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interest in GI has been the evidene that this problem is probably neither in Pnor NP-omplete. Other soures of interest inlude the sophistiation of thetools developed to attak the problem (for example [3,4℄), and the onnetionsbetween GI and strutural omplexity (see [5℄).Understandably, many GI restritions have been onsidered. For example, Pupper bounds are known in the ases of planar graphs [6℄ or graphs of boundedvalene [4℄. In some ases, like trees [7,8℄ or graphs with olored verties andbounded olor lasses [9℄, even NC algorithms for isomorphism exist (NCk isde�ned to be the lass of problems solvable by a uniform family of bounded in-degree Boolean iruits with O(logk n) depth and polynomial size, and NC =[k NCk).However, until reently none of these GI restritions were known to be om-plete for a natural omplexity lass, and it seemed that these problems lakthe struture needed for a hardness result. Tor�an proved against this intuitionin [10℄ that GI for general graphs is hard forNL (nondeterministi logarithmispae) and for every logarithmi spae lass based on ounting. We onsiderhere GI restrited to trees and olored graphs, presenting the �rst omplete-ness results for the isomorphism problem restrited to a family of graphs. Weobtain ompleteness results for the omplexity lasses NC1, L and SL.In the ase of trees, a linear sequential time algorithm for tree isomorphismTI was already known in 1974 to Aho, Hoproft and Ullman [11℄. In 1991, anNC algorithm was developed by Miller and Reif [12℄. One year later, Lindell[7℄ obtained an L upper bound. Finally, in 1997, a subtle algorithm able totest two trees for isomorphism in NC1 was devised by Buss [8℄.Buss in [8℄ asks whether tree isomorphism is NC1-hard. Here we answer thisquestion aÆrmatively showing the hardness of the problem under AC0 many-one reduibility. Hene tree isomorphism is NC1-omplete. Trees thus providethe �rst lass of graphs for whih the isomorphism problem aptures a naturalomplexity lass. Moreover, so far, the problem of evaluating a Boolean for-mula [13℄ and the problem of multiplying permutations on �ve points [14℄ (andsome of their variations) were the only two NC1-omplete problems known.Tree isomorphism is a third suh problem.As noted by Buss, hoosing a graph representation is ritial when working atthe level of NC1. Buss uses Miller and Reif's string representation for trees onthe grounds that, when the pointer representation is used, the \deterministitransitive losure problem an be redued to the desendant prediate, andthe former is known to be omplete for logspae" [8, Setion 2℄.We prove here that the tree isomorphism problem is L-hard under many-one AC0-reduibility when the pointer representation is used. Hene, treeisomorphism in the pointer representation is L-omplete by Lindell [7℄ or by2



Buss [8℄. Tree isomorphism thus aptures in this way another very naturalomplexity lass.The other graph family we onsider is the lass of olored graphs. We willdenote by b-GI the isomorphism problem for olored graphs with olor mul-tipliities bounded by b. Isomorphisms between olored graphs are olor pre-serving and this redues the number of possible isomorphisms, but observethat even for the ase b = 2 the number of olor-preserving maps betweenn-vertex graphs ould be as large as 2n2 . This problem also has a fairly longtradition in the area of algorithms. Babai gave in [15℄ a random polynomial-time algorithm for testing isomorphism when the olor multipliities are lessthan a onstant b. The algorithm was improved to be deterministi in [16℄ andusing sophistiated algebrai tools, Luks proved in [9℄ that b-GI lies in fat inNC.We fous here on the family of olored graphs with olor multipliities boundedby the onstants 2 and 3 proving that 2-GI and 3-GI are many-one ompletefor symmetri logarithmi spae SL under AC0 redutions. The omplexitylass SL introdued in [17℄ has di�erent haraterizations, but the easiest wayto de�ne it is preisely as the lass of problems logarithmi spae reduible tothe reahability problem for undireted graphs, UGAP. Our results improveon the one hand the upper bound for the problem given by Luks from NCto SL (SL is inluded in NL whih in turn is inluded in NC2). On theother hand the results provide new natural examples for omplete problemsin SL showing that reahability questions an be expressed in a natural wayas isomorphisms in a lass of graphs.Closely related to graph isomorphism is the graph automorphism problemGA that onsists in deiding whether a given graph has a non-trivial auto-morphism, or in other words, whether there is a permutation of the nodes,di�erent from the identity, preserving the adjaeny relation. The relationshipbetween GA and GI is not ompletely lear. It is known that GA is many-onereduible to GI [18℄ but a redution in the other diretion is not known andGA seems to be an easier problem. We observe that this situation also ourswithin the restrited graph families onsidered in this paper. We show thattesting whether a tree in the pointer representation has a non-trivial automor-phism is omplete for L, while for the string representation the automorphismproblem does not seem to have enough struture to be omplete for NC1. Wealso prove that 2-GA and 3-GA belong to SL and moreover 2-GA is equivalentto the problem UCC of deiding whether a given graph has more than oneonneted omponent. UCC belongs to SL but it seems easier than UGAPand it is not known to be omplete for SL [19℄.3



2 PreliminariesWe assume familiarity with basi notions of omplexity theory suh as an befound in the standard books in the area. In partiular, we simply reall thatAC0 � NC1 � L � SL � NL � NC2;where AC0 is the lass of languages reognized by DLOGTIME-uniformfamilies of onstant depth, polynomial size, Boolean iruits of unboundedfan-in over the basis f^;_;:g, NCk is the lass of languages reognized byDLOGTIME-uniform families of polynomial size and depth O(logk), Booleaniruits of bounded fan-in over the basis f^;_;:g, L is the set of languagesaepted by deterministi Turing mahines using logarithmi spae, SL isthe set of languages aepted by nondeterministi symmetri Turing mahineslogarithmi spae andNL is the set of languages aepted by nondeterministiTuring mahines using logarithmi spae.2.1 Isomorphism and AutomorphismGiven two graphs G = (V1; E1) and H = (V2; E2) an isomorphism between Gand H is a bijetion ' : V1 �! V2 satisfying for every pair of nodes u; v 2 V1(u; v) 2 E1 () ('(u); '(v)) 2 E2:We will denote by Iso(G;H) the set of isomorphisms between both graphs.The Graph Isomorphism problem, GI, onsist in deiding whether there existssome isomorphism between two given graphs.We denote by Aut(G) the set of automorphisms in G, that is the set of bije-tions from V1 onto itself satisfying(u; v) 2 E1 () ('(u); '(v)) 2 E1:GA is the problem of deiding whether a given graph has a non-trivial (dif-ferent from the identity) automorphism.2.2 ReduibilitiesWe state our results using DLOGTIME-uniform many-one AC0 reduibility[20℄. For languages A;B � ��, we say that A is many-one AC0 reduible toB if there is a funtion f omputed by a DLOGTIME-uniform family of AC0iruits having the property that, for all x 2 ��, x 2 A i� f(x) 2 B. We writein this ase A�AC0m B. 4



2.3 Graphs and representationsFor simpliity in the ase of general graphs our isomorphism and automor-phism results are stated for undireted graphs. It is a well known fat (see e.g.[5℄) that deiding isomorphism for direted or undireted graphs are equiva-lent problems. For the ase of trees however the situation is not so lear sinethe standard transformation of an undireted graph into a direted one (on-sidering two direted edges, one in eah diretion, for eah undireted one)introdues yles. A onsequene of our results is that the equivalene undermany-one AC0 redutions holds also for undireted and direted tree isomor-phism. Exept when the ontrary is expliitly stated, we will onsider thatthe trees disussed in this paper are rooted (hene impliitly direted) andunordered (i.e. the ordering of the desendants of a node does not matter). Asmentioned, we will argue that the results also hold for unrooted trees, or forrooted trees in whih the diretion of the edges is expliitly given.In some of our onstrutions we use olored graphs. A graph with n nodes issaid to be olored if eah node in the graph is labeled with a positive integernot greater than n. An isomorphism between two olored graphs preserves theolors and preserves the edges.We onsider two di�erent representations for enoding trees: the string rep-resentation and the pointer representation. As we will see, in the small om-plexity lasses we are dealing with, the representation used might hange theomplexity of the problem.In the string representation [12℄, trees are represented over an alphabet on-taining opening and losing parentheses. A string representation of a tree T isde�ned reursively in the following way: The tree with a single node is repre-sented by the string \()", and if T is a tree onsisting of a root and subtreesT1; : : : ; Tk (in any order), with string representations �1; : : : ; �k, a representa-tion of T is given by \(�1; : : : ; �k)". Observe that a tree might have di�erentstring representations, depending on the order of the desendants of any ofits nodes. Colored trees an be enoded in the same way using olored paren-theses. Let C be the set of olors. An opening parenthesis in a olored tree isrepresented by \(" followed by log(jCj) bits enoding the olor. Note that weonly need to olor the opening parentheses.The pointer representation is a more standard way to enode graphs. In thisase we onsider the trees given by a list of pairs of nodes representing di-reted edges. As in the previous ase, if we deal with olored trees, with therepresentation of a node we inlude log(jCj) bits to enode its olor.For many tree problems in NC1 and L, ompleteness results seem to dependon the representation used. For example, the reahability problem on forests,5



whih is L-omplete in the pointer representation [21℄, an be solved in NC1(and even TC0) in the string representation [13℄. Analogously, the Booleanformula value problem, whih is omplete for NC1 in the string representa-tion [8℄, beomes L-omplete when desribed using trees given in the pointerrepresentation [22℄. In fat, hanging from pointer to string representation isFL-omplete [22℄.Another important observation is that it is possible to test within the lassesNC1 and L whether a given input is a orret enoding of a tree in the stringrepresentation, and respetively, in the pointer form.3 Tree Isomorphism for Trees Given by StringsWe show �rst that deiding whether two trees given in string representationare isomorphi is NC1-omplete. We �rst onsider olored trees for whih thehardness proof is simpler. We denote by CTI the isomorphism problem forolored trees.Lemma 3.1 In the string representation, CTI is NC1-hard under �AC0m -reduibility.Proof. Barrington, Immerman and Straubing show in [20℄ that an NC1 ir-uit an be simulated by a balaned DLOGTIME-uniform family of Booleanexpressions made up of alternating layers of ANDs and ORs. Beause of thisfat, it suÆes to redue the evaluation problem for these expressions to CTI.The ore of the redution is the simple onstrution from [18,23℄ desribed in[5℄ (page 45), for the purpose of simulating ANDs and ORs using graph iso-morphism questions. We adapt this onstrution as follows. Consider four treestrees G1, G2, H1, and H2 olored with two olors blak and white (representedby blak and white dots in the �gures).
G1 G2 H1 H2Tree G^ Tree H^Fig. 1. Colored Trees for simulating AND
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G1 H2 H1 G2Tree G_ G1 G2 H1 H2Tree H_Fig. 2. Colored Trees for simulating ORThe olored trees in Figure 1 have the property thatG^ ' H^ () [(G1 ' H1) ^ (G2 ' H2)℄and the olored trees in Figure 2 have the property thatG_ ' H_ () [(G1 ' H1) _ (G2 ' H2)℄:Observe that the OR-onstrution doubles the size of the initial trees forG1 ' G2 and H1 ' H2, that is, from 4 trees eah having the same size, s, theOR-onstrution would produe 2 trees eah having size 4s+ 7.Now pik two single-node trees T1 and T2 and assign them di�erent olors.Starting from the CTI instane (T1; T1) to represent a TRUE input and theCTI instane (T1; T2) to represent a FALSE input, it is trivial to onstrut,from a depth-d Boolean expression f with no negation gates, two olored treesG and H having O(4d) nodes (this is a rough upper bound) with the propertythat G ' H i� f evaluates to TRUE.To see that this yields an AC0 redution, note it is possible to add dummynodes in order to modify the onstruts above in suh a way that, if G1, G2,H1 and G2 are full binary (olored) trees, then so are G^, H^, G_ and H_, andmoreover, the olor ourrenes in these respetive onstruts are the same.Beause the Boolean expression is balaned, its depth is O(logn). And beausethe expression is built from alternating levels of ANDs and ORs, the strutureof the resulting CTI instane is very regular (in a non tehnial sense). Thismakes it easy to translate the enoding of the soure DLOGTIME-uniformformula into an enoding of the CTI instane having the property that theinformation relevant to a node an be dedued from the node enoding (just asproperties of a subformula were trivially dedued from its enoding). Detailsof a similar onstrution an be found in the proof of [20, Lemma 6.2℄.Remark 1. The omplete simulation used in the proof of Lemma 3.1 in fatrequires only two distint olors. A similar onstrution ould be devised inthe absene of olors as well. 7



Remark 2. It is easy to make an OR-onstrution for the tree automorphismproblem. However no AND-onstrution for this problem is known. Beauseof this fat it is not known whether tree automorphism under the string rep-resentation is hard for NC1.Lemma 3.2 In the string representation, CTI �AC0m TI.Proof. The obvious idea is to simulate the olors by attahing olor-dependentgadgets at eah node. Suppose that the trees in the CTI instane have n nodes.Then it suÆes to attah at eah -olored node, 1 �  � n, a new node whihis root to a height-one subtree having n +  leaves. In detail, at the stringenoding level, the olor binary number  ourring after the opening braketwhih spei�es the ourrene of the -olored node is simply replaed withthe enoding of the -olor gadget. To ensure AC0-omputability, the olorgadgets are modi�ed to ontain an idential number of nodes: it is easy toimplement the idea with n non-isomorphi gadgets eah having 2n+1 nodes.Theorem 3.3 In the string representation, CTI and TI are NC1-ompleteunder �AC0m .Proof. CTI is NC1-hard (Lemma 3.1) and CTI �AC0m TI (Lemma 3.2). Buss[8℄ shows in a deliate argument that TI 2 NC1. (Buss in fat points out thathisNC1 algorithm applies diretly, as well, to the ase of labeled trees.) HeneCTI is NC1-omplete.NC1-hardness of TI follows by the transitivity of the AC0-reduibility.
4 Tree Isomorphism for Trees Given by PointersReall Lemma 3.2, whih states that in the string representation, olored treeisomorphism redues to tree isomorphism by the introdution of appropri-ate gadgets for the olors. These gadgets are learly AC0-omputable in thepointer representation, proving the following:Lemma 4.1 In the pointer representation, CTI �AC0m TI.In the pointer representation not only the isomorphism, but also the auto-morphism problem is omplete for L. Let us denote by TA the automorphismproblem restrited to trees, and by CTA the olored version of the problem.A variation of the above Lemma shows that CTA and TA are AC0 equivalentproblems. 8



Theorem 4.2 In the pointer representation, TI and TA are L-omplete under�AC0m .Proof. The ontainment for TI follows from Lindell [7℄, who shows that aanonial form (T ) of a (rooted) tree T an be omputed in logspae. Hene,for two given trees, we determine isomorphism by omputing and omparingtheir anonial forms symbol by symbol. (Alternatively, the string represen-tation of the trees ould be omputed in L, and then Buss's NC1 algorithmould be used.) TA is AC0 reduible to TI. This result was shown in [18℄for general graphs and an be adapted to trees using the onstrutions fromthe previous setion. From this observation it follows that TA belongs to L.We prove hardness for L of TA and TI. Using the mentioned redution fromTA to TI it would suÆe to show hardness for TA. We give however a diretargument showing the hardness for L of TI in a simple way.We prove �rst hardness of TA by reduing the L-omplete problem ORD [24℄to Colored Tree Automorphism, and appealing to a variation of Lemma 4.1for tree automorphism:Order between Verties (ORD)Given: A digraph G = (V;E) that is a line, and two nodes vi; vj 2 V .Problem: Deide whether vi < vj in the total order indued on V .Let a line graph G = (V = fv1; : : : ; vng; E) and two designated nodes vi andvj 2 V be given. We assume without loss of generality that vn is the out-degreezero node and that vi, vj and vn are three di�erent nodes. Let T 0 be the oloredtree that results from G by oloring the node vi with olor 1, vj with olor 2,vn with olor 3, and the rest of the nodes with olor 0. For 1 � k < l < n, theolored tree Tk;l is de�ned as (V; f(vm; vm+1)j1 � m < ng), with the nodes vk,vl and vn olored with olors 1,2 and 3 respetively, and the rest of the nodesolored by 0.It is not hard to see that vi < vj in the order indued on V by G if and onlyif 9k; l with 1 � k < l < n suh that T 0 ' Tk;l. This is equivalent to sayingthat the graph G = T 0 [S1�k<l<n Tk;l has a nontrivial automorphism. We antransform G to a tree by onsidering a new root node r and joining r with thev1 nodes of all the Tk;l subgraphs. This shows that ORD is AC0 reduible toCTA.We redue now ORD to CTI. Let again a line graph G = (V = fv1; : : : ; vng; E)and two designated nodes vi and vj 2 V be given. W.l.o.g. onsider vi+1 to bethe suessor of vi in G. Let T 0 be the tree that results by making two opiesv0k; v00k of eah node vk in G, and inluding the edges (u0; v0) (u00; v00) for eah9



edge (u; v) 2 E with u 6= vi and the edges (v0i; v0i+1) (v0i; v00i+1). We also add anew root node r and the edges (r; v01); (r; v001).v1 vi vi+1 vnG r v01 v0i v0i+1 v0nT 0v001 v00i v00i+1 v00n
Fig. 3. The tree T 0Clearly vi < vj in the order indued on V by G if and only if there is anautomorphism in T 0 mapping v0j to v00j . This question an be redued to CTIby making two opies T1 and T2 of T 0 and marking with a speial olor nodev0j in T1 and node v00j in T2. It follows that vi < vj in the order indued on Vby G if and only if T1 is isomorphi to T2.Remark. The ompleteness results have been stated in terms of rooted treeswith the edges only impliitly direted. It is not hard to adapt the above proofsto show that TI and TA are also hard for L for the ases of unrooted trees orrooted trees with expliitly direted edges. The ompleteness of the problemsfollows by the fat that Lindell's algorithm [7℄ an be adapted to unrootedtrees just by onsidering all possible roots.5 Upper bound for 2-GAWe show in this setion that 2-GA is reduible to the problem UCC of deidingwhether a given graph has more than a single onneted omponent.The next lemma shows that we an restrit ourselves to graphs with at mosttwo edges between any two olors. The proof of this result is straightforward.Lemma 5.1 Let G = (V;E) be a graph with olored verties, and Ci and Cjtwo olor lasses in G. Then Aut(G) = Aut(G0), where G0 = (V;E 0) is a opyof G but with the dual set of edges between verties of Ci and Cj (for everypair (u; v) with u 2 Ci and v 2 Cj, it holds (u; v) 2 E , (u; v) 62 E 0).Theorem 5.2 The Graph Automorphism problem restrited to graphs witholor lasses of size at most2 is many-one AC0-reduible to UCC.Proof. Let G be a graph with olor lasses of size at most 2. By the abovelemma we an onsider that for every pair of olors, there are at most twoedges onneting the nodes of these olors. Also, w.l.o.g. we an onsider that10



there is no edge between the nodes of the same olor in G (these edges do nothange the automorphism group). The possible onnetions that have to beonsidered between the nodes of two di�erent olors are shown in Figure 4.
)
a)

d)
b)

Fig. 4. Possible onnetions between two olor lassesWe redue the question of whether G has a nontrivial automorphism to areahability question in an undireted graph f(G) = (V 0; E 0). V 0 ontains onespeial node plus one node for eah olor:V 0 = fvidg [ fvi j i is a olor in Gg:The idea of the redution is to plae the edges in suh a way that for every olori, node vid is reahable from node vi in f(G) if and only if every automorphismin Aut(G) �xes the nodes of olor i. For every pair of olors i; j, the edgesbetween two olor lasses indue edges in E 0 in the following way:Type of onnetion between i and j Edges in E 0a) Noneb) (vi; vid); (vj; vid)) (vi; vj)d) (vi; vid).Also, if there is only one node of olor i, the edge (vi; vid) is inluded in E 0.Lemma 5.3 For eah olor i, one an reah node vid from vi in f(G) if andonly if every automorphism in Aut(G) �xes the nodes of olor i.Proof. The proof from left to right is by indution on the number of edges ina path between vi and vid. If the path has length one, then the onnetions11



between the nodes of olor i and some other olor lass in G must be like inases b) or d). In any of these ases the nodes of olor imust be �xed under anyautomorphism in G. If the path of minimal length has k + 1 edges then theremust be a olor j and a path with k edges from vj to vid in f(G). Also theremust be an edge (vi; vj) in f(G) whih means that the onnetions betweenolor lasses i and j in G must be like in ase ). By indution hypothesisevery automorphism in Aut(G) �xes the nodes of olor j, and the onnetion) fores the nodes of olor i to be �xed also.For the other diretion, suppose that for some olor i node vid is not reahablefrom vi in f(G). We will show that in this ase there is some non-trivialautomorphism in G. W.l.o.g. let f1; : : : ; kg be the set of olors j suh that vjis onneted to vi in f(G). Sine vid is not reahable from vi, in ase there areedges between two lasses with olors in f1; : : : ; kg in G, these edges form aonnetion of type ), and the only possible edges between lasses of olors land m, with l 62 f1; : : : ; kg and m 2 f1; : : : ; kg are onnetions of type d). Welaim that the olor �xing permutation ' interhanging the two nodes of thelasses of olors j 2 f1; : : : ; kg and �xing the rest of the nodes is a non-trivialautomorphism in G. Let u; v be two nodes in V . If neither u nor v have olorsin the set f1; : : : ; kg then ' ats like the identity on (u; v). If both u and vhave olors l; m in the set f1; : : : ; kg then either there is no onnetion or theonnetions between the olor lasses l and m must be of type ). It followsthat (u; v) 2 E if and only if (u0; v0) 2 E, where u0 and v0 are the other nodeswith olors l and m respetively. By the de�nition of ', (u0; v0) = ('(u); '(v)).Finally, if u has olor l 62 f1; : : : ; kg and v has olor m 2 f1; : : : ; kg and thereis a onnetion between nodes of olor l and m then it must be of type d) (aonnetion of type ) would fore olor l to be in f1; : : : ; kg). By de�nition('(u); '(v)) = (u; v0). As in the previous two ases we have (u; v) 2 E if andonly if ('(u); '(v)) 2 E.Observe that Lemma 5.3 implies that the graph G has a nontrivial automor-phism if and only if f(G) has more than one onneted omponent.6 Upper bounds for 3-GI and 3-GAWe deal in this setion with graphs having up to 3 di�erent nodes of eaholor. We denote by B3 the set of 6 bijetions de�ned over a domain set of 3elements. An isomorphism between graphs with olor lasses of size 3 an bedeomposed in a produt of bijetions from B3.Theorem 6.1 The Graph Isomorphism problem restrited to graphs witholor lasses of size at most 3 is in the lass SL.12



Proof. Let G and H be the input graphs. By Lemma 5.1 we an onsider thatfor any pair of olors i; j there are at most 4 edges in eah one of the inputgraphs having as endpoints nodes of olors i and j. If there are more than 4edges we onsider the dual onnetions. The three nodes of a olor i in G arelabeled i1; i2 and i3, and in H by i01; i02 and i03.We will redue graphs G and H to a single undireted graph f(G;H) andtranslate the isomorphism question to a reahability question in f(G;H). Foreah olor i we will onsider 6 nodes in f(G) orresponding to the possiblebijetions in B3. Additionally there is one extra node w that will be usedto indiate that some isomorphisms between subgraphs of G and H are notpossible. The set of nodes in f(G;H) is:fvi' j ' 2 B3 and i is a olor in Gg [ fwg:The set of edges in f(G;H) is onstruted aording to the following 2 rules.Observe that both rules an be applied in logarithmi spae sine the olorlasses have onstant size 3 and there an only be at most 6 potential isomor-phisms between the nodes of a given olor.Let Ci (resp. C 0i) denote the set of nodes of olor i in G (resp. in H). For eaholor i the edges with both endpoints in Ci or C 0i might imply that some ofthe bijetions from Ci to C 0i annot be extended to an isomorphism betweenG and H. The restritions in the set of possible bijetions an also be induedby the onnetions with a di�erent olor lass. In these ases we inlude someedges in the graph f(G;H) as in rule 1, indiating that a bijetion betweenthe nodes of a olor annot be extended to an isomorphism:Rule 1: For every pair of olors i; j and every bijetion ' 2 B3, we inludein f(G;H) the edge (vi',w) if the edges between Ci and Cj in G and theedges between C 0i and C 0j in H imply that no isomorphism in Iso(G;H) anmap the nodes of Ci into C 0i like ', that is, if for every  2 B3, ' �  62Iso(Ci[Cj; C 0i [C 0j), where (Ci[Cj) is the graph made by the set of nodes Ciand Cj and the edges between them. For the trivial ase in whih there is onlyone olor i in G, the edge (vi'; w) is inluded in f(G;H) when ' 62 Iso(Ci; C 0i).We also inlude in f(G;H) some edges between nodes orresponding to di�er-ent olor lasses indiating that a partial isomorphism between the nodes ofsome olor fores a partial isomorphism between the nodes of another olor.Rule 2: For every pair of olors i; j, and ' 2 B3. If for a pair of nodesa; b 2 fi1; i2; i3g and a pair of nodes a0; b0 2 fi01; i02; i03g and two bijetions�; � 2 B3 the edges between the sets of nodes fa; bg and f�(a); �(b)g areexatly the two edges f(a; �(a)); (b; �(b))g and the edges between the sets ofnodes fa0; b0g and f�(a0); �(b0)g are exatly f(a0; �(a0)); (b0; �(b0))g and '� 213



Iso(Ci [ Cj; C 0i [ C 0j) (for  = �'��1) then we inlude in E 0 the edge (vi'; vj )(see Figure 5). ab �(a)�(b) a0b0 �(b0)�(a0)Fig. 5. A situation in whih rule 2 is applied. (The dotted lines indiate that theseedges do not exist.)We show with the following lemmas that a reahability question in f(G;H)an be used to deide whether G and H are isomorphi.Lemma 6.2 For a pair of olors i; j and ';  2 B3, if (vi'; w) 62 f(G;H) and(vj ; w) 62 f(G;H) and (vi'; vj�) 62 f(G;H) for any � 2 B3, then ' �  is anisomorphism between the subgraphs Ci [ Cj and C 0i [ C 0j.Proof. Let G = (V;E) and H = (W;E) be the input graphs and let us denoteby a; b and  the nodes of olor i in G, by d; e and f the olor j nodes. Wedenote by the same symbols with ' the nodes of these olors in H. W.l.o.g wean suppose that for l 2 fa; b; g '(l) = l0 and for m 2 fd; e; fg  (m) = m0.Let us suppose by ontradition that '�  62 Iso(Ci [Cj; C 0i [C 0j). It followsthat for a pair of nodes a; d,(a; d) 2 E , ('(a);  (d)) 62 F:We onsider that (a; d) 2 E, the other ase is analogous. Sine vi' and vj are not onneted to w, it follows by rule 1 that there are two bijetions �and � 2 B3 suh that ' � � and � �  2 Iso(Ci [ Cj; C 0i [ C 0j). Beause ofthese fats we have that �(d) 6= d0 and �(a) 6= (a0). Again w.l.o.g. we ansuppose �(d) = e0 and �(a) = b0. It follows ('(a); �(d)) = (a0; e0) 2 F and(�(a);  (d)) = (b0; d0) 2 F . The rest of the proof onsists in onsidering thedi�erent possibilities for the bijetions � and � showing that in eah ase wereah a ontradition.Case 1: Suppose �(d) = e0; �(e) = d0 and �(f) = f 0. (a0; d0) 62 F implies('�1(a0); ��1(d0)) = (a; e) 62 E and therefore (�(a);  (e)) = (b0; e0) 62 F andalso ('�1(b0); ��1(e0) = (b; d) 62 E. If �(b) = a0 then from (a0; e0) 2 F follows(��1(a0);  �1(e0)) = (b; e) 2 E. But then we have that the edges between thenodes a; b; d; e in G and between their ounterparts in H are exatly as is rule2, and there should be an edge in f(G;H) from vi' to some node of olor j14



ontraditing the hypothesis. The other possible situation in when �(b) = 0and �() = a0 but then from (b; d) 62 F follows ('�1�(b); ��1 (d)) = (; e) 62E, and from (a0; e0) 2 F follows (��1(a0);  �1(e0)) = (; e) 2 E whih is aontradition.Case 2: Suppose �(d) = e0; �(e) = f 0 and �(f) = d0. By the same argumentsas in Case 1, we have (b; f) 2 E, (a; f) 62 E (b0; f 0) 62 F and (b0; e0) 62 E. If�(b) = a0 and �() = 0 then from (b; e) 62 E follows (�(b);  (e)) = (a0; e0) 62 Fwhih is a ontradition. Finally, if �(b) = 0 and �() = a0 then it follows(a; d); (b; f); (; e) 2 E, (a; f); (b; e); (; d) 62 E, (a0; e0); (b0; d0); (0; f 0) 2 F and(a0; d0); (b0; f 0); (0; e0) 62 F . Consider the pair of nodes a and e. If (a; e) 2 Ethen (a0; f 0); (b0; e0) 2 F ontraditing the fat that there are at most 4 edgesin H onneting the i and j nodes. On the other hand, if (a; e) 62 E thenthe set of edges between the i and j olor nodes are exatly (a; d); (b; f); (; e)in E and (a0; e0); (b0; d0); (0; f 0) in F . By rule 2 there should be some edge inf(G;H) from vi' to some node of olor j, ontraditing the hypothesis.Lemma 6.3 For eah pair of olors i; j, and ';  2 B3, if there is a pathfrom vi' in f(G;H) to vj not having w as an intermediate node then everyisomorphism in Iso(G;H) that maps the nodes of olor i like ', is fored tomap the nodes of olor j like  .Proof. We use indution on the length of a minimal path from vi' to vj inf(G;H). If this path has length 1 then the olors i and j are di�erent and theedge (vi'; vj ) in f(G;H) has been plaed by rule 2. This implies that for somea; b 2 f1; 2; 3g and some ; d 2 f1; 2; 3g the edges (ia; j�(a)), (ib; j�(b)) (for some� 2 B3) are the only edges between the sets of nodes fia, ibg and fj�(a); j�(b)gin G and the edges (ia; j�(a)), (ib; j�(b)) (for some � 2 B3) are the only edgesbetween the sets of nodes fi0, i0dg and fj�(); j�(d)g in H. Moreover, beause ofrule 2,  = �'��1. If an isomorphism in Iso(G;H) maps the i nodes to thei0 nodes like ', then for l 2 f�(a); �(b)g jl must be mapped to a node j 0 inH onneted to i0'��1(l), and this node is j�'��1(l) = j (l). It follows also for 62 fa; bg, j is mapped to j�'��1().For the indution step, if the number of edges in the path from vi' and vj inf(G;H) is k + 1, let m be the �rst olor after i in the path. There has to besome bijetion � 2 B3 and an edge (vi',vm� ) between the i nodes and the jnodes in f(G;H) and this edge must be introdued by rule 2. By indutionhypothesis, every isomorphism in Iso(G;H) mapping the i nodes like ' mustmap the m nodes like �, and every isomorphism in Iso(G;H) mapping the mnodes like � must map the j nodes like  . Both onditions together imply theresult.Observe that Lemma 6.3 implies that for any olor i, and ';  2 B3, if ' 6= , and vi' is reahable from vi in f(G;H) then there is no isomorphism in15



Iso(G;H) mapping the nodes of olor i like '. Another onsequene of thelemma (together with the de�nition of rule 1), is that for any olor i and ' 2B3, if node w an be reahed from vi' in f(G;H) then there is no isomorphismin Iso(G;H) mapping the nodes of olor i like '.Lemma 6.4 Suppose that there are k di�erent olors in G and H. If thereis a set of nodes in f(G;H), v1'1 ; : : : ; vk'k one of eah olor, and suh thatno other node in f(G;H) is reahable from this set then '1 � : : : � 'k is anisomorphism between G and H.Proof. The proof is by indution on the number of olor lasses k in G andH. If there is only one olor the result is trivial. For the ase of two olors iand j, onsider that from the set of nodes vi' and vj one annot reah anyother node in f(G;H). This implies that the only possible edge in f(G;H)with an endpoint in this set is the one onneting both nodes. If this edge doesnot exist the result follows by Lemma 6.2. On the other hand, if (vi'; vj ) is anedge in f(G;H) then the edge was plaed by rule 2 and '�  2 Iso(G;H).For the indution step, onsider that there are k olors in G and H and thereis a set of nodes one of eah olor v1'1 ; : : : ; vk'k in f(G;H). Consider the graphsG0 and H 0 obtained by deleting the nodes of olor k in G and H and allthe edges having an endpoint of this olor. Sine eliminating one olor anonly redue the set of loal restritions for isomorphisms, there is no newedge in f(G0; H 0) that was not already present in f(G;H) and therefore fromv1'1 ; : : : ; vk'k�1 no other node is reahable in f(G0; H 0). By indution hypothesis'1� : : :�'k�1 2 Iso(G0; H 0). We laim that this isomorphism between G0 andH 0 an be extended to an isomorphism in Iso(G;H) by mapping the nodes inCk to C 0k as in 'k.To see that this is an isomorphism we will show that for every j < k it holds'k � 'j 2 Iso(Ck [ Cj; C 0k [ C 0j)). If the edge (vk'k ; vj'j ) belongs to f(G;H)then the edge was plaed by rule 2 and 'k � 'j 2 Iso(Ck [ Cj; C 0k [ C 0j)). Onthe other hand if this edge does not exist, there is no other edge in f(G;H)between k and j nodes having vk'k or vj'j as endpoint (from the set v1'1 ; : : : ; vk'kno other node an be reahed). The result follows then by Lemma 6.2.It follows from Lemmas 6.3 and 6.4 that there is an isomorphism from G to Hif and only if there is a set of nodes in f(G;H), one of eah olor and suh thatfrom this set no other node in f(G;H) an be reahed. In order to transformthis into a question in SL we need the following lemma:Lemma 6.5 Let A and B be two onneted omponents in f(G;H) satisfyingi) The nodes in A have di�erent olors and the nodes in B have di�erentolors 16



ii) w 62 A [B andiii) the intersetion of olors in A and B is not emptythen the set of olors present in A is the same as the set of olors present inB.Proof. We show that for any pair of olors i and j, and for two bijetions 'and � 2 B3, if the node w in f(G;H) an neither be reahed from vi' nor fromvi� and if vi' has a neighbor of olor j in f(G;H), then so does vi�. The resultfollows from this fat.Suppose that (vi'; vj ) is an edge in f(G;H). This edge was set by rule 2and therefore there is a pair of nodes a; b 2 fi1; i2; i3g and a pair of nodesa0; b0 2 fi01; i02; i03g and two bijetions �; � 2 B3 satisfying the onditions of rule2 and suh that  = �'��1. Sine vi� is not onneted to w, there must bea bijetion  2 B3 satisfying � �  2 Iso(Ci [ Cj; C 0i [ C 0j). � and � desribethe onnetions between i and j nodes in G and H and therefore we have = ����1. We are again in the onditions of rule 2, and the edge (vi�; vj)belongs to f(G;H)We know that there is an isomorphism from G to H if and only if there is aset of nodes in f(G;H), one of eah olor and suh that from this set no othernode in f(G;H) an be reahed. By Lemma 6.5 in order to test this it suÆesto hek for eah olor i that there is one node vi' in f(G;H) from whihneither w nor two nodes of the same olor an be reahed (this question anbe solved within the lass SL). In order to see this observe that if G and Hare isomorphi, suh a set must exist. By Lemma 6.5 if suh a set exists thenthere is a set of olor disjoint onneted omponents in f(G;H) ontaining allolors.We show now that the graph automorphism problem for olored graphs witholor lasses of size 3 also lies in the lass SL. Although a diret proof similarto the one in Theorem 6.1 is possible, it is easier to give a redution from3-GA to UGAP based on the fat that 3-GI 2 SL.Theorem 6.6 The Graph Automorphism problem restrited to graphs witholor lasses of size at most 3 is in the lass SL.Proof. We will show that 3-GA is logarithmi spae many-one reduible toUGAP. This implies that 3-GA lies in SL. Let G = (V;E) be a graph withits nodes partitioned into olor lasses of size at most three. We denote byG[i℄ a opy of G but with node i marked with a new speial olor. There isa non-trivial automorphism in G if and only if for a pair of distint nodesof the same olor i and j in V , there is an automorphism mapping i to j, ifand only if for suh a pair of nodes G[i℄ is isomorphi to G[j℄. Sine the olor17



lasses in G[i℄ have size 3 at most, this means that 3-GA is reduible to a setof disjuntive queries to 3-GI. By Theorem 6.1, 3-GI lies in SL and an beredued to UGAP. The list of queries to 3-GI an then be redued to a listof reahability queries in undireted graphs. The disjuntive list of queries toUGAP an be redued to a single one by onneting the graphs in parallel.This provides a many-one redution from 3-GA to UGAP.
7 Lower bounds for 2-GI and 2-GAWe prove now the hardness results for 2-GI and 2-GA.Theorem 7.1 2-GI is hard for SL under �AC0m .Proof. We show that the graph aessibility problem for undireted graphs,UGAP, is reduible to the omplement of 2-GI. The result follows sine UGAPis AC0 omplete for SL, and this lass is losed under omplementation [25℄.Let G = (V;E) be an undireted graph with two designated nodes s; t 2 V .Consider the new graph G0 = G1 [ G2 where G1 and G2 are two opies ofG, and for a node v 2 V let us all v1 and v2 the opies of v in G1 and G2respetively. Furthermore, we olor eah pair of nodes v1; v2 with olor iv, andolor t1 with a speial olor 1 and t2 with another olor 2. We laim thatthere is no path from s to t in G if and only if there is automorphism ' in G0mapping s1 to s2. Clearly if there is no path between s and t in G, these twonodes belong to di�erent onneted omponents. The desired automorphisman be obtained by mapping the nodes of the onneted omponent of s1 inG1 to the orresponding nodes in G2 and mapping the rest of the nodes in G0(and in partiular t1) to themselves.Conversely, if there is a path between s and t in G, the mentioned automor-phism ' does not exist sine the nodes s2 ('(s1)) and t1 ('(t1)) should be inthe same onneted omponent, but there are no edges between G1 and G2 inG0.The question of whether there is an automorphism in G0 with the mentionedproperties, an in turn be redued to 2-GI. Let H1 be a opy of G0 with nodes1 having a speial olor 3, and H2 be another opy with s2 having olor 3.There is an automorphism mapping s1 to s2 in G0 if and only if H1 and H2are isomorphi. The size of the olor lasses in eah of the graphs H1 and H2is at most 2.Now the hardness result for 2-GA follows easily.18



Corollary 7.2 UCC �AC0m 2-GA.Proof. The redution for this result is the same as in the proof of the previoustheorem. Observe that in G0 the olor lasses are of size at most 2 and thereis a nontrivial automorphism in G0 if and only if there is more than a singleonneted omponent in G.8 Conluding remarksTogether with the upper bounds given by Buss and Lindell our results imply:� TI in the string representation is NC1-omplete under AC0 reduibility.� TI and TA in the pointer representation are NC1-omplete under AC0reduibility.� 2-GA is equivalent to UCC under AC0 reduibility.� 2-GI and 3-GI are omplete for SL under AC0 reduibility.� 3-GA belongs to SL.The level of sophistiation of Buss's NC1 algorithm for TI [8℄ is omparable tothat of his simpli�edNC1 algorithm for the Boolean expression value problemFVP [13℄. Are these two upper bounds independent? In other words, is there aredution from TI to FVP or vie versa whih is simpler than either of Buss'stwo upper bounds?It is interesting to onsider FVP �AC0m TI. Proving that FVP �AC0m TI hasrequired three ingredients: (1) the NC1 upper bound for FVP, (2) the har-aterization of NC1 in terms of balaned Boolean expressions, and (3) oursimple Lemma 3.1. Lemma 3.1 diretly onstruts trees from Boolean formu-las, but the ensuing diret redution is from Balaned-FVP to TI. How anLemma 3.1 be strengthened?The bottlenek to a strengthening of Lemma 3.1 is the handling of a BooleanOR. Lemma 3.1 an only handle balaned Boolean expressions beause thetrees G_ and H_ depited in its proof eah require a opy of G1, G2, H1,and H2. Hene an open question is whether Lemma 3.1 an be proved usingsimpler onstruts G_ and H_, still simulating the Boolean OR, but onlyadding a small number of additional nodes. If so, the NC1 upper bound forFVP is redundant, i.e., the NC1 upper bound for FVP follows from the NC1upper bound for TI.A natural way to ontinue this researh is to study the situation for otherbounds b � 4 for the size of the olor lasses trying to obtain ompletenessresults for other omplexity lasses. >From the results in [10℄ it an easily19



be derived that for b � 2, b2-GI is hard for the modular lass ModbL, and2b2-GA is also hard for ModbL. It follows from this that 4-GI is hard for �Land therefore a proof of the fat that 4-GI belongs to SL would imply that�L is inluded in SL whih is something we do not expet. Obtaining betterupper bounds than the ones given in [9℄ for b-GI and b-GA for speial asesof k (k � 4) is an interesting open problem.We observe that the blow-up in the omplexity of the problem when goingfrom olor lasses of size 3 to size 4 also happens in the related area of graphidenti�ation using �rst-order formulas with ounting. Immerman and Landershow in [26℄ that 3 variables suÆe to identify all olored graphs of olor size3, while 
(n) variables are needed to identify all graphs of olor size 4 using�rst order formulas with ounting, as proved in [27℄.Aknowledgments: We would like to thank Eri Allender, V. Arvind, Pas-al Tesson and Denis Th�erien for interesting disussions in the topis of thepaper. We would also like to thank Klaus-J�orn Lange for several invitationsto T�ubingen, where part of this researh was done.Referenes[1℄ B. Jenner, P. MKenzie, J. Tor�an, A note on the hardness of tree isomorphism,in: Pro. 13th Annual IEEE Conferene on Computational Complexity, IEEEComputer Soiety Press, 1998, pp. 101{106.[2℄ J. K�obler, J. Tor�an, The omplexity of graph isomorphism for olored graphswith olor lasses of size 2 and 3, in: Pro. 19th Symposium on TheoretialAspets of Computer Siene, Vol. 2285 of Leture Notes in Computer Siene,Springer-Verlag, Berlin Heidelberg New York, 2002, pp. 121{132.[3℄ L. Babai, Moderately exponential bounds for graph isomorphism, in: Pro.International Symposium on Fundamentals of Computing Theory 81, Vol. 117of Leture Notes in Computer Siene, Springer-Verlag, Berlin Heidelberg NewYork, 1981, pp. 34{50.[4℄ E. Luks, Isomorphism of bounded valene an be tested in polynomial time,Journal of Computer and System Sienes 25 (1982) 42{65.[5℄ J. K�obler, U. Sh�oning, J. Tor�an, The Graph Isomorphism Problem: ItsStrutural Complexity, Birkh�auser, Boston, 1993.[6℄ J. E. Hoproft, R. E. Tarjan, A V 2 algorithm for determining isomorphism ofplanar graphs, Information Proessing Letters 1 (1971) 32{34.[7℄ S. Lindell, A logspae algorithm for tree anonization, in: Pro. 24th ACMSymposium on Theory of Computing, ACM Press, 1992, pp. 400{404.20



[8℄ S. Buss, Alogtime algorithms for tree isomorphism, omparison, andanonization, in: Computational Logi and Proof Theory, 5th Kurt G�odelColloquium'97, Vol. 1289 of Leture Notes in Computer Siene, Springer-Verlag, Berlin Heidelberg New York, 1997, pp. 18{33.[9℄ E. Luks, Parallel algorithms for permutation groups and graph isomorphism, in:Pro. 27th IEEE Symposium on the Foundations of Computer Siene, IEEEComputer Soiety Press, 1986, pp. 292{302.[10℄ J. Tor�an, On the hardness of graph isomorphism, in: Pro. 41st IEEESymposium on the Foundations of Computer Siene, IEEE Computer SoietyPress, 2000, pp. 180{186.[11℄ A. V. Aho, J. E. Hoproft, J. D. Ullman, The design and analysis of omputeralgorithms, Addison-Wesley, 1974.[12℄ G. Miller, J. Reif, Parallel tree ontration part 2: Further appliations, SIAMJournal on Computing 20 (1991) 1128{1147.[13℄ S. R. Buss, The boolean formula value problem is in ALOGTIME, in: Pro.19th ACM Symposium on Theory of Computing, 1987, pp. 123{131.[14℄ D. A. Barrington, Bounded-width polynomial-size branhing programsreognize exatly those languages in NC1, Journal of Computer and SystemSienes 38 (1989) 150{164.[15℄ L. Babai, Monte Carlo algorithms for graph isomorphism testing, TehnialReport 79-10, D�ep. Math. et Stat., Univ. de Montr�eal (1979).[16℄ M. Furst, J. Hoproft, E. Luks, Polynomial time algorithms for permutationgroups, in: Pro. 21st IEEE Symposium on the Foundations of ComputerSiene, IEEE Computer Soiety Press, 1980, pp. 36{41.[17℄ H. Lewis, C. Papadimitriou, Symmetri spae-bounded omputation,Theoretial Computer Siene 19 (1982) 161{187.[18℄ A. Lozano, J. Tor�an, On the nonuniform omplexity of the graph isomorphismproblem, in: K. Ambos-Spies, S. Homer, U. Sh�oning (Eds.), ComplexityTheory, Current Researh, Cambridge University Press, 1993, pp. 245{273, alsoin Proeedings of the 7th Struture in Complexity Theory Conferene, pp. 118{129, June 1992.[19℄ C. �Alvarez, R. Greenlaw, A ompendium of problems omplete for symmetrilogarithmi spae, Journal of Computational Complexity 9 (2000) 73{95.[20℄ D. Barrington, N. Immerman, H. Straubing, On uniformity within NC1, Journalof Computer and System Sienes 41 (1990) 274{306.[21℄ S. A. Cook, P. MKenzie, Problems omplete for deterministi logarithmispae, Journal of Algorithms 8 (1987) 385{394.[22℄ M. Beaudry, P. MKenzie, Ciruits, matries and nonassoiative omputation,Journal of Computer and System Sienes 50 (3) (1995) 441{455.21



[23℄ R. Chang, J. Kadin, On omputing boolean onnetives of harateristifuntions, Mathematial Systems Theory 28 (1995) 173{198.[24℄ K. Etessami, Counting quanti�ers, suessor relations, and logarithmi spae,in: Pro. 10th Struture in Complexity Theory Conferene, IEEE ComputerSoiety Press, 1995, pp. 2{11.[25℄ N. Nisan, A. Ta-Shma, Symmetri logspae is losed under omplement, in:Pro. 27th ACM Symposium on Theory of Computing, ACM Press, 1995, pp.140{146, appeared also in Chiago Journal of Theoretial Computer Siene,artile 1, 1995.[26℄ N. Immerman, E. Lander, Desribing graphs: a �rst order approah to graphanonization, in: A. L. Selman (Ed.), Complexity Theory Retrospetive,Springer-Verlag, Berlin Heidelberg New York, 1990, pp. 59{81.[27℄ J. Cai, M. F�urer, N. Immerman, An optimal lower bound for the number ofvariables for graph identi�ation, Combinatoria 12 (1992) 389{410.

22


