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and Jacobo Torán

Abstract. We show that the graph isomorphism problem is low for PP and for
C=P, i.e., it does not provide a PP or C=P computation with any additional
power when used as an oracle. Furthermore, we show that graph isomorphism
belongs to the class LWPP (see Fenner, Fortnow, Kurtz [12]). A similar result
holds for the (apparently more difficult) problem Group Factorization. The
problem of determining whether a given graph has a nontrivial automorphism,
Graph Automorphism, is shown to be in SPP, and is therefore low for PP,
C=P, and ModkP, k ≥ 2.
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1. Introduction

The problem of finding an efficient (i.e., polynomial-time) algorithm for testing
whether two given graphs are isomorphic has withstood all attempts for a solution
up to date. The worst case running time of all known algorithms is of exponential
order, and just for certain special types of graphs, polynomial-time algorithms have
been devised (for further reference see [1, 22, 25]). Although the possibility that
Graph Isomorphism (GI) is NP-complete has been discussed [14], strong evidence
against this possibility has been provided [29, 4, 8, 16, 18, 33]. In the first place it
was proved by Mathon [29] that the decision and counting versions of the problem
are polynomial-time equivalent (in the sense of a truth-table reduction) which does
not seem to be the case for NP-complete problems. In the second place it has been
shown that the assumption Graph Isomorphism is NP-complete implies that the
polynomial-time hierarchy collapses to AM ⊆ Πp

2.
Still, a complete complexity classification (positive or negative) of Graph Isomor-

phism has not yet been achieved, and it has been conjectured that this problem
might lie strictly between P and NP-complete.

Although GI is the best known example of a problem with this property, it is
not an isolated case. There are many other graph and group theoretic problems
related to Graph Isomorphism that lie between P and NP-complete and whose exact
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complexity is not known either (see [22, 23, 28]). These problems can be divided
into different classes depending on whether they seem easier or harder than GI:
problems which are reducible to GI (like Graph Automorphism), problems Turing
equivalent to GI (so-called isomorphism-complete problems), problems to which
GI is Turing reducible (like Group Factorization) and problems that seem to be
incomparable with GI (like Group Intersection).

The present work makes a contribution towards a better (structural) complexity
classification of Graph Isomporhism and other related problems. Using a group
theoretic approach we study certain “counting properties” of these problems which
show differences among them and which allow finer classifications than the existing
ones. We show that for all the mentioned problems nondeterministic Turing machi-
nes can be constructed which have predictable numbers of accepting computation
paths; i.e., on input x, the machines have either f1(x) accepting paths if x belongs
to the language or f2(x) accepting paths in the other case. Here, f1 and f2 are
polynomial-time computable functions. This fact allows us to relate the Graph
Isomorphism problem to the area of counting classes, a field which has received
considerable interest and investigation lately. Central are the classes #P [41] of
functions that count the number of accepting paths of a nondeterministic Turing
machine, and the language class PP (for “probabilistic polynomial time”; see [15])
or, equivalently, CP (for “counting polynomial time”; see [34, 43]) where mem-
bership in the language is determined by a polynomial-time computable threshold
for the number of accepting computations of a nondeterministic Turing machine.
Other important counting classes are C=P (“exact counting”) [43] and ⊕P (“pa-
rity”) [31]. Very recently, the class Gap-P of functions that compute the difference
between the number of accepting and non-accepting paths of a nondeterministic
polynomial-time Turing machine has been considered [12]. This class is basically a
generalization of #P (“counting P” [41]) with certain advantages. For example, it
allows functions to have negative values and is closed under subtraction.

Some of our results can be best understood in the context of Gap-P functions.
We show that for certain problems like Graph Automorphism (GA) there is a non-
deterministic, polynomial-time Turing machine M with the following properties:

◦ For every input of M , the difference between the number of accepting and
non-accepting computations is either 0 or 1,

◦ G ∈ GA if and only if the difference between the number of accepting and
non-accepting computations of M is 1.

From this fact follows immediately that the problem is in the classes ⊕P and C=P.
Observe also that the accepting behaviour of machine M is similar to one for a
language in UP (unambiguos NP [40]), where a machine accepting the language
has either 0 or 1 accepting paths. The difference is that in the case of UP we
count the number of accepting paths (a #P function) and in our case we count the
difference between the number of accepting and rejecting paths (a Gap-P function).
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A machine with such an accepting mechanism appeared for the first time in [27].
Recently, the class of all the languages for which there is a nondeterministic machine
with the above accepting criteria has been considered. This class is called XP
(“exact P”) in [30] and SPP (“stoic PP”) in [12], and the authors motivate the
definition of the class as a generalization of UP.

In the case of Graph Isomorphism and some other related problems we are able
to construct a nondeterministic, polynomial-time machine M with the following
properties:

◦ For every input pair (G1, G2) of graphs with n nodes, the difference between
the number of accepting and non-accepting computations of M is either 0 or
f(n),

◦ (G1, G2) ∈ GI if and only if the difference between the number of accepting
and non-accepting computations of M is f(n).

Here, f is a polynomial-time computable function. The class of languages for which
there is a machine with such an accepting behaviour was also considered in [12] and
called LWPP (“length dependent wide PP”). In the mentioned paper the authors
ask whether there are nontrivial examples of languages in SPP. GA seems to be
the first such example, whereas GI is the first natural problem in LWPP which is
not known to be in SPP.

The classes SPP and LWPP have the property that they are low for PP; i.e., they
do not provide a PP machine with any additional help when used as oracle in a PP
computation. This fact provides one of the main corollaries in this work: Graph
Isomorphism and all the related problems are low for PP (in symbols: PPGI = PP).
It was already known that the problem is low for the class Σp

2 [33].
In the light of Toda’s result [37] that PPPPH

= PPP, namely that the entire
polynomial hierarchy is low for PPP, it looks as if lowness for PP is not a surprise.
But one should notice that there is a big difference between the classes PP and PPP.
For example, it is not known whether NP is low for PP, i.e., PPNP = PP. (This
is not even known for NP ∩ co-NP.) Another example of this difference is that on
the one hand, PH is included in PPP, but the largest fragment of the polynomial
hierarchy known to be included in PP is PNP[log n] [7]. Intuitively, if a set in NP
is low for PP, then this means that one has very strong control over the possible
number of accepting computations of a corresponding NP machine for this set. We
use the lowness result for GI to provide further evidence for the problem not being
NP-complete.

The article is organized as follows. We give in Section 2 the basics of group
theory and of complexity theory needed in the rest of the paper.

In Section 3, it is shown that Graph Automorphism is in SPP and therefore is low
for any uniformly gap-definable class [12] like ModkP, C=P, and PP. Furthermore,
we point out a connection of Graph Automorphism to Unique Graph Isomorphism
and to the promise problem for 1SAT [11].
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The lowness of the Graph Isomorphism problem for PP and C=P is proved in
Section 4. As a corollary we obtain that Graph Isomorphism is contained in the
class LWPP.

Generalizations of the Graph Automorphism and the Graph Isomorphism pro-
blem to other well-known permutation group problems are handled in Section 5,
and it is shown that they behave exactly like the versions they generalize. Finally,
we mention in Section 6 some further consequences of our results.

2. Notation and Preliminaries

2.1. Group Theory. We assume some familiarity with groups (see [20] or any
other introductory book on group theory). We will denote groups by upper case
Roman letters and elements of the groups by lower case Greek letters. The order
of a group A, i.e. the number of its elements, is represented by |A|. Let A and B
be two groups. The expression B < A denotes that B is a subgroup of A. If ϕ is
an element of A then the set

Bϕ = {πϕ : π ∈ B}

is a subset of A called a right coset of B in A. Two right cosets Bϕ1, Bϕ2 are
either disjoint or equal, thus A can be partitioned into right cosets of B. This is
written as

A = Bϕ1 +Bϕ2 + . . .+Bϕk.

The cardinality of any right coset of B is equal to the order of B. The set
{ϕ1, ϕ2, . . . , ϕk} is called a complete right transversal for B in A.

We consider only permutation groups. The group of permutations on {1, . . . , n}
is denoted by Sn. We represent the identity permutation by id. Let A < Sn and i
be a point in {1, . . . , n}, then the orbit of i in A is the set

{j : ∃ϕ ∈ A, ϕ(i) = j}.

If X is a subset of {1, . . . , n} and A < Sn, then the pointwise stabilizer of X in

A (denoted by A[X]) is the set of permutations in A which map points in X to
themselves, i.e.,

A[X] = {ϕ ∈ A : ∀x ∈ X, ϕ(x) = x}.

Clearly, A[X] is a subgroup of A. In case that X = {x} is a singleton, A[X] is
called the stabilizer of x in A and is denoted by A[x]. Pointwise stabilizers play
an important role in group theoretic algorithms. One can construct a “tower” of
stabilizers in the following way: let Xi = {1, . . . , i} and denote A by A(0) and A[Xi]

by A(i), then
{id} = A(n) < A(n−1) < . . . < A(1) < A(0) = A.
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We will present nondeterministic algorithms for certain group problems such that
the number of accepting computations must be one of two integers which are known
beforehand. The following lemma is the key for such a behaviour and because of
its importance, we include a proof of it.

Lemma 2.1. [20, Theorem 5.2.2] Let A = A[i]π1 + A[i]π2 + . . .+ A[i]πd. Then d is
the size of the orbit of i in A, and for all ψ ∈ A[i]π, π(i) = ψ(i).

Proof. If ψ ∈ A[i]π, then there is a permutation ϕ in A[i] such that ψ = ϕπ.
But then ψ(i) = π(ϕ(i)) = π(i). This proves the second assertion of the lemma
and shows that the orbit of i in A is {π1(i), . . . , πd(i)}. It remains to show that the
values π1(i), . . . , πd(i) are all different. Assuming πs(i) = πt(i), we can write πs as
πsπ

−1
t πt. Since π−1

t (πs(i)) = i, πsπ
−1
t is a permutation in A[i] and it follows that πs

is in the same right coset as πt and thus s = t. 2

In other words, if {j1, . . . , jd} is the orbit of i in the permutation group A, and
if we denote the set of all permutations in A which map i to j by A[i7→j], then we
can partition A into d sets of equal cardinality:

A = A[i7→j1] + · · ·+ A[i7→jd].

Thus, |A| = d ∗ |A[i]|, and for every j ∈ {1, . . . , n}, the number of permutations in
A which map i to j is either 0 or |A[i]|. Since A(i) is the stabilizer of i in A(i−1), we
can state the following two corollaries.

Corollary 2.2. Let di be the size of the orbit of i in A(i−1), 1 ≤ i ≤ n. Then the
order of A is equal to

∏n
i=1 di.

Corollary 2.3. Let A < Sn and consider the pointwise stabilizers A(i), 1 ≤ i ≤ n.
Then for every j > i, the number of permutations ϕ ∈ A(i−1) such that ϕ(i) = j is
either 0 or |A(i)|.

The union of complete right transversals Ti for the groups A(i) in A(i−1), 1 ≤ i ≤ n,
forms a generating set for A. From this set it can be efficiently decided if a given
permutation belongs to A, as stated in the next theorem.

Theorem 2.4. [35, 13] Let Ti be a complete right transversal for A(i) in A(i−1), 1 ≤
i ≤ n, and let K0 =

⋃n
i=1 Ti, then

1. every element π ∈ A can be expressed uniquely as a product π = ϕ1ϕ2 . . . ϕn

with ϕi ∈ Ti,

2. from K0 membership in A can be tested in O(n2) steps,

3. the order of A can be determined in O(n2) steps.
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Also, the set K0 can be obtained in polynomial time from any given generating
set for A, using the following result.

Theorem 2.5. (see [35, 13, 24, 3, 2]) Let A < Sn given by a generating setK. A set
K0 satisfying the conditions of the above theorem can be found inO(n3·|K|·(logn)c)
steps for a constant c.

The results about groups that we have mentioned will be the main tool to deal
with certain graph problems. We will consider only simple undirected graphs G =
(V,E) without self-loops. We denote vertices in V by natural numbers, i.e., if G has
n nodes then V = {1, . . . , n}. With this convention mappings from the set of nodes
of G onto the set of nodes of another graph G′ with the same number of vertices
can be interpreted as a permutation in Sn. Let G = (V,E) be a graph (|V | = n).
An automorphism of G is a permutation ϕ ∈ Sn that preserves adjacency in G, i.e.,
for every pair of nodes i, j, {i, j} ∈ E if and only if {ϕ(i), ϕ(j)} ∈ E. The set of
automorphisms of G, Aut(G), is a subgroup of Sn.

Two graphs G1 = (V1, E1), G2 = (V2, E2) are isomorphic if there is a bijection ϕ
between V1 and V2 such that for every pair of nodes i, j ∈ V1, {i, j} ∈ E1 if and only
if {ϕ(i), ϕ(j)} ∈ E2. Let Iso(G1, G2) denote the set of all isomorphisms between G1

and G2. The following straightforward lemma relates the number of isomorphisms
and the number of automorphisms of two given graphs.

Lemma 2.6. Let G1 and G2 be two graphs. If there is an isomorphism between
G1 and G2, then, Iso(G1, G2) is a right coset of Aut(G1), and thus |Iso(G1, G2)| =
|Aut(G1)|.

The Graph Isomorphism problem is

Graph Isomorphism (GI): Given two graphs G1 and G2, decide whether they
are isomorphic.

The problem is clearly in the class NP, and it is not known whether it is in
P. It is also unknown whether the problem is NP-complete, but this seems to be
unlikely since it would imply that the polynomial hierarchy collapses to its second
level [8, 33]. In fact, evidence that GI is not NP-complete was given already by
Mathon [29] who showed that the decision problem for GI and its counting version
(i.e., the problem to compute the number of isomorphisms of two given graphs)
are polynomial-time Turing equivalent. This is a remarkable situation since for
the known NP-complete problems the corresponding counting version seems to be
much harder than the decision version.
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2.2. Complexity Theory. All languages considered here are over the alphabet
Σ = {0, 1}. For a string x ∈ Σ∗, |x| denotes the length of x. We assume the exist-
ence of a pairing function 〈·, ·〉 : Σ∗ × Σ∗ 7→ Σ∗ which is computable in polynomial
time and has inverses also computable in polynomial time. 〈y1, y2, . . . , yn〉 stands
for 〈n, 〈y1, 〈y2, . . . , yn〉〉〉. For a set A, |A| is the cardinality of A.

We assume that the reader is familiar with (nondeterministic, polynomial-time
bounded, oracle) Turing machines and complexity classes (see [5, 32]). FP is the
set of functions computable by a deterministic polynomial time bounded Turing
machine.

For a nondeterministic machine M and a string x ∈ Σ∗, let accM(x) be the
number of accepting computation paths of M on input x. Analogously, for a
nondeterministic oracle machine M , an oracle A, and a string x ∈ Σ∗, accAM(x) is
the number of accepting paths of MA on input x.

Next, we give definitions for the complexity classes PP, C=P, ⊕P which are
defined so as to consider the number of computation paths of a nondeterministic
machine. These classes were first introduced in [15, 43, 31], respectively. The
counting classes ModkP, k ≥ 2, were independently defined in [6, 21] and [9].

A language L is in the class PP if there is a nondeterministic polynomial-time
machine M and a function f ∈ FP such that for every x ∈ Σ∗,

x ∈ L⇐⇒ accM(x) ≥ f(x).

PP is called CP in the notation of Wagner [43]. A language L is in the class C=P
if there is a nondeterministic polynomial-time machine M and a function f ∈ FP
such that for every x ∈ Σ∗,

x ∈ L⇐⇒ accM(x) = f(x).

The class of all languages whose complement is in C=P is denoted by C6=P. Note
that C 6=P is a generalization of NP. A language L is in the class ModkP, k ≥ 2, if
there is a nondeterministic polynomial-time machine M such that for every x ∈ Σ∗,

x ∈ L ⇐⇒ accM(x) 6≡ 0 (mod k).

The class Mod2P is also called ⊕P (“Parity P”) [31].
Closely related to the language class PP is the function class #P, defined by

Valiant [41]. A function f is in #P if there is a nondeterministic polynomial-time
machine M such that for every x in Σ∗, f(x) = accM(x). Fenner et al. [12] defined
the gap produced by M on input x as

gapM(x) = accM(x) − accM(x),

where M is the same machine as M but with accepting and non-accepting com-
putations interchanged. A function f is in Gap-P if there is a nondeterministic
polynomial-time machine M such that for every x in Σ∗, f(x) = gapM(x). The
arithmetic closure properties of Gap-P are summarized in the following lemma
which is proved in [12].
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Lemma 2.7.

1. #P ⊆ Gap-P.

2. Gap-P is closed under subtraction.

3. If f ∈ Gap-P and q is a polynomial, then the function

g(x) =
∑

|y|≤q(|x|)

f(〈x, y〉)

is in Gap-P.

4. If f ∈ Gap-P and q is a polynomial, then the function

g(x) =
∏

0≤y≤q(|x|)

f(〈x, y〉)

is in Gap-P.

For a language L and a complexity class K (which has a sensible relativized
version K()), we will say that L is low for K (L is K–low) if KL = K. For a
language class C, C is low for K if for every language L in C, KL = K. The
following class SPP which is denoted by XP in [30] was also defined in [12] where
it is shown that SPP consists exactly of those languages which are low for Gap-P.

Definition 2.8. SPP is the class of all languages L such that there exists a non-
deterministic polynomial-time machine M such that, for all x,

x ∈ L =⇒ gapM(x) = 1,

x 6∈ L =⇒ gapM(x) = 0.

Theorem 2.9. [12, Theorem 5.5]

SPP = {L | Gap-PL = Gap-P}.

A consequence of the above theorem is the lowness of SPP for any uniformly
gap-definable class like PP, C=P, ModkP, and SPP (see [12]). In particular, it
follows that SPP is closed under Turing reductions. Another interesting subclass
of PP is WPP.

Definition 2.10. [12] WPP (“wide” PP) is the class of all languages L such that
there exists a nondeterministic polynomial-time machine M and a function f > 0
in FP such that for all x,

x ∈ L =⇒ gapM(x) = f(x),

x 6∈ L =⇒ gapM(x) = 0.

It is clear that SPP ⊆ WPP ⊆ C=P ∩ C 6=P. Fenner et al. have also defined a
restricted version LWPP of WPP, where the FP function f depends only on the
length of x, and they showed that LWPP is low for PP and C=P.
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3. Graph Automorphism

We consider the following problem.

Graph Automorphism (GA): Given a graph G, decide whether the automor-
phism group of G contains a non-trivial automorphism (i.e., an automorphism
different from the identity).

Clearly the problem is in NP, and it is not known whether it belongs to P. Graph
Automorphism is polynomial-time truth-table reducible to Graph Isomorphism [29]
but it seems to be an easier problem (a reduction in the opposite direction is not
known). The special “counting properties” of this problem have been used by
Boppana, Hastad and Zachos [8] to show that Graph Automorphism is in the class
co-AM. In the next theorem we show another property of this problem.

Theorem 3.1. There is a nondeterministic polynomial-time Turing machine M
such that

1. for every input, the difference between the number of accepting and non-
accepting computations of M is either 0 or 1,

2. G ∈ GA if and only if the difference between the number of accepting and
non-accepting computations of M on input G is 0.

Proof. Consider the function

f(G) =
∏

1≤i<j≤n

(|Aut(G)[i]| − |Aut(G)[i7→j]|).

First observe that this function is in the class Gap-P. The functions f1(G, i) =
|Aut(G)[i]| and f2(G, i, j) = |Aut(G)[i7→j]| are clearly in #P. Therefore it follows by
Lemma 2.7 that f ∈ Gap-P.

We show now that f(G) is either 0 or 1 depending on whether G ∈ GA. If
G ∈ GA then there is a non-trivial automorphism π ∈ Aut(G) such that π(i) = j
for some pair of vertices i, j, i < j. This implies that π ∈ Aut(G)[i7→j] and by
Lemma 2.1, |Aut(G)[i]| = |Aut(G)[i7→j]|. Hence, at least one of the factors of f(G)
is 0 and this implies f(G) = 0.

On the other hand, ifG 6∈ GA, then for every pair i, j, i < j, Aut(G)[i7→j] is empty,
i.e., |Aut(G)[i7→j]| = 0. Moreover, for every i the only automorphism in Aut(G)[i] is
the identity. All the factors of f(G) have value 1 and therefore f(G) = 1. 2

This result shows that GA is in the class SPP. As a corollary we obtain the
lowness properties of the problem with respect to certain counting classes, since
the lowness of the class SPP for these classes has been shown in [12].

Corollary 3.2. Graph Automorphism is low for SPP, ModkP, C=P, and PP.
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It is also known that GA is low for Σp
2, the second level of the polynomial-time

hierarchy. This follows from the results GA ∈ co-AM [8], and NP ∩ co-AM being
low for Σp

2 [33].
Remarkably, the following problem, which is not known to be in NP ∪ co-NP, is

polynomial-time truth-table equivalent to Graph Automorphism.

Unique Graph Isomorphism (UGI): Given two graphs G1 and G2, decide
whether there is a unique isomorphism between G1 and G2.

For the reduction from UGI to GA one has to make three independent queries
asking whether G1, G2, and G1∪G2 belong to GA. It can be checked that 〈G1, G2〉 ∈
UGI if and only if the sequence of answers is “No,No,Yes”. For the reduction in
the other direction one query is enough since G ∈ GA if and only if 〈G,G〉 6∈ UGI.

Since the class SPP is closed under Turing reducibility, the reductions imply that
Unique Graph Isomorphism is in SPP. As we have mentioned, GA seems to be an
easier problem than GI, and it is not known whether GI is polynomial-time Turing
reducible to GA. Therefore, a reduction from GI to UGI is not known either. This
is another peculiarity of Graph Isomorphism that makes it different from problems
that are known to be NP-complete. For example, it is well known that SAT is truth-
table equivalent to USAT, the set of Boolean formulas with exactly one satisfying
assignment.

We present now a connection between Graph Automorphism and the area of
promise problems (see [11]). A promise problem is a formulation of a partial decision
problem. It has the structure

input x
promise Q(x)
property R(x)

where Q and R are two predicates. An algorithm solving the promise problem has
to decide R(x) supposing that x satisfies predicate Q. If Q(x) does not hold then
the algorithm can answer anything.

Definition 3.3. A promise problem is a pair of sets (Q,R). A set L is called a
solution to the promise problem (Q,R) if

∀x(x ∈ Q⇒ (x ∈ L⇔ x ∈ R)).

Let 1SAT denote the set of formulas with at most one satisfying assignment. We
will consider the promise problem (1SAT,SAT). Observe that a solution for this
problem has to agree with SAT in the formulas with a unique satisfying assignment
as well as in the unsatisfiable formulas. We show that Graph Automorphism is
reducible to any solution of (1SAT,SAT).
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Theorem 3.4. Graph Automorphism is polynomial-time disjunctively reducible
to any solution L of the promise problem (1SAT,SAT).

Proof. Consider the set B defined as

〈G, i, j〉 ∈ B ⇔

i 6= j and there is an automorphism in Aut(G)(i−1) mapping i to j.

Clearly, B is in NP and it can be many-one reduced to SAT by a parsimonious
transformation [10, 34]; i.e., there is a polynomial-time function f which transforms
every input 〈G, i, j〉 for B into a Boolean formula such that there are as many
automorphisms mapping i to j in Aut(G)(i−1) as satisfying assignments for the
formula f(〈G, i, j〉).

One can reduce Graph Automorphism to any solution L of the promise problem
(1SAT,SAT) using the following procedure.

input graph G with n nodes;
for i := n downto 1 do

for j := i+ 1 to n do
if f(〈G, i, j〉) ∈ L then accept end;

end;
end;
reject;

It is clear that this reduction is disjunctive. We show that it works properly. If G is
in GA, then there is at least one non-trivial automorphism in Aut(G). Let i, 1 ≤ i ≤
n, be the largest integer such that there is an automorphism in Aut(G)(i−1) mapping
i to a different node j. By Corollary 2.3, the number of such automorphisms is
equal to |Aut(G)(i)| and this number is 1 since by the hypothesis, the identity is
the only automorphism in Aut(G)(i). Therefore f(〈G, i, j〉) has exactly 1 satisfying
assignment and thus f(〈G, i, j〉) is in L, and G is accepted.

On the other hand, if G is not in GA, then for every i, j, 〈G, i, j〉 6∈ B, i.e.,
f(〈G, i, j〉) is an unsatisfiable formula. This means that L answers all its queries
negatively, and G is rejected. 2

Valiant and Vazirani [42] have proved that NP is included in the probabilistic
class R if the promise problem (1SAT,SAT) has a solution in P. Using the above
result we can draw another conclusion from this hypothesis.

Corollary 3.5. If the promise problem (1SAT,SAT) has a solution in P, then
Graph Automorphism belongs to P.

Note that the proof of Theorem 3.4 yields the slightly stronger result that GA
can be recognized by a polynomial-time oracle machine M under an NP oracle A
such that
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◦ if a query is answered positively, then M immediately accepts,

◦ MA asks only queries for which the number of witnesses is either 0 or 1.

As we will see in the next section, the second property is already a sufficient con-
dition for GA to be in SPP (see Theorem 4.2 and Corollary 4.5).

4. Graph Isomorphism

We show in this section that the Graph Isomorphism problem is low for the counting
classes PP and C=P. Our first step in this direction is done by the next theorem
which shows that GI can be recognized by an oracle Turing machine M asking
an NP oracle only about strings y for which the potential number of witnesses is
known beforehand. This means that if y is a member of the oracle then the number
of witnesses is equal to some specific value. Moreover, this value depends not on
the actual query but can be controlled by an additional parameter m in the input
to M . For this special purpose, we define the problem

GI∗ = {〈G,H,m〉| G and H are isomorphic graphs and m ≥ n},

where n is the number of vertices of G. Clearly, GI∗ is many-one equivalent to GI.
The oracle machine M of Theorem 4.1 recognizes GI∗, and asks its NP oracle only
about strings y for which the number of witnesses is either 0 or m!. This machine
will be used to construct, for a given nondeterministic oracle machine M ′ which
works under oracle GI, another machine M ′′ working under some NP oracle A such
that

◦ gapGI
M ′ = gapA

M ′′,

◦ for all positively answered queries y which are asked by M ′′ on input x there
are exactly f(0|x|) witnesses for membership in A (f ∈ FP).

In a second step, we take the oracle queries out of the computation of M ′′, resulting
in a nondeterministic machine M ′′′ such that gapM ′′′(x) = g(0|x|) ∗ gapA

M ′′(x) for a
polynomial-time computable function g > 0. From this, it can be easily seen that
GI is low for PP and C=P.

Theorem 4.1. There is a deterministic polynomial-time oracle Turing machine
M and an oracle set A ∈ NP recognized by a nondeterministic polynomial-time
machine N such that

1. L(M,A) = GI∗,

2. MA on input 〈G,H,m〉 asks only queries y for which accN(y) ∈ {0, m!}.
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Proof. Let A be the oracle set B ⊕ C where B defined as

〈G, i, j, k〉 ∈ B ⇔

there exists an automorphism in Aut(G)(i−1) which maps i to j

and
C = {〈G,H, k〉 : G and H are isomorphic}.

Note that the value of k does not affect membership of 〈G, i, j, k〉 in B and of
〈G,H, k〉 in C. M uses k only to pass to the oracle the information about how many
accepting paths should be produced for every automorphism (isomorphism, respec-
tively). More specifically, consider the following nondeterministic polynomial-time
machine N for A:

input y;
if y = 0〈G, i, j, k〉 then

guess a permutation π on the vertex set of G;
if π ∈ Aut(G)(i−1) and π(i) = j then

guess z ∈ {1, . . . , k};
accept;

else reject end;
else if y = 1〈G,H, k〉 then

guess a permutation ϕ on the vertex set of G;
if ϕ ∈ Iso(G,H) then

guess z ∈ {1, . . . , k};
accept;

else reject end;
else reject end;

If y = 0〈G, i, j, k〉 then the number of accepting paths of the algorithm is equal to
k times the number of automorphisms of Aut(G)(i−1) mapping i to j. Similarly, if
y = 1〈G,H, k〉 then the number of accepting paths is equal to k times the number
of isomorphisms between G and H.

Using B as oracle, the following deterministic polynomial-time oracle Turing
machine M on input 〈G,H,m〉 first computes the size of Aut(G) and afterwards
asks oracle C whether G and H are isomorphic. The preceding computation of
|Aut(G)| is necessary because in order to fulfill condition ii) of the theorem, M has
to know the potential number of isomorphisms between G and H.

input 〈G,H,m〉;
n := the number of vertices in G;
if m < n then reject end;
d := 1; /∗ d counts the number of automorphisms of G ∗/
for i := n downto 1 do
/∗ determine the size di of the orbit of i in Aut(G)(i−1) ∗/
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di := 1;
for j := i+ 1 to n do
/∗ test whether j lies in the orbit of i in Aut(G)(i−1) ∗/

if 〈G, i, j, ⌊m!
d
⌋〉 ∈ B then di := di + 1 end;

end;
d := d ∗ di; /∗ now d is the order of Aut(G)(i−1) ∗/

end;
if 〈G,H, ⌊m!

d
⌋〉 ∈ C then accept else reject end;

For every i = n, . . . , 1, M computes in the inner for-loop the size di of the orbit
of i in Aut(G)i−1. It follows from Corollary 2.3 that whenever MA makes a query
y = 〈G, i, j, ⌊m!

d
⌋〉 to oracle B, then there are either 0 or exactly d = |Aut(G)(i)|

automorphisms in Aut(G)(i−1) mapping i to j. Since for each such automorphism,
N branches into ⌊m!

d
⌋ accepting computations, and since d as the order of a subgroup

of Sn divides n!,

accN(0y) =

{

0, y 6∈ B,
m!, y ∈ B.

As it is stated in Corollary 2.2, the order of Aut(G) is equal to the product
∏n

i=1 di,
which is computed in d. Thus, when MA makes the last query y = 〈G,H, ⌊m!

d
⌋〉

to oracle C, then, according to Lemma 2.6, there are exactly d = |Aut(G)| many
isomorphisms between the two graphs G and H if they are isomorphic and 0 other-
wise. Since for each isomorphism, N branches into ⌊m!

d
⌋ accepting computations,

condition ii) of the theorem is also fulfilled for this last query. 2

The computation of |Aut(G)| in the above proof is based on Mathon’s reduction
of the Graph Isomorphism counting problem to GI [29]. But whereas his reduction
is completely nonadaptive and is therefore a truth-table reduction, in our compu-
tation, the answers to previous queries have an influence on how later queries look
like, and therefore it is highly adaptive. The adaptiveness seems to be necessary
to obtain property ii) above which will be exploited in the next theorem.

In Theorem 4.2, it is shown that a C6=P oracle A can be “removed” from a
Gap-PA computation that on input x only queries A about strings y whose gap
is in the set {0, f(x)}, where f is a given function in Gap-P. In fact, the cost of
removing oracle A is only a multiplicative factor f(x)p(|x|) for some polynomial p.

Theorem 4.2. Let M be a nondeterministic polynomial-time oracle machine and
let A = {y : gapN(y) 6= 0} be a set in C 6=P. If there is a function f ∈ Gap-P such
that MA on input x only asks queries y for which gapN(y) ∈ {0, f(x)}, then there
is a polynomial q such that the function x 7→ gapA

M(x) ∗ f(x)q(|x|) is in Gap-P.

Proof. Let q be a polynomial delimiting the number of queries asked by M on
each computation path. We can assume that on input x M makes exactly q(|x|)
many queries. The following polynomial time machine M ′ nondeterministically
guesses a path p of the oracle Turing machine M . The computation path p is
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specified by the sequence of nondeterministic choices and the sequence of oracle
query answers.

input x;
guess a path p of M on input x;
let y1, . . . , yq(|x|) be the queries on p and let a1, . . . , aq(|x|) be the corre-
sponding answers;
generate a gap of size

Gp =

{

∏q(|x|)
i=1 gi, if p is accepting,

−
∏q(|x|)

i=1 gi, if p is rejecting,

where

gi =

{

gapN(yi), if ai = “Yes”,
f(x) − gapN(yi), if ai = “No”.

We now argue that gapM ′(x) = g(x) ∗ f(x)q(|x|). First, consider the case that
M ′ guesses a computation path p on which all queries y1, . . . , yq(|x|) are answered
correctly, i.e., gapN(yi) 6= 0 ⇔ ai = “Yes” for i = 1, . . . , q(|x|). Then, since
gapN(y) ∈ {0, f(x)}, it follows that

gapN(yi) =

{

f(x), if ai = “Yes”,
0, if ai = “No”,

and consequently gi = f(x) for every i. Therefore the generated gap is of size
Gp = f(x)q(|x|) if p is accepting, and of size Gp = −f(x)q(|x|) if p is rejecting. If M ′

guesses a path p on which not all queries are answered according to oracle A, then
let yj be the first query on p for which the answer aj is wrong. Since yj is asked by
M on oracle A, we know that gapN(yj) lies in the set {0, f(x)}. So

gapN(yj) =

{

0, if aj = “Yes”,
f(x), if aj = “No”,

which implies gj = Gp = 0. 2

The proof of Theorem 4.2 is similar in flavor to the proof of Theorem 5.5 in
[12] that SPP is low for Gap-P. The crucial observation here is that queries which
are made subsequent to a wrong oracle answer don’t need to possess the restricted
counting properties imposed by PP-low classes like SPP and LWPP.

Now we are ready to prove the main result of this section, namely that for every
function g in Gap-PGI there is a nondeterministic polynomial-time machine whose
gap h is a multiple of g, i.e., h(x) = g(x)∗f(0|x|) for a function f in FP. This can be
easily derived from the last two theorems and is the key for the lowness properties
of Graph Isomorphism with respect to the counting classes PP and C=P.

Theorem 4.3. For every g ∈ Gap-PGI there is a function f > 0 in FP such that
the function x 7→ g(x) ∗ f(0|x|) is in Gap-P.
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Proof. Let g = gapGI
M for an NP oracle machine M and let p be a polynomial

delimiting the running time of M . Clearly, there is an NP oracle machine M ′ which
on input x also produces a gap of size g(x), but uses GI∗ as oracle and makes only
queries of the form 〈G,H, p(|x|)〉. Now we can build another oracle machine M ′′

which simulates M ′ and replaces every query 〈G,H, p(|x|)〉 to GI∗ by a computation
of the P oracle Turing machine described in Theorem 4.1; i.e., g(x) = gapA

M ′′, where
A ∈ NP is recognized by a nondeterministic polynomial-time machine N such that
for all queries y of M ′′ on input x the number of accepting paths of N(y) is either
0 or p(|x|)!. Finally, we can apply Theorem 4.2 and we obtain that the function
g(x) ∗ p(|x|)!q(|x|) is in Gap-P for some polynomial q. 2

Corollary 4.4. GI is low for PP and C=P.

Proof. Let L be in PPGI. Then there is a function g in Gap-PGI such that for
all x,

x ∈ L⇔ g(x) > 0.

According to Theorem 4.3 there is a function f > 0 in FP such that the function
x 7→ g(x) ∗ f(0|x|) is in Gap-P. But this implies L ∈ PP since g(x) > 0 if and only
if g(x) ∗ f(0|x|) > 0. The lowness for C=P follows analogously. 2

Another corollary of Theorem 4.3 is that Graph Isomorphism is in the class
LWPP.

Corollary 4.5. There is a nondeterministic polynomial-time machine N and a
function f > 0 in FP such that

gapN(〈G,H〉) =

{

0, if G 6≃ H,
f(0|〈G,H〉|), if G ≃ H.

Proof. Clearly, the characteristic function

c(〈G,H〉) =

{

0, if G 6≃ H,
1, if G ≃ H

of Graph Isomorphism is in Gap-PGI. Thus, using Theorem 4.3, there is a function
f > 0 in FP such that the function x 7→ c(x) ∗ f(0|x|) is in Gap-P. This proves the
corollary. 2

5. General Permutation Group Problems

Hoffmann [22] has shown that the automorphism group of any graph is the intersec-
tion of two permutation groups for which generating sets can easily be computed.
From this follows that Graph Automorphism is many-one reducible to the following
problem.
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Group Intersection: Given generating sets for two permutation groups A,B,
decide whether A ∩B contains a non-trivial permutation.

In some sense, Group Intersection can be considered to be a generalization of the
Graph Automorphism problem. Hoffmann [22] also shows that Graph Isomorphism
is in fact a special case of the following more general problem:

Double Coset Membership: Given generating sets for two permutation groups
A,B < Sn and two permutations π, ϕ ∈ Sn, decide whether ϕ ∈ AπB.

Hoffmann [22], [23] and Luks [28] have found many other group problems which
are Turing equivalent to the Double Coset Membership problem. The complexity of
all these problems seems to be strictly greater than the one of Graph Isomorphism
but still below the complexity of the NP-complete problems because the corre-
sponding counting problems are also in the same Turing degree. The following are
examples of problems Turing equivalent to Double Coset Membership:

Coset Intersection: Given generating sets for the groups A,B < Sn and a per-
mutation π ∈ Sn, decide whether Aπ ∩B is empty.

Group Factorization: Given generating sets for the groups A,B < Sn and a
permutation π ∈ Sn, decide whether π ∈ AB.

Number of Factorizations: Given generating sets for the groups A,B < Sn and
a permutation π ∈ Sn, determine the number of different factorizations π = αβ
with α ∈ A and β ∈ B.

We will show that the results of the previous sections are also true for these new
problems and that with respect to the counting properties considered in this paper
these problems behave exactly like the versions they generalize. More precisely, we
show that there is a gap function with value 0 or 1 depending on whether its input
is an instance of Group Intersection, and that there is a gap function with value 0
if its input belongs to Double Coset Membership or value f(n) otherwise (f ∈ FP).
This last result is also true for all the decision problems Turing equivalent to Double
Coset Membership.

We start with the Group Intersection problem. To show that this problem has a
gap function with 0-1 behaviour we need the following lemmas.

Lemma 5.1. [22] Let A and B be two subgroups of Sn and let π ∈ Sn be a permu-
tation. If π ∈ AB, then the number of factorizations π = α1β1 = α2β2 = . . . = αkβk

where αi ∈ A and βi ∈ B, is equal to |A ∩B|.

The following lemma is also proved in [23, Theorem 3.2] in a slightly different
form to the presentation below.
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Lemma 5.2. Let A and B be two subgroups of Sn and let i, j be two integers, 1 ≤
i < j ≤ n. For every pair of permutations α ∈ A, β ∈ B such that α(i) = β(i) = j,
the product ψ = αβ−1 is in A[i]B[i] if and only if there is a permutation ϕ ∈ A ∩B
such that ϕ(i) = j.

We can now prove that Group Intersection behaves exactly like Graph Automor-
phism.

Theorem 5.3. There is a non-deterministic polynomial-time Turing machine M
that, receiving as input generating sets gen(A) and gen(B) for the groups A,B <
Sn, produces the following gap:

gapM(gen(A), gen(B)) =

{

0, if A ∩B 6= {id},
1, otherwise.

Proof. Given generating sets for A and B, for every pair i, j (1 ≤ i < j ≤ n),
it can be decided in polynomial time whether there are permutations αi,j ∈ A and
βi,j ∈ B mapping i to j (i.e., αi,j(i) = βi,j(i) = j). If such permutations exist then
they can be easily obtained. For every pair i, j (1 ≤ i < j ≤ n) let ψi,j = αi,jβ

−1
i,j

where αi,j ∈ A[i7→j] and βi,j ∈ B[i7→j] are permutations as above. If for a pair i, j
such permutations do not exist, then ψi,j is left undefined. Consider the following
function

f(gen(A), gen(B)) =
∏

1≤i<j≤n,

A[i7→j] 6=∅,

B[i7→j] 6=∅

(|A[i] ∩B[i]| − |{α ∈ A[i] : ∃β ∈ B[i], ψi,j = αβ}|).

Clearly, the functions

f1(gen(A), gen(B), i) = |A[i] ∩B[i]|

and

f2(gen(A), gen(B), i, j) = |{α ∈ A[i] : ∃β ∈ B[i], ψi,j = αβ}|

are in the class #P. Thus, by the above considerations, and by Lemma 2.7, it
follows that f is in Gap-P.

We show now that this function always has value 0 or 1. If there is a non-trivial
permutation ϕ ∈ A ∩ B then for some pair i, j, i < j, ϕ(i) = j. By Lemma 5.2,
this implies that ψi,j ∈ A[i]B[i]. By Lemma 5.1, it follows that |A[i] ∩ B[i]| = |{α ∈
A[i] : ∃β ∈ B[i], ψi,j = αβ}|. In this case, there is at least one 0-factor in f and
f(gen(A), gen(B)) = 0.

If A ∩ B = {id}, then for every i, A[i] ∩ B[i] = {id}. Moreover, by Lemma 5.2,
for every pair i, j, we have ψi,j 6∈ A[i]B[i] and therefore |{α ∈ A[i] : ∃β ∈ B[i], ψi,j =
αβ}| = 0. It follows that f(gen(A), gen(B)) = 1. 2
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We show next that the generalizations of the Graph Isomorphism problem are
also in the class LWPP and therefore low for PP and C=P. For this we prove first
that the size of the intersection of two permutation groups (given by generating
sets) can be computed by a deterministic machine querying an oracle for which the
potential number of accepting paths can be computed beforehand.

Theorem 5.4. Let A,B < Sn be two groups given by generating sets gen(A),
gen(B). The function f(〈gen(A), gen(B)〉) = |A ∩B| can be computed in polyno-
mial time by a deterministic Turing machine M querying an oracle set L ∈ NP,
where L is recognized by a nondeterministic machine N such that ML asks on
input 〈gen(A), gen(B)〉 only queries y for which accN(y) ∈ {0, n!}.

Proof. The proof proceeds along the lines of the proof of Theorem 4.1. Consider
the family of pointwise stabilizers A(i), B(i), 1 ≤ i ≤ n, and denote C = A ∩B and
C(i) = A(i) ∩B(i). Let ∆i be the orbit of i in C(i−1). We want to obtain the size of
C, and by Corollary 2.2 |C| =

∏n
i=1 |∆i|. Inductively we can compute ∆i using the

following subroutine to decide whether there is a permutation in C(i) mapping i to
j.

input 〈i, j〉;
guess a permutation ϕ in Sn;
if ϕ(i) = j, ϕ ∈ A(i) and ϕ ∈ B(i) then accept
end

By Theorems 2.4 and 2.5, the condition of the subroutine can be checked in
polynomial time. Also, the number of permutations ϕ satisfying the condition
is either 0 or |C(i−1)|. Based on this fact, one can construct an algorithm which
iteratively computes the size of C(i). The algorithm basically works like machine
M in Theorem 4.1, querying the above subroutine (with an additional parameter
to ensure that the number of accepting paths of the machine computing the oracle
set is either 0 or n!). 2

As a corollary we obtain that the Group Factorization problem can also be com-
puted by a deterministic machine making oracle queries for which the number of
accepting paths can be computed beforehand.

Corollary 5.5. There is a deterministic polynomial-time oracle Turing machine
M ′ and an oracle set L′ ∈ NP recognized by a nondeterministic polynomial-time
machine N ′ such that

1. L(M ′, L′) = Group Factorization,

2. On input 〈gen(A), gen(B), π〉 (where gen(A), gen(B) are generating sets for
groups A,B < Sn and π ∈ Sn), M

′A asks only queries y for which acc′N(y) ∈
{0, n!}.
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Proof. By Lemma 5.1, the number of factorizations of π in AB is either 0 or
|A∩B|. By the above theorem, the size of A∩B can be computed by a deterministic
polynomial time machine M with an oracle L in NP such that for every query
y made by M the number of accepting paths produced by the nondeterministic
machine computing L is either 0 or n!. Machine M ′ computes Group Factorization
in the following way: on input 〈gen(A), gen(B), π〉, it first simulates M with oracle
L to compute k = |A ∩ B|. Then it makes one more query to a set L′′ to decide
if there are 0 or k factorizations. This set can be computed by a machine that on
every path guesses a possible factorization and then, if it is correct, the machine
branches each of these paths into n!/k new ones. The number of accepting paths
for this last query is therefore again either 0 or n!. 2

Using Theorem 4.2 and Corollary 5.5 we obtain that Group Factorization is in
LWPP.

Corollary 5.6. There is a nondeterministic polynomial-time machine N and a
function f ∈ FP such that

gapN(〈gen(A), gen(B), π〉) =

{

0, if π 6∈ AB,
f(0|〈gen(A),gen(B),π〉|), if π ∈ AB.

Group Factorization is therefore low for PP and for C=P. Of course this also
applies to all the problems Turing reducible to Group Factorization, like the Coset
Intersection problem. A summary of our results concerning membership in the PP-
low classes SPP and LWPP can be seen in Figure 5.1. The arrows indicate known
polynomial-time Turing reductions among the problems.

6. Some Consequences of the results

The fact that GI is in the class co-AM and therefore low for Σp
2 [4, 8, 16, 18, 33]

provided strong evidence that the problem cannot be NP-complete, since this would
imply that the polynomial-time hierarchy collapses to Σp

2. In fact, the collapse can
be pushed down a little further to the class AM [8]. From the results of the previous
sections we can obtain more evidence that GI is not NP-complete: we show that
if this were the case then the polynomial-time hierarchy would be low for the
classes PP and C=P. Since it is not known whether lowness for one of the classes
implies lowness for the other one, both results are independent. The last one is
especially unlikely since C=P seems to be a very weak class (for example, in [19, 36]
relativizations are shown under which Σp

2 or BPP are not even Turing reducible to
C=P).

Theorem 6.1. If the Graph Isomorphism problem is NP-complete, then the
polynomial-time hierarchy is low for PP.
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NP-complete problems
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Group Factorization
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Group Intersection

Figure 5.1: Results concerning membership to PP-low classes.

Proof. As we have mentioned, if GI is NP-complete, then PH collapses to
AM, and this class is included in BPPGI. Therefore, for any set L ∈ PH, PPL ⊆
PPBPPGI

. The class BPP is low for PP. This fact was shown in [27] using a proof
that relativizes. As a consequence

PPBPPGI

⊆ PPGI ⊆ PP.

The last containment follows from Corollary 4.4. 2

The following lemma is just a generalization of Theorem 4.4 from [33] to the class
C=P. Its proof follows exactly the lines of the original one. We just give a sketch
of it and refer the interested reader to [33].

Lemma 6.2. NP ∩ co-AM is low for C=PNP.

Proof. Let A ∈ NP∩ co-AM and let L ∈ C=PNPA

. By the quantifier characteri-
zation of relativized counting classes [39], there is a deterministic polynomial time
bounded oracle machine M such that

L = {x : (C=y)(∀z)〈x, y, z〉 ∈ L(M,A)},
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where the quantifiers range over all strings of size p(|x|) for some polynomial p.
(The C= quantifier is defined as (C=y)R(y) ⇔ |{y ∈ Σp(|x|) | R(y)}| = 2p(|x|)−1.) We
consider the complementary set

L = {x : (C6=y)(∀z)〈x, y, z〉 ∈ L(M,A)},

and amplifying the probability of acceptance in the set A, and using quantifier
simulation, and swapping quantifiers (see [33] for details) we obtain

L = {x : (∃u)(C6=y)(∀v)(∀z)〈x, y, z, u, v〉 6∈ K},

where K is a set in NP.
It was observed by Toda [38] and Green [19] that an existential quantifier can be

eliminated when it stands in front of a C6= quantifier. Using this fact and contracting
the universal quantifiers (including the one implicit in K) we obtain that for a
certain set B in P,

L = {x : (C6=y)(∀z)〈x, y, z〉 ∈ B}.

It follows that the complementary set L belongs to the class C=PNP. 2

Theorem 6.3. If the Graph Isomorphism problem is NP-complete, then the
polynomial-time hierarchy is low for C=P.

Proof. If GI is NP-complete then PH collapses to Σp
2. Therefore, for any set

L ∈ PH,
C=PL ⊆ C=PΣp

2 ⊆ C=PNPGI

.

By the above lemma, C=PNPGI

= C=PNP. Using again the hypothesis of the NP
completeness of GI, C=PNP = C=PGI, but this last class is equal to C=P since GI
is low for C=P (Corollary 4.4). 2

At the end of this section we consider some problems related to the well known
Graph Reconstruction Conjecture. Recently, these problems were defined by
Kratsch and Hemachandra [26] in order to study the complexity-theoretic aspects
of graph reconstruction.

Let G = (V,E) be a graph, V = {1, . . . , n}. A sequence 〈G1, . . . , Gn〉 of graphs is
a deck of G if there is a permutation π ∈ Sn such that for every i = 1, . . . , n, Gπ(i) is
isomorphic to the one-vertex-deleted-subgraph (V −{i}, E−{{i, j} : j ∈ V }) of G.
In this case, G is called a preimage of the deck 〈G1, . . . , Gn〉. The Reconstruction
Conjecture says that for any legitimate deck, there is just one preimage of it, up to
isomorphism.

Among other problems, Kratsch and Hemachandra investigated the following
decision and counting problems.

Deck Checking: Given a graph G and a sequence of graphs Gi, i = 1, . . . , n,
decide whether G is a preimage of the deck 〈G1, . . . , Gn〉.
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Legitimate Deck: Given a sequence of graphs Gi, i = 1, . . . , n, decide whether
there is a preimage G for the deck 〈G1, . . . , Gn〉, i.e., the deck is legitimate.

Preimage Counting: Given a sequence of graphs Gi, i = 1, . . . , n, compute
the number PCount(〈G1, . . . , Gn〉) of all nonisomorphic preimages for the deck
〈G1, . . . , Gn〉.

Kratsch and Hemachandra showed that Deck Checking is many-one reducible to
GI which in turn is many-one reducible to Legitimate Deck. They left it as an open
question whether there is also a reduction from Legitimate Deck to GI.

Clearly, if the Reconstruction Conjecture holds, then Preimage Counting is not
harder then Legitimate Deck. We will show that under this hypothesis Legitimate
Deck lies in LWPP, and therefore Legitimate Deck and Preimage Counting are low
for PP and C=P. This follows immediately from the next theorem which shows
without any assumption that the function PCount can be computed in Gap-P,
modulo a polynomial-time computable factor.

Theorem 6.4. There is a function f in FP such that the function which maps
every deck 〈G1, . . . , Gn〉 to f(n) times the number of nonisomorphic preimages of
the deck, i.e.,

〈G1, . . . , Gn〉 7→ f(n) ∗ PCount(〈G1, . . . , Gn〉)

is in Gap-P.

Proof. We show that the function which maps 〈G1, . . . , Gn〉 to n! ∗
PCount(〈G1, . . . , Gn〉) can be computed in #P relative to GI. From this, the theo-
rem can be easily obtained using Theorem 4.3. Consider the following nondetermi-
nistic algorithm.

input 〈G1, . . . , Gn〉;
guess a graph G with n vertices;
if G is a preimage of 〈G1, . . . , Gn〉 then
d := |Aut(G)|;
guess k ∈ {1, . . . , d};
accept;

else reject end;

Since Deck Checking is many-one reducible to GI [26], and since the order of
the automorphism group of a given graph can be computed deterministically in
polynomial time relative to GI [29], it is possible to implement the above algorithm
using a nondeterministic oracle Turing machine M with the oracle GI. M first
guesses a graph and tests using oracle GI whether G is a preimage for the given
deck D = 〈G1, . . . , Gn〉. Then, for each preimage of D, M computes with the help
of oracle GI the order of the automorphism group of G and branches into |Aut(G)|
different accepting paths.
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If D is not a legitimate deck, i.e., there is no preimage for D, then all paths of M
are rejecting. In the other case, the set P of all preimages of D can be partitioned
into sets Pj of isomorphic preimages, 1 ≤ j ≤ PCount(D). Let dj be the order of
the automorphism group of any preimage in Pj , then |Pj| = n!/dj and therefore
the number of accepting paths of M is

accGI
M (D) =

PCount(D)
∑

j=1

|Pj| ∗ dj = n! ∗ PCount(D).

2

Corollary 6.5. If the Reconstruction Conjecture holds, then Legitimate Deck is
in LWPP and therefore low for C=P and PP.
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[27] J. Köbler, U. Schöning, J. Torán and S. Toda, Turing Machines with
few accepting computations and low sets for PP, Journal of Computer and
System Sciences 44 (1992), 272–286.

[28] E. Luks, Isomorphism of Graphs of Bounded Valence can be tested in Poly-
nomial Time, Journal of Computer and System Sciences 25 (1982), 42–65.

[29] R. Mathon, A note on the graph isomorphism counting problem, Information
Processing Letters 8 (1979), 131–132.

[30] M. Ogiwara, L. Hemachandra, A complexity theory for closure properties,
in Proc. 6th Structure in Complexity Theory Conference, 1991, 16–29.

[31] C. Papadimitriou, S. Zachos, Two remarks on the power of counting, in 6th
GI Conference on Theoretical Computer Science, Lecture Notes in Computer
Science #145 (1983), 269–276.
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