Observethat on
e a variable v is resolved from the a
tive 
lause, it will never appearthere again sin
e the variables in this 
lause will always be smaller than vin the topologi
al order. Sin
e in every resolution step a variable is deletedfrom the a
tive 
lause, there are as many resolution steps as variables in G.Counting the initial 
lauses, the size of the refutation is bounded by 2n. Theunderlying resolution graph is a very thin tree sin
e in ea
h step an initial
lause is resolved and therefore the spa
e needed for pebbling this tree is 2.It is not hard to see that part 2 of the result holds for PebkG for every
ir
uit-graph G and every k > 0. A refutation for this formula just has toresolve the 
lauses following a topologi
al order of the verti
es in G start-ing with the lowest vertex in the order and obtaining for ea
h vertex v theintermediate 
lause Wki=1 vi. It follows by indu
tion on the topologi
al or-der that this 
an be a
hieved using intermediate 
lauses of width at mostmaxf2k; k + 2g.For proving the more involved parts 3 and 4 of the theorem, Ben-Sassonshows a beautiful 
onne
tion between the variable spa
e needed for the res-olution of of Peb1G and the bla
k-white pebbling measure of the underlyinggraph G.Lemma 13. [4℄ For any 
ir
uit-graph GVspa
e(Peb1G) � bla
k-white pebbling number of G:It is known that for in�nitely many n there are 
ir
uit-graphs G with nverti
es and having bla
k-white pebbling number 
( nlog n) [24℄. Let G be su
ha 
ir
uit-graph. By Theorem 9, if Peb1G has a tree-like resolution refutationof size S, then this refutation needs spa
e log(S). By the above Lemma,the variable spa
e of the refutation must be at least nlog n and, therefore therefutation must 
ontain some 
lause of width at least nlog S log n . This provesparts 3 and 4 of Theorem 12.This result implies that tree-like resolution refutations of minimal widthfor the pebbling 
ontradi
tions will have exponential size, and therefore proof�ndings methods based on sear
hing for proofs of small width, as the onementioned at the end of Se
tion 3, will perform very badly on su
h formulas.



A result similar to Theorem 12 but for the 
ase of general resolution isalso given by Ben-Sasson in [4℄.6 Combinatorial Chara
terizationsThe 
omplexity measures of resolution width and tree-like resolution spa
efor unsatis�able formulas in CNF have been exa
tly 
hara
terized in terms of2-person 
ombinatorial games played on the formulas. Besides being usefulfor proving new width or spa
e bounds, these results are remarkable be
ausethey show that the two 
omplexity measures only depend on the stru
ture ofthe formulas and 
an be de�ned independently of the notion of resolution. Inboth 
ases the game giving the 
hara
terization had been previously de�nedin the literature for other purposes.6.1 A Game Chara
terization of Resolution WidthAtserias and Dalmau [2℄ 
hara
terized resolution width in terms of the ex-istential k-pebble game. This 
ombinatorial tool had been introdu
ed byKolaitis and Vardi [23℄ in the 
ontext of Finite Model Theory. We presenthere a simpli�ed version of this game whi
h we 
all Game A.Game A is played in rounds by two players, Spoiler and Dupli
ator3, onan unsatis�able formula F in CNF. Both players 
onstru
t a partial assign-ment � of the variables in F . The goal of Spoiler is to falsify one of the initial
lauses of F with the 
onstru
ted assignment while keeping the partial as-signment as small as possible. Dupli
ator tries to keep this from happening.Initially � is the empty assignment and in ea
h round Spoiler 
an delete someof the values assigned in � and asks for the value of a variable x in F notassigned in �. Dupli
ator extends � with a Boolean value for x. The game�nishes when one of the initial 
lauses is falsi�ed by �. In this 
ase we saythat Dupli
ator s
ores as many points as the maximum number of variablesthat are assigned simultaneously in � at some moment in the game.De�nition 14. For an unsatis�able formula F in CNF we de�ne gameA(F )to be the maximum number of points s
ored by Dupli
ator on F against anoptimal terminating strategy of Spoiler.Theorem 15. [2℄ For an unsatis�able formula F in CNFwidth(F ) = gameA(F )� 1:3The names of the players are justi�ed in the 
ontext of Finite Model Theory



Proof. We �rst give a strategy for Spoiler in the game against whi
hDupli
ator s
ores at most width(F ) + 1 points. Consider the graph of aresolution refutation of minimal width for F . Starting at the empty 
lause,the strategy of Spoiler is to simulate a path from this 
lause to one of theinitial 
lauses in the refutation. Every round starts with the 
onstru
tedpartial assignment � falsifying a 
lause C in this path. Spoiler asks forthe value of the variable x being resolved to generate C. By the natureof resolution any of the two possible extensions of � to x falsi�es one ofthe parent 
lauses of C. Depending on the 
hoi
e of Dupli
ator, Spoilermoves to the 
orresponding falsi�ed parent 
lause and deletes from � thevariables not appearing in the new 
lause. Following this strategy Spoilereventually rea
hes an initial 
lause. Observe that the number of variablesassigned simultaneously by � is at most the maximal width of a 
lause in therefutation plus the variable being resolved in ea
h round.In order to prove that width(F ) � gameA(F ) � 1 we give a strategyfor Dupli
ator that never falsi�es an initial 
lause in 
ase the size of the
onstru
ted partial assignment does not be
ome greater than the width ofF at some point. Let k = width(F ) and let Fk�1 be the set formed by theinitial 
lauses in F and all the 
lauses that 
an be derived from them byresolution using only 
lauses of width at most k � 1. Observe that Fk�1 isunsatis�able sin
e it in
ludes the initial 
lauses of F , but the empty 
lausedoes not belong to Fk�1. When asked for the value of a variable, Dupli
atorsimply has to answer a value that does not falsify a 
lause in Fk�1. We willshow that if the size of the 
onstru
ted partial assignment � is at most k,then this is always possible. This proves that Dupli
ator would always s
oreat least k + 1 points when playing on Fk�1, and therefore also at least asmany points when playing on F . By the way of 
ontradi
tion, suppose thatSpoiler had a way to falsify a 
lause in Fk�1 always keeping the size of �at most k. Let r be the �rst round in whi
h Spoiler a
hieves this. Clearlyr > 0 sin
e the empty 
lause does not belong to Fk�1. Let � be the partialassignment of size at most k� 1 
onstru
ted just before round r. In round rSpoiler asks for the value of a new variable x. Sin
e for either possible answerof Dupli
ator one of the 
lauses in Fk�1 is falsi�ed, there must be two 
lausesC = C 0 [ fxg and D = D0 [ fxg in Fk�1 and the assignment � falsi�es bothC 0 and D0. Sin
e � has size at most k � 1 and C 0 [D0 is falsi�ed by �, this
lause has width at most k � 1. Be
ause this 
lause 
an be derived by theresolution of C and D, it belongs to Fk�1. But then � would already falsifythis 
lause in round r � 1 and this 
ontradi
ts the fa
t that r was the �rstround in whi
h a 
lause in Fk�1 was falsi�ed.



6.2 A Game Chara
terization of Tree-like ResolutionSpa
eFor the 
ase of tree-like resolution there is also a 
ombinatorial 
hara
ter-ization based on a similar 2-person game. This game was introdu
ed byImpagliazzo and Pudlák in [26℄ and has been used for proving lower boundson the size of tree-like resolution refutations [26, 6℄.The game, whi
h we will just 
all Game B, is played in rounds on anunsatis�able formula F in CNF by two players 
alled in this 
ase Prover andDelayer. The players 
onstru
t in steps a partial assignment for the formula.Prover wants to falsify some initial 
lause and Delayer tries to retard thisas mu
h as possible. In ea
h round Prover 
hooses a variable in F and asksDelayer for a value for this variable. Delayer 
an answer either 0; 1 or �. Inthis last 
ase Prover 
an 
hoose the truth value (0 or 1) for the variable andDelayer s
ores one point. The variable is set to the sele
ted value and thenext round begins. When a variable has been assigned a value, it remainswith this value until the end of the game. The game ends when a 
lause inF is falsi�ed by the partial assignment 
onstru
ted this way. The goal ofDelayer is to s
ore as many points as possible and Prover tries to preventthis. The out
ome of the game is the number of points s
ored by Delayer.De�nition 16. Let F be an unsatis�able formula in CNF. We denote bygameB(F ) the maximum number of points that Delayer 
an s
ore while play-ing Game B on F against an optimal strategy for Prover.It was shown in [18℄ that this game provides an exa
t 
hara
terization ofthe spa
e needed in tree-like resolution.Theorem 17. For an unsatis�able formula F in CNFtree-spa
e(F ) = gameB(F ) + 1:Proof. We show �rst that gameB(F ) + 1 is an upper bound for thetree-like resolution spa
e.Let s be the minimum spa
e needed in any tree-like resolution refutationof F . We give a strategy for Delayer for playing the game on F that s
oresat least s� 1 points with any strategy of Prover. This is shown by indu
tionon the number of variables in F , n.For the base 
ase n = 1, F 
ontains just one variable and therefore s � 2.Delayer just needs to answer � to the only variable asked by Prover.For n > 1, let x be the �rst variable asked by Prover and let Fx=1 andFx=0 the CNF formulas obtained after giving value 1 and 0 respe
tively tovariable x in F . Any tree-like refutation of F requires s pebbles and thereforeeither



i) the tree-like spa
e for refuting ea
h of Fx=1 and Fx=0 is at least s� 1 orii) for one of the formulas the tree-like resolution spa
e is at least s.Any other possibility would imply that F 
ould be refuted in spa
e less thans. In the �rst 
ase Delayer 
an answer � and s
ores one point. By indu
tionhypothesis Delayer 
an s
ore s � 2 more points playing the game in eitherof the formulas Fx=1 or Fx=0. In the se
ond 
ase Delayer answers the valueleading to the formula that requires tree-like resolution spa
e s (x = 1 forexample) and the game is played on Fx=1 in the next round.On the other hand gameB(F ) is also a lower bound for the tree-like res-olution spa
e. Let us 
onsider a tree-like resolution refutation of F , �, andsuppose that Prover and Delayer play the game on F . Delayer follows astrategy s
oring at least gameB(F ) points and Prover 
hooses the variablesin an order indu
ed by the refutation in the following way: Prover startsat the empty 
lause in � and in general at the end of a round moves to a
lause C. In the next round Prover 
hooses the resolved variable x from thetwo parent 
lauses of C. If Delayer assigns to x a value 0 or 1 then Provermoves to the parent 
lause that is falsi�ed by the partial assignment and thenew round starts. If Delayer assigns x value � then Prover 
an 
hoose value0 or 1 for x and moves to the parent 
lause falsi�ed by the 
hosen partialassignment. In this 
ase we mark the 
lause with �. The game ends whenProver 
an move to an initial 
lause.For a tree-like refutation � let us denote by T (�) the subtree of � formedby all the 
lauses that 
an be visited by Prover and the edges joining them inthe des
ribed game (with a strategy from Delayer s
oring at least gameB(F )points). We show that the pebbling number of T (�) is at least gameB(F )+1pebbles. Sin
e T (�) is a subgraph of �, this implies that tree-like spa
e forF is at least gameB(F ) + 1.Observe that in any path from the empty 
lause to an initial 
lause inT (�) there are at least gameB(F ) nodes marked with � (bran
hing nodes).Consider any strategy for pebbling the tree T (�), and 
onsider the �rst mo-mentm in whi
h all the paths going from an initial 
lause to the empty 
lause
ontain a pebble. After moment m� 1 a pebble has to be pla
ed on an ini-tial 
lause C, and before that, the path going from C to the empty 
lauseis the only path without pebbles. This path 
ontains at least gameB(F )nodes marked with *. In ea
h one of these nodes starts a path going to aninitial 
lause. All these paths are disjoint and they all 
ontain a pebble atinstant m�1 (otherwise there would be at momentm a path from the empty
lause to some initial 
lause without any pebble). Together with the pebbleat moment m, this makes at least gameB(F ) + 1 pebbles.



A similar game to Game B, has been de�ned in [16℄ and applied forproving lower bounds for the spa
e in resolution and in Resk, a more powerfulproof system. In this new game Prover does not ask for a variable like inGame B, but for a 
lause, and Delayer assigns values to at least one of thevariables in the 
lause.6.3 Width versus Spa
eAtserias and Dalmau have used the 
ombinatorial 
hara
terization of res-olution width in order to prove that this 
omplexity measure bounds theresolution spa
e from below. The same result had been obtained for thesimpler 
ase of tree-like resolution in [17℄.Theorem 18. [2℄ For an unsatis�able formula F in CNFspa
e(F ) � width(F )� initial-width(F ) + 1:Proof. Let F be an unsatis�able formula in CNF and w be the widthof its largest 
lause. We show that if width(F ) = k + w for some k thenspa
e(F ) � k. By the 
ombinatorial 
hara
terization of width in Theorem 15if width(F ) = k + w, then Spoiler does not have a terminating strategykeeping a partial assignment of size at most k + w when playing Game Aon F . Consider a resolution refutation of F using spa
e less than k + 1,F0; F1; F2; : : : Fm. We show by indu
tion on i that the set of 
lauses in ea
hof the formulas Fi is satis�able, implying that it is not possible to refute Fwith spa
e less than k + 1. Let si be the number of 
lauses in Fi. We give astrategy for Spoiler to 
onstru
t for ea
h i a partial assignment �i of size atmost si satisfying all the 
lauses in Fi. Sin
e there is no terminating strategykeeping always partial assignments of size bounded by k+w, this assignment
annot falsify an initial 
lause of F .F1 is an initial 
lause in F and therefore satis�able. �1 is a partial as-signment of size 1 giving value 1 to one of the literals in F1. This assignment
an be obtained by Spoiler by asking the value of all the variables in F1 un-til one satis�es the 
lause, and deleting the values of all the other assignedvariables afterwards. For the indu
tion step, if Fi is obtained by adding theresolvent of two 
lauses to Fi�1 then 
learly �i�1 also satis�es Fi sin
e theparent 
lauses of the resolvent are satis�ed by �i�1. If the new formula isobtained by erasing some of the 
lauses in Fi�1 then Fi is still satis�able anda partial assignment �i of size � si 
an be obtained by Spoiler deleting ifne
essary some of the assigned values of �i�1. The interesting 
ase ariseswhen Fi is obtained by adding some initial 
lause C to Fi�1. In this 
aseSpoiler extends the partial assignment �i by asking the Dupli
ator for the



values for all the variables in C that are not assigned at this point. There areat most w variables in the 
lause and therefore the partial assignment hasnow size at most si�1+w � k+w. Sin
e the assignment does not falsify anyinitial 
lause, at least one of the literals in C is true in the partial assignment.Spoiler 
onstru
ts �i by keeping a restri
tion of the a
tual assignment withsize at most si. This is always possible sin
e at most the assignment of avariable in ea
h 
lause is needed to satisfy the whole Fi.The width and the spa
e bounds in the resolution of Tseitin formulasfor 
ertain expander graphs basi
ally 
oin
ide [7, 17℄. Sin
e these formulashave initial 
lauses of 
onstant width, this shows that the spa
e lower boundin terms of width from Theorem 18 is best possible. As in the 
ase of therelations between width and size mentioned in Se
tion 3, the initial widthis also part of the width-spa
e relation. It has to be this way sin
e it iseasy to 
onstru
t formulas with large initial width that need only 
onstantresolution spa
e. For formulas in k-CNF for a 
onstant k this result provesthat resolution width lower bounds imply spa
e lower bounds, but this is notne
essarily the 
ase for formulas with large initial 
lauses. A way to avoidthis problem is given in [2℄. The authors propose there a way to transforma formula F with large initial 
lauses into an equivalent one F 0 with initial
lauses of 
onstant size and requiring roughly the same resolution width andspa
e as F . This allows the use of the above width-size relation togetherwith width lower bounds to prove spa
e lower bounds for formulas with largeinitial 
lauses.7 Con
lusions and Open ProblemsResolution width and spa
e are alternative 
omplexity measures to the wellstudied resolution size and provide a better understanding of this proof sys-tem. Interesting in their own right, these measures have helped to unify manyof the existing results about the 
omplexity of resolution. We have reviewedin this survey the tight 
onne
tions between the di�erent 
omplexity mea-sures. As in other areas in 
omputer s
ien
e related to memory allo
ationproblems, the pebbling game has proved to be a very useful tool to analyzespa
e requirements in resolution.Although in the last years many 
entral results relating these 
omplexitymeasures have been established, several questions are still open. An impor-tant one is whether is it possible to obtain a result relating resolution spa
eand size as in Theorem 9 but for the 
ase of general resolution, thus showingthat large resolution spa
e implies large resolution size. Trying to prove theopposite, one 
ould sear
h for a family of formulas with polynomial size res-



olution refutations that need large spa
e. Good 
andidates for this are thepebbling 
ontradi
tions of degree 2 (
f. De�nition 11). These formulas 
anbe refuted within polynomial size and 
onstant width, but their resolutionspa
e requirements are not known. A related problem is whether for everyunsatis�able F spa
e(F ) � width(F ).Con
erning the 
ombinatorial 
hara
terizations, we have games for thewidth and the tree-like resolution spa
e. Is there a similar 
hara
terizationfor the spa
e or variable spa
e in general resolution? This would be ni
eresults to 
omplete the pi
ture.A
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