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1 Introdu
tionThe graph isomorphism problem, GI, 
onsists in de
iding whether two givengraphs are isomorphi
. In other words, the problem is to test whether thereis a bije
tive fun
tion mapping the verti
es of the �rst graph to the nodesof the se
ond graph and preserving the adja
en
y relation. GI has re
eived
onsiderable attention sin
e it is one of the few problems in NP that is nei-ther known to be 
omputable in polynomial time nor to be NP-
omplete. GIis the best-known example of a family of isomorphism problems on algebrai
stru
tures like groups and rings that have a similar intermediate status, be-tween P and NP-
omplete. Isomorphism questions have proved in the past tobe an important tool for exploring the tight interplay between 
omputationalproblems and 
omplexity 
lasses. Often, these problems do not quite �t instandard 
omplexity 
lasses, in terms of 
ompleteness for example. The studyof this pe
uliarity has motivated important advan
es in 
omplexity theory:Arthur-Merlin games, lowness, intera
tive proof systems, 
ounting 
lasses orderandomization. From an algorithmi
 perspe
tive, the attempts at dis
ov-ering a polynomial-time algorithm for graph isomorphism has enri
hed the�eld with algebrai
 te
hniques, parti
ularly from the theory of permutationgroups.In this 
olumn we brie�y survey the status of some important open ques-tions related to isomorphisms of graphs (also rings and groups). We do notattempt to be 
omprehensive. Rather, our goal is to fo
us on a few topi
sand to identify interesting open questions for whi
h, hopefully, the answersdo not lie too far beyond rea
h. In a brief survey of this nature it is di�
ultto tou
h upon rami�
ations of the area in 
omputational group theory, whi
his a subje
t by itself. Also, a 
ertain bias due to our resear
h interests in
omplexity theory is unavoidable.2 PreliminariesBy graphs we mean �nite simple graphs, usually denoted by X = (V;E),where V is the vertex set and E � �V2�. We say two graphs X1 and X2are isomorphi
 if there is a bije
tion ' : V1 �! V2 su
h that (u; v) 2 E1 i�('(u); '(v)) 2 E2. We write X1 �= X2 and 
all ' an isomorphism. An au-tomorphism of a graph X is an isomorphism from X to X. Automorphismsare permutations on the set V , and the set of automorphisms Aut(X) formsa group under permutation 
omposition. More pre
isely, if jV j = n thenAut(X) is a subgroup of Sn the symmetri
 group on n elements. It is wellknown that graph isomorphism testing is polynomial time equivalent to �nd-



ing a polynomial-size generator set for the automorphism group of a graph.We now re
all some relevant permutation group theory.In general, Sym(
) denotes the symmetri
 group on the �nite set 
.A permutation group on 
 is a subgroup of Sym(
). For j
j = n, we let
 = [n℄ and simply write Sn of all permutations on [n℄ = f1; 2 : : : ; ng todenote Sym(
). Given g 2 Sn and i 2 [n℄, we denote by ig the image ofi under permutation g. This a 
onvenient notation to express the left toright 
omposition g1g2 of permutations g1; g2 2 Sn. More pre
isely, we 
anwrite ig1g2 = (ig1)g2 for all i 2 [n℄. For � � [n℄ and g 2 Sn we write �gfor its image under g: �g = fj j j = igg. For � � [n℄, G(�) denotes thesubgroup of G that �xes ea
h element of �, and G� denotes the subgroupfg 2 G j �g = �g.The permutation group generated by a subset A of Sn is the smallestsubgroup of Sn 
ontaining A and is denoted hAi. We assume that subgroupsof Sn are presented by generator sets. Sin
e any �nite groupG has a generatorset of size log jGj, subgroups of Sn have generator sets of size polynomial inn. The identity permutation is denoted by 1 (we use 1 to denote the identityof all groups).For a subgroup G of Sn (denoted G � Sn) the set iG = fig j g 2 Gg fori 2 [n℄ is the G-orbit of i, and G is transitive on [n℄ if iG = [n℄ for i 2 [n℄.Let G � Sym(
) be transitive on 
. A G-blo
k is a subset � of [n℄ su
hthat for every g 2 G either �g = � or �g \� = ;. For a transitive group G,the set [n℄ and the singleton sets fig, i 2 [n℄ are trivial blo
ks. A transitivegroup G is primitive if it does not have any nontrivial blo
ks otherwise it is
alled imprimitive.LetG1 andG2 be two �nite groups. We say thatG1 andG2 are isomorphi
if there is a bije
tion ' : G1 �! G2 that preserves the group operation.Likewise, for two �nite rings R1 and R2, we say that they are isomorphi
 ifthere is a bije
tion ' : R1 �! R2 that preserves the ring operations. Asfor graphs, automorphisms are isomorphisms from an algebrai
 stru
ture toitself, and the automorphisms form a group under the 
omposition operation.We brie�y re
all the de�nitions and notation for some standard 
om-plexity 
lasses. Details 
an be found in a textbook like [14℄. Let P denotethe 
lass of languages (de
ision problems) that are a

epted by deterministi
Turing ma
hines in time bounded by a polynomial in input size, and NP de-note the 
lass of languages a

epted by nondeterministi
 Turing ma
hines inpolynomial time. We denote the 
lass of fun
tions 
omputable in polynomialtime by FP.A fun
tion f : f0; 1g� ! N is said to be in the 
ounting 
lass #P if thereis a polynomial time nondeterministi
 Turing ma
hine M su
h that f(x) isthe number of a

epting paths of M on input x.



A fun
tion f in the 
lass FPA is 
omputable by polynomial-time deter-ministi
 ora
le Turing ma
hine M whi
h has a

ess to ora
le A: M 
anenter a spe
ial query state and query the membership of a string y in A.We 
an similarly de�ne FPf for a fun
tion ora
le f . Let C be a relativizable
omplexity 
lass. A language A is said to be low for C if CA = C.3 HardnessGI has several properties that are not known to hold by NP-
omplete prob-lems. For example, the 
ounting version of GI is redu
ible to its de
isionversion [28℄. Moreover, it is known that graph non-isomorphism, the 
om-plement of GI, belongs to the 
lass AM of de
ision problems whose �yes�instan
es have short membership proofs in a probabilisti
 sense [7℄. Thisimplies that if the problem were NP-
omplete, then the polynomial time hi-erar
hy would 
ollapse to its se
ond level [15, 34℄. Be
ause of these fa
ts, wedo not believe that GI is NP-
omplete. On the other hand GI is not knownto be in P and we might ask what is the largest 
omplexity 
lass C for whi
hwe 
an prove that GI is hard for C? Or more spe
i�
ally:Problem 1. Is GI hard for P?The �rst hardness results for GI were given in [20℄ where it was shownthat GI is hard for NC1 the 
lass of problems 
omputable by uniform 
ir-
uit families of polynomial size and logarithmi
 depth, and for L, logarithmi
spa
e. The hardness for NC1 is proved by essentially �simulating� a logarith-mi
 depth 
ir
uit with AND and OR gates by an isomorphism question. Forea
h gate g in the 
ir
uit, a pair of graphs (Gg; Hg) is 
onstru
ted in su
h away that the graphs are isomorphi
 if and only if the gate has value 1. Thisis easy to do for the input gates. For the 
ir
uit gates, the AND and ORfun
tions for GI are used. An AND fun
tion for a problem A is a fun
tion fthat is easy to 
ompute and su
h that on input x; y, f(x; y) 2 A if and onlyif x 2 A AND y 2 A. The OR fun
tion is de�ned analogously. It is knownthat GI has AND and OR fun
tions. This property 
an be used as sket
hedabove to �nally build a pair of graphs (G;H) 
orresponding to the outputgate, su
h that they are isomorphi
 if and only if the 
ir
uit outputs 1. Anatural question is: why 
annot this method be applied to similarly �simu-late� polynomial-size monotone 
ir
uits? If this were possible it would followthat GI is hard for P. Unfortunately, the di�
ulty lies with the known ORfun
tion 
onstru
tion for GI: the OR fun
tion doubles the size of its inputs.Therefore, in order to keep the output of the redu
tion polynomial in size,the above method 
an only be applied to for 
ir
uits having a logarithmi




number of OR-gates in any path from an input to the output gate. A naturalquestion in this 
ontext is the following.Problem 2. Does graph isomorphism have an e�
iently 
omputable ORfun
tion f su
h that f(x; y) has size at most 
(jxj+ jyj), where 
 < 2?The hardness results for GI from [20℄ were improved in [35℄ to other
omplexity 
lasses using a di�erent method. In order to simulate a 
ertainkind of 
ir
uit gate g with inputs x and y, a graph gadget is 
onstru
tedhaving some verti
es related to the inputs of g and some verti
es related tothe outputs. An automorphism in the gadget graph with 
ertain restri
tionsen
oding the input values of g is for
ed to map the nodes related to theoutput in a way en
oding g(x; y). An example of su
h a gadget en
oding aparity gate is given in Figure 1.
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Figure 1: A graph gadget simulating a parity gate.For the �-gate 
onsidered in the �gure, the input values 
an be en
oded inthe gadget graph automorphism as follows: if x has value a 2 f0; 1g then we



restri
t the set of 
onsidered automorphisms to those mapping vertex x0 toxa, and the same for y. It is not hard to see that any automorphism mappingx0 to xa and y0 to yb for a; b 2 f0; 1g, must map z0 to za�b thus 
omputingthe output of the gate. A gadget is 
onstru
ted for ea
h gate and they are
onne
ted as in the 
ir
uit. The 
onstru
ted graph has an automorphism ofthe kind en
oding the input values of the 
ir
uit and mapping the outputvertex to a vertex en
oding value 1 if and only if the value produ
ed by the
ir
uit is 1. This question 
an be redu
ed to GI. In [35℄ it is shown that su
hgraph gadgets 
an be 
onstru
ted for every modular addition gate. Moregenerally, for any 
ommutative group this gadget 
an simulate the groupoperation. But this does not seem to su�
e for 
apturing the whole 
lass P.It is known that the 
ir
uit value problem for polynomial size 
ir
uits withgates 
omputing multipli
ation in S5, the group of permutations over �veelements, is 
omplete for P. But S5 is not an abelian group, and thereforethe te
hnique from [35℄ 
annot be applied here.The largest 
omplexity 
lass known to be redu
ible to GI is DET [35℄,the 
lass of problems that are NC1 redu
ible to 
omputing the integer de-terminant [16℄. DET belongs to NC2 and therefore there is still a large gapfor proving hardness of GI for P. An immediate and natural open question iswhether GI is hard for LOGCFL (LOGCFL is the sub
lass of NC2 
onsistingof problems that are logspa
e redu
ible to a 
ontext-free language).Problem 3. Is graph isomorphism hard for LOGCFL?A di�erent approa
h to make progress on this problem is to 
onsider iso-morphism of other algebrai
 stru
tures (see Se
tion 6 where we 
onsider someof these in detail). Problems like ring isomorphism and group isomorphismappear to be harder than GI. It should be easier to show that these are hardfor P.Problem 4. Are the isomorphism problems for rings, permutation groups orbla
k-box groups hard for P?4 Graph Isomorphism for Restri
ted ClassesThe graph isomorphism problem for 
ertain spe
ial 
lasses of graphs is knownto have polynomial-time algorithms. One su
h restri
tion that is well-studiedis the bounded 
olor multipli
ity graph isomorphism problem (BCGIb): for apair of vertex-
olored graphs (G1; G2) su
h that there are at most a 
onstantb many verti
es of any given 
olor in ea
h graph, test if there is a 
olor-preserving isomorphism between G1 and G2.



Luks in [26℄ gave a remarkable NC algorithm for the BCGIb problem. Onthe other hand, we 
an see that several of the hardness results for GI [35℄(see Se
tion 3) are hardness results for BCGIb. More pre
isely, it is knownthat BCGIb is AC0-many one hard for the logspa
e 
ounting 
lass Modk forea
h 
onstant k. The 
onstru
tion in [35℄ requires b to be k2. Building on[26℄, in [5℄ the gap between the upper and lower bound results for BCGIb isin some sense 
losed by proving that BCGIb is in Modk hierar
hy and notingthat the hardness results for BCGIb extend to the Modk hierar
hy, where the
onstant k and the level of the hierar
hy in whi
h BCGI sits depends on b.Tight 
hara
terizations are also known for tree isomorphism in two dif-ferent representations (see e.g. [20℄ for this and other examples).This opens up similar 
omplexity-theoreti
 questions for other 
lasses ofgraphs for whi
h GI has a polynomial-time algorithm. The problem is topre
isely 
lassify the restri
ted problem inside P by giving mat
hing upperand lower bounds. Re
all that inside P there is a ri
h tapestry of natural
omplexity 
lasses. Parti
ularly, natural problems like 
omputing integer de-terminant abound within NC2; the 
lassi�
ation of these problems are mainlya result of insights into logspa
e 
ounting 
lasses (see e.g. the survey arti
le[2℄). Thus it is natural to seek the pre
ise 
lassi�
ation of restri
ted versionsof GI. Notable examples are (i) graphs of bounded degree [25℄, (ii) graphs ofbounded genus [29℄, and (iii) graphs of bounded eigenvalue multipli
ity [11℄whi
h all have polynomial time algorithms for GI.Of these, we fo
us on graph isomorphism for bounded degree graphs(BDGI), where the maximum degree of the input graphs is bounded by a
onstant. Luks in [25℄ gave a polynomial-time algorithm for this problem.This paper was a major breakthrough, introdu
ing methods from permuta-tion group theory whi
h have sin
e be
ome 
entral te
hniques in the area ofisomorphism testing as well as in the design of permutation group algorithm.However, it is still open if BDGI is in NC (or even RNC).Luks has observed in [26℄ that BDGI 
an be NC redu
ed to the set-stabilizer problem for groups in �d. We re
all the de�nitions to introdu
ethe ideas involved.De�nition 1. A �nite group G is said to be in the 
lass �d if for any 
om-position series G = G0�G1 : : :�Gt = 1 ea
h 
omposition fa
tor Gi=Gi+1 iseither abelian or is isomorphi
 to a subgroup of Sd.The 
lass �d of �nite groups is algorithmi
ally important. It has playedan important role in proving time bounds for several permutation groupalgorithms, in
luding the 
urrent best algorithm for the graph isomorphismproblem (e.g. see [27℄).



Given a permutation group G � Sn by a generating set A and a subset �of f1; 2; � � � ; ng, the set stabilizer problem is to 
ompute a generating set forthe stabilizer group G�. Set stabilizer is of interest be
ause GI is redu
ibleto it. To see it note that it su�
es to show that �nding the automorphismgroup is redu
ible to set stabilizer. For a graph X = (V;E), let G = Sn a
ton the pairs �V2� where jV j = n. Clearly, for � = E we have G� is Aut(X).Proposition 2. Graph isomorphism is polynomial-time redu
ible to set sta-bilizer.A more involved redu
tion in [26℄ shows that BDGI is NC redu
ible topermutation groups in �d. Therefore, one way to put BDGI in NC would beto show that the set stabilizer problem is in NC.Problem 5. Pre
isely 
lassify the 
omplexity of the set stabilizer problem forgroups in �d (or even solvable groups).It follows from the results of Babai, Luks, and Séress [11, 8℄ that graphisomorphism for the bounded eigenvalue multipli
ity 
ase is in NC.Problem 6. Classify the 
omplexity of graph isomorphism for graphs withbounded eigenvalue multipli
ity.5 Graph CanonizationLet Gn denote the set of all simple undire
ted graphs on n verti
es. A 
an-onizing fun
tion for Gn is a fun
tion f from Gn to Gn su
h that� For any graph G 2 Gn, f(G) is isomorphi
 to G.� For G1; G2 2 Gn, f(G1) = f(G2) if and only if G1 is isomorphi
 to G2.In other words, a 
anonizing fun
tion assigns a 
anoni
al form to ea
h iso-morphism 
lass of graphs.For example, the fun
tion f su
h that f(G) is the lexi
ographi
ally leastgraph in the isomorphism 
lass 
ontaining G is a 
anonizing fun
tion. How-ever, as observed in [10, 27℄, this 
anonizing fun
tion is NP-hard. Noti
e thatthis fun
tion 
an be 
omputed in FPNP by a simple pre�x sear
h algorithm.The intriguing open question is whether there is some 
anonizing fun
-tion for graphs that 
an be 
omputed in polynomial time. No better upperbound than FPNP is known for general graphs (for any 
anonizing fun
tion).Thus, it is a basi
 
omplexity-theoreti
 question to 
lassify the 
omplexity of
anonization. Is this problem low for any level of the polynomial hierar
hy?



We note that obtaining 
anoni
al forms for algebrai
 obje
ts is a naturaland fruitful pursuit in mathemati
s. For instan
e, we have the Jordan Canon-i
al Form for matri
es under similarity transformations. Likewise, we havethe Hermite Normal Form for latti
es under unimodular transformations.These normal forms 
an play an important role in the design of e�
ientalgorithms for problems.On �rst sight it would appear that graph 
anonization is 
losely relatedto the problem of isomorphism testing. Indeed, for one dire
tion we 
anobserve that isomorphism testing for graphs is polynomial-time redu
ible tograph 
anonization. How about the 
onverse?Problem 7. Is graph 
anonization polynomial time redu
ible to graph iso-morphism?There is interesting eviden
e supporting a positive answer in the resultsof Babai and Luks [10℄. Building on the earlier seminal work of Luks [25℄,Babai and Luks take an algebrai
 approa
h to the 
anonization problem. Were
all some de�nitions before we explain a key result in their paper.First we 
an assume by en
oding that we are working with strings (overa �nite alphabet, say f0; 1g) as our obje
ts instead of graphs. Let G � Snbe a subgroup of the symmetri
 group a
ting on f0; 1gn as follows: for apermutation g 2 G and x = x1x2 � � �xn 2 f0; 1gn, g maps x to y (denotedxg = y), where y = xi1xi2 � � �xin su
h that ik = kg for 1 � k � n.Now, the general problem 
an be stated as follows: We say that twostrings x and y are G-isomorphi
 if xg = y for some g 2 G. We say thatf : f0; 1gn �! f0; 1gn is a 
anonizing fun
tion w.r.t. the group G, if f(x) andx are G-isomorphi
 for all x and f(x) = f(y) i� x and y are G-isomorphi
.In any 
ase, lexi
ographi
 
anonization remains hard even for very simplegroups G.Proposition 3. [10℄ The lexi
ographi
 
anonizing fun
tion w.r.t. arbitrarygroups G for strings is NP-hard even if G is restri
ted to be an elementaryabelian 2-group.The idea of the proof is to give a polynomial-time redu
tion from themaximum 
lique problem to the lexi
ographi
 
anonization problem.More important, on the positive side, Babai and Luks give an algorithmfor 
omputing a 
anonizing fun
tion that depends on the stru
ture of thegroup G. This algorithm is based on a divide-and-
onquer strategy along thesame lines as developed by Luks in [25℄: the divide and 
onquer is done on thegroup G based on its internal stru
ture (transitive 
onstituents, primitivityand imprimitivity stru
ture).



If G is a permutation group in the 
lass �d, it turns out that this 
anon-ization algorithm runs in polynomial time. Cru
ially, the fa
t that primitivegroups in �d are of size at most nO(d) is used for this analysis. To summarize:Theorem 4. [10℄ Given a group G � Sn su
h that G 2 �d, there is an nO(d)algorithm that 
omputes a 
anonizing fun
tion for Gn.In [10℄ it is also shown that for general graphs there is a 
n1=2+o(1) 
anon-izing algorithm whi
h 
losely mat
hes the running time of the best knownisomorphism test for general graphs. However, from a 
omplexity-theoreti
point of view the relative di�
ulty is not 
lear even for the problem of G-isomorphism testing for a group G 2 �d. In parti
ular, we would like to knowan answer for the following question. We 
onje
ture that the answer shouldbe positive.Problem 8. Let G � Sn be a permutation group that is in �d. Is the prob-lem of testing if two strings x and y are G-isomorphi
 NC equivalent to the
orresponding 
anonization problem? We 
an also ask a similar question forsolvable permutation groups, whi
h is a sub
lass of �d.A more general problem is the following.Problem 9. For di�erent restri
ted graph 
lasses 
onsidered in Se
tion 4,what is the relative 
omplexity of isomorphism and 
anonization?We next brie�y dis
uss 
anonization for �nite groups and rings. What isthe appropriate notion for groups? For abelian groups, the stru
ture theoremde
omposing any �nite abelian group into a dire
t produ
t of 
y
li
 groupsis a natural 
anoni
al form and it 
an be used to test the isomorphism oftwo abelian groups. Thus, the problem of 
anonization for �nite abeliangroups boils down to 
omputing the 
y
li
 group de
omposition. Of 
ourse,the question arises whether there 
ould be 
anoni
al forms that are easierto 
ompute. For nonabelian groups, it does not appear that there is anysu
h intrinsi
 
anoni
al form. It is tempting to use the 
omposition series(or some other series for groups) but these are only partial isomorphism in-variants. Of 
ourse, the lexi
ographi
 
anoni
al form 
an always be de�nedfor �nite groups (and rings). But one would suspe
t that it is NP-hard to
ompute. Turning to �nite rings, we 
an try to use Wedderburn's de
ompo-sition theorem for semisimple rings to de�ne 
anoni
al forms. To summarize,we have the following open-ended question.Problem 10. What are the suitable 
anoni
al forms for �nite groups andrings and what is 
omplexity of 
omputing these 
anoni
al forms?



6 Ring and Group IsomorphismWe look now at the 
omplexity of isomorphism testing for rings and groups.These questions have evoked interest due to the re
ent work by Kayal andSaxena [21℄ relating the 
omplexity of ring isomorphism to both graph iso-morphism and integer fa
toring. More re
ently, Agrawal and Saxena in afas
inating arti
le [1℄ have highlighted the importan
e of �nite rings andtheir automorphisms for 
omputational problems in algebra with various ex-amples.We dis
uss the main results about ring isomorphism and automorphismfrom [21℄. Alongside, we make some new observations for the group isomor-phism problem to draw 
omparisons and formulate open questions.Re
all that a ring (R;+; :) with unity is a 
ommutative group under theaddition operation with 0 as identity and is a monoid under multipli
ationwith 1 as multipli
ative identity, together with multipli
ation distributingover addition.The 
omplexity of isomorphism problems might 
hange depending on theway the input instan
es are represented. We �rst 
onsider the representationof a �nite ring R. One way is to des
ribe R expli
itly by its addition andmultipli
ation tables. This table representation is of size O(kjRj2), whereelements of R are en
oded as strings of length k.A more 
ompa
t basis representation would be to des
ribe R by giving abasis for R. The basis is an independent generating set fe1; e2; � � � ; emg forthe additive group (R;+). Clearly, (R;+) has generating sets of size m =O(log jRj). Additionally, to des
ribe the multipli
ative stru
ture, �stru
tural
onstants� of the ring �ijk 2 Z; 1 � i; j; k � m are given, where ei � ej =Pk �ijkek. Sin
e the 
hara
teristi
 of R is bounded by jRj, ea
h stru
tural
onstant is m bits long. Now, suppose that the elements of R are en
odedas strings of length k. Clearly the entire representation is of size O(km4).Likewise, 
onsider �nite groups G whose elements are en
oded as stringsof length k. We 
ould des
ribe G by the table representation by giving themultipli
ation table of size O(kjGj2). Again, a more 
ompa
t representationfor �nite groups would be to give a generating set fg1; g2; � � � ; gkg for G,where the multipli
ation operation is impli
itly des
ribed by a �bla
k-box�[13, 9℄. The �bla
k-box� model introdu
ed by [13, 9℄ is a 
onvenient setting tostudy the 
omplexity of group-theoreti
 problems that do not take advantageof the a
tual group operation (permutation groups or matrix groups et
).A third possibility for representing �nite abelian groups by giving inde-pendent generating sets. Whether an arbitrary generating set 
an be trans-formed to an independent generating set in polynomial time is open. It isrelated to membership testing and the dis
rete log problem. However, this



transformation 
an be done by a polynomial time quantum algorithm. In-deed, isomorphism testing for abelian bla
k-box groups given by generatingsets 
an be done in quantum polynomial time (see [31℄ for example).Problem 11. What is the 
omplexity of 
onverting a generator representa-tion to a basis representation for �nite rings?Noti
e that the basis representation for �nite rings is more stru
turedthan the generator representation for �nite groups. The ni
er representationis basi
ally due to the fa
t that the additive group of a �nite ring is 
ommu-tative. Indeed, if a �nite group G is given by a generator set hg1; g2; � � � ; gki,in general it is not possible to express an arbitrary element g 2 G as apolynomial-size produ
t Qmj=1 gij ! However the rea
hability lemma of [13℄shows that it is possible to express g as a polynomial-size straight-line pro-gram over the generators.In this se
tion we fo
us on the basis and generator representation for ringsand groups. We will dis
uss the table representation for these problems inSe
tion 7.Kayal and Saxena [21℄ study the 
omplexity of ring isomorphism. Were
all their main results here. For rings input in the basis representation, it isshown in [21℄ that the problems of �nding a ring automorphism, 
ounting ringautomorphisms, ring isomorphism testing, and �nding a ring isomorphismare all essentially in AM \ 
oAM. More pre
isely, the fun
tional versionsof these problems are in FPAM\
oAM. Curiously, the problem de
iding if aring has a nontrivial automorphism is in P [21℄. This is essentially be
ausethose �nite rings that do not have nontrivial automorphisms have a ni
emathemati
al des
ription whi
h 
an be tested in polynomial time.In [21℄ the 
onne
tion between ring isomorphism and integer fa
toring isalso studied. It is shown that 
ounting the number of ring automorphismsis harder than integer fa
toring and �nding a nontrivial automorphism isequivalent to integer fa
toring (via randomized redu
tions).It is interesting to 
ompare these results with the situation for group iso-morphism. A basi
 di�eren
e between the two problems is in the des
riptionof an isomorphism. A ring isomorphism between two rings R1 and R2 inbasis representation 
an be des
ribed by an invertible integer matrix (aftersuitably modifying the bases in polynomial time). However, in the 
ase of anisomorphism ' between two �nite groups G and H given by generator sets,there seems no mathemati
ally expli
it way to des
ribe a group isomorphism.We 
an only des
ribe ' by taking ea
h generator gi of G and expressing '(gi)as a straight-line program over the generators of H.Nevertheless, it is shown in [9℄ that bla
k-box group isomorphism is inAM \ 
oAM. In the 
ase of permutation group isomorphism, where the two



input groups are permutation groups and hen
e more amenable, the groupisomorphism problem is shown to be in NP \ 
oAM.Sin
e the isomorphisms (or automorphisms) of �nite groups given by gen-erators do not have expli
it mathemati
al des
riptions, we do not have anFPAM\
oAM bound for 
ounting the number of group automorphisms (equiv-alently isomorphisms). However, suppose a mapping ' : G �! H is given by'(gi) as a straight-line program over the generators of H for ea
h generatorgi of G. Then testing if ' de�nes an isomorphism is in AM \ 
oAM dueto the order-veri�
ation intera
tive proto
ol of Babai [9℄. Using this we 
angive a #PNP upper bound: Suppose elements of G and H are en
oded asstrings of length m. For the generators g1; g2; � � � ; gk, the #P ora
le ma
hineguesses the images '(gi); 1 � i � k as strings of length m. Using an NPora
le, it then 
omputes the straight-line programs for ea
h '(gi), over thegenerators of H. Now, a new group K is formed, that is generated by thepairs (gi; '(gi)). Noti
e that K is a subgroup of G�H. The order veri�
a-tion AM proto
ol of [9℄ 
an now be used to 
ompare the orders of G and Kand to a

ept if and only if their orders are equal. Clearly, this upper boundalso holds for the 
omplexity of 
omputing the number of automorphisms ofG. Sin
e #P9:AM = #PAM = #PNP we have the following:Proposition 5. Computing the number of isomorphism between two groupsG and H given by generating sets is in #PNP.Problem 12. Tightly 
lassify the 
omplexity of 
omputing the number ofgroup isomorphisms, when the groups are in the generator representation.More pre
isely, for a �nite group G given by generators in the bla
k-boxmodel, is the problem of 
omputing the number of automorphism in G lowfor any level of PH?In 
ontrast note that 
ounting ring automorphisms is low for AM\
oAM.However hardness questions remain.Problem 13. Is 
ounting ring automorphisms harder than dis
rete log? Isring isomorphism (de
ision or sear
h version) harder than dis
rete log?We next 
onsider the question of rigidity. Rigid �nite groups are �nitegroups with no nontrivial automorphism. We note that the algorithmi
 prob-lem is trivial here.Proposition 6. There are no rigid groups ex
ept groups of order 1 and 2.Proof. Clearly the groups of order 1 and 2 are rigid. Let G be a �nitegroup of size more than 2. If G is nonabelian then let g 2 G su
h that g



does not 
ommute with all elements of G. Then the inner automorphism �gde�ned as: �g : x 7! gxg�1 is 
learly a nontrivial automorphism. On the otherhand if G is abelian, then we use the stru
ture theorem of abelian groups tode
ompose G as a dire
t produ
t of 
y
li
 groups G1�G2�� � ��Gr. SupposejGij = t > 2 for one of the 
y
li
 groups Gi. Let a 2 Gi be a generator. Thenak is also a generator of Gi for ea
h k su
h that g
d(k; t) = 1. It is easy to seethat a 7! ak is an automorphism of Gi if and only if g
d(k; t) = 1. If t > 2there is at least one su
h k > 1 so that a 7! ak is a nontrivial automorphismof Gi. This 
an be extended easily to a nontrivial automorphism of G. Onthe other hand, if jGij = 2 for ea
h i, then G is a ve
tor spa
e over F2 ofdimension r. Hen
e any nonsingular r� r matrix di�erent from identity overF2 is a nontrivial automorphism of G.It is shown in [21℄ that all rigid rings have a simple stru
ture that 
anbe easily re
ognized. The above proposition implies that group rigidity iseven easier to test than testing rigidity of rings. We re
all that the rigidityquestion for graphs is not known to be in P.We now show that 
omputing the number of group automorphisms is alsoharder than integer fa
toring (analogous to the result for ring automorphismsin [21℄). In the 
ase of group automorphisms the hardness is easy to show.Consider (Zn;+), the additive group of integers modulo n. The group is
y
li
 with 1 as generator, and 1 7! j de�nes an automorphism if and only ifg
d(j; n) = 1, sin
e j 2 Zn is a generator i� it is relatively prime to n. Thus,(Zn;+) has pre
isely '(n) generators, where ' is the Euler '-fun
tion. It fol-lows that 
omputing #Aut(Zn) implied 
omputing '(n) whi
h is equivalentto integer fa
toring w.r.t. randomized polynomial-time redu
tions.Proposition 7. Integer fa
toring is redu
ible to 
omputing the number ofautomorphism for a �nite group G given by generators.It would be interesting to know if the same result holds for permutationgroups.Problem 14. Is integer fa
toring redu
ible to 
omputing the number of au-tomorphism of a permutation group G � Sn given by generators?In [21℄ it is shown that �nding a nontrivial ring automorphism is equiv-alent to integer fa
toring. Interestingly, for the 
ase of groups the situationis quite di�erent. Let G be a group given by generators. We 
an 
he
k ifit is nonabelian (simply by 
he
king if the generators 
ommute with ea
hother). If G is nonabelian, we will �nd a generator g su
h that ggi 6= gig forsome other generator gi of G. Clearly, the inner automorphism �g de�ned by�g : x 7! gxg�1 is a nontrivial automorphism.



Proposition 8. There is a polynomial-time algorithm for �nding a nontrivialautomorphism of a nonabelian group given by generator set.Abelian groups dot have inner automorphisms. On the other hand if Gis an abelian group given by an independent generating set hg1; g2; � � � ; gki,and a multiple n of jGj is known, then it is easy to �nd a nontrivial automor-phism applying the ideas of Proposition 6. If ea
h gi has order 2 then G isve
tor spa
e over F2 and any nonsingular k� k matrix is an automorphism.Otherwise, if gi has order more than 2 then pi
k a positive integer a > 1su
h that g
d(a; n) = 1 by randomly pi
king a 2 [n � 1℄. Then, with highprobability gi 6= gai and gi and gai have the same order. Now, gi 7! gai andgj 7! gj; j 6= i de�nes a nontrivial automorphism.However, if an abelian group G is given by a generating set (not ne
es-sarily independent) then the 
omplexity of the problem is open.Problem 15. For abelian groups, is the problem of �nding a nontrivial au-tomorphism harder than integer fa
toring? Is it harder than dis
rete log?Another observation is that the problem of group isomorphism testing isharder than the de
ision version of dis
rete log: given a; b 2 Z�n, the problemis to 
he
k if a is in the 
y
li
 group generated by b (i.e. a 2 hbi). Clearly,a 2 hbi i� ha; bi is isomorphi
 to hbi. More generally, the membership testingproblem for groups redu
es to group isomorphism.For both ring and group isomorphism the relative 
omplexities of sear
hand de
ision remains open. In the 
ase of graph isomorphism, sear
h ispolynomial-time redu
ible to de
ision. The redu
tion uses graph gadgets toguide a pre�x sear
h. It is not 
lear how to build similar gadgets for groupsand rings.Problem 16. Is sear
h polynomial-time redu
ible to de
ision for group iso-morphism and ring isomorphism?7 DerandomizationBabai 
lassi�ed in [7℄ the graph non-isomorphism problem in AM, a ran-domized version of NP that 
an be des
ribed in terms of Arthur Merlinproto
ols. Several authors (e.g. [3, 22, 30℄) have studied derandomizationof AM to NP under suitable hardness assumptions, thus showing that GIbelongs to NP\ 
oNP. This derandomization works for the entire 
lass AM.It is natural to ask if the AM proto
ol for graph non-isomorphism 
an beun
onditionally derandomized.



Problem 17. Can the AM proto
ol for graph non-isomorphism be deran-domized un
onditionally? Or under weaker hardness assumptions that thoseused in [3, 22, 30℄?We 
onsidered in [6℄ the question of whether the group isomorphism prob-lem (for the 
ase of groups given by multipli
ation tables) lies in NP \ 
oNP.This might be easier to show than for the 
ase of GI sin
e group isomorphismin the table representation appears to be an easier problem. Following thesame approa
h as it has been done for the 
ase of GI we showed that groupnon-isomorphism has an Arthur-Merlin proto
ol with the property that oninput groups of size n, Arthur uses O(log6 n) random bits and Merlin usesonly O(log2 n) nondeterministi
 bits. For the 
ase of solvable groups we 
ouldderandomize this restri
ted proto
ol applying two di�erent methods showingthat:� there is a nondeterministi
 polynomial time algorithm for the groupnon-isomorphism problem restri
ted to solvable groups that is in
orre
tfor at most 2logO(1) n inputs of length n, and� under the assumption EXP 6� ioPSPACE1 the group isomorphism prob-lem restri
ted to solvable groups is in NP \ 
oNP.The restri
tion to solvable groups 
omes from the fa
t that for the de-randomization, an easy to 
ompute su

in
t representation for the groupsis needed. This exists for the 
ase of solvable groups, but it is an openquestion whether it exists for general groups (related to a form of the shortpresentation 
onje
ture known to be true for almost all �nite simple groups).Problem 18. Do the above derandomization results hold for the 
ase ofgeneral groups?As mentioned in [6℄ the derandomization does work for general groupsassuming the short presentation 
onje
ture.Turning to ring isomorphism in the table representation the above prob-lem is easy to resolve. As the additive group is abelian, rings have su

in
trepresentations of the appropriate type of polylogarithmi
 size in the numberof ring elements. Therefore Problem 18 
an be answered a�rmatively for the
ase of rings with addition and multipli
ation tables given expli
itly. Thus,one would expe
t that the following problem is easier than for groups. Forrings given in this way we 
an ask the general question.Problem 19. Is the ring isomorphism problem in the table representation inNP \ 
oNP?1 A language L is in ioPSPACE if there is a PSPACE ma
hine that is 
orre
t on L forin�nitely many input lengths.



8 Quantum ComputingIn this se
tion we des
ribe the attempts at a quantum algorithmi
 solutionto the graph isomorphism problem and the di�
ulties in this approa
h. Thegeneri
 problem that underlies the dis
rete log problem, integer fa
toringand graph isomorphism is the hidden subgroup problem. We explain thehidden subgroup problem and summarize the progress made on it. Thenwe dis
uss some interesting 
onne
tions between quantum polynomial timeand 
ounting 
omplexity 
lasses. First, we re
all the de�nition of the hiddensubgroup problem.De�nition 9. The input instan
e of the hidden subgroup problem HSP isa �nite group G given by a generator set. Additionally, a fun
tion f fromG to some �nite set X is given as an ora
le, su
h that f is 
onstant anddistin
t on di�erent right 
osets of some subgroup H of G. The problem isto determine a generator set for H.The hidden subgroup problem is a generi
 problem whi
h 
aptures severalquestions. We explain how it 
aptures graph isomorphism. Let X be a �nitegraph. Now, letting G be the permutation group Sn we de�ne the �hidingfun
tion� f : Sn �! Gn as f(�) = X�, where X� is the graph obtained fromX by permuting its verti
es with the permutation �. It is easy to see thatthe hidden subgroup is the automorphism group Aut(X) of X. Determiningthe automorphism group of a graph is polynomial-time equivalent to graphisomorphism.Shor's quantum algorithms for integer fa
toring and dis
rete log are es-sentially solutions of suitable HSP's where the group G is abelian. Indeed,Shor's te
hnique [33℄ yields a polynomial-time quantum algorithm for HSPwhen G is abelian (see e.g. [31℄). However, the status of HSP is open for gen-eral nonabelian groups, ex
ept for some spe
ial 
ases (see, e.g. [18, 19, 32℄).In parti
ular, for G = Sn, it is not known if HSP has quantum polynomialtime algorithms.For ring isomorphism (in the basis representation) it is easy to formulatethe problem of 
omputing the automorphism group of a 
ommutative ringof 
hara
teristi
 d as a hidden subgroup problem, where the group G wouldbe the �nite group 
onsisting of matri
es of a suitable dimension invertiblemodulo d. Again, su
h a matrix group is nonabelian in general (it even
ontains Sn) whi
h makes the 
orresponding HSP a hard problem.The hidden subgroup approa
h to designing an e�
ient quantum algo-rithm for graph isomorphism seems to have limitations: very little progresshas been made on the nonabelian hidden subgroup problem. It appears thatsome new quantum algorithmi
 te
hniques are required. But there might



be restri
ted glaph 
lasses of for whi
h it is posible to test isomorphism inquantum polynomial time with the present te
hniques.Problem 20. Is there a restri
ted 
lass of graphs for whi
h the isomorphismproblem (not known to be in P) has polynomial time quantum algorithms?GI has another 
onne
tion with the 
lass BQP of problems 
omputable inquantum polynomial time. Fortnow and Rogers [17℄ have shown that BQP islow for PP, i.e. any problem is BQP is is powerless as ora
le for PP. This is infa
t the best known upper bound for BQP in terms of 
omplexity 
lasses. In[23℄ it is shown that graph isomorphism and several other permutation groupproblems are also low for PP. This was strengthened in [4℄ where it is shownthat the hidden subgroup problem for permutation groups (and hen
e graphisomorphism) is in a more restri
ted 
ounting 
omplexity 
lass. However,similar questions are open for ring and (nonabelian) group isomorphism.Problem 21. Is the ring isomorphism problem low for PP? Is the groupisomorphism problem for nonabelian groups low for PP?Referen
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