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Abstract

For a pair of given graphs we encode the isomorphism principle in
the natural way as a CNF formula of polynomial size in the number of
vertices, which is satisfiable if and only if the graphs are isomorphic.
Using the CFI graphs from [12], we can transform any undirected graph
G into a pair of non-isomorphic graphs. We prove that the resolution
width of any refutation of the formula stating that these graphs are
isomorphic has a lower bound related to the expansion properties of
G. Using this fact, we provide an explicit family of non-isomorphic
graph pairs for which any resolution refutation requires an exponential
number of clauses in the size of the initial formula. These graphs pairs
are colored with color multiplicity bounded by 4. In contrast we show
that when the color classes are restricted to have size 3 or less, the non-
isomorphism formulas have tree-like resolution refutations of polynomial
size.

1 Introduction

Resolution is one of the most popular and best studied proof systems for propo-
sitional logic. Since the first exponential lower bound for the size of resolution
refutations proven by Haken [17] for the family of formulas encoding the pi-
geonhole principle, many other combinatorial principles have been shown to
have exponential lower bounds [26, 13, 9, 7, 8]. With the recent development
of modern SAT-solvers based on DPLL algorithms and the fact that the res-
olution principle lies in the core of such algorithms, resolution lower bounds
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have gained in importance because they also provide lower bounds for the run-
ning time of the SAT-solvers. We study here the complexity of testing graph
non-isomorphism using resolution. The graph isomorphism problem, GI, asks
whether there is a bijection between the nodes of two given graphs preserving
the adjacency relationship. The problem has been extensively studied in the
past (see e.g [21]) because its intrinsic importance and also because it is one of
the few problems in NP that is not known to be solvable in polynomial time
but also is not expected to be NP-complete.

The impressive improvement of the performance of SAT-solvers based on
DPLL algorithms in the last years has motivated a new way for dealing with
NP problems. For many practical applications, these problems are reduced
to formulas than are then tested for satisfiability using the SAT-solvers. This
method works well in practice for several problems, although strong resolution
lower bounds for random instances of some NP-complete problems are known
[7, 8]. It is natural to ask how well this approach works for problems in NP that
are not believed to be complete in the class, like graph isomorphism. We study
here the size of resolution refutations for formulas encoding graph isomorphism
in the natural way. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), with
n nodes each, the formula F (G1, G2) over the set of variables {xi,j | i, j ∈
[n]} is satisfiable if and only if there if an isomorphism between G1 and G2.
Each satisfying assignments of the formula encodes an isomorphisms. In such
an assignment the variable xi,j receives value 1 if and only if the encoded
isomorphism maps vertex vi ∈ V1 to vj ∈ V2.

Definition 1.1 For a pair of graphs G1, G2 with n vertices each, F (G1, G2)
is the conjunction of the following sets of clauses:

Type 1 clauses: for every i ∈ [n] the clause (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n) indicating
that vertex vi ∈ V1 is mapped to some vertex in V2.

Type 2 clauses: for every i, j, k ∈ [n] with i 6= j the clause (xi,k ∨ xj,k)
indicating that not two different vertices are mapped to the same one.

Type 3 clauses:, for every i, j, k, l ∈ [n] i < j and k 6= l with (vi, vj) ∈ E1 ↔
(vk, vl) 6∈ E2, the clause (xi,j ∨xi,k) expressing the adjacency relation (an
edge cannot be mapped to a non edge and vice-versa).

Formula F (G1, G2) has n2 variables and O(n4) clauses. The clauses of
Types 2 and 3 have width 2, while the clauses of Type 1 have width n.

It is not hard to find pairs of non-isomorphic graphs whose formulas require
exponential size resolution refutations. For example if graph G1 consists of
n+1 isolated vertices and G2 n isolated vertices (no edges), then F (G1, G2) is
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exactly PHP(n+1, n), the formula encoding the pigeonhole principle with n+1
pigeons and n holes. It is well known that this formula requires exponential
size resolution refutations [17]. More elaborate examples can be constructed for
example encoding PHP in pairs of connected graphs with the same number of
vertices. In order to find more interesting examples and to investigate whether
the apparent inability of resolution for dealing with GI comes only from the
difficulty to count, we consider here graphs with colored vertices and bounded
color multiplicities (there is a bound on the number of vertices of each color).
In an isomorphism between colored graphs, colors must be preserved. A vertex
coloring is reflected very naturally in the clauses of Type 1, since for a vertex i

in the first graph we only have to include the variables xi,j for the vertices j in
the second graph with the same color as i. If the maximum color multiplicity
is bounded by k, the clauses of Type 1 are reduced to have at most k literals.
This restricts the isomorphism search space. This also prevents from encoding
the pigeonhole principle in the formula. Also in this case we can ignore all
the variables xi,j when i and j have different colors. This means that the
corresponding isomorphism formulas have at most kn variables.

When the input graphs G1 and G2 are colored, we will also denote by
F (G1, G2) the formula defined as above, but with the Type 1 clauses restricted
according to the colors.

For any constant k, it is known that GI for graphs with color multiplicity
bounded by k can be solved in polynomial time, and even using more restricted
resources [6, 15, 5]. In contrast to this fact, we show in this paper than in
the case of resolution, there is a big difference between color classes of size
3 and larger classes. When the maximum color multiplicity is 3, the non-
isomorphism formulas have polynomial size resolution refutations, (even tree-
like refutations). On the other hand we prove an exponential lower bound for
the resolution refutation of certain pairs of non-isomorphic graphs with color
classes of size 4 or larger. The gap in the complexity of resolution depending
on the size of the color classes coincides with the gap in the number of variables
required for graph identification [19].

For our lower bound we consider the CFI graphs used by Cai, Fürer and
Immerman in [12] to prove the impossibility of Weisfeiler-Lehmann based al-
gorithms for solving GI. In this important paper the authors gave a method
to transform any graph G with n vertices and maximum degree d into a pair
of non-isomorphic graphs of size nd2d based on G. We show here that any res-
olution refutation of the related isomorphism formulas must have exponential
size in ex(G)

d
, were ex(G) is the expansion of the graph G (Definition 4.9). The

exponential lower bound follows by considering constant degree graphs with
linear expansion. The lower bound holds even for pairs of colored graphs of
degree at most 3 and color classes of size at most 4.
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The idea behind the proof of the resolution lower bound resembles that
from Urquhart [26] for proving resolution lower bounds for Tseitin formulas
[25]. We profit however from several newer results that help us to simplify the
proof. Especially, we make use the relationship between resolution size and
width (the maximum number of literals in a clause in the refutation) proven by
Ben-Sasson and Wigderson in [11], which imply size lower bounds by proving
bounds on the width.

2 Preliminaries

We deal with Boolean formulas in conjunctive normal form, CNF. A CNF
formula F on the set of variables V is a conjunction of clauses C1, . . . , Cm.

Each clause is a disjunction of literals. A literal is either a variable or a
negated variable from V. A (partial) assignment α is a (partial) mapping from
V in {0, 1}. For a clause C and an assignment α, we denote by C|α the result
of applying α to C. This is 1 if α assigns value 1 some literal in C, or the
result of deleting the literals in C being assigned to 0 otherwise. For a CNF
formula F , F |α is the conjunction of the clauses C|α for every C in F.

2.1 Resolution

The concept of resolution was introduced by Robinson in [22]. Resolution is a
refutation proof system for propositional formulas in conjunctive normal form.
The only inference rule in this proof system is the resolution rule:

C ∨ x D ∨ x̄

C ∨D
.

Resolving variable x from clauses C ∨ x and D ∨ x̄ we get the resolvent clause
C ∨D. A resolution refutation of a CNF formula F is a sequence of clauses
C1, . . . , Cs where each Ci is either a clause from F or is inferred from earlier
clauses by the resolution rule, and Cs is the empty clause.

A resolution refutation can be pictured as a directed acyclic graph in which
the clauses are the vertices and there are edges from the clauses to their resol-
vents. The restriction of resolution in which the underlying graph is a tree is
called tree-like resolution.

Definition 2.1 The size of a resolution refutation is the number of clauses it
contains. For an unsatisfiable formula F , size(Res(F )) denotes the minimal
size of a resolution refutation of F .
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We denote the size of the smallest tree-like refutation for F , by size(TRes(F )).
Families of unsatisfiable formulas exist, for which there is an exponential sepa-
ration between the size of tree-like resolution refutation and that of resolution
refutations without restrictions [10]. It is well known that the size of a tree-like
resolution refutations for an unsatisfiable formula corresponds to the running
time of a DPLL algorithm on the formula (see e.g. [23]).

Definition 2.2 [11] The width of a clause is the number of literals appearing
in it. For a set of clauses C (C can be for example a formula in CNF or a
resolution refutation) the width of C, denoted by width(C), is the maximal width
of a clause in the set C.

The width needed for the resolution of an unsatisfiable CNF formula F ,
denoted by width(Res(F )), is the minimal width needed in a resolution of F ,
that is, the minimum of width(π) over all resolution refutations π of F .

For proving the lower bound on the resolution size we will use the rela-
tionship between width and size of a refutation introduced by Ben-Sasson and
Widgerson in [11]. This approach allows to reduce the problem of giving lower
bounds on the size of a refutation to that of giving lower bounds on the width.

Theorem 2.3 [11] For an unsatisfiable formula F in CNF with n variables

size(Res(F )) = exp(Ω(
[width(Res(F ))− width(F )]2

n
)).

2.2 Graph Isomorphism

The graphs considered in this paper will be undirected simple graphs, usually
denoted by G = (V,E), where V is the vertex set and E ⊆

(

V

2

)

. We say
two graphs G1 and G2 are isomorphic if there is a bijection ϕ : V1 −→ V2

such that (u, v) ∈ E1 iff (ϕ(u), ϕ(v)) ∈ E2. We write G1
∼= G2 and call ϕ an

isomorphism. An automorphism of a graph G is an isomorphism from G to G.
Automorphisms are permutations on the set V , and the set of automorphisms
Aut(X) forms a group under permutation composition. We say that a set of
vertices V ′ ⊆ V is set-wise stabilized by an automophism ϕ, if V ′ = ϕ(V ′).

We will deal with graphs with colored vertices. A coloring with k colors
is a function f : V → {1, . . . k}. In an isomorphism between colored graphs,
the colors have to be preserved. This restricts the search space when looking
for isomorphisms. For a color c, the color class corresponding to c is the set
of vertices with this color in V . The set of color classes defines a partition of
the graph vertices. A refinement of a given set of color classes, is a refinement
of this partition, that is, every color class in the refinement is a subset of the

5



original partition. When a pair of graphs is given as input for the isomorphism
problem, there are two color classes of each color, one in each graph. It should
be clear from the context, from which one of the classes we are talking about
in the text.

3 Polynomial size tree-like resolution refuta-

tions for color multiplicity 2 and 3

For the case of graphs with color classes of size 2, all the clauses in the non-
isomorphism formulas have width 2. It is well known that an unsatisfiable set of
clauses of width at most 2 has polynomial size tree-like resolution refutations.
This simple observation provides an alternative proof for the fact that GI for
graphs with color multiplicities at most 2 is in P. We extend this observation
to the case of graphs with color classes at most 3.

Theorem 3.1 Let G1 and G2 be two colored non-isomorphic graphs with color
classes of size at most 3. Then F (G1, G2) has tree-like resolution refutations
of polynomial size.

Proof. We can suppose that the subgraphs induced by every pair of color
classes in G1 and G2 are isomorphic, because otherwise, there would be an
unsatisfiable subformula of constant size in F (G1, G2), having a constant size
tree-like resolution refutation. For some pairs of color classes, the subgraphs S1

and S2, induced by the vertices with these colors in G1 and G2 can restrict the
set of possible isomorphisms between the subgraphs, thus implying a further
refinement in the vertex partition defined by the colors.

1

2

3

4

5

6

a

b

c

d

e

f

Figure 1: The subgraphs S1 and S2 induced
by a pair of color classes (black,white).

For example in Figure 1 every possible isomorphism between S1 and S2

must map 1 to b or c, 2 to b or c, and 3 to a. This implies that every possible
isomorphism between the subgraphs must map 4 to f , 5 to d or e and 6 to
d or e. Observe that by considering the subgraphs induced just by the white
color classes, no further refinement would have followed.
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One can use this refinement in the set of possible isomorphisms between
S1 and S2 to derive a refinement of the clauses of Type 1 by a constant size
resolution refutation from the (constant size) initial set of clauses in F (S1, S2).
In our example these new clauses would be: (x1,b, x1,c), (x2,b, x2,c), x3,a, x4,e,
(x5,d, x5,f ) and (x6,d, x6,f ) . A way to see that in case of a refinement in the
color classes it is always possible to obtain the reduced clauses, is by noticing
that if there is no isomorphism between the subgraphs mapping 1 to a, for
example, then the subformula obtained by setting x1,a to 1 in F (S1, S2) is
unsatisfiable and therefore it has a constant size tree-like refutation R. By
the standard trick of using the structure of the refutation R, but starting with
the clauses in F (S1, S2) (instead of F (S1, S2)|x1,a=1), one derives the literal x1,a

(or maybe the empty clause in case F (S1, S2) was unsatisfiable). By resolving
these literals (unitary clauses) with the corresponding clauses of Type 1, one
obtains the desired refined clauses.

Because of these observations, we can suppose that in G1 and G2 the parti-
tion on the vertex set defined by the color classes, cannot be further refined by
considering the subgraphs induced by pairs of color classes. Considering this,
by inspecting the few possible cases of edge connections between two color
classes, it can be seen that for every pair of colors, say black and white, there
are two possible situations in the subgraphs S1 and S2 induced by these color
classes in G1 and G2, (this fact has been previously observed [19, 20]). Either:

1. For every possible bijective mapping of the black vertices, there is a
unique extension to the white vertices that is an isomorphism from S1 to
S2, or

2. For every possible bijective mapping of the black vertices, every possible
bijective extension to the white vertices is an isomorphism from S1 to
S2.

(This property does not hold when the color classes can have size larger than
3.) We show in Figure 2 the possible edge connections between two color
classes when they do not imply a refinement. The first and last situations
belong to Case 2, while the second and third belong to Case 1. The situations
involving color classes of size smaller than 3 are not included in the figure but
are also easy to check.
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Figure 2: The possible (non refining) edge connections
between two color classes of size 3.

Translating this to resolution, this property intuitively means that in Case
1, an assignment for a possible mapping of one of the color classes fixes an
assignment of the variables for another color, and so on, until (in the case of
non-isomorphic graphs) a contradiction is found.

Suppose that black and white are two color classes with edge connections
as in Case 1, and suppose we had three unitary clauses, specifying a mapping
of the black vertices (like for example x1,a, x2,b, and x3,c). By a unit-resolution
refutation of constant size, resolving first these clauses with clauses of Type 3
and then using the obtained resolvents together with the clauses of Type 1 for
the white vertices, the unitary clauses specifying the corresponding mapping
of the white vertices can be obtained. Observe that one would also obtain (by
unit-resolution) the unit clauses for the white vertices if instead of the unit
clauses for the black vertices one would have started with a partial assignment
α defining a mapping of the black vertices (like x1,a = 1, x2,b = 1, and x3,c = 1)
and considering the formula F (G1, G2)|α.

We can now define a new graph C in which there is a vertex for each color
class in G1, and there is an edge between two color classes if and only if the
edge connections between the vertices of the corresponding classes in G1 or G2

are as in Case 1.
If G1 and G2 are not isomorphic, then there must be a set of color classes so

that the subgraphs induced by these classes in G1 and G2 are non-isomorphic.
These color classes define a connected component in C. Moreover, if for every
pair of color classes the corresponding induced subgraphs in G1 and G2 are
isomorphic, then there has to be a cycle in C so that the graphs induced by
the colors in this cycle are non isomorphic. Otherwise, it would be possible to
extend the isomorphism between two color classes to an isomorphism between
G1 and G2.

Let black be any color class in such a cycle. By the above observations,
from any of the possible partial assignments α of the variables corresponding
to a bijective mapping of the black color class, the clauses corresponding to
the unique possible mapping of a neighboring color class in the cycle can be
derived (by a constant unit-resolution refutation) and so on, coming back to
black. A partial isomorphism different from the initial one is then forced on
this class, thus forcing a contradiction.

Since the number of colors in the cycle is bounded by the number of vertices,
any partial assignment α defining a bijective mapping of the black vertices, de-
fines a polynomial size tree-like (and unit-resolution) refutation of F (G1, G2)|α.
There are only 6 possible such bijective mappings α. By using again the trick
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repeating these refutations separately on F (G1, G2), one obtains a tree-like
derivation of an unsatisfiable set of clauses involving only variables xi,j with i

and j in the black classes. This set has constant size, and from it, the empty
clause can be derived.

4 The CFI graphs and their formulas

We define now the graphs that will be used for the resolution lower bounds.
These graphs were considered in [12] to prove lower bounds for the Weisfeiler-
Lehman method in isomorphism testing. In [24] a generalization of these
graphs was used in order to show that GI is hard for the complexity class
DET.

Definition 4.1 For k ≥ 2 the graph Xk = (Vk, Ek) is defined as follows:
Vk = Ak ∪ Bk ∪ Mk where Ak = {ai | i ∈ [k]}, Bk = {bi | i ∈ [k]} and

Mk = {mS | S ⊆ [k], |S| even}. The graph is bipartite, the set of edges connect
a and b vertices with m vertices Ek = {(mS, ai) | i ∈ S} ∪ {(mS, bi) | i 6∈ S}.

b

b

b

b

b

b

b

b

b

b

a1

b1

a2

b2

m∅

m{2,3}

m{1,3}

m{1,2}

b3

a3

Figure 3. The graph X3

Graph Xk consists of 2k−1 +2k vertices and k2k−1 edges. Let us give some
intuition on the definition. Suppose that for each i we color the vertex set
{ai, bi} with color i so that any automorphism of Xk must set-wise stabilize
these vertex sets. An automorphism in the colored graph, might map some
ai vertices to the corresponding bi vertex, while fixing the rest of the a and
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b vertices. As stated in the following Lemma from [12], describing the set
of automorphism in Xk, the graph is constructed in such a way, that their
automorphisms correspond to the situations in which the number of i ∈ [n]
with vertex ai being mapped to bi is even.

Lemma 4.2 [12] There are exactly 2k−1 automorphisms in Xk stabilizing the
sets {ai, bi}, i ∈ [k]. Each such automorphism is determined by interchanging
ai and bi for each i in some subset S ⊆ [k] of even cardinality.

More intuitively, the construction can be understood with the simplification
of Xk given in Figure 4. Here we have one vi vertex for each pair ai, bi, and
these are connected to a single m vertex for all the vertices in Mk. If we assign
{0, 1} values to the vi vertices, the previous lemma just says that the sum of
these values has to be even.

v2

v1

v3
m

b

b

b

Figure 4.

We now transform a graph G into a graph X(G) by substituting its vertices
by the gadgets of Definition 4.1.

Definition 4.3 Let G = (V,E) be a connected graph with minimum degree
at least 2. We transform G in a new graph X(G) in which every vertex v of
degree d in G is substituted by a copy X(v) of the gadget Xd, and these are
connected in the following way:

To each edge e = (u, v) having v as endpoint we associate two vertices
{ave , b

v
e} in X(v) and two vertices {aue , b

u
e} in X(u). We then join with an edge

the ae vertices in X(v) and X(u) and the be vertices in X(v) and X(u). This
means that every edge in G is transformed into two edges in X(G). X(G) can
be intuitively understood as the result of going back from the graph in Figure
4, to the one in Figure 3, for every vertex.

If G has maximum degree d then X(G) has at most |V |d2d vertices and
2|E| + |V |d2d−1 edges. It should be clear that the set of automorphisms of
X(G) stabilizing the pairs {ave , b

v
e} have to be edge respecting in the sense of

the following definition.
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Definition 4.4 A permutation ϕ acting on the set {ave , b
v
e | e is an incident

edge with vertex v in G} is called edge respecting if it stabilizes all the pairs
{ave , b

v
e} and has the property that for every edge e = (u, v) in G, ϕ(aue ) = aue

if and only if ϕ(ave) = ave.

The following observation is a direct consequence of Lemma 4.2.

Observation 4.5 There is a 1-1 correspondence between the set of edge re-
specting permutations ϕ acting on the set {ave , b

v
e | e is an incident edge with

vertex v in G} and with the property that for every vertex v, ϕ interchanges
the vertices ave and bve for an even number of edges e incident with v, and the
set of automorphism in Aut(X(G)) stabilizing the sets {ave , b

v
e}.

For E ′ ⊆ E, let X̃(G,E ′) be a copy of X(G) but in which all the edges
e = (u, v) ∈ E ′ are twisted, that is aue is connected to bve and bue is connected
to ave . The next lemma shows that depending on the number of twisted edges
in X̃(G,E ′) we can only have two possible isomorphism classes.

Lemma 4.6 [12] Let G = (V,E) be a connected graph with minimal degree at
least 2 and let E ′ ⊆ E with ||E ′|| = t. If t is even then X̃(G,E ′) is isomorphic
to X(G), and if t is odd, then X̃(G,E ′) is isomorphic to X̃(G, {e}), for any
edge e ∈ E. Moreover, X(G) and X̃(G, {e}) are non-isomorphic.

We will say that an edge (u, v) in G is straight, if the corresponding edge
in X̃(G,E ′) has not been twisted. For simplicity, we will denote by X̃(G) the
graph X̃(G, {e}) for some fixed e ∈ E. Since all the graphs defined in this
way are isomorphic, for our purposes it does not matter which of these graphs
we are considering. Analogously we will refer to the formula F (X(G), X̃(G)),
considering that X̃(G) is a fixed graph.

We extend Definition 4.4 to the set of bijections between the vertices of
X(G) and X̃(G).

Definition 4.7 A bijection ϕ between the sets {ave , b
v
e |ave , b

v
e ∈ V (X(G))} and

{ave , b
v
e |ave , b

v
e ∈ V (X̃(G))} is called edge respecting if for every vertex v and

incident edge e, {ϕ(ave), ϕ(b
v
e)} = {ave , b

v
e} and fulfills the following property:

For every edge e = (u, v) in G, if e is straight then ϕ(aue ) = aue if and only
if ϕ(ave) = ave, and if e is twisted then ϕ(aue ) = aue if and only if ϕ(ave) = bve.

For graph G, the variables in the formula F (X(G), X̃(G)) are of the form
xi,j representing the mapping of vertex vi in X(G) to vertex vj in X̃(G). For
clarity we will divide the set of x variables in two kinds during the exposition:

The y variables correspond to the endpoints of the original edges in G,
(that have been doubled in X(G)). For a vertex v in G and an edge e incident
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with v, the vertices corresponding to v and e in X(G) are {ave , b
v
e}. yav

e
,bv
e
,

for example is the variable representing the mapping from ave in X(G) to bve
in X̃(G). For simplicity, when the edge is clear from the context, we will
sometimes denote this variable by yva,b. Also we will consider the graphs X(G)

and X̃(G) to be colored so that for a vertex v in G and an edge e incident with
v, {ave , b

v
e} are the only two vertices having the color (v, e). Since we are only

interested in color preserving isomorphisms, the clause of Type 1 for a vertex
ave is (yvae,ae ∨ yvae,be) and has width 2 (analogous for the vertex bve). This only
restricts the number of possible isomorphisms and makes it easier to refute the
formula.

The z variables correspond to the m vertices in the X(v) gadgets. For a
vertex v of degree d inG, there are 2d−1 verticesmv

S, inX(G) and in X̃(G). The
variables zvS,S′ are the ones representing the mappings between these vertices.
Analogously as in the case of the y variables, for a vertex v we will consider
that the vertices mv

S, in X(G) and X̃(G) are the only ones colored with color
v. This implies that the clauses of Type 1 for a vertex mv

S have width 2d−1.
For a vertex v in G we denote by F (X(v)) the set of initial clauses in

F (X(G), X̃(G)) containing some variable yv or zv (observe that for two vertices
u and v, F (X(u)) and F (X(v)) might not be disjoint. Analogously, for a set
of vertices C ⊆ V we denote by F (X(C)) the union of the clauses F (X(v))
for v ∈ C.

By Lemma 4.6, for any graph G, the formula F (X(G), X̃(G)) is unsatisfi-
able. However, as stated in the next lemma, for any vertex from G there are
assignments satisfying simultaneously all the formula clauses except some of
the clauses in F (X(v)).

Lemma 4.8 For any graph G = (V,E) and for every v ∈ V there is an
assignment satisfying all the clauses in F (X(G), X̃(G)) except two clauses in
F (X(v)).

Proof. Consider first the easy case in which X̃(G) is the version of X(G)
in which exactly one edge e = (u, v) is twisted, for some neighbor u of v in
G. The assignment xi,j = 1 if and only if j = i satisfies all the clauses in
F (X(G), X̃(G)) except the two Type 3 clauses (yau

e
,au

e
∨ yav

e
,av

e
) and (ybu

e
,bu
e
∨

ybv
e
,bv
e
). In the general case, by Lemma 4.6, X̃(G) is isomorphic to the copy of

X(G) with only twisted edge e = (u, v). Let ϕ be an isomorphism between
these graphs. The assignment xi,j = 1 if and only if j = ϕ(i) satisfies all the
clauses in F (X(G), X̃(G)) except the two Type 3 clauses (yau

e
,ϕ(au

e
) ∨ yav

e
,ϕ(av

e
))

and (ybu
e
,ϕ(bu

e
) ∨ ybv

e
,ϕ(bv

e
)).

We will show in the next section that the size of the resolution refutations
of F (X(G), X̃(G)) for any graph G are related to the expansion of G.
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Definition 4.9 Let G = (V,E) be an undirected graph with |V | = n. The
expansion of G, ex(G) is defined as:

ex(G) = min k : ∃S ⊆ V, |S| ∈

[

n

3
,
2n

3

]

, |{(x, y) ∈ E : x ∈ S, y 6∈ S}| = k.

Intuitively this represents the minimum number of edges that have to be
cut in order to separate a big component of G from the rest.

5 Resolution lower bounds for color multiplic-

ity larger than 3

We show next that for certain pairs of non-isomorphic graphs G1, G2, the size
of any resolution refutation of F (G1, G2) is exponential in n, the number of
vertices. The proof follows the ideas introduced in [9] and [11] for proving
resolution lower bounds. We will prove that for any connected graph G of
minimum degree at least 2, the width of any refutation of F (X(G)X̃(G)) is at
least the expansion of G. The lower bound on the size follows by considering
a graph G with large expansion and applying Theorem 2.3.

Theorem 5.1 Let G = (V,E) be a connected graph with maximum degree d

and minimum degree at least 2. Any resolution refutation of the colored version
of F (X(G), X̃(G)) requires width at least ex(G)

d
.

Proof. Let R be a resolution refutation for F (X(G), X̃(G)). For a vertex
v in G, let G−{v} be the subgraph of G induced by the set of vertices V \{v}.
An assignment α of all the variables in F (X(G), X̃(G)) is called v-critical, if it
satisfies all the clauses in F (X(G), X̃(G)) except maybe some clauses in X(v).
Observe that by Lemmas 4.6 and 4.8, that that there are v-critical assignments
for every vertex v, and that if α is v-critical, then the number of vertices ave
being mapped to bve for some edge e incident with v, is odd, while for every
other vertex u 6= v the number of such vertices is even.

We define the significance of a clause C in R, abbreviated by σ(C), as the
number of vertices v such that there is a v-critical assignment, that falsifies C.
It should be clear, that the initial clauses in F (X(G), X̃(G)) have significance
1 or 0. The empty clause, at the end of the resolution refutation R, has
significance n. Moreover, whenK is the resolvent of two clausesK1, K2, having
significance s1 and s2, then the significance from K is at most s1 + s2, since
every assignment that falsifies K, falsifies also K1 or K2. From this follows,
that there must be a clause C in R with significance s ∈ [n

3
, 2n

3
]. (One can

choose the first clause C in R with σ(C) ≥ n
3
). Let V ′ be the set of vertices
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v for which there exists some v-critical assignment α, falsifying C. |V ′| = s.
For every vertex w ∈ V \ V ′, it holds that all w-critical assignments satisfy
clause C. Since s ∈ [n

3
, 2n

3
], there are at least ex(G) edges joining a vertex in

V ′ with a vertex in V \ V ′. Let e = (v, w) be such an edge and let d be the
degree of v. We modify α in a few positions, so that it mutates to a w-critical
assignment αe: we toggle the values of the variables related to the end points
of e, yva,a, y

v
a,b, y

v
b,a, y

v
b,b, as well as toggling the values from ywa,a, y

w
a,b, y

w
b,a, y

w
b,b.

Moreover, we set in αe the values of the z variables from vertex v so that the
assignment restricted to X(v) defines a partial isomorphism. This is always
possible since the number of vertices av being mapped to bv for the edges
incident with v, by αe is even. All the other values in α are not changed in
αe. Because of this, αe is w-critical. As a consequence of the modification, αe

satisfies the clause C. This implies that at least one of the changed variables
must occur in C. Observe that for two edges e = (v, w), e′ = (v′, w′) with
v, v′ ∈ V ′ and w,w′ ∈ V \ V ′ if v 6= v′ then the sets of changed variables in
αe and αe′ are disjoint. If v = v′ then αe and αe′ can coincide in the values
of some of the changed z variables. But v has degree at most d. This implies
that for every set of d edges e = (v, w) with v ∈ V ′ and w ∈ V \ V ′ a different

variable must occur in C and therefore width(C) ≥ ex(G)
d

.

The lower bound follows:

Corollary 5.2 There exists a family of graphs G such that for any n, Gn ∈ G
has n vertices and the resolution refutation of the formula F (X(Gn), X̃(Gn))
expressing that the graphs X(Gn) and X̃(Gn) are non-isomorphic, requires
size exp(Ω(n)). X(Gn) and X̃(Gn) are colored graphs with color multiplicity
at most 4.

Proof. It is known that there are constructive families G of graphs of degree
3 and with an expansion that is linear in the number of vertices (see e.g. [1]).
For a graph Gn ∈ G with n vertices, the graph X(Gn) has O(n) vertices, and
color multiplicity at most 4. The formula F (X(Gn), X̃(Gn)) contains O(n)
variables and O(n2) clauses. Observe that the number of variables is linear in
n because the size of the color classes is bounded. The width of these clauses
is at most 4. By the above result, the width of any resolution refutation of
the formula is Ω(n). By Theorem 2.3, the size of any resolution refutation of
F (X(Gn), X̃(Gn)) is exp(Ω(n)).

6 Discussion

We have shown that the natural encoding of the isomorphism problem in CNF
formulas requires exponential size resolution refutations for a certain family
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of colored graphs. These graphs have colored classes of size 4 and maximum
degree 3. In contrast, when the size of the color classes is bounded by 3, the
formulas have polynomial size tree-like resolution refutations. The formulas
used for the lower bound are based on the CFI graphs from [12]. In these pairs
of graphs, every vertex of a certain color has the same degree, the same number
of neighbors of another color or the same distance to any color. Therefore, the
difficulty of the resolution system in performing counting (as shown for example
in the resolution lower bounds for the pigeon hole principle), is not the reason
for the large refutations, since counting does not help in this context. As
shown in [12], the non-isomorphic graphs we use, are indistinguishable using
even inductive logic with counting. The lower bound can be explained as an
“encoding” of the Tseitin tautologies (for which resolution lower bounds are
known), into graph isomorphism instances. I believe that this new connection
between Tseitin tautologies and isomorphism might help to solve some open
question in the area of proof complexity. An example of this might be the
proof of exponential lower bounds for Tseitin tautologies in stronger systems,
like the cutting plane proof system. Such a result is only known for the case in
which a parameter called the degree of falsity is bounded [16, 18]. Knowledge
on graph isomorphism problem might help to attack the question from another
perspective.

Although the main interest for the results has a theoretical motivation,
the isomorphism formulas discussed here could be used as benchmarks for
testing sat-solvers. To my knowledge this has only been done for formulas
encoding sub-graph isomorphism [3, 4]. A way to do this, for example, would
be to consider a (regular) graph and color its vertices with color classes of a
bounded size. Considering then a random permutation of the vertices, one
obtains an isomorphic copy of the graph. If the size of the color classes is at
most 3, we know by Theorem 3.1 that there is a variable ordering under which
the running time of a DPLL algorithm testing isomorphism is polynomial. For
color classes of size larger than 3 we only have non trivial resolution upper
bounds (that might guide the sat-solvers) for the case of the CFI graph pairs.
Because of the connection between such isomorphism formulas and the Tseitin
tautologies, the results from [2] relating the width of a resolution refutation for
a Tseitin formula with a structural parameter (branch-width) of the underlying
graph, can also be applied to the isomorphism formulas. This provides a way
to design example instances for isomorphism formulas with bounded resolution
width.

Acknowledgement: The author would like to thank Nicola Galesi for inter-
esting discussions related to this paper and the anonymous reviewers for many
useful suggestions.
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[12] J. Cai, M. Fürer and N. Immerman, An optimal lower bound on the
number of variables for graph identifications. Combinatorica 12(4): 389-410,
1992

16
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