
The Complexity of Planar Graph
Isomorphism

Jacobo Torán and Fabian Wagner∗

Abstract

The Graph Isomorphism problem restricted toplanar graphs has been
known to be solvable in polynomial time many years ago. In terms of com-
plexity classes however, the exact complexity of the problem has been estab-
lished only very recently. It was proved in [?] that planar graph isomorphism
can be computed within logarithmic space. Since there is a matching hard-
ness result [?], this shows that the problem is complete forL. Although this
could be considered a result in in algorithmics its proof relies on several
important new developments in the area of logarithmic spacecomplexity
classes and reflects the close connections between algorithms and complex-
ity theory. In this column we give an overview of this result mentioning the
developments that led to it.

1 Introduction

The Graph Isomorphism problem asks whether two given graphsare isomorphic
or in other words whether there is a bijection between the nodes of the two graphs,
preserving the adjacency relation. Graph Isomorphism is one of the few problems
in NP that is not know to be inP or NP-complete. On the other hand, for many
restricted graph classes like trees, graphs of bounded degree or partialk-trees, ef-
ficient algorithms for the isomorphism problem are known. Weconsider in this
column the class of planar graphs and for simplicity restrict ourselves to undi-
rected simple graphs. A graph is planar if it can be drawn in the plane without
any crossing edges. A special class of planar graphs is that of 3-connected planar
graphs. A graph isk-connected if it remains connected after deletingk arbitrary
vertices. It was shown in 1933 that 3-connected planar graphs have exactly two
planar embeddings [?]. This fact was used by Weinberg in 1966 to give anO(n2)
algorithm for testing isomorphism of 3-connected planar graphs [?] (n is the num-
ber of vertices of the input graphs). The idea of the algorithm is simple, the two

∗Universität Ulm, Institut für Theoretische Informatik, fabian.wagner@uni-ulm.de

given graphs are embedded in the plane and it is tested whether the embedding
of the first graph is isomorphic to one of the two possible embeddings of the
second graph. With this method it is also possible to efficiently assign codes to
3-connected planar graphs as a way to identify them. This means that there is an
efficiently computable function mapping graphs to strings or codes, so that two
graphs are mapped to the same code if and only if they are isomorphic. Hopcroft
and Tarjan extended Weinberg’s algorithm and gave the first polynomial time al-
gorithm for the isomorphism of planar graphs [?]. In their algorithm the graphs
are divided first in connected components, these are subdivided in biconnected
components and finally these components are partitioned in 3-connected compo-
nents. An initial connected component has articulation points separating its bi-
connected components from each other. These initial components are represented
by a tree-like structure containing vertices for articulation points and vertices for
biconnected components. In a similar way, the biconnected components are rep-
resented by tree structures containing vertices for its 3-connected components and
vertices for pairs of nodes (called separating pairs) separating these components.
Each vertex representing a 3-connected component is then labeled with the code
of the component and the whole structure can then be tested for isomorphism in
a similar way as it is done for tree isomorphism. The originalalgorithm had a
running time ofO(n2). This was then improved toO(n logn) in [?] and finally
Hopcroft and Wang [?] obtained a linear time algorithm for the isomorphism of
planar graphs. Recently Kukluk, Holder, and Cook [?] gave anO(n2) algorithm
for planar graph isomorphism, which is suitable for practical applications.

Regarding the parallel complexity of the problem, Miller and Reif [?] gave
the firstNC algorithm for planar graph isomorphism. Their algorithm runs in time
O(logn) with polynomial number of processors in the CRCW PRAM model. This
corresponds to the complexity classAC1 of problems computable by unbounded
fan-in circuits of polynomial size and logarithmic depth. More recently, using a
completely different approach based on descriptive complexity, Grohe and Ver-
bitski [?] provided a new method for testing isomorphism of planar graphs also
within AC1. They proved that for a class G of graphs, if every graph is theclass
is definable in first order logic with a finite number of variables and logarithmic
quantifier depth, then the isomorphism problem for G is inAC1. Verbitski [?]
showed that the class of planar 3-connected graphs is definable with 15 variables
and logarithmic quantifier depth. Together with theAC1 reduction from planar
isomorphism to 3-connected planar isomorphism from [?] this provides a differ-
ent way to show that planar isomorphism lies inAC1.

We describe in this survey some of the results leading to the improvement of
the upper bound fromAC1 to logarithmic space. Located betweenL andAC1,
the complexity classUL played an important part in the development of the re-
sults. UL (unambiguous logarithmic space) is the class of problems computable

by a logarithmic space nondeterministic machine having at most one accepting
computation path for each input. The relation between the considered complexity
classes is as follows:

L ⊆ UL ⊆ AC1.

We denote byFL the class of functions computable within logarithmic space.
All the isomorphism results described in this overview can in fact be extended

to graph canonization results. For a class G of graphs we say that a function
f : G → {0, 1}∗ computes acomplete invariant for the class if for everyG,H ∈ G
it holds thatG andH are isomorphic if and only iff (G) = f (H). If moreover f
computes for eachG a graphf (G) isomorphic toG then we callf a canonizing
function and f (G) a canon.

We recall in Section 2 several facts that were used in the proof of the results.
Similarly as in the developments leading to polynomial timetest for planar graph
isomorphism, the first logarithmic space isomorphism algorithms worked for trees
and 3-connected graphs. These are overviewed in Sections 2 and 3. Finally the
logarithmic space algorithm for planar graph isomorphism is explained in Sec-
tion 4.

2 Some previous results

2.1 Tree isomorphism in L

Lindell gave in [?] a logarithmic space algorithm for tree isomorphism and can-
onization. Some of the ideas in this algorithm are used also in the new results.
Lindell defined a canonical ordering between trees. For a tree T , we represent its
root by t and the out-degree oft by #t. The tree isomorphism ordering<T from
Lindell is defined in the following way: Given two treesS andT , we sayS <T T
if:

i) |S | < |T | or

ii) |S | = |T | and #s < #t, or

iii) |S | = |T |, #s = #t = k and (S 1, . . . , S k) < (T1, . . . , Tk) lexicographically, were
S 1 6T S 2, . . . 6T S k, andT1 6T T2 . . . 6T Tk, are the ordered subtrees ofS
andT rooted at the children ofs andt.

It is not hard to see that if neitherS <T T nor T <S S then S and T are
isomorphic. Obviously the first two tests in the definition oftree ordering can be
done in logarithmic space. Lindell proved that this is also true for the third step.
This is done with the following variant of depth first search:

• Find the number of children ofs and t of minimal size. If these numbers do
not coincide then declare the tree with the largest number ofminimal size
children to be smaller. Otherwise check the next child size until an equality
is found or all the children have been considered.

• If s and t have the same number of children of each size, we partition the
children into size classes and compare the children in each size class in
increasing order of the sizes recursively as follows: Letk be the number of
children in one size class. We can supposek > 0.

– If k = 1 then only one recursive call is made and no extra space is needed
for this.

– If k > 1 then for each node in the size class inS we compute its order pro-
file. This consists of three countersc<, c> andc= indicating the num-
ber of children in the corresponding size class ofT being respectively
smaller than, larger than or equal to the node under consideration. The
counters are updated by making cross comparisons. We start with the
children with minimal order profile, those with>c= 0. They form an
isomorphism class. The size of this class is compared acrossthe trees
by comparing the values of thec= counters. If they match, both trees
have the same number of minimal children. To compare larger chil-
dren in the same size class, the value ofc= in the last step works as
a threshold. This is used to search for the next minimal children of s
andt . The process is then repeated and the threshold is incremented
until reachingk, at which point we proceed to the next size class. If
all the size classed are visited without detecting an inequality the trees
are isomorphic.

2.2 Planarity testing and distance computation

A graph is planar if it can be drawn on the plane so that no edgescross. Such a
drawing is a planar embedding. Allender and Mahajan [?] showed that the prob-
lem of determining if a given graph is planar, can be computedin the complexity
classSL (symmetric logarithmic space). Some year later Reingold [?] proved that
the classedSL andL coincide, thus bringing the planarity recognition problemto
L.

A rotation scheme for a graphG is a setρ of permutations,ρ = {ρv | v ∈ V},
whereρv is a permutation onEv that has only one cycle (which is called arotation).
Let ρ−1 be the set of inverse rotations,ρ−1

= {ρ−1
v | v ∈ V}. A rotation schemeρ

describes an embedding of graphG in the plane. If the embedding is planar,
we call ρ a planar rotation scheme. The pair (G, ρ) is called acombinatorial

embedding for G. The planarity recognition result Allender and Mahajan also
showed the following useful result:

Theorem 2.1. [?] There is a logarithmic space algorithm that on input a planar
graph G produces a planar rotation scheme ρ for G.

A planar 3-connected graph has exactly two planar rotation schemes [?], some
rotationρ and its inverseρ−1.

An important tool in one the the isomorphism test for 3-connected planar
graphs is the computation of the distances in planar graphs within the classUL:

Theorem 2.2. [?] The distance between two given vertices in a planar graph can
be computed in UL ∩ coUL.

This theorem builds on a series of results dealing with the reachability problem
in directed planar graphs, [?],[?] that lead to an algorithm from Bourke, Tewari
and Vinodchandran [?] to compute the reachability problem for planar graphs
within UL ∩ coUL.

2.3 Universal exploration sequences

The celebrated result from Reingold [?] showing that the reachability problem in
undirected graphs can be computed inL, has an important consequence for the
construction of universal exploration sequences in logarithmic space. This fact is
used in some of the isomorphism algorithms.

For ad-regularG and a numbering of the edges, and an starting edgee0, a
sequence (τ1, τ2, . . . , τl) ∈ {0, . . . , d − 1}l defines a walkv−1, v0, . . . , vk in G in the
following way: starting ate0 = (v−1, v0) for eachi, if (vi−1, vi) is thek-th edge ofvi
then (vi, vi+1) is thek + τi edge ofvi modulod.

A sequence (τ1, τ2, . . . , τl) ∈ {0, . . . , d − 1}l is called an (n, d) universal explo-
ration sequence n if for every connectedd-regular graph with at mostn vertices,
any numbering of its edges and any starting edge, the walk obtained from the
sequence explores all the vertices in the graph.

The result that we use is that such universal exploration sequences exist and
can be computed in logarithmic space.

Theorem 2.3. [?] There exists a logarithmic space algorithm that on input (1n, 1d)
produces an (n, d)-universal exploration sequence of polynomial size.

3 Planar 3-connected Graph Isomorphism

Weinberg’s [?] O(n2) algorithm for testing isomorphism of planar 3-connected
graphs constructs a code for every edge ofG and both rotation schemes. Of all

these codes, the lexicographical smallest one is used as a canonical form forG.
Weinberg’s algorithm does not work within logspace, because the vertices and
edges have to be stored. Thierauf and Wagner showed in [?] how to construct
a different code inUL. Some months later, using Reingolds results on logarith-
mic space universal exploration sequences [?], Datta, Limaye and Nimbhorkar
improved this to an isomorphism algorithm for planar 3-connected graphs that
works in logarithmic space. We describe both results in thissection.

3.1 An isomorphism algorithm in UL ∩ coUL

Theorem 3.1. [?] The isomorphism problem for planar, 3-connected graphs is in
UL ∩ coUL.

Let (s, t) be a designated edge andρ be a rotation scheme forG. The con-
struction has three steps: First, we compute a canonical spanning treeT for G.
Second, with help of this spanning tree and the rotation function ρ we perform a
depth-first traversal on the edges of the graph and constructa canonical listL of
all edges ofG. Finally, we rename the vertices depending on the position of their
first occurrence in the listL.

We will see that the spanning tree in step 1 can be computed in (the functional
version of)UL ∩ coUL. The list and the renaming in step 2 and step 3 can be
computed inFL.

The overall algorithm has to decide whether two given graphsG andH are
isomorphic. To do so we fix (s, t) andρ for G and cycle through all edges ofH
as designated edge and the two possible embeddings ofH. ThenG and H are
isomorphic if and only if the canonical forms forG andH match. It is not hard to
see that this outer loop works in logspace.

Step 1: Construction of a canonical spanning tree

We show that the following problem can be solved in unambiguous logspace.
Given, an undirected graphG = (V, E), a rotation schemeρ for G, and a designated
edge (s, t) ∈ E. Output a canonical spanning treeT ⊆ E of G, which does not
depend on the input representation ofρ or G, any representation will result in the
same spanning treeT .

The idea to construct the spanning tree is to traverseG with a breadth-first
search starting at nodes. The neighbors of a node are visited in the order given
by the rotation schemeρ. Since the algorithm should work in logspace, we cannot
afford to store all the nodes that we already visited, as in a standard breadth-first
search. We get around this problem by working with distancesbetween nodes.

We start with the nodes at distance 1 froms. That is, write (s, v) on the output
tape, for allv ∈ Γ(s). Now let d > 2 and assume that we have already con-
structedT up to nodes at distance6 d − 1 to s. Then we consider the nodes at
distanced from s. Let w be a node withd(s, w) = d. We connectw to the tree
constructed so far by computing a shortest path froms to w. Ambiguities are re-
solved by using the first feasible edge according toρ. We start with (s, t) as the
active edge (u, v).

• If d(u, w) > d(v, w), then (u, v) is the first edge encountered that is on a
shortest path fromu to w. Therefore we go fromu to v and start searching
the next edge fromv. As starting edge we takeρv(v, u), the successor of
(v, u). It is the new active edge.

• If d(u, w) 6 d(v, w), then (u, v) is not on a shortest path fromu to w. Then
we proceed withρu(u, v) as the new active edge.

After d − 1 steps in direction ofw, the nodev of the active edge (u, v) is a pre-
decessor ofw on a shortest path froms to w. Then we write (v, w) on the output
tape.

The spanning treeT is canonical, because its construction depends only onρ,
edge (s, t), and edge setE. The following figure shows an example of a spanning
treeT for a graphG with rotation functionρwhich arranges the edges in clockwise
order around each vertex.

ρv3

ρv2

ρv1

ρt

= ((s, t) (s, v1) (s, v2))
= ((t, s) (t, v3) (t, v1))
= ((v1, s) (v1, t) (v1, v3) (v1, v2))
= ((v2, s) (v2, v1) (v2, v3))
= ((v3, t) (v3, v2) (v3, v1))

ρs

ρ = {ρs, ρt, ρv1, ρv2, ρv3}

v1

v3

t

s

v2

Except for the computation of the distances, the algorithm works in logspace.
We have to store the values ofd, k, u and v, and the position ofw, plus some
extra space for doing calculations. By Theorem?? above, the distances can be
computed inUL∩coUL. SinceLUL∩coUL

= UL∩coUL the canonical spanning tree
can be computed inUL ∩ coUL.

(s, v2)(v2, v1)(v2, v3)(v2, s)

(s, v1)(v1, t)(v1, v3)(v1, v2)(v1, s)

(s, t)(t, v3)(v3, v2)(v3, v1)(v3, t)(t, v1)(t, s)L =

v1

v3

t

s

v2

Figure 1: Computation of ListL for G.

Step 2: Computation of a canonical list of all edges

With G = (V, E), a rotation schemeρ for G, a spanning treeT ⊆ E of G, and a
designated edge (s, t) ∈ T we compute a canonical listL of all edges inE. The list
L then still contains the original vertex names inG, it does not depend otherwise
on the input representation ofρ, G or T .

The idea is to traverse the spanning tree in a depth-first manner. At each
vertexu we visit all incident edges ofu in a cyclic manner according toρu until
the next edgee of the spanning tree is reached. We go down the tree alonge and
recursively do the same at the node reached. At some point we will encountere
again and come back tou. Then we continue to output the edges incident tou.

More formally, we start the traversal with edge (s, t) as the active edge (u, v).
We write (u, v) on the output tape and then compute the next active edge as follows:

• If (u, v) ∈ T then we walk depth-first inT from u to v, consider the edge
(v, u) and takeρv(v, u) its successor according toρv.

• If (u, v) < T then we proceed breadth-first withρu(u, v).

This step is repeated until we entirely traversedE and the active edge is again
(s, t). Every undirected edge is encountered exactly once in eachdirection.

The following figure shows an example forL.

Step 3: Renaming the vertices

The last step is to rename the vertices in the listL such that they become inde-
pendent of the names they have inG. This is achieved as follows: consider the
first occurrence (from left) of nodev in L. Let k − 1 be the number of pairwise
different nodes to the left ofv. Then all occurrences ofv are replaced byk. Recall,

thatL starts with the edge (s, t). Hence, all occurrences ofs get replaced by 1, all
occurrences oft by 2, and so on. Call the new listcode(G, ρ, s, t).

Given L as input, the listcode(G, ρ, s, t) can be computed in logspace. We
start with the first nodev (which is s) and a counterk, that counts the number of
different nodes we have seen so far. In the beginning, we setk = 1.

• If v occurs for the first time, then we outputk and increasek by 1.

• If v occurs already to the left of the current position then we have to deter-
mine the number, thatv got at its first occurrence. To do so, we determine
the first appearance ofv and then count the number of different nodes to the
left of v at its first appearance.

Then we go to the next node inL.
Consider the example from above. The code constructed from list L for G is

as follows.

L = (s, t) (t, v3) (v3, v2) (v3, v1) (v3, t) (t, v1) (t, s)
code(G, ρ, s, t) = (1, 2) (2, 3) (3, 4) (3, 5) (3, 2) (2, 5) (2, 1)

sequel ofL (s, v1) (v1, t) (v1, v3) (v1, v2) (v1, s)
sequel ofcode (1, 5) (5, 2) (5, 3) (5, 4) (5, 1)

sequel ofL (s, v2) (v2, v1) (v2, v3) (v2, s)
sequel ofcode (1, 4) (4, 5) (4, 3) (4, 1)

It remains to argue that the new names of the nodes are independent of their
names inG. Let H be a graph which is isomorphic toG, and letϕ be an isomor-
phism betweenG andH. Note thatρ ◦ ϕ is a rotation scheme forH. Consider
the computation of the code for graphH with rotation schemeρ ◦ ϕ and desig-
nated edge (ϕ(s), ϕ(t)). The spanning tree computed in step 1 will beϕ(T) and
the list computed in step 2 will beϕ(L). Now the above renaming procedure will
give the same number to nodev in L and to nodeϕ(v) in ϕ(L). For example,
the nodesϕ(s) and ϕ(t) will get number 1 and 2, respectively. It follows that
code(G, ρ, s, t) = code(H, ρ ◦ ϕ, ϕ(s), ϕ(t)). We summarize:

Theorem 3.2. [?] Let G and H be connected, undirected graphs, let ρG be a
rotation scheme for G and (s, t) be an edge in G. Then G and H are isomor-
phic iff there exists a rotation scheme ρH for H and an edge (u, v) in H such that
code(G, ρG, s, t) = code(H, ρH, u, v).

With a very different approach, Datta, Limaye and Nimbhorkar [?] improved
the previous result fromUL ∩ coUL to L. Their method is in some sense much

easier since it avoids the spanning tree construction eliminating the distance com-
putations (the part inUL∩ coUL). It uses however the concept of universal explo-
ration sequence and the non-trivial fact that such sequences can be computed in
L.

Theorem 3.3. [?] The isomorphism problem for planar, 3-connected graphs is in
L.

The idea of the algorithm is to use a universal sequence [?] in order to con-
struct a canonical code for a given planar 3-connected graphG. Since Reingolds’s
construction requires the graph to have constant degree, there is a proprocesing
step in whichG is transformed into a 3-regular colored graphG′ with the prop-
erty that two graphs are isomorphic if and only if their transformations are also
isomorphic (with a color preserving isomorphism). In a second step a canonical
code is computed. The code is specific to the choice of a planarembeddingρ for
G, a starting node and a starting edge. Since there are only polynomially many
possible choices for these parameters, for two given graphsG andH, a logarithmic
space procedure can cycle through all the possibilities anddecide that the graphs
are isomorphic if and only if the canonical codes match for any of the choices.

Step 1: Making the graph 3-regular

Given a 3-connected planar graphG = (V, E) and a planar embeddingρ we con-
struct a 3-regular planar graphG′ with the edges colored with two colors.G′

might not be 3-connected, however the planar embedding fromG will be inher-
ited toG′. Every vertexv of G is replaced inG′ by a cycle{v1, . . . , vd} (d is the
degree ofv). Thed edgese1, . . . , ed incident withv in G are now respectively inci-
dent to{v1, . . . , vd} in G′. The cycles edges are colored with color 1 and the edges
e1, . . . , ed with color 2. The obtained graphG′ is 3-regular and it is not hard to see
that two graphsG andH are isomorphic if and only if their transformationG′ and
H′ are isomorphic with a color preserving isomorphism.

Step 2: Obtaining the canonical code

On input an edge-colored graphG with n vertices, max. degree 3, a planar em-
beddingρ a starting vertexv and a starting edgee = (u, v), a cannon forG is
constructed. For this we compute first in logarithmic space a(n, 3)-universal ex-
ploration sequenceU. Then, starting atv ande we transverseG according toU
andρ giving the listL of the visited vertices as label. We can rename the vertices
according to their first occurrence inL, as it is done in step 3 from Theorem 3.1.
Finally we can cycle over every possible pair (i, j) checking whether it is an edge

in the renamed list and outputting its color if this is the case. This output is can be
considered as a canonical colored adjacency matrix forG.

The authors prove that this method is correct by showing thatfor two graphs
G1 andG2 with their respective embeddingρ1, ρ2 and starting vertices and edges
v1, v2, e1, e2, if the canons coincide then the graph are isomorphic, and moreover,
if Gi is isomorphic toG2 there is some choice of the parameters that make thir
respective canons equal.

4 Planar GI

In this section we describe the logarithmic space algorithmfor planar graph iso-
morphism. A previous step towards this result was a logarithmic space isomor-
phism test for partial 2-trees [?]. Partial 2-trees are a subclass of the planar graphs.
The class of partial 2-trees coincide with that of series-parallel graphs and contain
all outer-planar graphs. For proving this result Arvind, Das and Köbler represent
a partial 2-tree as a tree of cycles. Similar to Lindells algorithm [?] they compare
two such tree representations up to isomorphism, defining a canonical ordering
procedure, which finally gives a canonization algorithm.

In the isomorphism algorithm for general planar graphs a similar representa-
tion is used, namely a tree of 3-connected components.

We give a log-space algorithm for thegraph canonization problem, to which
graph isomorphism reduces. The canonization involves assigning to each graph
an isomorphism invariant string of polynomial length.

The algorithms decomposed first we the planar graph into its biconnected com-
ponents and construct abiconnected component tree in log-space [?]. Then, it fur-
ther decomposes the biconnected planar components into their 3-connected com-
ponents to obtain a 3-connected component tree in log-space. Hopcroft and Tar-
jan [?] presented a sequential algorithm for the decomposition ofa biconnected
planar graph into its 3-connected components. This method can be adapted to
work in log-space. A biconnected planar graph is decomposedin 3-connected
components, cycles or a 3-bonds, i.e. two vertices connected by three edges. The
algorithm recursively removes separating pairs from the graph and puts a copy of
the separating pair in each of the components so formed, i.e.the nodes in the sep-
arating pair are connected by avirtual edge. The decomposition stops, when the
components become triconnected. Define for each component and each separat-
ing pair a node and connect a separating pair node with a component node, if the
separating pair is contained in the component. The resulting graph is a tree, the
triconnected component tree. This decomposition is unique [?]. Datta et. al. [?]
prove, that such a decomposition can be computed in log-space. Figure 2 shows
an example of the decomposition of a biconnected planar graph G. Its tricon-

nected components areG1, . . . ,G4 and the corresponding triconnected component
tree isT . In G, the pairs (a, b) and (c, d) are the separating pairs. Since the 3-
connected separating pair (c, d) is connected by an edge inG, we also get{c, d} as
triple-bondG3. The virtual edges corresponding to the separating pairs are drawn
with dashed lines.

f b e

c

d
d

b

a

a

c

G1

bfa

d

G2

G4

b

c

d

a e

c

d

G4G2G3Ĝ

G1 T

G3

c

Figure 2:Decomposition of a biconnected planar graph into a triconnected com-
ponent tree.

The triconnected components can be canonized in log-space [?]. Hence, for
triconnected component trees, compute their canonical invariant in log-space, i.e.
two biconnected graphs are isomorphic if their trees are found to be equal.

In section 4.0.1, we summarize, how to canonize biconnectedplanar graphs by
applying tree canonization ideas from [?] to their triconnected component trees.
Note that, pairwise isomorphism of two trees labelled with the canons of their
components does not imply isomorphism of the correspondinggraphs. Lindell ’s
algorithm and complexity analysis had to be modified in a non-trivial way for this
step to work in log-space.

In section 4.0.2, we describe, how to canonize planar graphsusing their bicon-
nected component trees, again, using the basic structure ofLindell ’s algorithm.
The comparison algorithm refers to the biconnected component tree of the planar
graph and when comparing biconnected components, to their triconnected com-
ponent trees. This requires a detailed analysis of the interferences of both tree
structures.

4.0.1 Canonization of biconnected planar graphs

Let S and T be two triconnected component trees for the biconnected planar
graphsG andH, respectively.S andT are rooted at separating pair nodes, say
s = (a, b) andt = (a′, b ′). Therefore we also writeS (a,b) andT(a′ ,b ′). They have
separating pair nodes at odd levels and triconnected component nodes at even
levels. Figure 3 shows two trees to be compared.

ba
s

G1

. . .

.

. . . Gk

s1

.

.

. . .

. . .

t
a′ b′

HkH1

t1slk tlksl1 tl1

S (a,b) T(a′ ,b′)

S 1 S lk T1 Tlk

S G1 S Gk THkTH1

Figure 3: Triconnected component trees.

Similar as in Lindells algorithm, we define the isomorphism order of two tri-
connected component treesS and T rooted at separating pairss = (a, b) and
t = (a′, b ′). S (a,b) <T T(a′,b ′) if:

1. |S (a,b)| < |T(a′,b ′)| or

2. |S (a,b)| = |T(a′,b ′)| but #s < #t or

3. |S (a,b)| = |T(a′ ,b ′)|, #s = #t = k, but (S G1, . . . , S Gk) <T (TH1, . . . , THk) lexico-
graphically, where we assume thatS G1 6T . . . 6T S Gk andTH1 6T . . . 6T THk

are the ordered subtrees ofS (a,b) andT(a′,b ′), respectively. To compute the
order between the subtreesS Gi andTHi we compare lexicographically the
canons ofGi andHi andrecursively the subtrees rooted at the children ofGi

andHi. Note that these children are again separating pair nodes.

4. |S (a,b)| = |T(a′ ,b ′)|, #s = #t = k, (S G1 6T . . . 6T S Gk) =T (TH1 6T . . . 6T THk),
but (O1, . . . ,Op) < (O ′

1, . . . ,O ′
p) lexicographically, whereO j and O ′

j

are the orientation counters of thejth isomorphism classesI j and I′j of all
theS Gi ’s and theTHi ’s.

We say that two triconnected component treesS e andTe′ areequal accord-
ing to the isomorphism order, denoted byS e =T Te′ , if neither S e <T Te′ nor
Te′ <T S e holds. Two trees are=T-equal, precisely when the underlying graphs are
isomorphic.

We summarize now, how we can compute the isomorphism order when we
compare subtrees rooted at separating pairs, e.g.S (a,b) andT(a′,b ′), and when we
compare subtrees rooted at triconnected components, e.g.S Gi andTH j .

ComparingS (a,b) andT(a′,b′) is similar to the comparison of subtrees in Lindells
algorithm. We make a cross-comparison of the children and store the counters
c<, c=, c> for their order profile.

Assume, both subtrees are of equal size, i.e.|S Gi | = |TH j | = N, both rooted at
triconnected component nodesGi andH j, respectively.

First, we compare the types ofGi andH j. We say that bonds6T cycles and cy-
cles6T 3-connected components. 3-bonds are always equal. If both are cycles or
3-connected components then we construct the canons ofGi andH j and compare
all of them bit-by-bit.

To canonize a cycle, we traverse it starting from the virtualedge which cor-
responds to its parent (i.e. the parent node ofGi), and then traversing the entire
cycle along the edges encountered. There are two possible traversals depending
on which direction of the starting edge is chosen. Thus, a cycle has two possible
canons.

To canonize a 3-connected componentGi, we use the log-space algorithm
from Datta, Limaye, and Nimbhorkar [?]. The canon depends on the direction of
the starting edge and additionally, on the embedding of the componentGi. For
3-connected components, there are two possible embeddings. Hence, we have up
to four possible canons.

In the bit-by-bit comparison, we have to distinguish several cases. When we
reach virtual edges in the comparison steps, we go into recursion at the subtrees
rooted at the corresponding separating pairs. If we find in the recursion that one of
the subtrees is smaller than the other, then we have found an inequality between
the current canons we compare. We eliminate the canons whichare not found to
be minimal. At the end, if there remains a canon forGi and for H j, then both
subtreesS Gi andTH j are equal up to step 3.

Orientation counters. However, here it does not suffice to stop after step 3. We
need a further comparison step to ensure thatG and H are indeed isomorphic.
To see this we give an example, consider Figure 4. Assume thats and t have
two children each,G1, G2 and H1, H2 such thatG1 � H1 andG2 � H2. Still
we cannot conclude thatG andH are isomorphic because it is possible that the
isomorphism betweenG1 andH1 mapsa to a′ andb to b ′, but the isomorphism
betweenG2 andH2 mapsa to b ′ andb to a′. Then these two isomorphisms cannot
be extended to an isomorphism betweenG andH.

To handle this problem, we introduce the notion of anorientation of a sep-
arating pair. A separating pair gets an orientation from subtrees rootedat its
children. Also, every subtree rooted at a triconnected component node gives an
orientation to the parent separating pair. If the orientation is consistent, then we
defineS (a,b) =T T(a′,b ′) and we will show thatG andH are isomorphic in this case.

b′
a

G

b′b

H
a

a′

b

b′

b

a′

a

a′

b′

a

b′a′ a′

b
G1 G2

a

H2

b

H1

G0

S (a,b)

H0

T(a′,b′)

Figure 4:

We define theorientation given to the parent separating pair of Gi andH j as
the direction in which the minimum canon traverses this edge. If the minimum
canons are obtained for both choices of directions of the edge, we say thatS Gi

andTH j aresymmetric about their parent separating pair, and thus do not give an
orientation.

We define theorientation given to the virtual edge in the parent tricon-
nected component of the corresponding separating pair node (a, b) or (a′, b ′)
by considering all the orientations given to the separatingpair of their children
G1, . . . ,Gk, respectively. We first order the subtrees, sayS G1 6T · · · 6T S Gk and
TH1 6T · · · 6T THk , and partition them into isomorphism classes, sayI1, . . . , Ip

andI′1, . . . , I
′
p. Let I j be the smallest isomorphism class such that there are more

components that give the orientationa → b to the parent thanb → a (or vice
versa). Then, we definea → b to be thereference orientation (b → a other-
wise). For each isomorphism classI j, we compute now the orientation counters
O j = (c→j , c

←
j) such thatc→j is the number of children inI j which give the ref-

erence orientation andc←j is the number of children inI j which give the reverse
orientation.

Recall the example of Figure 4. The graphsG andH have the same tricon-
nected component trees but are not isomorphic. InS (a,b), the 3-bonds form one
isomorphism classI1 and the other two components form the second isomorphism
classI2, as they all are pairwise isomorphic. The non-isomorphism is detected by
comparing the directions given to the parent separating pair. We havep = 2 iso-
morphism classes and for the orientation counters we haveO1 = O ′

1 = (0, 0),
whereasO2 = (2, 0) andO ′

2 = (1, 1) and henceO ′
2 is lexicographically smaller

thanO2. Therefore we haveT(a′,b ′) <T S (a,b).

Complexity. We argue now, that we can do the four comparison steps in log-
space. The first and the second step are similar to Lindells algorithm. We define

the size of a separating pair node as 2 and the size of a triconnected component as
the number of vertices in the component. For the third and fourth step, we have
the following cases:

• When we compare two triconnected componentsGi andH j, then we have
up to four canons. Suppose, we construct and compare two canonsCg and
Ch and reach separating pairs (a, b) and (a′, b ′). We store the canons which
are not eliminated, which of themCg andCh are and the direction of the
virtual edges (a, b) and (a′, b ′). Hence, we needO(1) bits.

• When we compare two separating pairs (a, b) and (a′, b ′), then we make
a cross-comparison as in Lindells algorithm. Hence, we needcounters
c<, c=, c> to store the order profile. This way, we get the isomorphism
classes. We further store the orientation countersO j and O ′

j for I j and
I′j. We needO(log |I j|) bits on the work-tape for all the counters.

However, we cannot guarantee yet, that the algorithm works in log-space. Let
S C be the subtree rooted at nodeC in a triconnected component tree. The problem
is, that the subtrees (i.e. the children ofC) where we go into recursion might be
of size> |S C |/2, we call it alarge child.

To get around this problem, we first check whether the nodesC andC ′ have
a large child. If so, then we compare them a priori and store the result of their
comparison and the orientation given to the parent. BecauseC andC ′ have at
most one large child, this needs onlyO(1) additional bits. Whenever we would go
into recursion at those large children, we just look at the work-tape for the result.

As seen above, while comparing two trees of sizeN, the algorithm uses no
space for making a recursive call for a subtree of size largerthanN/2, and it uses
O(logk j) space if the subtrees are of size at mostN/k j, wherek j > 2. Hence we
get the same recurrence for the spaceS(N) as Lindell:

S(N) 6 max
j
S

(
N
k j

)
+ O(logk j),

wherek j > 2 for all j. ThusS(N) = O(logN). Note that the numbern of nodes
of G is in general smaller thanN, because the separating pair nodes occur in all
components split off by this pair. But we certainly haven < N 6 O(n2) [?]. This
proves the following theorem.

Theorem 4.1. The isomorphism order between two triconnected component trees
of biconnected planar graphs can be computed in log-space.

The canon. Once we know the ordering among the subtrees, it is straight for-
ward to output the canon of the triconnected component treeT . We traverseT in
the tree isomorphism order as in Lindell [?], outputting the canon of each of the
nodes along with virtual edges and delimiters. That is, we output a ‘[’ while going
down a subtree, and ‘]’ while going up a subtree.

We need to choose a separating pair as root for the tree. Sincethere is no
distinguished separating pair, we simply cycle through allof them and select the
one, which leads to the minimum canon. Let (a, b) be this separating pair.

The canonization procedure has two steps. In the first step wecompute what
we call acanonical list for S (a,b). This is a list of the edges ofG, also including
virtual edges. In the second step we compute the final canon from the canonical
list.
Canon of separating pair nodes. Consider a subtreeS (a,b) rooted at (a, b). We
start with computing the reference orientation of (a, b) with oracle calls to the
canonical ordering algorithm and output the edge in this direction. Then we re-
cursively output the canonical lists of the subtrees of node(a, b) according to the
increasing isomorphism order. Among isomorphic siblings,those which give the
reference orientation to the parent come first. We denote this canonical list of
edgesl(S , a, b). If there is no reference orientation for a child, take the orientation
of the parent (a, b).
Canon of triconnected component nodes. Consider the subtreeS Gi rooted atGi.
Let (a, b) be the parent separating pair ofS Gi with reference orientation (a, b).
If Gi is a 3-bond then outputl(Gi, a, b) = (a, b). If Gi is a cycle then output
l(Gi, a, b) = (a, b)(b, v1)(v1, v2) . . . (vn, b). If Gi is a 3-connected component then
compute the minimum of two canons with an oracle call, with respect to the given
reference orientation (a, b) and both embeddings forGi. Output this canon as
l(Gi, a, b). Virtual edges are output in the direction of the referenceorientation
given to them, if any. Finally, we output the subtrees in the order we have virtual
edges in the canon.

We give now an example. Consider the canonical listl(S , a, b) of edges for
the treeS (a,b) of Figure 3. Letsi be the edge connecting the verticesai with bi.
We also write for shortl ′(S i, si) which is one ofl(S i, ai, bi) or l(S i, bi, ai). The
direction ofsi is as described above. Letl0 = 0. Then we have:

l(S , a, b) = [(a, b) l(S G1, a, b) . . . l(S Gk , a, b)], where

l(S Gi , a, b) = [l(Gi, a, b) [l ′(S li−1+1, sli−1+1)] . . . [l ′(S li , sli)]]]

4.0.2 Canonization of planar graphs

Consider the decomposition of a connected planar graph. Foreach articulation
point and biconnected component we define nodes i.e.articulation point nodes

andbiconnected component nodes. An articulation point node fora is connected
by an edge to the nodes of biconnected components wherea is contained as a
vertex. The resulting graph is a tree, thebiconnected component tree. The main
difference to the triconnected component tree is, that for articulation point nodes,
there is no concept of orientation as for separating pairs.

We define the isomorphism order for two biconnected component treesS a

andTa′ rooted at nodess andt corresponding to articulation pointsa anda′, re-
spectively. Also see Figure 5. Let|S a| be the sum of the sizes of the nodes in
the tree. The size of an articulation point nodea is defined as 1 and the size of
a biconnected component nodeB is the size of its triconnected component tree
|T(B)|. DefineS a <B Ta′ if

1. |S a| < |Ta′ | or

2. |S a| = |Ta′ | but #s < #t or

3. |S a| = |Ta′ |, #s = #t = k, but (S B1, . . . , S Bk) <B (TB ′1, . . . , TB ′k) lexicograph-
ically, where we assume thatS B1 6B · · · 6B S Bk andTB ′1 6B · · · 6B TB ′k

are the ordered subtrees ofS a andTa′ , respectively. To compare the order
between the subtreesS Bi andTB ′ j we compare the triconnected component
treesT(Bi) of Bi andT(B ′ j) of B ′ j and when we reach the first occurrences
of some articulation points then we comparerecursively the corresponding
subtrees rooted at the children ofBi andB ′ j. Note, that these children are
again articulation point nodes.

. . .

. . .

. . .

.

. . .

. . .

. . .

.

B1 Bk B′1 B′k

a′

a′l1 a′lka′1al1a1 alk

a
Ta′S a

S a1
Ta′1

S alk
Ta′lk

TB′1
TB′kS BkS B1

Figure 5: Biconnected component trees.

We say that two biconnected component trees areequal, denoted byS a =B Ta′ ,
if neither ofS a <B Ta′ andTa′ <B S a holds. The inductive ordering of the subtrees

of S a andTa′ proceeds exactly as in Lindell ’s algorithm, by partitioning them into
size-classes and comparing the children in the same size-class recursively.

We summarize now, how we can compute the isomorphism order when we
compare subtrees rooted at articulation points, e.g.S a and Ta′ , and when we
compare subtrees rooted at biconnected components, e.g.S Bi andTB ′ j .

ComparingS a andTa′ is similar to the case when we compare subtrees rooted
at separating pairs in triconnected component trees. We make a cross-comparison
of the children and store the countersc<, c=, c> for their order profile.

When we compare biconnected componentsBi andB ′ j, then we cannot start
comparing their biconnected canons. We even cannot computetheir canons be-
cause we do not have a unique root separating pair for the trees T(Bi) andT(B ′ j).
The problem occurs when we have only one fixed vertex inBi, i.e. the parent
articulation point. Datta et. al. bound the number of candidates of root separating
pairs ofT (Bi) andT (B ′ j). The detailed case analysis can be found in an elaborate
version and is complex. Basically, except of some special cases they show that
the number of edges is bounded byk, when all the isomorphism classes of the
children ofBi andB ′ j (i.e. children in the biconnected component tree of nodes
for Bi andB ′ j) are of cardinality> k. Hence, all the isomorphism classes contain
childrenC such that|S C | 6 |S Bi |/k. If there is one size class of cardinality one,
then we treat this child separately. If there are two or more such size classes, then
we even getO(1) candidates for the root. We will need this in the complexity
analysis.

Complexity according to the biconnected component tree. First, when we
compare articulation pointsa anda′ in the biconnected component tree, then we
have a similar complexity analysis as in Lindells algorithm. For the children ofa
anda′, we storeO(logk) bits for isomorphism classes of cardinalityk > 2.

Second, when we compare biconnected componentsB and B ′ in the bicon-
nected component tree then a typical query is of the form (s, r), wheres is the
chosen root ofT(B) andr is the index of the edge in the canon, which is to be re-
trieved. If there arek choices forT(B) andT (B ′), the base machine cycles through
all of them one by one, keeping track of the minimum canon. This takesO(logk)
space. In both cases, we also consider large children (i.e. childrenC of B such
that |S C | > |S B|/2) a priori. We summarize. If we consider recursively how many
bits we store for the roots of biconnected components then weget the recursion
equation for the size function.

S(N) = max
j

{
S

(
N
k j

)
+ O(logk j)

}

wherek j > 2. Hence,S(N) = O(logN).

Complexity according to the triconnected component trees. We consider
now the comparison of triconnected component treesT(B) andT(B ′) of bicon-
nected componentsB andB ′. In the comparison ofT(B) andT(B ′), we still go
into recursion at separating pairs and when we reach virtualedges in canons for
triconnected components. What is new, we go into recursion when we reach ar-
ticulation points. For an example, see Figure 6.

a

S B

a

B

u

u

wu

u w

v

v

v

b

b b

ba

u
A

s

a a

S a

T(B)

w

Figure 6:A biconnected component treeS B rooted at biconnected componentB
which has an articulation pointa as child, which occurs in the triconnected com-
ponent treeT(B) of B. In A and the other triconnected components the dashed
edges are separating pairs.

If an articulation pointa belongs to many separating pairs, then it can occur in
many component nodes inT(B). Recall, that we have a root for the tree. So, there
exists a unique componentA that is closest to the root, wherea is contained. Ob-
serve, that the set of component nodes wherea is contained is always a connected
subtree inT(B). The authors show, that this unique component can be computed
in log-space and that the first position wherea occurs in the canon ofA can be
found in log-space. Exactly there, we go fora into recursion. For all the other
occurrences ofa we do not go into recursion. Call this thereference copy of a in
T(B).

Assume we store the bits separately, which we need insideT(B) for all bicon-
nected componentsB. Then we can prove for this part also a log-space bound.

Therefore, we refine the size function. LetC be a node inT(B). The size of
the subtreeS C rooted at some nodeC is the sum of the size of the triconnected
subtree rooted atC in T(B), say|S C | plus the size of all the biconnected subtrees
|S a|, if a is a reference copy of an articulation points inS C. Hence, we get the
same recursion equation as before. This finishes the complexity analysis. We get
the following theorem.

Theorem 4.2. The isomorphism order between two planar graphs can be com-
puted in log-space.

The canon. The canonization of planar graphs proceeds exactly as in thecase
of biconnected planar graphs. A log-space procedure traverses the biconnected
component tree, makes oracle queries to the isomorphism order algorithm and
outputs a canonical list of edges, along with delimiters to separate the lists for
siblings. A log-space transducer then renames the verticesaccording to their first
occurrence in this list, to get the final canon for the biconnected component tree.
This canon depends upon the choice of the root of the biconnected component tree.
Further log-space transducers cycle through all the articulation points as roots to
find the minimum canon among them, then rename the vertices according to their
first occurrence in the canon and finally, remove the virtual edges and delimiters
to obtain a canon for the planar graph. This proves the main theorem.

Theorem 4.3. A planar graph can be canonized in log-space.

References

	Introduction
	Some previous results
	Tree isomorphism in L
	Planarity testing and distance computation
	Universal exploration sequences

	Planar 3-connected Graph Isomorphism
	An isomorphism algorithm in ULcoUL

	Planar GI
	Canonization of biconnected planar graphs
	Canonization of planar graphs

