
Solvable Group Isomorphism is (almost) in NP \ oNPV. Arvind Jaobo Tor�anInstitute of Mathematial Sienes Theoretishe InformatikC. I. T. Campus Universit�at UlmChennai 600 113, India D-89069 Ulm, Germanyarvind�ims.res.in toran�informatik.uni-ulm.deNovember 27, 2003AbstratThe Group Isomorphism problem onsists in deiding whether two input groups G1 andG2 given by their multipliation tables are isomorphi. We �rst give a 2-round Arthur-Merlinprotool for the Group Non-Isomorphism problem suh that on input groups (G1; G2) of sizen, Arthur uses O(log6 n) random bits and Merlin uses O(log2 n) nondeterministi bits. Wederandomize this protool for the ase of solvable groups showing the following two results:(a) When the input groups are solvable, we give a uniform NP mahine for Group Non-Isomorphism, that works orretly on all but 2polylog(n) inputs of any length n. Further-more, this NP mahine is always orret when the input groups are nonisomorphi. TheNP mahine is obtained by an unonditional derandomization of the AM protool, andthe derandomization is done using the Goldreih and Wigderson method [12℄ of extratingrandomness from the input.(b) Using the Nisan-Wigderson generator we get another derandomization of the above AMprotool under the assumption that EXP 6� i:o�PSPACE. Thus, EXP 6� i:o�PSPACEimplies that Group Isomorphism for solvable groups is in NP \ oNP.Finally, we use the above AM protool to show that Group Isomorphism (for arbitrarygroups) annot be omplete for the limited nondeterminism lass NP(log2 n) unless the oNP-omplete problem CLIQUE has polynomial-size proofs that an be heked in subexponentialtime with a polynomial-size advie. We also show that the hardness of Group Isomorphism forthe parameterized lass W[1℄ would have a similar unlikely onsequene for CLIQUE.1 IntrodutionThe Group Isomorphism problem, GROUP-ISO is stated as follows: given two groups G1 and G2of order n as input given by their multipliation tables (also known as their Cayley tables), testwhether they are isomorphi groups. Reall that an isomorphism between G1 andG2 is a bijetion 'between the groups suh that for every pair i; j 2 G1, '(ij) = '(i)'(j).1 This is a natural problemand its omputational omplexity has already been studied for nearly three deades. Groups oforder n have generator sets of size bounded by log n and beause of this fat an isomorphismalgorithm running in time nlogn+O(1) an be obtained by omputing a generator set of size lognin G1, mapping this set in every possible way to a set of elements in G2. The map has to be1For onveniene we represent the group operation by onatenation in both groups.1



extended to the entire group G1 using the multipliation table and it has then to be heked thatan isomorphism is de�ned. This algorithm is attributed to Tarjan in [18℄. A stronger result showingthat GROUP-ISO an be solved in spae O(log2 n) was given in [16℄. Observe that Tarjan's algorithman in fat be onverted into a polynomial time nondeterministi proedure for GROUP-ISO thatuses only log2 n nondeterministi bits, by guessing the mapping from the generator in G1 to G2instead of testing all possible 1-1 mappings.For abelian groups it is known that GROUP-ISO an be solved in polynomial time. Also eÆientalgorithms for speial lasses of nilpotent groups an be found in [13℄. However, no deterministipolynomial time algorithm for the problem is known. Indeed, from a omputational omplexityperspetive, it is not known if GROUP-ISO is in NP\ oNP, even even for speial lasses of groupslike solvable groups or even nilpotent groups.In this paper we make progress on this question (mainly for solvable groups as input). Ourresults are summarized below.1. We present a new Arthur-Merlin protool for GROUP-NONISO with the property that oninput groups of size n, Arthur uses O(log6 n) random bits and Merlin uses only O(log2 n)guess bits. The protool works for arbitrary groups and is arefully tailored so it an bederandomized in the ase of solvable groups.2. We apply the powerful derandomization method of Goldreih and Wigderson [12℄ to deran-domize the above protool, by extrating randomness from the input itself. We exploit thefat that �nite solvable groups have short presentations to show that this derandomization isinorret for at most 2logO(1) n inputs of length n.3. Finally, under the assumption EXP 6� i:o�PSPACE we use the Nisan-Wigderson genera-tor [19℄ to ompletely derandomize the AM protool for GROUP-NONISO, implying thatGROUP-ISO is in NP \ oNP under the assumption.We give some bakground to this line of researh. Arthur-Merlin games were introdued byBabai in [5℄ as a randomized version of NP. It turns out that several important group problems,inluding the Graph Isomorphism problem, are in either NP \ oAM or AM \ oAM. With thedevelopment of derandomization tehniques, building on Nisan and Wigderson's researh [19℄, sev-eral results on derandomizing AM under a hardness assumption were shown. In [2℄, applying themethods of Nisan and Wigderson [19℄, an average-ase hardness assumption is used to onstruta pseudorandom number generator that suÆes for derandomizing AM to NP. This result wasimproved to worst-ase non-uniform hardness assumptions in [15℄ and MiVi99. Finally Lu gave in[17℄ a uniform worst-ase assumption for the derandomization of AM.GROUP-ISO is known to be polynomial-time reduible to Graph Isomorphism and it appearsto be an easier problem sine GROUP-ISO has an nO(log n) time algorithm. In our approah toput GROUP-ISO in NP \ oNP, we basially proeed along similar lines as the above-mentionedresearh on Graph Isomorphism. However, there are two ruial results for GROUP-ISO, that allowus to derive new derandomization results for GROUP-ISO (not appliable to Graph Isomorphism).On the one hand, we design an AM protool for GROUP-NONISO in whih Arthur uses only apolylogarithmi number of random bits and Merlin uses a polylogarithmi number of guess bits.On the other hand, we exploit the fat that the inputs (for solvable groups) admit short enodingsin a ertain preise sense. We fous upon the ase of solvable groups. It is known that solvablegroups have short presentations [7℄. It turns out that from suh a presentation for a solvable groupG, a group isomorphi to G an be easily reomputed (in time polynomial in jGj).2



In Setion 4 we use a derandomization method due to Goldreih and Wigderson [12℄. The ideahere is to extrat randomness from the input string (using an extrator with suitable parameters).Notie that there is a penalty inurred in this approah: the derandomization proedure might beinorret on the small fration of input instanes from whih not enough randomness an be ex-trated. We use this method to show that the AM protool for GROUP-NONISO an be transformedinto a polynomial time nondeterministi algorithm that orretly solves the problem on all but atmost 2logO(1) n of the groups of order n. The fat that solvable groups have short presentations asdesribed plays a ruial role. Also, it is important to mention that this result does not rely onany unproven hardness assumptions. Suh a derandomization is not known for the AM protoolfor Graph Isomorphism.In Setion 5, we further analyze the AM protool for GROUP-NONISO and observe that the ru-ial veri�ation part that Arthur has to do for solvable groups of order n, an in fat be done in poly-logarithmi spae in n. Using this fat we apply the Nisan-Wigderson [19℄ generator to derandomizethe AM protool for GROUP-NONISO under the plausible assumption EXP 6� i:o�PSPACE.2 Thishardness assumption is weaker than the assumption used in [17℄, whih is the only known uniformhardness assumption for derandomizing the lass AM.We observe here that our derandomization results annot be used for arbitrary AM protoolswhih use polylog(n) random bits and guess bits. Our results exploit properties that are spei�to the Group Isomorphism problem.In Setion 7 we briey outline how these results an be extended to arbitrary �nite groupsassuming an unproven onjeture on short presentations for �nite groups [7℄.In Setion 6 we apply the AM protool result to show that Group Isomorphism annot be om-plete for the limited nondeterminism lass NP(log2 n) unless the oNP-omplete problem CLIQUEhas polynomial-size proofs that an be heked in subexponential time with a polynomial-size ad-vie. We also show that the hardness of Group Isomorphism for the parameterized lass W[1℄ wouldhave a similar unlikely onsequene for CLIQUE. These results are for general groups.Most of the onepts used in the paper are de�ned when required. For the de�nition of standardomplexity lasses we refer the reader to books in the area like [4, 21℄.2 AM protool for Group NonisomorphismDenote by AM(r(n); s(n)) the lass of languages aepted by 2-round AM protools, with errorprobability 1=4, in whih Arthur uses O(r(n)) random bits and Merlin uses O(s(n)) nondetermin-isti bits. Formally, a language L is in AM(r(n); s(n)) if there is a set B 2 P suh that for all x,jxj = n, x 2 A ) Probw2Rf0;1gr0(n) [9y; jyj = s0(n) : hx; y; wi 2 B℄ � 3=4;x 62 A ) Probw2Rf0;1gr0(n) [8y; jyj = s0(n) : hx; y; wi 2 B℄ � 1=4;where r0 and s0 are funtions in O(r(n)) and O(s(n)) respetively. Notie that the above de�nitionis equivalent to the de�nition in terms of 2-round Arthur-Merlin protools. Indeed, the standardAM lass is AM(nO(1); nO(1)).We present a two-round AM protool for Group Nonisomorphism that has onstant suessprobability, and Arthur uses O(log6 n) random bits and Merlin uses O(log2 n) nondeterministibits. Thus Group Nonisomorphism is in AM(log6 n; log2 n).2A language L is in i:o�PSPACE if there is a PSPACE mahine that is orret on L for in�nitely many inputlengths. 3



Let G be a group with n elements. A sequene of k group elements X = (g1; : : : ; gk) is alled aube generating k-sequene for G ifG = fg�11 g�22 � � � g�kk j �i 2 f0; 1gg:The set fg�11 g�22 � � � g�kk j �i 2 f0; 1gg is the ube Cube(X) generated by the sequene X. Erd�osand Renyi [9℄ proved the following important theorem about the probability that Cube(X) = G,for a k-sequene X hosen uniformly at random from Gk.Theorem 2.1 [9℄ Let G be a �nite group with n elements. For k � log n+log logn+2 log 1=Æ+5,ProbX2RGk [X is a ube generating sequene for G℄ > 1� Æ:For G with n elements we hoose k = 4 log n and obtain the following useful orollary.Corollary 2.2 Let G be a �nite group with n elements and k = 4 log n. ThenProbX2RGk [u is a ube generating sequene for G℄ > 1� 1=n:In partiular, for k = 4 log n, more than (1 � 1=n)n4 log n sequenes in Gk are ube generatingsequenes for G.Now, we make the following easy observation.Proposition 2.3 Let G be a group with n elements and S be a set of n elements. Let � : G! S bea 1-1 onto funtion. Then there is a group H (de�ned on the set S) suh that � is an isomorphismfrom G to H. Furthermore, given � and the Cayley table for G, the Cayley table for H an beomputed in polynomial time.Proof: It is easy to see that the group multipliation for H de�ned as follows will suÆe:x � y = �(��1(x)��1(y)):Now, let G be a group with n elements and X = (g1; g2; : : : ; gk) be a ube generating sequenefor G. There is a natural 1-1 mapping �X : G ! f0; 1gk that is de�ned by the ube generatingsequene X. The mapping �X is de�ned as follows: �X(g) = (�1; �2; : : : ; �k), where (�1; �2; : : : ; �k) isthe lexiographially �rst k-tuple in f0; 1gk suh that g = g�11 g�22 � � � g�kk . Clearly �X is an injetivemapping and, given the Cayley table for G as input, �X an be omputed in polynomial time.Let S = �X(G). Applying the algorithm desribed in Proposition 2.3 we an onstrut theCayley table of a group H isomorphi to G, where the isomorphism is given by the mapping �X .We summarize this proedure in the following lemma.Lemma 2.4 Let G be a group with n elements given by its Cayley table, and X is a ube generatingk-sequene for G. There is a polynomial (in n) time proedure B that takes as input the pair (X;G)and outputs a pair (Y;H), where H is the Cayley table of a group de�ned on the set �X(G) � f0; 1gkand Y = �X(X) is a ube generating sequene for H.
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Proof: It suÆes to note that given �X , we an apply the algorithm in Proposition 2.3 and omputethe group H as a Cayley table in polynomial time. Furthermore, sine G is isomorphi to H, it iseasy to see that the image of X under the isomorphism will be a ube generating sequene for H.The following proposition is an important property of B.Proposition 2.5 Let G1 and G2 be groups of order n and � be an isomorphism from G1 to G2. LetX be a ube generating k-sequene of G1. Then B(X;G1) = (Y;H) implies B(�(X); G2) = (Y;H).Proof: Let X = (g1; : : : ; gk). Clearly, �(X) = (�(g1); : : : ; �(gk)) is a ube generating k-sequenefor G2. To prove the proposition, it suÆes to observe that for every g 2 G1, g = g�11 g�22 � � � g�kk if andonly if �(g) = �(g1)�1�(g2)�2 � � ��(gk)�k . Thus, �X(g) = (�1; : : : ; �k) if and only if ��(X)(�(g)) =(�1; : : : ; �k).Now, for a group G with n elements we de�ne the following set.C(G) = f(S;H; ) j there is a ube generating 4 log n-sequene X � G suh thatB(X;G) = (S;H) and  2 Aut(H)g:Lemma 2.6 If G1 and G2 are isomorphi �nite groups then C(G1) = C(G2) and if G1 and G2are nonisomorphi then C(G1) \ C(G2) = ;.Proof: Suppose G1 and G2 are isomorphi and � is an isomorphism from G1 to G2. Let(S;H; ) 2 C(G1) and B(X;G1) = (S;H). By Proposition 2.5 we have B(�(X); G2) = (S;H).Thus, (S;H; ) 2 C(G2). It follows that C(G1) � C(G2). By a similar argument, C(G2) � C(G1),and hene C(G1) = C(G2).On the other hand, suppose (S;H; ) is C(G1) \ C(G2). Then learly it follows that G1 �= Hand G2 �= H, whih implies that G1 �= G2.Let C(G1; G2) = C(G1)[C(G2). We estimate the size of C(G1; G2) in the two ases: G1 �= G2and G1 � G2.Lemma 2.7 For a group G with n elements(1� 1=n)n4 logn � jC(G)j � n4 log n:Proof: Let k = 4 log n and Nk(G) � Gk be the olletion of ube generating k-sequenes for thegroup G. By Theorem 2.1 and Corollary 2.2 we have(1� 1=n)n4 log n � jNk(G)j � n4 log nby the hoie of k = 4 log n.It suÆes to show that jNk(G)j = jC(G)j. We onsider the following natural ation of theautomorphisms of G on ube generating k-sequenes in G: � 2 Aut(G) maps a ube generatingk-sequene X = (g1; : : : ; gk) to the ube generating k-sequene �(X) = (�(g1); : : : ; �(gk)). Now,let X1 and X2 be two ube generating k-sequenes of G suh that B(X1; G) = B(X2; G) = (S;H).Then ��1X2�X1 is an automorphism of G that maps X1 to X2. On the other hand, suppose � is an5



automorphism of G. Let B(X1; G) = (S;H), where X1 is a ube generating k-sequene of G. Then,by Proposition 2.5, B(�(X1); G) = (S;H). Thus, for two ube generating k-sequenes X1 and X2of G, B(X1; G) = B(X2; G) = (S;H) if and only if there is an automorphism � of G that maps thesequene X1 to the sequene X2. Notie that only the identity automorphism of G �xes a ubegenerating k-sequene. Hene, it follows that for eah (S;H; ) 2 C(G) there are exatly jAut(G)jgenerating k-sequenes X suh that B(X;G) = (S;H). But (S;H; ) 2 C(G) implies H and Gare isomorphi and therefore jAut(G)j = jAut(H)j. Putting it together, it follows that jC(G)j isexatly the number of ube generating k-sequenes of G. I.e. jNk(G)j = jC(G)j.We have the immediate orollary whih is ruial to the AM protool.Corollary 2.8 Let G1 and G2 be groups of n elements. For n > 4 we have:1. G1 �= G2 implies jC(G1; G2)j � n4 log n.2. G1 � G2 implies jC(G1; G2)j > 1:5n4 log n.Proof: It diretly follows from the previous lemma that if G1 and G2 are isomorphi groups of nelements then (1 � 1=n)n4 log n � jC(G1; G2)j � n4 log n and if G1 and G2 are nonisomorphi then(1� 1=n) � 2 � n4 log n � jC(G1; G2)j � 2 � n4 log n. The orollary follows as (2� 2=n) > 1:5 for n > 4.In the sequel let m denote n4 log n. Let the set X be the 7-fold Cartesian produt C(G1; G2)7of C(G1; G2) with itself. As we have shown above, if G1 �= G2 then jXj � m7 and if they are notisomorphi then jXj � 1:57 �m7. Although jXj = nO(log n), the elements in X have polynomial inn length. We an assume that eah element x 2 X is enoded as a positive integer num(x), sothat in the AM protool (whih we are about to desribe) we an use �ngerprints obtained fromChinese remaindering in order to restrit the number of random bits needed. Let p be a randomprime number of log3 n bits. Sine jXj = nO(log n), with probability more than 1 � 2� log2 n thefollowing event sueeds: num(x) (mod p) 6= num(y) (modp) for every pair x; y 2 X suh thatx 6= y. Call p a good prime if this event sueeds for p. For a good prime, let Xp denote the setfnum(x) (modp) j x 2 Xg. Then jXpj = jXj for good primes p. Notie that elements of Xp anbe represented as bit strings of length t = log3 n. In the �rst part of the protool Arthur seletsa random prime number p of log3 n bits. This an be done by sampling random numbers for thegiven length and using the primality test algorithm [1℄. With a sample of size O(log3 n), Arthurhas a onstant suess probability of piking a random prime number. Thus, O(log6 n) randombits are needed for this �rst task.We now reall a version of Sipser's hashing lemma [23℄.Lemma 2.9 Let X be a nonempty subset of �t that does not ontain 0n. Let S be a randomvariable denoting the number of strings in X mapped to 0k by a uniformly hosen random lineartransformation h over F 2, h : �t ! �k. Then we have E(S) = 2�k � jXj and Var(S) = 2�k(1 �2�k) � jXj.Let k = log(4m7) and let h : �t ! �k be a random linear transformation as in the abovelemma, where Xp � �t. We are interested in the event that there is an x 2 Xp suh that h(x) = 0k.By the above lemma, if G1 � G2 then E(S) � 4 and E(S) � 1=4 otherwise. Using Chebyshev'sinequality it now follows that if G1 �= G2 thenProbh[9x 2 Xp : h(x) = 0k℄ � 1=46



and if G1 � G2 we have Probh[9x 2 Xp : h(x) = 0k℄ � 3=4:We now desribe the AM(log6 n; log2 n) protool below.Arthur Randomly sample numbers of log3 n bits until a prime number p is found. If after 5 log n trialsno prime number has been found, then rejet the input. Otherwise pik a random F 2-linearfuntion h : �t ! �k, where t = log3 n and k = log(4m7). Send p and h to Merlin.Merlin Sends bak two 7-tuples hx1; : : : ; x7i and hi1; : : : ; i7i. Where for j = 1; : : : ; 7, ij 2 f1; 2gand xj = (Sj; Tj ;  j), where Sj is a sequene of elements of f0; 1g4 log n of length 4 log n, Tjis a ube generating 4 log n-sequene for the group Gij , and  j : Sj ! f0; 1g4 log n is a 1-1mapping.Arthur For eah j = 1; : : : ; 7, Arthur does the following veri�ation, all in polynomial time: Letxj = (Sj; Tj ;  j). Computes B(Tj; Gij ) = (S;Hj) and veri�es that S = Sj. Then usingthe group multipliation of Hj, Arthur extends  j to all of Hj and veri�es that it is anautomorphism of Hj. Now, let yj = (Sj;Hj ;  j) for 1 � j � 7 and let y = hy1; : : : ; y7i whihis an element of X. Verify that h(num(y) (modp)) = 0k and if so, aept the pair (G1; G2)as nonisomorphi.The analysis given before the protool proves that the AM protool aepts nonisomorphi pairswith probability 1=2 + � and rejets isomorphi pairs with probability 1=2 + �, for some onstant� > 0. Furthermore, notie that Arthur uses O(log6 n) random bits and Merlin uses O(log2 n)nondeterministi bits. The error probability an be bounded by 1=4 whih only a onstant fatorinrease in the random bits of Arthur and nondeterministi bits of Merlin. We have thus provedthe following theorem.Theorem 2.10 There is a 2-round AM protool with error probability 1=4 for Group Nonisomor-phism in whih Arthur uses O(log6 n) random bits and Merlin uses O(log2 n) nondeterministi bits.Hene, the problem is in AM(log6 n; log2 n).Remark. We briey explain how to eÆiently ompute num(y)(modp), given y = hy1; : : : ; y7i 2X, where yj = (Sj ;Hj;  j) for 1 � j � 7.Consider yj. Eah Tj is ontained in f0; 1g4 log n and has 4 log n elements. It an be enodedas a binary string of length (4 log n)2. Similarly, eah Hj is a list of n2 triples from f0; 1g4 log n �f0; 1g4 log n�f0; 1g4 logn and an be enoded as a binary string of length 12n2 log n. Likewise, eah�j onsists of 4 log n pairs of strings from f0; 1g4 log n, and an be enoded as a binary string oflength 2(4 log n)2. The entire enoding is a onatenation of the enodings of the yj, pre�xed bya 1 to give us num(y). The length of num(y) is 7(12n2 log n+ 3(4 log2 n)) + 1. Furthermore, it iseasy to see that given y as input we an ompute num(y)(modp) polynomial time and polylog(n)spae.We note here, without proof, that it is also possible to give a 2-round IP protool for GroupNonisomorphism whih is somewhat more eÆient in the number of random bits used by the veri�er.
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3 Short Presentations for Solvable GroupsThe goal in the next setions is to derandomize the AM protool for the ase of solvable groups. Wewill present two derandomization results. A key ingredient for these results is the representation ofthe groups is a suint way in terms of generators and relations. To this end we need to developsome group theory, inluding some simple algorithms.We reall some group-theoreti de�nitions. Let A and B be two groups. We write B < A todenote that B is a subgroup of A. The subgroup B of A is said to be normal if for all a in A,aB = Ba, and we write BCA to denote that B is a normal subgroup of A. A group is simple if itdoes not ontain any nontrivial normal subgroups.A normal series of a group A is a �nite sequene of subgroups A0; : : : ; Ak suh thatI = A0 CA1 C : : :CAk = A:A normal series is a omposition series if eah fator group Ai+1=Ai is a simple group (i.e. ithas no nontrivial normal subgroup).A group A is solvable if it has a normal series suh that eah normal fator Ai+1=Ai is abelian.Equivalently, eah fator in the omposition series for G will be yli.Let G be a solvable group with n elements given by its Cayley table. First, in time polynomialin n we an obtain a omposition series for G:G = Gk BGk�1 B � � �BG1 = f1g;where Gi+1=Gi is a yli group of prime order, say pi, for i = 1; 2; : : : ; k � 1. Thus, n = Qk�1i=1 pi.To obtain suh a omposition series in polynomial time, it suÆes to note that we an �nd anormal subgroup N of G in polynomial time: this is done by taking the normal losure of x 2 G fordi�erent elements x 2 G until one of them atually gives us a nontrivial normal subgroup. Note,that the normal losure of eah x 2 G n f1g gives the whole of G if and only if G is already simple(whih would mean G is yli sine we are dealing with solvable groups). Now, the normal seriesG B N B f1g an be re�ned by reursively applying the same step to N and G=N . The overallalgorithm will be polynomial time (in n). This would also test G for solvability, beause if G is notsolvable then at least one of the fator groups Gi+1=Gi in the omposition series will be nonabelian.Coming bak to the solvable ase, the algorithm will also give us a generator ai+1Gi for Gi+1=Gifor 1 � i � k � 1.Notie that every element of G is uniquely expressible as alkk alk�1k�1 : : : al22 , where 0 � lj � pj � 1for eah j. Thus, we an rename the elements of G using suh produts alkk alk�1k�1 : : : al22 and rewritethe Cayley table using these produts.De�nition 3.1 A presentation of a group G with n elements is a pair (X;R) whereX is a generating set for G,R is a set of words over G [G�1 suh that w 2 R de�nes the equation w = 1 and(X;R) de�nes the group G in the sense that there is an algorithm that on input a presentationfor a group G omputes the Cayley table of a group G0 isomorphi to G.For a onstant  > 0 we say that a presentation (X;R) is -short if its length j(X;R)j is at mostlog n. 8



We now show that in time polynomial in n we an onvert the omposition series for G intoa short presentation for G with generating set fa2; : : : ; akg = X. This is done indutively, byobtaining it for Gi for inreasing values of i starting from i = 1. The base ase is trivial fori = 1. Thus, it learly suÆes to show that if (Xi; Ri) is a short presentation for Gi, then in timepolynomial in n we will obtain a short presentation (Xi+1; Ri+1) for Gi+1.We let Xi+1 = Xi[fai+1g. In order to de�ne Ri+1 we only need to use ai+1Gi = Giai+1, whihfollows from the normality of Gi in Gi+1. In partiular, this will give rise to the following set ofrelations. api+1i+1 = ui+1 ; where ui+1 2 Gi: (1)ajai+1 = ai+1wi+1;j : 1 � j � i; wi+1;j 2 Gi: (2)(3)Notie that here ui+1 and wi+1;j are words of the form alii ali�1i�1 : : : al22 , where 0 � lj � pj � 1 foreah j, de�ning elements of Gi, as explained.We de�ne Ri+1 as the union of the above relations and Ri and laim that (Xi+1; Ri+1) de�nesthe group Gi+1. To see this it suÆes to note that Ri+1 ompletely spei�es the Cayley table for G,in terms of the renamed elements ali+1i+1 alii : : : al22 . This is beause, the relations in Ri+1 will learlyallow arbitrary words over Xi+1 to be rewritten in the form ali+1i+1alii : : : al22 , where 0 � lj � pj � 1for eah j. Thus we have the following theorem.Theorem 3.2 Let G be solvable group with n elements, where G is given by its Cayley table, andlet G = GkBGk�1B� � �BG1 = f1g be a omposition series for G, where Gi+1=Gi is a yli group ofprime order pi+1 generated by ai+1Gi for eah i. Then there is a polynomial (in n) time algorithmthat indutively omputes a short presentation (X;R) for G, desribed above, whih inludes a shortpresentation (Xi; Ri) for eah group Gi in the omposition series. Moreover, the size j(X;R)j ofthe short presentation is  log n, where  is a �xed onstant independent of the group.We now desribe an algorithm that on input a presentation (X;R) for a group G, onstrutedas above, eÆiently omputes the Cayley table of a group G0 isomorphi to G. Let G be a solvablegroup with n elements given by a short presentation (X;R) obtained from G by applying thealgorithm of Theorem 3.2. Consider X = fak; ak�1; : : : ; a2g as an ordered list. Then the elementsofG0 will onsist of words of the form alkk alk�1k�1 : : : al22 , where 0 � lj � pj�1 for eah j. Notie that theprimes pj are already part of the presentation. We now desribe how to obtain the Cayley table forG0 from (X;R). Sine X is an ordered list, we an eÆiently obtain from (X;R) the presentations(Xi; Ri) for 2 � i � k, where (Xk; Rk) = (X;R), and the generating list Xi = fai; : : : ; a2g. Let G0ibe the group de�ned by (Xi; Ri) for 2 � i � k (note that G01 = f1g). We will obtain the Cayleytable for Gi indutively, for inreasing values of i. It suÆes to show how to obtain the Cayleytable for G0i+1 from (Xi+1; Ri+1), given the Cayley table for G0i. Notie that elements of G0i+1 areali+1i+1 alii : : : al22 , where 0 � lj � pj � 1 for eah j. Thus, we only need to express the produt ofeah pair of elements ali+1i+1 alii : : : al22 and ami+1i+1 amii : : : am22 from G0i+1 again as an element of G0i+1.To this end, write ali+1i+1 alii : : : al22 as ali+1i+1u and ami+1i+1 amii : : : am22 as ami+1i+1 v, where u; v 2 G0i. Now,by repeatedly applying the relations de�ned in Equation 1, in time polynomial in n we an rewriteali+1i+1uai+1 as ali+1i+1u � ai+1 = ali+1+1i+1 v1v2 : : : vr = ali+1+1i+1 w; (4)9



where the vj's are elements of G0i and r =Pi+1t=2 lt, and v1v2 : : : vr = w 2 G0i obtained in polynomialtime by using the multipliation of G0i. It is lear, that on mi+1 appliations of the rewrite rulegiven by Equation 4, we will obtain an element of the form ali+1+mi+1i+1 w0, where w0 2 G0i. Finally,we an further use Equation 1 to redue ali+1+mi+1i+1 w0 to ali+1w, where 0 � l � pi+1 � 1. Clearly,the omputation of this entry of the Cayley table requires polynomial in n time. Proeeding thus,the Cayley table for G0 an be obtained in polynomial time. It is lear that G is isomorphi to G0.We summarize the above observation.Theorem 3.3 Let (X;R) be a short presentation as obtained by Theorem 3.2, for a solvable groupG with n elements. There is an algorithm with running time bounded by a polynomial in n thatonstruts from (X;R) the Cayley table of a group G0 that is isomorphi to G.The polynomial time algorithm of Theorem 3.2 an be modi�ed to a polylog(n) spae boundedalgorithm that takes (X;R) (obtained from a solvable group G of order n) as input and outputsthe Cayley table of a group G0 isomorphi to G. This will be needed in the seond derandomizationresult. For this we �rst note that the algorithm of Theorem 3.3 is essentially a breadth-�rst searhalgorithm: we need to ompute and store the table for G0i, whih is used to build the table for G0i+1.Thus, we get a polynomial time algorithm that requires O(nO(1)) spae. However, instead of storingthe table for G0i we an reursively ompute the produt of two words u; v 2 G0i when required.Notie that for the reursive omputation what is put on the stak, for eah reursive all, is ofpolylog(n) size and the depth of the reursion is bounded by log n (whih bounds the length of theomposition series). Thus, the overall spae required by this modi�ed algorithm (whih is depth-�rst) is polylog(n). Observe that the time taken by this algorithm is not polynomial anymore. Wesummarize this observation in the following theorem.Theorem 3.4 Let (X;R) be a short presentation as obtained by Theorem 3.2, for a solvable groupG with n elements. There is a spae-bounded algorithm that requires spae logO(1) n, and on input(X;R) onstruts the Cayley table of a group G0 that is isomorphi to G.4 Derandomization without AssumptionsThroughout this setion we assume that the input instanes (G1; G2) for GROUP-ISO are suhthat G1 and G2 are solvable groups. Given an instane (G1; G2), by applying the algorithm ofTheorem 3.2 and then the algorithm of Theorem 3.3 to both G1 and G2 we an obtain a new pairof groups (G01; G02) suh that G1 �= G2 if and only if G01 �= G02. We all suh an instane (G01; G02) aredued instane of GROUP-ISO. The key observation of this setion is that there is a onstant suh that the number of redued instanes (G01; G02) for pairs of graphs with n elements is boundedby 2log n. This is immediate from the bound on the size of short presentations for solvable groupsgiven in Theorem 3.2.Lemma 4.1 The number of redued instanes (G01; G02) is bounded by 2log n for a �xed onstant > 0, where G01 and G02 are groups with n elements.For the derandomization of the AM protool for GROUP-NONISO we give an easy generalizationof a theorem from the Goldreih and Wigderson paper [12, Theorem 3℄ for a nondeterministi set-ting. The idea is to try and derandomize ertain advie-taking randomized algorithms by extratingrandomness from the input. It an be proved almost exatly as [12, Theorem 3℄.10



Theorem 4.2 Let M be an advie-taking NP mahine for a problem �, where the length of theadvie is bounded by logm for some onstant , for inputs x 2 f0; 1gm. Suppose it holds that atleast 2=3 fration of the logm-bit advie strings are good advie strings. More preiselyProbw2f0;1glog m [8x 2 f0; 1gm it holds that M(x;w) is orret℄ � 2=3:Then for every � > 1, there is an NP mahine M 0 for � that is inorret on at most 2log�m inputsx 2 f0; 1gm.In order to be able to use this result we have to transform the AM protool for GROUP-NONISOof Setion 2 into an advie taking NP mahine (with short advie) for the problem. The standardampli�ation of the suess probability of the AM protool would not work sine the resultingadvie string would be of polynomial length. We show how the AM protool an be modi�ed inorder to avoid this problem.Fix a standard enoding of an instane (G1; G2) of groups of with n elements by a binary stringof length m = Cn2dlog ne, where C is some �xed onstant. Furthermore, we an assume that boththis enoding and its inverse are omputable in time polynomial in n. In this setion m stands forthis number. We an assume that the AM protool Setion 2 takes as input a string x 2 f0; 1gmand �rst heks if it enodes an instane (G1; G2) of solvable groups and rejets if it does not. Wean think of the binary strings x as the input to the AM protool.The AM protool of Setion 2 is modi�ed as follows: on input x 2 f0; 1gm, �rst Arthur deodesx to get (G1; G2) and heks that G1 and G2 are solvable groups. Then, applying the algorithmsof Theorems 3.2 and 3.3 in suession, Arthur onverts (G1; G2) to a redued instane (G01; G02).Now, Arthur starts the AM protool for the redued instane (G01; G02). Merlin is also supposed toompute (G01; G02) and exeute his part of the protool for (G01; G02). Observe that by Lemma 4.1there are only 2log n redued instanes for a �xed onstant  > 0. Notie that e�etively the originalAM protool is now being applied only to redued instanes. By standard methods of amplifyingthe suess probability of the AM protool, we an onvert the AM protool to a (logO(1) n size)advie taking NP mahine M . We summarize the above observation as a theorem.Theorem 4.3 There is an (log(O(1) n size) advie-taking NP mahineM for GROUP-NONISO suhthat that for inputs x 2 f0; 1gm the following holds:Probw2f0;1glog n [8x 2 f0; 1gm it holds that M(x;w) is orret℄ � 2=3:The AM protool an be transformed using well-known tehniques into a one-sided error protoolfor GROUP-NONISO suh that when the input groups are nonisomorphi, the protool aeptswith probability 1, where the protool still uses only a polylogarithmi number of random bits.Consequently, the advie-taking NP mahine M de�ned above also has only one-sided error.Now, applying Theorems 4.3 and 4.2 we immediately have the following onsequene for GROUP-ISOin the ase of solvable groups.Theorem 4.4 For some onstant  > 1 there is an NP \ oNP mahine M for GROUP-ISO forsolvable groups that is inorret on at most 2logm inputs x 2 f0; 1gm for every m.The proof follows by ombining the standard NP mahine for GROUP-ISO with the NP mahineM 0 for GROUP-NONISO given by Theorem 4.2. Observe that M 0 may be inorret only when itsinput is a pair of isomorphi groups. 11



5 Derandomization under the Assumption EXP 6� i:o�PSPACEIn the previous setion we proved, unonditionally, that there is an NP \ oNP mahine M forGROUP-ISO for solvable groups that is inorret on only a few inputs. In this setion we applythe Nisan-Wigderson pseudorandom generator onstrution to prove that GROUP-ISO for solvablegroups is in NP \ oNP assuming EXP 6� i:o�PSPACE=poly3. Sine EXP � i:o�PSPACE=polyimplies EXP � i:o�PSPACE the result holds also under the uniform hardness assumption EXP 6�i:o�PSPACE.Theorem 5.1 If EXP 6� i:o�PSPACE=poly then GROUP-ISO for solvable groups is in NP\oNP.Proof:Notie that in order to derandomize the AM protool for GROUP-NONISO, it suÆes to build apseudorandom generator that strethes O(log n) random bits to O(log6 n) random bits, suh thatthe pseudorandom string of O(log6 n) bits annot be distinguished from a truly random string ofthe same length by the protool.We start by arefully examining the AM protool for GROUP-NONISO. Similar to the proof ofTheorem 4.4, in the protool Arthur begins by onverting the input instane (G1; G2) to a reduedinstane (G01; G02) (Merlin is expeted to exeute his steps of the protool for (G01; G02)). This isPhase I of the protool. In Phase II of the protool Arthur piks a random hash funtion h anda random prime p, of suitable size as explained in the protool, using O(log6 n) random bits andsends these to Merlin.The remainder of the protool is Phase III: Merlin sends bak a string x of length O(log2 n) andArthur then performs a polynomial (in n) time deterministi omputation. This �nal omputationof Arthur onsists of two parts. The �rst part onverts the string x to a string y = f(x) that is oflength O(n2 logn). It then onverts y to the natural number num(y) and omputes a t bit stringz = (num(y))(mod p). Then Arthur veri�es that h(z) = 0k. We reall from the protool desriptionthat t, k, the sizes of h and p are all polylog(n) bits.Next, we will restruture Phase III of Arthur's omputation as an orale omputation withrunning time polynomial in log n. This is the ruial part of the proof.For that purpose we de�ne the following language L. Let (Y1; R1) and (Y2; R2) be the shortpresentations orresponding to the solvable groups G01 and G02 respetively, omputed in Phase Iby Arthur, as explained in Theorems 3.2 and 3.3.L = f((Y1; R1); (Y2; R2); h; p) j 9x = (x1; : : : ; x7) : xj = (Xj ; bj ; Tj ; �j) ; B(Xj ; Gbj ) = (Tj ;Hj);eah w 2 Xj is expressed usingYbj and �j : Tj ! f0; 1g4 log nextends to an automorphism of Hj ; 1 � j � 7 ; and h(num(y)(modp)) = 0kwhere y = ((T1;H1; �1); : : : ; (T7;H7; �7))gObserve that the languages L is designed so that Phase III of the AM protool an be replaedwith a single query to L, where (Y1; R1) and (Y2; R2) are the short presentations omputed for G1and G2 respetively. Thus the entire AM protool an be replaed by the following three steps:1. On input G1 and G2, ompute their short presentations (Y1; R1) and (Y2; R2).3A language L is in i:o�PSPACE=poly if there is a PSPACE mahine that takes polynomial-size advie and isorret on L for in�nitely many input lengths. 12



2. Uniformly at random pik h and p using O(log6 n) random bits.3. Query L for ((Y1; R1); (Y2; R2); h; p) and aept if it is in L.It is lear that on all inputs (G1; G2) the above omputation has the same aeptane probabilityas the AM protool.Furthermore, a ruial property of the language L is the following.Claim 1. Cheking if ((Y1; R1); (Y2; R2); h; p) is in L an be done in polylog(n) spae, where n isthe size of the inputs groups.To prove the laim we outline a polylog(n) spae algorithm by explaining its main aspets:� In the de�nition of L notie that the guess x = (x1; : : : ; x7) is of length O(log2 n). Thepolylog(n) spae algorithm will exhaustively searh for x by yling through all strings oflength O(log2 n). Observe that for an x = (x1; : : : ; x7), where xj = (Xj ; bj ; Tj ; �j), eahw 2 Xj is expressed in terms of the generators in Yj. From Setion 3 we know that suh anexpression is of polylog(n) size.� For an x = (x1; : : : ; x7), where xj = (Xj ; bj ; Tj ; �j), we need to simulate algorithm B inpolylog(n) spae to ompute B(Xj ; G0bj ) = (Tj ;Hj).The diÆulty is in omputing the table for the n element group Hj (isomorphi to G0bj ).However, notie that we are interested in omputing the �nal value num(y)(mod p), wherey = ((T1;H1; �1); : : : ; (T7;H7; �7)). From the de�nition of num(y) (see remark at the end ofSetion 2), it is easy to see that in order to ompute num(y)(mod p), it suÆes to generatethe string y from left to right, bit by bit. In turn, it implies that it suÆes to generate theentries of the Cayley table for Hj one by one, for eah Hj; 1 � j � 7. We do not need tostore the entire table for the Hj's.In order to generate the entries for Hj , we exploit the fat that Tj is a ube-generatingsequene for Hj. In partiular:(a) We an identify elements of Hj as strings in f0; 1g4 log n, as explained in Setion 2, byyling through the produts in the ube generated by Tj . This an be done in polylog(n)spae.(b) To �nd the entries of the Cayley table for Hj we need to use the Cayley table for G0bj .Although we do not expliitly have the table for G0bj , we have its short presentation(Ybj ; Rbj ). Now, we an apply Theorem 3.4 in order to multiply elements of G0bj usingjust the presentation (Ybj ; Rbj ).Then, as desribed above, in polylog spae the entries of the table for Hj an be generated.As we obtain the entries for Hj in a lexiographi order, we are e�etively getting the tupley from left to right. We an onvert it into the bits of num(y) and inrementally omputenum(y)(modp) with the following standard method: for the k-bit pre�x z of num(y) if wehave omputed z(modp) and we have the k + 1st bit of num(y), then 2z + 1(modp) is thek+1-bit pre�x of num(y) modulo p. Continuing thus, we will �nally ompute num(y)(mod p),and the algorithm now simply has to hek if h(num(y)(mod p)) = 0k, whih an be done inpolylog(n) spae.Now, we are ready to desribe the derandomization. We shall use the Nisan-Wigderson pseu-dorandom generator [19℄, that strethes O(logn) random bits to O(log6 n) random bits using an13



EXP omplete language as the hard funtion. We reall the onstrution and the key properties ofthe generator.Let r; l;m; k be positive integers. A olletion D = (D1; : : : ;Dr) of sets Di � f1; : : : ; lg is alleda (r; l;m; k)-design if kDik = m for all i, and for all i 6= j, kDi \Djk � k. Using D we get froma boolean funtion g : f0; 1gm ! f0; 1g a sequene of boolean funtions gi : f0; 1gl ! f0; 1g, i =1; : : : ; r, de�ned as gi(s1; : : : ; sl) = g(si1 ; : : : ; sim) where Di = fi1; : : : ; img. By onatenating thevalues of these funtions we get a funtion gD : f0; 1gl ! f0; 1gr where gD(s) = g1(s) : : : gr(s). Nisanand Wigderson show [19, Lemma 2.4℄ that the output of gD looks random to a small deterministiiruit, provided g is hard to approximate by deterministi iruits of a ertain size (in other words,the hardness of g implies that the pseudorandom generator gD is seure against small iruits). Thefollowing makes this more preise.For a set A let CIRA(n; s) stand for the set of n-input boolean funtions that an be omputedby deterministi iruits of size at most s, having besides the normal gates orale gates evaluatingthe harateristi funtion of A.For an orale A, a boolean funtion g : f0; 1gm ! f0; 1g is said to be a CIRA(n; r(n))-hardfuntion if 12 � 1r(n) < kfx 2 f0; 1gn j f(x) = g(x)gk2n < 12 + 1r(n)holds for all funtions g 2 CIRA(n; r(n)).Let r : N ! R+ and let L be any language. L is said to be CIRA(r)-hard if for all but �nitelymany n, the n-ary boolean funtion L=n is CIRA(n; r(n))-hard.We state a ruial lemma due to Nisan and Wigderson [19℄, in a form used in [2℄.Lemma 5.2 [19℄ Let D be a (r; l;m; k)-design and let g : f0; 1gm ! f0; 1g be an CIRA(m; r2+r2k)-hard funtion (for some orale A). Then the funtion gD has the property that for every r-inputiruit  of size at most r2,���Proby2Rf0;1gr [A(y) = 1℄� Probs2Rf0;1gl [A(gD(s)) = 1℄��� � 1=r:Choose r = O(log6 n), l = log n, m = plogn, and k = log log n. By [19, Lemma 2.5℄ weknow that there is an (r; l;m; k)-design, all it D, for these values, that is omputable in spaek = log log n, and hene in time polynomial in logn.Our goal is to derandomize the AM protool using the pseudorandom generator gD that strethesan O(log n) bit random seed to O(log6 n) pseudorandom bits. From our preeding disussion aboutthe AM protool it is lear that it is Phase III of the protool that uses the random bits h andp. Furthermore, the omputation of Phase III an be simulated by a polylog(n) size iruit withorale L that takes as input the short presentations (Y1; R1) and (Y2; R2) and the random bits hand p.Now, let g be the harateristi funtion of an EXP-omplete language in E. Furthermore, letthe language L de�ned above be the orale A of Lemma 5.2. As already explained, Phase III'somputation an be arried out by a polylog(n) size iruit with L as orale.We laim that the derandomization is orret on all but �nitely many inputs.Suppose not. In partiular, suppose the derandomization of the AM protool fails for some inputpair (G1; G2) of solvable groups. Let (Y1; R1) and (Y2; R2) be their short presentations omputed inPhase I. As a onsequene of the failure of the derandomization, it follows that the polylog(n) size14



iruit with orale L for Phase III with input �xed as (Y1; R1) and (Y2; R2) is a distinguisher iruitthat distinguishes between the output of gD and the truly random bits. Applying Yao's methodas explained in [19℄, we an onvert the distinguisher into a next bit preditor, and �nally obtaina polylog(n) size iruit with orale L that omputes g orretly on a 1=2 + 1= logO(1) n frationof O(log n) size inputs. Notie here that we are using the fat that gD an be omputed in timepolynomial in logn.By applying the methods of [6℄, we an apply Yao's XOR lemma and the fat that EXPhas random-self reduible omplete sets to onlude that an EXP-omplete set an be orretlyomputed on all logn size inputs4 by a polylog(n) size iruit with orale L. This is true forin�nitely many input lengths logn (sine we assumed that the derandomization fails for in�nitelymany inputs). But that implies EXP � i:o�PSPACE=poly, ontraditing the hardness assumption.This ompletes the proof.Bal�azar proved in [3℄ that EXP � PSPACE=poly implies the inlusion of EXP in uniformPSPACE. The same holds for the ase of i.o. lasses, that is:Lemma 5.3 If EXP � i:o�PSPACE=poly then EXP � i:o�PSPACE.From this lemma and Theorem 5.1 the uniform derandomization result follows.Theorem 5.4 If EXP 6� i:o�PSPACE then GROUP-ISO for solvable groups is in NP \ oNP.6 Limited NondeterminismIn this setion we apply our AM protool for GROUP-NONISO to show that GROUP-ISO annotbe omplete for the limited nondeterminism lass NP(log2 n) unless the oNP-omplete problemCLIQUE has nonuniform subexponential size proofs. We also study the parameterized omplexityof the problem with the size of generating sets of the groups as parameter. We show that thehardness of Group Isomorphism for the parameterized lass W[1℄ would also imply an unexpetedupper bound for the omplexity of the lique problem.Complexity sublasses of NP that arise when the number of nondeterministi bits is boundedhave been de�ned in the literature in di�erent ontexts (see [11℄ for a survey). In partiular Kintalaand Fisher introdued in [14℄ sublasses on NP with a polylogarithmi number of nondeterministibits. Let us denote by NP(logk n) the sublass of NP in whih for an input of size n only O(logk n)nondeterministi steps are allowed. As we have seen in the introdution, GROUP-ISO is ontainedin NP(log2 n). Papadimitriou and Yannakakis ask in [22℄ whether this problem is in fat ompletefor NP(log2 n). In this setion we give some evidene suggesting that this is not the ase. We showthat if GROUP-ISO is omplete for NP(log2 n) then the Clique problem is ontained in the lassoNTIME[2o(n)℄=poly.We will onsider the following version of the general lique problem CLIQUE = fG j G has nverties and a lique of size n=2g. Notie that CLIQUE is NP-omplete.Theorem 6.1 If GROUP-ISO is many-one omplete for NP(log2 n) then CLIQUE is in the lassoNTIME[nO(1); 2O(log npn)℄=poly. I.e. for inputs of length n, CLIQUE has polynomial-size proofswhih an be veri�ed in 2O(log npn) time with a polynomial-size advie.4There will be hange in input length whih we an ignore here without a�eting the results.15



Proof: Consider the problem log-CLIQUE = f(G; k) j G has n verties, k � logn and G has alique of size kg. log-CLIQUE is learly in NP(log2 n). If GROUP-ISO is omplete for this lass,then there is a many-one polynomial time redution from log-CLIQUE to GROUP-ISO and by theresults of the previous setion the omplement of the problem, log-CLIQUE 2 AM(log6; log2n).We will now apply an idea of Feige and Kilian [10℄: Let G be a graph with n nodes and forsimpliity assume that n=2 is a perfet square. We an onvert in time nO(pn) the instane G ofCLIQUE to a pair (G0; l0) in the following way: G0 is a graph with at most � npn=2� nodes. Eah nodeof G0 orresponds to a subset of V (G) of size pn=2, and there is an edge between two nodes of G0if and only if their orresponding sets of nodes in G are disjoint and form a lique of size 2pn=2.Clearly G0 has a lique of size pn=2 if and only if G 2 CLIQUE. We set l0 to pn=2. Let N be thenumber of verties in G0. N = � npn=2�. l0 is smaller than logN and therefore (G0; l0) is an instaneof the log-CLIQUEproblem. The AM protool on input (G0; l0) will use O(log6N) random bits andO(log2N) nondeterministi bits. Also observe that the �nal deterministi omputation done byArthur after the ommuniation rounds is of polynomial time in N . This implies the followinglaim.Claim 6.2 There is an AM(nO(1); nO(1)) protool for the oNP omplete problem CLIQUE, wherethe �nal deterministi omputation done by Arthur after the ommuniation rounds is of time2O(log npn). Furthermore, the protool has error probability bounded by 1=4.Applying the standard method of repeating the protool nO(1) times and taking a majorityvote, we get an AM(nO(1); nO(1)) protool for CLIQUE where the �nal deterministi omputationdone by Arthur is still of time 2O(log npn) and the error probability is now bounded by 2�nO(1) . Wean derandomize the protool by �xing for eah length n the random bits to an nO(1) size adviestring. Thus, we have shown that CLIQUE is in NTIME[nO(1); 2O(log npn)℄=poly. This ompletesthe proof.6.1 Parameterized omplexity settingA di�erent perspetive to GROUP-ISO is given by the parameterized omplexity setting introduedby Downey and Fellows [8℄, whih is a useful and rih paradigm for lassifying problems. Parame-terized omplexity deals with problems where the instanes are pairs (x; k) where the parameter k isusually a positive integer that measures the \size" of a solution to the input x. The parameterizeddeision problem now is to test if there is a solution of size at most k (and the searh problem is to�nd suh a solution). Algorithms with time bounds of the form f(k)nO(1), for arbitrary funtionsf , are onsidered eÆient. Problems with suh algorithms are �xed parameter tratable. Analogousto NP-ompleteness, there is a theory of hardness [8℄ whih lassi�es parameterized problems. Let� and �0 be two parameterized problems. A parameterized many-one redutions from � to �0maps instane (x; k) of � to instanes (x0; k0) of �0, suh that the running time of the redutionis bounded by f(k)jxjO(1) and k0 � f(k) for an arbitrary funtion f . Reall from [8℄ that W[P℄ isthe lass of parameterized problems reduible via parameterized redutions to the weight-k iruitsatis�ability problem. The weight-k iruit value problem is: given a boolean iruit with n inputgates, is there an input of hamming weight k aepted by the iruit. The k�CLIQUE problem isthe parameterized lique problem with instanes (G; k) and the question is whether G has a liqueof size k. The lass W[1℄ an be de�ned as parameterized problems that are many-one reduible viaparameterized redutions to the k�CLIQUE problem. The k�CLIQUE problem is W[1℄-ompleteand is onsidered unlikely to be �xed parameter tratable [8℄. Notie that W[1℄ �W[P℄.16



We onsider the following natural parameterized version of group isomorphism k-GROUP-ISO:let G1 and G2 be groups with n elements eah given by their Cayley tables and generating sets S1and S2 of size k eah. The problem is to test if the groups are isomorphi (and, if so, to �nd anisomorphism).As noted in the introdution, this parameterization makes sense for GROUP-ISO beause thereare natural lasses of groups with small generating sets. E.g. every simple group of size n has agenerating sets with just two elements.There is an easy nO(k) algorithm for k-GROUP-ISO whih puts it in the lass W[P℄. But, noalgorithm with running time of the form f(k)nO(1) is known for k�GROUP-ISO. Thus, we do notknow if it is �xed parameter tratable. We are interested in the question of whether k-GROUP-ISOis omplete for W [P ℄. We show that probably this is not the ase sine the problem does not evenseem to be hard for W [1℄. We now provide evidene of this fat by showing that this assumptionimplies a nonuniform nondeterministi subexponential time algorithm for CLIQUE.Theorem 6.3 If k�GROUP-ISO is W[1℄-hard then CLIQUE is in NTIME[nO(1); 2o(n)℄=poly. I.e.for inputs of length n, CLIQUE has polynomial-size proofs whih an be veri�ed in 2o(n) time witha polynomial-size advie.Proof: Suppose k�GROUP-ISO is W[1℄-hard. Then there is a parameterized redution from k-CLIQUE to k�GROUP-ISO. By ombining the redution with the AM(O(log6 n); O(log2 n)) protoolfor GROUP-NONISO, we get an AM(O(f(k) log6 n); O(f(k) log2 n)) protool for k-CLIQUE (theomplement of k-CLIQUE), in whih the �nal deterministi omputation done by Arthur after theommuniation rounds takes time f(k)nO(1), where f is some monotonially inreasing funtion.We an assume w.l.o.g. that f(k) � k for all k. Now, de�ne the funtion f�1(n) to be the largestpositive integer m suh that f(m) � n. Observe that f�1(n) tends to 1 monotonially with n.Reall that CLIQUE = fG j G has n verties and a lique of size n=2g. For an instane G ofCLIQUE, set l0 = f�1(n=2). Let �(n) denote 12f�1(n=2) . Notie that �(n) tends to 0 monotoniallyas n inreases.We again apply the Feige-Kilian onstrution [10℄: in time � nO(n�(n))� we an onvert G to apair (G0; l0), where G0 is a graph with at most � nn�(n)� nodes, and eah node of G0 is a subset ofV (G) of size n�(n) that indues a lique in G. Furthermore, two nodes u and v in G0 are adjaentif their union (as subsets of V (G)) forms a lique in G. Clearly, G has an n=2-lique if and onlyif G0 has an l0-lique. Now, onsider (G0; l0) as an instane of the parameterized lique problem.Notie that the above AM protool on input (G0; l0) will use O(f(k) log6 n) = O(f(l0) log6N) =O(n7 log6 n) random bits and O(f(k) log2 n) = O(f(l0) log2N) = O(n3 log2 n) nondeterministibits. Also observe that the �nal deterministi omputation done by Arthur after the ommuniationrounds is of time � nO(n�(n))�. Then the running time for the �nal deterministi omputation of Arthuran be bounded by 2n�H(��(n)) where  is a onstant and H denotes the entropy funtion. Observethat H( ��(n)) ! 0 as n!1, sine �(n) tends to 0 as n!1. Thus, 2n�H(��(n)) is 2o(n). Puttingit together, we have shown the following laim.Claim 6.4 Let G be an instane of CLIQUE. There is an AM(nO(1); nO(1)) protool where the�nal deterministi omputation done by Arthur after the ommuniation rounds is of time 2o(n).Furthermore, the protool has error probability bounded by 1=4.Now, as done in the proof of Theorem 6.1, by applying the standard method of repeatingthe protool nO(1) times and taking a majority vote, we get an AM(nO(1); nO(1)) protool for17
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