
The Computational ComplexityColumnbyJaobo ToránDept. Theoretishe Informatik, Universität UlmOberer Eselsberg, 89069 Ulm, Germanytoran�informatik.uni-ulm.dehttp://theorie.informatik.uni-ulm.de/Personen/jt.html
Isomorphism Testing: Perspetiveand Open ProblemsV. Arvind� Jaobo Torán y

AbstratFor over three deades the graph isomorphism problem has tan-talized researhers in algorithms and omplexity. The study of thisproblem has stimulated a lot of researh and has led to the disoveryof important onepts in the area. In this artile we take a fresh lookat isomorphism problems and highlight some open questions.�Institute of Mathematial Sienes, C. I. T. Campus, Chennai 600 113, IndiaEmail: arvind�ims.res.inyAbt. Theoretishe Informatik, Universität Ulm, Oberer Eselsberg, 89069 Ulm, Ger-many. Email: toran�informatik.uni-ulm.de



1 IntrodutionThe graph isomorphism problem, GI, onsists in deiding whether two givengraphs are isomorphi. In other words, the problem is to test whether thereis a bijetive funtion mapping the verties of the �rst graph to the nodesof the seond graph and preserving the adjaeny relation. GI has reeivedonsiderable attention sine it is one of the few problems in NP that is nei-ther known to be omputable in polynomial time nor to be NP-omplete. GIis the best-known example of a family of isomorphism problems on algebraistrutures like groups and rings that have a similar intermediate status, be-tween P and NP-omplete. Isomorphism questions have proved in the past tobe an important tool for exploring the tight interplay between omputationalproblems and omplexity lasses. Often, these problems do not quite �t instandard omplexity lasses, in terms of ompleteness for example. The studyof this peuliarity has motivated important advanes in omplexity theory:Arthur-Merlin games, lowness, interative proof systems, ounting lasses orderandomization. From an algorithmi perspetive, the attempts at disov-ering a polynomial-time algorithm for graph isomorphism has enrihed the�eld with algebrai tehniques, partiularly from the theory of permutationgroups.In this olumn we brie�y survey the status of some important open ques-tions related to isomorphisms of graphs (also rings and groups). We do notattempt to be omprehensive. Rather, our goal is to fous on a few topisand to identify interesting open questions for whih, hopefully, the answersdo not lie too far beyond reah. In a brief survey of this nature it is di�ultto touh upon rami�ations of the area in omputational group theory, whihis a subjet by itself. Also, a ertain bias due to our researh interests inomplexity theory is unavoidable.2 PreliminariesBy graphs we mean �nite simple graphs, usually denoted by X = (V;E),where V is the vertex set and E � �V2�. We say two graphs X1 and X2are isomorphi if there is a bijetion ' : V1 �! V2 suh that (u; v) 2 E1 i�('(u); '(v)) 2 E2. We write X1 �= X2 and all ' an isomorphism. An au-tomorphism of a graph X is an isomorphism from X to X. Automorphismsare permutations on the set V , and the set of automorphisms Aut(X) formsa group under permutation omposition. More preisely, if jV j = n thenAut(X) is a subgroup of Sn the symmetri group on n elements. It is wellknown that graph isomorphism testing is polynomial time equivalent to �nd-



ing a polynomial-size generator set for the automorphism group of a graph.We now reall some relevant permutation group theory.In general, Sym(
) denotes the symmetri group on the �nite set 
.A permutation group on 
 is a subgroup of Sym(
). For j
j = n, we let
 = [n℄ and simply write Sn of all permutations on [n℄ = f1; 2 : : : ; ng todenote Sym(
). Given g 2 Sn and i 2 [n℄, we denote by ig the image ofi under permutation g. This a onvenient notation to express the left toright omposition g1g2 of permutations g1; g2 2 Sn. More preisely, we anwrite ig1g2 = (ig1)g2 for all i 2 [n℄. For � � [n℄ and g 2 Sn we write �gfor its image under g: �g = fj j j = igg. For � � [n℄, G(�) denotes thesubgroup of G that �xes eah element of �, and G� denotes the subgroupfg 2 G j �g = �g.The permutation group generated by a subset A of Sn is the smallestsubgroup of Sn ontaining A and is denoted hAi. We assume that subgroupsof Sn are presented by generator sets. Sine any �nite groupG has a generatorset of size log jGj, subgroups of Sn have generator sets of size polynomial inn. The identity permutation is denoted by 1 (we use 1 to denote the identityof all groups).For a subgroup G of Sn (denoted G � Sn) the set iG = fig j g 2 Gg fori 2 [n℄ is the G-orbit of i, and G is transitive on [n℄ if iG = [n℄ for i 2 [n℄.Let G � Sym(
) be transitive on 
. A G-blok is a subset � of [n℄ suhthat for every g 2 G either �g = � or �g \� = ;. For a transitive group G,the set [n℄ and the singleton sets fig, i 2 [n℄ are trivial bloks. A transitivegroup G is primitive if it does not have any nontrivial bloks otherwise it isalled imprimitive.LetG1 andG2 be two �nite groups. We say thatG1 andG2 are isomorphiif there is a bijetion ' : G1 �! G2 that preserves the group operation.Likewise, for two �nite rings R1 and R2, we say that they are isomorphi ifthere is a bijetion ' : R1 �! R2 that preserves the ring operations. Asfor graphs, automorphisms are isomorphisms from an algebrai struture toitself, and the automorphisms form a group under the omposition operation.We brie�y reall the de�nitions and notation for some standard om-plexity lasses. Details an be found in a textbook like [14℄. Let P denotethe lass of languages (deision problems) that are aepted by deterministiTuring mahines in time bounded by a polynomial in input size, and NP de-note the lass of languages aepted by nondeterministi Turing mahines inpolynomial time. We denote the lass of funtions omputable in polynomialtime by FP.A funtion f : f0; 1g� ! N is said to be in the ounting lass #P if thereis a polynomial time nondeterministi Turing mahine M suh that f(x) isthe number of aepting paths of M on input x.



A funtion f in the lass FPA is omputable by polynomial-time deter-ministi orale Turing mahine M whih has aess to orale A: M anenter a speial query state and query the membership of a string y in A.We an similarly de�ne FPf for a funtion orale f . Let C be a relativizableomplexity lass. A language A is said to be low for C if CA = C.3 HardnessGI has several properties that are not known to hold by NP-omplete prob-lems. For example, the ounting version of GI is reduible to its deisionversion [28℄. Moreover, it is known that graph non-isomorphism, the om-plement of GI, belongs to the lass AM of deision problems whose �yes�instanes have short membership proofs in a probabilisti sense [7℄. Thisimplies that if the problem were NP-omplete, then the polynomial time hi-erarhy would ollapse to its seond level [15, 34℄. Beause of these fats, wedo not believe that GI is NP-omplete. On the other hand GI is not knownto be in P and we might ask what is the largest omplexity lass C for whihwe an prove that GI is hard for C? Or more spei�ally:Problem 1. Is GI hard for P?The �rst hardness results for GI were given in [20℄ where it was shownthat GI is hard for NC1 the lass of problems omputable by uniform ir-uit families of polynomial size and logarithmi depth, and for L, logarithmispae. The hardness for NC1 is proved by essentially �simulating� a logarith-mi depth iruit with AND and OR gates by an isomorphism question. Foreah gate g in the iruit, a pair of graphs (Gg; Hg) is onstruted in suh away that the graphs are isomorphi if and only if the gate has value 1. Thisis easy to do for the input gates. For the iruit gates, the AND and ORfuntions for GI are used. An AND funtion for a problem A is a funtion fthat is easy to ompute and suh that on input x; y, f(x; y) 2 A if and onlyif x 2 A AND y 2 A. The OR funtion is de�ned analogously. It is knownthat GI has AND and OR funtions. This property an be used as skethedabove to �nally build a pair of graphs (G;H) orresponding to the outputgate, suh that they are isomorphi if and only if the iruit outputs 1. Anatural question is: why annot this method be applied to similarly �simu-late� polynomial-size monotone iruits? If this were possible it would followthat GI is hard for P. Unfortunately, the di�ulty lies with the known ORfuntion onstrution for GI: the OR funtion doubles the size of its inputs.Therefore, in order to keep the output of the redution polynomial in size,the above method an only be applied to for iruits having a logarithmi



number of OR-gates in any path from an input to the output gate. A naturalquestion in this ontext is the following.Problem 2. Does graph isomorphism have an e�iently omputable ORfuntion f suh that f(x; y) has size at most (jxj+ jyj), where  < 2?The hardness results for GI from [20℄ were improved in [35℄ to otheromplexity lasses using a di�erent method. In order to simulate a ertainkind of iruit gate g with inputs x and y, a graph gadget is onstrutedhaving some verties related to the inputs of g and some verties related tothe outputs. An automorphism in the gadget graph with ertain restritionsenoding the input values of g is fored to map the nodes related to theoutput in a way enoding g(x; y). An example of suh a gadget enoding aparity gate is given in Figure 1.
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Figure 1: A graph gadget simulating a parity gate.For the �-gate onsidered in the �gure, the input values an be enoded inthe gadget graph automorphism as follows: if x has value a 2 f0; 1g then we



restrit the set of onsidered automorphisms to those mapping vertex x0 toxa, and the same for y. It is not hard to see that any automorphism mappingx0 to xa and y0 to yb for a; b 2 f0; 1g, must map z0 to za�b thus omputingthe output of the gate. A gadget is onstruted for eah gate and they areonneted as in the iruit. The onstruted graph has an automorphism ofthe kind enoding the input values of the iruit and mapping the outputvertex to a vertex enoding value 1 if and only if the value produed by theiruit is 1. This question an be redued to GI. In [35℄ it is shown that suhgraph gadgets an be onstruted for every modular addition gate. Moregenerally, for any ommutative group this gadget an simulate the groupoperation. But this does not seem to su�e for apturing the whole lass P.It is known that the iruit value problem for polynomial size iruits withgates omputing multipliation in S5, the group of permutations over �veelements, is omplete for P. But S5 is not an abelian group, and thereforethe tehnique from [35℄ annot be applied here.The largest omplexity lass known to be reduible to GI is DET [35℄,the lass of problems that are NC1 reduible to omputing the integer de-terminant [16℄. DET belongs to NC2 and therefore there is still a large gapfor proving hardness of GI for P. An immediate and natural open question iswhether GI is hard for LOGCFL (LOGCFL is the sublass of NC2 onsistingof problems that are logspae reduible to a ontext-free language).Problem 3. Is graph isomorphism hard for LOGCFL?A di�erent approah to make progress on this problem is to onsider iso-morphism of other algebrai strutures (see Setion 6 where we onsider someof these in detail). Problems like ring isomorphism and group isomorphismappear to be harder than GI. It should be easier to show that these are hardfor P.Problem 4. Are the isomorphism problems for rings, permutation groups orblak-box groups hard for P?4 Graph Isomorphism for Restrited ClassesThe graph isomorphism problem for ertain speial lasses of graphs is knownto have polynomial-time algorithms. One suh restrition that is well-studiedis the bounded olor multipliity graph isomorphism problem (BCGIb): for apair of vertex-olored graphs (G1; G2) suh that there are at most a onstantb many verties of any given olor in eah graph, test if there is a olor-preserving isomorphism between G1 and G2.



Luks in [26℄ gave a remarkable NC algorithm for the BCGIb problem. Onthe other hand, we an see that several of the hardness results for GI [35℄(see Setion 3) are hardness results for BCGIb. More preisely, it is knownthat BCGIb is AC0-many one hard for the logspae ounting lass Modk foreah onstant k. The onstrution in [35℄ requires b to be k2. Building on[26℄, in [5℄ the gap between the upper and lower bound results for BCGIb isin some sense losed by proving that BCGIb is in Modk hierarhy and notingthat the hardness results for BCGIb extend to the Modk hierarhy, where theonstant k and the level of the hierarhy in whih BCGI sits depends on b.Tight haraterizations are also known for tree isomorphism in two dif-ferent representations (see e.g. [20℄ for this and other examples).This opens up similar omplexity-theoreti questions for other lasses ofgraphs for whih GI has a polynomial-time algorithm. The problem is topreisely lassify the restrited problem inside P by giving mathing upperand lower bounds. Reall that inside P there is a rih tapestry of naturalomplexity lasses. Partiularly, natural problems like omputing integer de-terminant abound within NC2; the lassi�ation of these problems are mainlya result of insights into logspae ounting lasses (see e.g. the survey artile[2℄). Thus it is natural to seek the preise lassi�ation of restrited versionsof GI. Notable examples are (i) graphs of bounded degree [25℄, (ii) graphs ofbounded genus [29℄, and (iii) graphs of bounded eigenvalue multipliity [11℄whih all have polynomial time algorithms for GI.Of these, we fous on graph isomorphism for bounded degree graphs(BDGI), where the maximum degree of the input graphs is bounded by aonstant. Luks in [25℄ gave a polynomial-time algorithm for this problem.This paper was a major breakthrough, introduing methods from permuta-tion group theory whih have sine beome entral tehniques in the area ofisomorphism testing as well as in the design of permutation group algorithm.However, it is still open if BDGI is in NC (or even RNC).Luks has observed in [26℄ that BDGI an be NC redued to the set-stabilizer problem for groups in �d. We reall the de�nitions to introduethe ideas involved.De�nition 1. A �nite group G is said to be in the lass �d if for any om-position series G = G0�G1 : : :�Gt = 1 eah omposition fator Gi=Gi+1 iseither abelian or is isomorphi to a subgroup of Sd.The lass �d of �nite groups is algorithmially important. It has playedan important role in proving time bounds for several permutation groupalgorithms, inluding the urrent best algorithm for the graph isomorphismproblem (e.g. see [27℄).



Given a permutation group G � Sn by a generating set A and a subset �of f1; 2; � � � ; ng, the set stabilizer problem is to ompute a generating set forthe stabilizer group G�. Set stabilizer is of interest beause GI is reduibleto it. To see it note that it su�es to show that �nding the automorphismgroup is reduible to set stabilizer. For a graph X = (V;E), let G = Sn aton the pairs �V2� where jV j = n. Clearly, for � = E we have G� is Aut(X).Proposition 2. Graph isomorphism is polynomial-time reduible to set sta-bilizer.A more involved redution in [26℄ shows that BDGI is NC reduible topermutation groups in �d. Therefore, one way to put BDGI in NC would beto show that the set stabilizer problem is in NC.Problem 5. Preisely lassify the omplexity of the set stabilizer problem forgroups in �d (or even solvable groups).It follows from the results of Babai, Luks, and Séress [11, 8℄ that graphisomorphism for the bounded eigenvalue multipliity ase is in NC.Problem 6. Classify the omplexity of graph isomorphism for graphs withbounded eigenvalue multipliity.5 Graph CanonizationLet Gn denote the set of all simple undireted graphs on n verties. A an-onizing funtion for Gn is a funtion f from Gn to Gn suh that� For any graph G 2 Gn, f(G) is isomorphi to G.� For G1; G2 2 Gn, f(G1) = f(G2) if and only if G1 is isomorphi to G2.In other words, a anonizing funtion assigns a anonial form to eah iso-morphism lass of graphs.For example, the funtion f suh that f(G) is the lexiographially leastgraph in the isomorphism lass ontaining G is a anonizing funtion. How-ever, as observed in [10, 27℄, this anonizing funtion is NP-hard. Notie thatthis funtion an be omputed in FPNP by a simple pre�x searh algorithm.The intriguing open question is whether there is some anonizing fun-tion for graphs that an be omputed in polynomial time. No better upperbound than FPNP is known for general graphs (for any anonizing funtion).Thus, it is a basi omplexity-theoreti question to lassify the omplexity ofanonization. Is this problem low for any level of the polynomial hierarhy?



We note that obtaining anonial forms for algebrai objets is a naturaland fruitful pursuit in mathematis. For instane, we have the Jordan Canon-ial Form for matries under similarity transformations. Likewise, we havethe Hermite Normal Form for latties under unimodular transformations.These normal forms an play an important role in the design of e�ientalgorithms for problems.On �rst sight it would appear that graph anonization is losely relatedto the problem of isomorphism testing. Indeed, for one diretion we anobserve that isomorphism testing for graphs is polynomial-time reduible tograph anonization. How about the onverse?Problem 7. Is graph anonization polynomial time reduible to graph iso-morphism?There is interesting evidene supporting a positive answer in the resultsof Babai and Luks [10℄. Building on the earlier seminal work of Luks [25℄,Babai and Luks take an algebrai approah to the anonization problem. Wereall some de�nitions before we explain a key result in their paper.First we an assume by enoding that we are working with strings (overa �nite alphabet, say f0; 1g) as our objets instead of graphs. Let G � Snbe a subgroup of the symmetri group ating on f0; 1gn as follows: for apermutation g 2 G and x = x1x2 � � �xn 2 f0; 1gn, g maps x to y (denotedxg = y), where y = xi1xi2 � � �xin suh that ik = kg for 1 � k � n.Now, the general problem an be stated as follows: We say that twostrings x and y are G-isomorphi if xg = y for some g 2 G. We say thatf : f0; 1gn �! f0; 1gn is a anonizing funtion w.r.t. the group G, if f(x) andx are G-isomorphi for all x and f(x) = f(y) i� x and y are G-isomorphi.In any ase, lexiographi anonization remains hard even for very simplegroups G.Proposition 3. [10℄ The lexiographi anonizing funtion w.r.t. arbitrarygroups G for strings is NP-hard even if G is restrited to be an elementaryabelian 2-group.The idea of the proof is to give a polynomial-time redution from themaximum lique problem to the lexiographi anonization problem.More important, on the positive side, Babai and Luks give an algorithmfor omputing a anonizing funtion that depends on the struture of thegroup G. This algorithm is based on a divide-and-onquer strategy along thesame lines as developed by Luks in [25℄: the divide and onquer is done on thegroup G based on its internal struture (transitive onstituents, primitivityand imprimitivity struture).



If G is a permutation group in the lass �d, it turns out that this anon-ization algorithm runs in polynomial time. Cruially, the fat that primitivegroups in �d are of size at most nO(d) is used for this analysis. To summarize:Theorem 4. [10℄ Given a group G � Sn suh that G 2 �d, there is an nO(d)algorithm that omputes a anonizing funtion for Gn.In [10℄ it is also shown that for general graphs there is a n1=2+o(1) anon-izing algorithm whih losely mathes the running time of the best knownisomorphism test for general graphs. However, from a omplexity-theoretipoint of view the relative di�ulty is not lear even for the problem of G-isomorphism testing for a group G 2 �d. In partiular, we would like to knowan answer for the following question. We onjeture that the answer shouldbe positive.Problem 8. Let G � Sn be a permutation group that is in �d. Is the prob-lem of testing if two strings x and y are G-isomorphi NC equivalent to theorresponding anonization problem? We an also ask a similar question forsolvable permutation groups, whih is a sublass of �d.A more general problem is the following.Problem 9. For di�erent restrited graph lasses onsidered in Setion 4,what is the relative omplexity of isomorphism and anonization?We next brie�y disuss anonization for �nite groups and rings. What isthe appropriate notion for groups? For abelian groups, the struture theoremdeomposing any �nite abelian group into a diret produt of yli groupsis a natural anonial form and it an be used to test the isomorphism oftwo abelian groups. Thus, the problem of anonization for �nite abeliangroups boils down to omputing the yli group deomposition. Of ourse,the question arises whether there ould be anonial forms that are easierto ompute. For nonabelian groups, it does not appear that there is anysuh intrinsi anonial form. It is tempting to use the omposition series(or some other series for groups) but these are only partial isomorphism in-variants. Of ourse, the lexiographi anonial form an always be de�nedfor �nite groups (and rings). But one would suspet that it is NP-hard toompute. Turning to �nite rings, we an try to use Wedderburn's deompo-sition theorem for semisimple rings to de�ne anonial forms. To summarize,we have the following open-ended question.Problem 10. What are the suitable anonial forms for �nite groups andrings and what is omplexity of omputing these anonial forms?



6 Ring and Group IsomorphismWe look now at the omplexity of isomorphism testing for rings and groups.These questions have evoked interest due to the reent work by Kayal andSaxena [21℄ relating the omplexity of ring isomorphism to both graph iso-morphism and integer fatoring. More reently, Agrawal and Saxena in afasinating artile [1℄ have highlighted the importane of �nite rings andtheir automorphisms for omputational problems in algebra with various ex-amples.We disuss the main results about ring isomorphism and automorphismfrom [21℄. Alongside, we make some new observations for the group isomor-phism problem to draw omparisons and formulate open questions.Reall that a ring (R;+; :) with unity is a ommutative group under theaddition operation with 0 as identity and is a monoid under multipliationwith 1 as multipliative identity, together with multipliation distributingover addition.The omplexity of isomorphism problems might hange depending on theway the input instanes are represented. We �rst onsider the representationof a �nite ring R. One way is to desribe R expliitly by its addition andmultipliation tables. This table representation is of size O(kjRj2), whereelements of R are enoded as strings of length k.A more ompat basis representation would be to desribe R by giving abasis for R. The basis is an independent generating set fe1; e2; � � � ; emg forthe additive group (R;+). Clearly, (R;+) has generating sets of size m =O(log jRj). Additionally, to desribe the multipliative struture, �struturalonstants� of the ring �ijk 2 Z; 1 � i; j; k � m are given, where ei � ej =Pk �ijkek. Sine the harateristi of R is bounded by jRj, eah struturalonstant is m bits long. Now, suppose that the elements of R are enodedas strings of length k. Clearly the entire representation is of size O(km4).Likewise, onsider �nite groups G whose elements are enoded as stringsof length k. We ould desribe G by the table representation by giving themultipliation table of size O(kjGj2). Again, a more ompat representationfor �nite groups would be to give a generating set fg1; g2; � � � ; gkg for G,where the multipliation operation is impliitly desribed by a �blak-box�[13, 9℄. The �blak-box� model introdued by [13, 9℄ is a onvenient setting tostudy the omplexity of group-theoreti problems that do not take advantageof the atual group operation (permutation groups or matrix groups et).A third possibility for representing �nite abelian groups by giving inde-pendent generating sets. Whether an arbitrary generating set an be trans-formed to an independent generating set in polynomial time is open. It isrelated to membership testing and the disrete log problem. However, this



transformation an be done by a polynomial time quantum algorithm. In-deed, isomorphism testing for abelian blak-box groups given by generatingsets an be done in quantum polynomial time (see [31℄ for example).Problem 11. What is the omplexity of onverting a generator representa-tion to a basis representation for �nite rings?Notie that the basis representation for �nite rings is more struturedthan the generator representation for �nite groups. The nier representationis basially due to the fat that the additive group of a �nite ring is ommu-tative. Indeed, if a �nite group G is given by a generator set hg1; g2; � � � ; gki,in general it is not possible to express an arbitrary element g 2 G as apolynomial-size produt Qmj=1 gij ! However the reahability lemma of [13℄shows that it is possible to express g as a polynomial-size straight-line pro-gram over the generators.In this setion we fous on the basis and generator representation for ringsand groups. We will disuss the table representation for these problems inSetion 7.Kayal and Saxena [21℄ study the omplexity of ring isomorphism. Wereall their main results here. For rings input in the basis representation, it isshown in [21℄ that the problems of �nding a ring automorphism, ounting ringautomorphisms, ring isomorphism testing, and �nding a ring isomorphismare all essentially in AM \ oAM. More preisely, the funtional versionsof these problems are in FPAM\oAM. Curiously, the problem deiding if aring has a nontrivial automorphism is in P [21℄. This is essentially beausethose �nite rings that do not have nontrivial automorphisms have a niemathematial desription whih an be tested in polynomial time.In [21℄ the onnetion between ring isomorphism and integer fatoring isalso studied. It is shown that ounting the number of ring automorphismsis harder than integer fatoring and �nding a nontrivial automorphism isequivalent to integer fatoring (via randomized redutions).It is interesting to ompare these results with the situation for group iso-morphism. A basi di�erene between the two problems is in the desriptionof an isomorphism. A ring isomorphism between two rings R1 and R2 inbasis representation an be desribed by an invertible integer matrix (aftersuitably modifying the bases in polynomial time). However, in the ase of anisomorphism ' between two �nite groups G and H given by generator sets,there seems no mathematially expliit way to desribe a group isomorphism.We an only desribe ' by taking eah generator gi of G and expressing '(gi)as a straight-line program over the generators of H.Nevertheless, it is shown in [9℄ that blak-box group isomorphism is inAM \ oAM. In the ase of permutation group isomorphism, where the two



input groups are permutation groups and hene more amenable, the groupisomorphism problem is shown to be in NP \ oAM.Sine the isomorphisms (or automorphisms) of �nite groups given by gen-erators do not have expliit mathematial desriptions, we do not have anFPAM\oAM bound for ounting the number of group automorphisms (equiv-alently isomorphisms). However, suppose a mapping ' : G �! H is given by'(gi) as a straight-line program over the generators of H for eah generatorgi of G. Then testing if ' de�nes an isomorphism is in AM \ oAM dueto the order-veri�ation interative protool of Babai [9℄. Using this we angive a #PNP upper bound: Suppose elements of G and H are enoded asstrings of length m. For the generators g1; g2; � � � ; gk, the #P orale mahineguesses the images '(gi); 1 � i � k as strings of length m. Using an NPorale, it then omputes the straight-line programs for eah '(gi), over thegenerators of H. Now, a new group K is formed, that is generated by thepairs (gi; '(gi)). Notie that K is a subgroup of G�H. The order veri�a-tion AM protool of [9℄ an now be used to ompare the orders of G and Kand to aept if and only if their orders are equal. Clearly, this upper boundalso holds for the omplexity of omputing the number of automorphisms ofG. Sine #P9:AM = #PAM = #PNP we have the following:Proposition 5. Computing the number of isomorphism between two groupsG and H given by generating sets is in #PNP.Problem 12. Tightly lassify the omplexity of omputing the number ofgroup isomorphisms, when the groups are in the generator representation.More preisely, for a �nite group G given by generators in the blak-boxmodel, is the problem of omputing the number of automorphism in G lowfor any level of PH?In ontrast note that ounting ring automorphisms is low for AM\oAM.However hardness questions remain.Problem 13. Is ounting ring automorphisms harder than disrete log? Isring isomorphism (deision or searh version) harder than disrete log?We next onsider the question of rigidity. Rigid �nite groups are �nitegroups with no nontrivial automorphism. We note that the algorithmi prob-lem is trivial here.Proposition 6. There are no rigid groups exept groups of order 1 and 2.Proof. Clearly the groups of order 1 and 2 are rigid. Let G be a �nitegroup of size more than 2. If G is nonabelian then let g 2 G suh that g



does not ommute with all elements of G. Then the inner automorphism �gde�ned as: �g : x 7! gxg�1 is learly a nontrivial automorphism. On the otherhand if G is abelian, then we use the struture theorem of abelian groups todeompose G as a diret produt of yli groups G1�G2�� � ��Gr. SupposejGij = t > 2 for one of the yli groups Gi. Let a 2 Gi be a generator. Thenak is also a generator of Gi for eah k suh that gd(k; t) = 1. It is easy to seethat a 7! ak is an automorphism of Gi if and only if gd(k; t) = 1. If t > 2there is at least one suh k > 1 so that a 7! ak is a nontrivial automorphismof Gi. This an be extended easily to a nontrivial automorphism of G. Onthe other hand, if jGij = 2 for eah i, then G is a vetor spae over F2 ofdimension r. Hene any nonsingular r� r matrix di�erent from identity overF2 is a nontrivial automorphism of G.It is shown in [21℄ that all rigid rings have a simple struture that anbe easily reognized. The above proposition implies that group rigidity iseven easier to test than testing rigidity of rings. We reall that the rigidityquestion for graphs is not known to be in P.We now show that omputing the number of group automorphisms is alsoharder than integer fatoring (analogous to the result for ring automorphismsin [21℄). In the ase of group automorphisms the hardness is easy to show.Consider (Zn;+), the additive group of integers modulo n. The group isyli with 1 as generator, and 1 7! j de�nes an automorphism if and only ifgd(j; n) = 1, sine j 2 Zn is a generator i� it is relatively prime to n. Thus,(Zn;+) has preisely '(n) generators, where ' is the Euler '-funtion. It fol-lows that omputing #Aut(Zn) implied omputing '(n) whih is equivalentto integer fatoring w.r.t. randomized polynomial-time redutions.Proposition 7. Integer fatoring is reduible to omputing the number ofautomorphism for a �nite group G given by generators.It would be interesting to know if the same result holds for permutationgroups.Problem 14. Is integer fatoring reduible to omputing the number of au-tomorphism of a permutation group G � Sn given by generators?In [21℄ it is shown that �nding a nontrivial ring automorphism is equiv-alent to integer fatoring. Interestingly, for the ase of groups the situationis quite di�erent. Let G be a group given by generators. We an hek ifit is nonabelian (simply by heking if the generators ommute with eahother). If G is nonabelian, we will �nd a generator g suh that ggi 6= gig forsome other generator gi of G. Clearly, the inner automorphism �g de�ned by�g : x 7! gxg�1 is a nontrivial automorphism.



Proposition 8. There is a polynomial-time algorithm for �nding a nontrivialautomorphism of a nonabelian group given by generator set.Abelian groups dot have inner automorphisms. On the other hand if Gis an abelian group given by an independent generating set hg1; g2; � � � ; gki,and a multiple n of jGj is known, then it is easy to �nd a nontrivial automor-phism applying the ideas of Proposition 6. If eah gi has order 2 then G isvetor spae over F2 and any nonsingular k� k matrix is an automorphism.Otherwise, if gi has order more than 2 then pik a positive integer a > 1suh that gd(a; n) = 1 by randomly piking a 2 [n � 1℄. Then, with highprobability gi 6= gai and gi and gai have the same order. Now, gi 7! gai andgj 7! gj; j 6= i de�nes a nontrivial automorphism.However, if an abelian group G is given by a generating set (not nees-sarily independent) then the omplexity of the problem is open.Problem 15. For abelian groups, is the problem of �nding a nontrivial au-tomorphism harder than integer fatoring? Is it harder than disrete log?Another observation is that the problem of group isomorphism testing isharder than the deision version of disrete log: given a; b 2 Z�n, the problemis to hek if a is in the yli group generated by b (i.e. a 2 hbi). Clearly,a 2 hbi i� ha; bi is isomorphi to hbi. More generally, the membership testingproblem for groups redues to group isomorphism.For both ring and group isomorphism the relative omplexities of searhand deision remains open. In the ase of graph isomorphism, searh ispolynomial-time reduible to deision. The redution uses graph gadgets toguide a pre�x searh. It is not lear how to build similar gadgets for groupsand rings.Problem 16. Is searh polynomial-time reduible to deision for group iso-morphism and ring isomorphism?7 DerandomizationBabai lassi�ed in [7℄ the graph non-isomorphism problem in AM, a ran-domized version of NP that an be desribed in terms of Arthur Merlinprotools. Several authors (e.g. [3, 22, 30℄) have studied derandomizationof AM to NP under suitable hardness assumptions, thus showing that GIbelongs to NP\ oNP. This derandomization works for the entire lass AM.It is natural to ask if the AM protool for graph non-isomorphism an beunonditionally derandomized.



Problem 17. Can the AM protool for graph non-isomorphism be deran-domized unonditionally? Or under weaker hardness assumptions that thoseused in [3, 22, 30℄?We onsidered in [6℄ the question of whether the group isomorphism prob-lem (for the ase of groups given by multipliation tables) lies in NP \ oNP.This might be easier to show than for the ase of GI sine group isomorphismin the table representation appears to be an easier problem. Following thesame approah as it has been done for the ase of GI we showed that groupnon-isomorphism has an Arthur-Merlin protool with the property that oninput groups of size n, Arthur uses O(log6 n) random bits and Merlin usesonly O(log2 n) nondeterministi bits. For the ase of solvable groups we ouldderandomize this restrited protool applying two di�erent methods showingthat:� there is a nondeterministi polynomial time algorithm for the groupnon-isomorphism problem restrited to solvable groups that is inorretfor at most 2logO(1) n inputs of length n, and� under the assumption EXP 6� ioPSPACE1 the group isomorphism prob-lem restrited to solvable groups is in NP \ oNP.The restrition to solvable groups omes from the fat that for the de-randomization, an easy to ompute suint representation for the groupsis needed. This exists for the ase of solvable groups, but it is an openquestion whether it exists for general groups (related to a form of the shortpresentation onjeture known to be true for almost all �nite simple groups).Problem 18. Do the above derandomization results hold for the ase ofgeneral groups?As mentioned in [6℄ the derandomization does work for general groupsassuming the short presentation onjeture.Turning to ring isomorphism in the table representation the above prob-lem is easy to resolve. As the additive group is abelian, rings have suintrepresentations of the appropriate type of polylogarithmi size in the numberof ring elements. Therefore Problem 18 an be answered a�rmatively for thease of rings with addition and multipliation tables given expliitly. Thus,one would expet that the following problem is easier than for groups. Forrings given in this way we an ask the general question.Problem 19. Is the ring isomorphism problem in the table representation inNP \ oNP?1 A language L is in ioPSPACE if there is a PSPACE mahine that is orret on L forin�nitely many input lengths.



8 Quantum ComputingIn this setion we desribe the attempts at a quantum algorithmi solutionto the graph isomorphism problem and the di�ulties in this approah. Thegeneri problem that underlies the disrete log problem, integer fatoringand graph isomorphism is the hidden subgroup problem. We explain thehidden subgroup problem and summarize the progress made on it. Thenwe disuss some interesting onnetions between quantum polynomial timeand ounting omplexity lasses. First, we reall the de�nition of the hiddensubgroup problem.De�nition 9. The input instane of the hidden subgroup problem HSP isa �nite group G given by a generator set. Additionally, a funtion f fromG to some �nite set X is given as an orale, suh that f is onstant anddistint on di�erent right osets of some subgroup H of G. The problem isto determine a generator set for H.The hidden subgroup problem is a generi problem whih aptures severalquestions. We explain how it aptures graph isomorphism. Let X be a �nitegraph. Now, letting G be the permutation group Sn we de�ne the �hidingfuntion� f : Sn �! Gn as f(�) = X�, where X� is the graph obtained fromX by permuting its verties with the permutation �. It is easy to see thatthe hidden subgroup is the automorphism group Aut(X) of X. Determiningthe automorphism group of a graph is polynomial-time equivalent to graphisomorphism.Shor's quantum algorithms for integer fatoring and disrete log are es-sentially solutions of suitable HSP's where the group G is abelian. Indeed,Shor's tehnique [33℄ yields a polynomial-time quantum algorithm for HSPwhen G is abelian (see e.g. [31℄). However, the status of HSP is open for gen-eral nonabelian groups, exept for some speial ases (see, e.g. [18, 19, 32℄).In partiular, for G = Sn, it is not known if HSP has quantum polynomialtime algorithms.For ring isomorphism (in the basis representation) it is easy to formulatethe problem of omputing the automorphism group of a ommutative ringof harateristi d as a hidden subgroup problem, where the group G wouldbe the �nite group onsisting of matries of a suitable dimension invertiblemodulo d. Again, suh a matrix group is nonabelian in general (it evenontains Sn) whih makes the orresponding HSP a hard problem.The hidden subgroup approah to designing an e�ient quantum algo-rithm for graph isomorphism seems to have limitations: very little progresshas been made on the nonabelian hidden subgroup problem. It appears thatsome new quantum algorithmi tehniques are required. But there might
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