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tThe Group Isomorphism problem 
onsists in de
iding whether two input groups G1 andG2 given by their multipli
ation tables are isomorphi
. We �rst give a 2-round Arthur-Merlinproto
ol for the Group Non-Isomorphism problem su
h that on input groups (G1; G2) of sizen, Arthur uses O(log6 n) random bits and Merlin uses O(log2 n) nondeterministi
 bits. Wederandomize this proto
ol for the 
ase of solvable groups showing the following two results:(a) When the input groups are solvable, we give a uniform NP ma
hine for Group Non-Isomorphism, that works 
orre
tly on all but 2polylog(n) inputs of any length n. Further-more, this NP ma
hine is always 
orre
t when the input groups are nonisomorphi
. TheNP ma
hine is obtained by an un
onditional derandomization of the AM proto
ol, andthe derandomization is done using the Goldrei
h and Wigderson method [12℄ of extra
tingrandomness from the input.(b) Using the Nisan-Wigderson generator we get another derandomization of the above AMproto
ol under the assumption that EXP 6� i:o�PSPACE. Thus, EXP 6� i:o�PSPACEimplies that Group Isomorphism for solvable groups is in NP \ 
oNP.Finally, we use the above AM proto
ol to show that Group Isomorphism (for arbitrarygroups) 
annot be 
omplete for the limited nondeterminism 
lass NP(log2 n) unless the 
oNP-
omplete problem CLIQUE has polynomial-size proofs that 
an be 
he
ked in subexponentialtime with a polynomial-size advi
e. We also show that the hardness of Group Isomorphism forthe parameterized 
lass W[1℄ would have a similar unlikely 
onsequen
e for CLIQUE.1 Introdu
tionThe Group Isomorphism problem, GROUP-ISO is stated as follows: given two groups G1 and G2of order n as input given by their multipli
ation tables (also known as their Cayley tables), testwhether they are isomorphi
 groups. Re
all that an isomorphism between G1 andG2 is a bije
tion 'between the groups su
h that for every pair i; j 2 G1, '(ij) = '(i)'(j).1 This is a natural problemand its 
omputational 
omplexity has already been studied for nearly three de
ades. Groups oforder n have generator sets of size bounded by log n and be
ause of this fa
t an isomorphismalgorithm running in time nlogn+O(1) 
an be obtained by 
omputing a generator set of size lognin G1, mapping this set in every possible way to a set of elements in G2. The map has to be1For 
onvenien
e we represent the group operation by 
on
atenation in both groups.1



extended to the entire group G1 using the multipli
ation table and it has then to be 
he
ked thatan isomorphism is de�ned. This algorithm is attributed to Tarjan in [18℄. A stronger result showingthat GROUP-ISO 
an be solved in spa
e O(log2 n) was given in [16℄. Observe that Tarjan's algorithm
an in fa
t be 
onverted into a polynomial time nondeterministi
 pro
edure for GROUP-ISO thatuses only log2 n nondeterministi
 bits, by guessing the mapping from the generator in G1 to G2instead of testing all possible 1-1 mappings.For abelian groups it is known that GROUP-ISO 
an be solved in polynomial time. Also eÆ
ientalgorithms for spe
ial 
lasses of nilpotent groups 
an be found in [13℄. However, no deterministi
polynomial time algorithm for the problem is known. Indeed, from a 
omputational 
omplexityperspe
tive, it is not known if GROUP-ISO is in NP\ 
oNP, even even for spe
ial 
lasses of groupslike solvable groups or even nilpotent groups.In this paper we make progress on this question (mainly for solvable groups as input). Ourresults are summarized below.1. We present a new Arthur-Merlin proto
ol for GROUP-NONISO with the property that oninput groups of size n, Arthur uses O(log6 n) random bits and Merlin uses only O(log2 n)guess bits. The proto
ol works for arbitrary groups and is 
arefully tailored so it 
an bederandomized in the 
ase of solvable groups.2. We apply the powerful derandomization method of Goldrei
h and Wigderson [12℄ to deran-domize the above proto
ol, by extra
ting randomness from the input itself. We exploit thefa
t that �nite solvable groups have short presentations to show that this derandomization isin
orre
t for at most 2logO(1) n inputs of length n.3. Finally, under the assumption EXP 6� i:o�PSPACE we use the Nisan-Wigderson genera-tor [19℄ to 
ompletely derandomize the AM proto
ol for GROUP-NONISO, implying thatGROUP-ISO is in NP \ 
oNP under the assumption.We give some ba
kground to this line of resear
h. Arthur-Merlin games were introdu
ed byBabai in [5℄ as a randomized version of NP. It turns out that several important group problems,in
luding the Graph Isomorphism problem, are in either NP \ 
oAM or AM \ 
oAM. With thedevelopment of derandomization te
hniques, building on Nisan and Wigderson's resear
h [19℄, sev-eral results on derandomizing AM under a hardness assumption were shown. In [2℄, applying themethods of Nisan and Wigderson [19℄, an average-
ase hardness assumption is used to 
onstru
ta pseudorandom number generator that suÆ
es for derandomizing AM to NP. This result wasimproved to worst-
ase non-uniform hardness assumptions in [15℄ and MiVi99. Finally Lu gave in[17℄ a uniform worst-
ase assumption for the derandomization of AM.GROUP-ISO is known to be polynomial-time redu
ible to Graph Isomorphism and it appearsto be an easier problem sin
e GROUP-ISO has an nO(log n) time algorithm. In our approa
h toput GROUP-ISO in NP \ 
oNP, we basi
ally pro
eed along similar lines as the above-mentionedresear
h on Graph Isomorphism. However, there are two 
ru
ial results for GROUP-ISO, that allowus to derive new derandomization results for GROUP-ISO (not appli
able to Graph Isomorphism).On the one hand, we design an AM proto
ol for GROUP-NONISO in whi
h Arthur uses only apolylogarithmi
 number of random bits and Merlin uses a polylogarithmi
 number of guess bits.On the other hand, we exploit the fa
t that the inputs (for solvable groups) admit short en
odingsin a 
ertain pre
ise sense. We fo
us upon the 
ase of solvable groups. It is known that solvablegroups have short presentations [7℄. It turns out that from su
h a presentation for a solvable groupG, a group isomorphi
 to G 
an be easily re
omputed (in time polynomial in jGj).2



In Se
tion 4 we use a derandomization method due to Goldrei
h and Wigderson [12℄. The ideahere is to extra
t randomness from the input string (using an extra
tor with suitable parameters).Noti
e that there is a penalty in
urred in this approa
h: the derandomization pro
edure might bein
orre
t on the small fra
tion of input instan
es from whi
h not enough randomness 
an be ex-tra
ted. We use this method to show that the AM proto
ol for GROUP-NONISO 
an be transformedinto a polynomial time nondeterministi
 algorithm that 
orre
tly solves the problem on all but atmost 2logO(1) n of the groups of order n. The fa
t that solvable groups have short presentations asdes
ribed plays a 
ru
ial role. Also, it is important to mention that this result does not rely onany unproven hardness assumptions. Su
h a derandomization is not known for the AM proto
olfor Graph Isomorphism.In Se
tion 5, we further analyze the AM proto
ol for GROUP-NONISO and observe that the 
ru-
ial veri�
ation part that Arthur has to do for solvable groups of order n, 
an in fa
t be done in poly-logarithmi
 spa
e in n. Using this fa
t we apply the Nisan-Wigderson [19℄ generator to derandomizethe AM proto
ol for GROUP-NONISO under the plausible assumption EXP 6� i:o�PSPACE.2 Thishardness assumption is weaker than the assumption used in [17℄, whi
h is the only known uniformhardness assumption for derandomizing the 
lass AM.We observe here that our derandomization results 
annot be used for arbitrary AM proto
olswhi
h use polylog(n) random bits and guess bits. Our results exploit properties that are spe
i�
to the Group Isomorphism problem.In Se
tion 7 we brie
y outline how these results 
an be extended to arbitrary �nite groupsassuming an unproven 
onje
ture on short presentations for �nite groups [7℄.In Se
tion 6 we apply the AM proto
ol result to show that Group Isomorphism 
annot be 
om-plete for the limited nondeterminism 
lass NP(log2 n) unless the 
oNP-
omplete problem CLIQUEhas polynomial-size proofs that 
an be 
he
ked in subexponential time with a polynomial-size ad-vi
e. We also show that the hardness of Group Isomorphism for the parameterized 
lass W[1℄ wouldhave a similar unlikely 
onsequen
e for CLIQUE. These results are for general groups.Most of the 
on
epts used in the paper are de�ned when required. For the de�nition of standard
omplexity 
lasses we refer the reader to books in the area like [4, 21℄.2 AM proto
ol for Group NonisomorphismDenote by AM(r(n); s(n)) the 
lass of languages a

epted by 2-round AM proto
ols, with errorprobability 1=4, in whi
h Arthur uses O(r(n)) random bits and Merlin uses O(s(n)) nondetermin-isti
 bits. Formally, a language L is in AM(r(n); s(n)) if there is a set B 2 P su
h that for all x,jxj = n, x 2 A ) Probw2Rf0;1gr0(n) [9y; jyj = s0(n) : hx; y; wi 2 B℄ � 3=4;x 62 A ) Probw2Rf0;1gr0(n) [8y; jyj = s0(n) : hx; y; wi 2 B℄ � 1=4;where r0 and s0 are fun
tions in O(r(n)) and O(s(n)) respe
tively. Noti
e that the above de�nitionis equivalent to the de�nition in terms of 2-round Arthur-Merlin proto
ols. Indeed, the standardAM 
lass is AM(nO(1); nO(1)).We present a two-round AM proto
ol for Group Nonisomorphism that has 
onstant su

essprobability, and Arthur uses O(log6 n) random bits and Merlin uses O(log2 n) nondeterministi
bits. Thus Group Nonisomorphism is in AM(log6 n; log2 n).2A language L is in i:o�PSPACE if there is a PSPACE ma
hine that is 
orre
t on L for in�nitely many inputlengths. 3



Let G be a group with n elements. A sequen
e of k group elements X = (g1; : : : ; gk) is 
alled a
ube generating k-sequen
e for G ifG = fg�11 g�22 � � � g�kk j �i 2 f0; 1gg:The set fg�11 g�22 � � � g�kk j �i 2 f0; 1gg is the 
ube Cube(X) generated by the sequen
e X. Erd�osand Renyi [9℄ proved the following important theorem about the probability that Cube(X) = G,for a k-sequen
e X 
hosen uniformly at random from Gk.Theorem 2.1 [9℄ Let G be a �nite group with n elements. For k � log n+log logn+2 log 1=Æ+5,ProbX2RGk [X is a 
ube generating sequen
e for G℄ > 1� Æ:For G with n elements we 
hoose k = 4 log n and obtain the following useful 
orollary.Corollary 2.2 Let G be a �nite group with n elements and k = 4 log n. ThenProbX2RGk [u is a 
ube generating sequen
e for G℄ > 1� 1=n:In parti
ular, for k = 4 log n, more than (1 � 1=n)n4 log n sequen
es in Gk are 
ube generatingsequen
es for G.Now, we make the following easy observation.Proposition 2.3 Let G be a group with n elements and S be a set of n elements. Let � : G! S bea 1-1 onto fun
tion. Then there is a group H (de�ned on the set S) su
h that � is an isomorphismfrom G to H. Furthermore, given � and the Cayley table for G, the Cayley table for H 
an be
omputed in polynomial time.Proof: It is easy to see that the group multipli
ation for H de�ned as follows will suÆ
e:x � y = �(��1(x)��1(y)):Now, let G be a group with n elements and X = (g1; g2; : : : ; gk) be a 
ube generating sequen
efor G. There is a natural 1-1 mapping �X : G ! f0; 1gk that is de�ned by the 
ube generatingsequen
e X. The mapping �X is de�ned as follows: �X(g) = (�1; �2; : : : ; �k), where (�1; �2; : : : ; �k) isthe lexi
ographi
ally �rst k-tuple in f0; 1gk su
h that g = g�11 g�22 � � � g�kk . Clearly �X is an inje
tivemapping and, given the Cayley table for G as input, �X 
an be 
omputed in polynomial time.Let S = �X(G). Applying the algorithm des
ribed in Proposition 2.3 we 
an 
onstru
t theCayley table of a group H isomorphi
 to G, where the isomorphism is given by the mapping �X .We summarize this pro
edure in the following lemma.Lemma 2.4 Let G be a group with n elements given by its Cayley table, and X is a 
ube generatingk-sequen
e for G. There is a polynomial (in n) time pro
edure B that takes as input the pair (X;G)and outputs a pair (Y;H), where H is the Cayley table of a group de�ned on the set �X(G) � f0; 1gkand Y = �X(X) is a 
ube generating sequen
e for H.
4



Proof: It suÆ
es to note that given �X , we 
an apply the algorithm in Proposition 2.3 and 
omputethe group H as a Cayley table in polynomial time. Furthermore, sin
e G is isomorphi
 to H, it iseasy to see that the image of X under the isomorphism will be a 
ube generating sequen
e for H.The following proposition is an important property of B.Proposition 2.5 Let G1 and G2 be groups of order n and � be an isomorphism from G1 to G2. LetX be a 
ube generating k-sequen
e of G1. Then B(X;G1) = (Y;H) implies B(�(X); G2) = (Y;H).Proof: Let X = (g1; : : : ; gk). Clearly, �(X) = (�(g1); : : : ; �(gk)) is a 
ube generating k-sequen
efor G2. To prove the proposition, it suÆ
es to observe that for every g 2 G1, g = g�11 g�22 � � � g�kk if andonly if �(g) = �(g1)�1�(g2)�2 � � ��(gk)�k . Thus, �X(g) = (�1; : : : ; �k) if and only if ��(X)(�(g)) =(�1; : : : ; �k).Now, for a group G with n elements we de�ne the following set.C(G) = f(S;H; ) j there is a 
ube generating 4 log n-sequen
e X � G su
h thatB(X;G) = (S;H) and  2 Aut(H)g:Lemma 2.6 If G1 and G2 are isomorphi
 �nite groups then C(G1) = C(G2) and if G1 and G2are nonisomorphi
 then C(G1) \ C(G2) = ;.Proof: Suppose G1 and G2 are isomorphi
 and � is an isomorphism from G1 to G2. Let(S;H; ) 2 C(G1) and B(X;G1) = (S;H). By Proposition 2.5 we have B(�(X); G2) = (S;H).Thus, (S;H; ) 2 C(G2). It follows that C(G1) � C(G2). By a similar argument, C(G2) � C(G1),and hen
e C(G1) = C(G2).On the other hand, suppose (S;H; ) is C(G1) \ C(G2). Then 
learly it follows that G1 �= Hand G2 �= H, whi
h implies that G1 �= G2.Let C(G1; G2) = C(G1)[C(G2). We estimate the size of C(G1; G2) in the two 
ases: G1 �= G2and G1 � G2.Lemma 2.7 For a group G with n elements(1� 1=n)n4 logn � jC(G)j � n4 log n:Proof: Let k = 4 log n and Nk(G) � Gk be the 
olle
tion of 
ube generating k-sequen
es for thegroup G. By Theorem 2.1 and Corollary 2.2 we have(1� 1=n)n4 log n � jNk(G)j � n4 log nby the 
hoi
e of k = 4 log n.It suÆ
es to show that jNk(G)j = jC(G)j. We 
onsider the following natural a
tion of theautomorphisms of G on 
ube generating k-sequen
es in G: � 2 Aut(G) maps a 
ube generatingk-sequen
e X = (g1; : : : ; gk) to the 
ube generating k-sequen
e �(X) = (�(g1); : : : ; �(gk)). Now,let X1 and X2 be two 
ube generating k-sequen
es of G su
h that B(X1; G) = B(X2; G) = (S;H).Then ��1X2�X1 is an automorphism of G that maps X1 to X2. On the other hand, suppose � is an5



automorphism of G. Let B(X1; G) = (S;H), where X1 is a 
ube generating k-sequen
e of G. Then,by Proposition 2.5, B(�(X1); G) = (S;H). Thus, for two 
ube generating k-sequen
es X1 and X2of G, B(X1; G) = B(X2; G) = (S;H) if and only if there is an automorphism � of G that maps thesequen
e X1 to the sequen
e X2. Noti
e that only the identity automorphism of G �xes a 
ubegenerating k-sequen
e. Hen
e, it follows that for ea
h (S;H; ) 2 C(G) there are exa
tly jAut(G)jgenerating k-sequen
es X su
h that B(X;G) = (S;H). But (S;H; ) 2 C(G) implies H and Gare isomorphi
 and therefore jAut(G)j = jAut(H)j. Putting it together, it follows that jC(G)j isexa
tly the number of 
ube generating k-sequen
es of G. I.e. jNk(G)j = jC(G)j.We have the immediate 
orollary whi
h is 
ru
ial to the AM proto
ol.Corollary 2.8 Let G1 and G2 be groups of n elements. For n > 4 we have:1. G1 �= G2 implies jC(G1; G2)j � n4 log n.2. G1 � G2 implies jC(G1; G2)j > 1:5n4 log n.Proof: It dire
tly follows from the previous lemma that if G1 and G2 are isomorphi
 groups of nelements then (1 � 1=n)n4 log n � jC(G1; G2)j � n4 log n and if G1 and G2 are nonisomorphi
 then(1� 1=n) � 2 � n4 log n � jC(G1; G2)j � 2 � n4 log n. The 
orollary follows as (2� 2=n) > 1:5 for n > 4.In the sequel let m denote n4 log n. Let the set X be the 7-fold Cartesian produ
t C(G1; G2)7of C(G1; G2) with itself. As we have shown above, if G1 �= G2 then jXj � m7 and if they are notisomorphi
 then jXj � 1:57 �m7. Although jXj = nO(log n), the elements in X have polynomial inn length. We 
an assume that ea
h element x 2 X is en
oded as a positive integer num(x), sothat in the AM proto
ol (whi
h we are about to des
ribe) we 
an use �ngerprints obtained fromChinese remaindering in order to restri
t the number of random bits needed. Let p be a randomprime number of log3 n bits. Sin
e jXj = nO(log n), with probability more than 1 � 2� log2 n thefollowing event su

eeds: num(x) (mod p) 6= num(y) (modp) for every pair x; y 2 X su
h thatx 6= y. Call p a good prime if this event su

eeds for p. For a good prime, let Xp denote the setfnum(x) (modp) j x 2 Xg. Then jXpj = jXj for good primes p. Noti
e that elements of Xp 
anbe represented as bit strings of length t = log3 n. In the �rst part of the proto
ol Arthur sele
tsa random prime number p of log3 n bits. This 
an be done by sampling random numbers for thegiven length and using the primality test algorithm [1℄. With a sample of size O(log3 n), Arthurhas a 
onstant su

ess probability of pi
king a random prime number. Thus, O(log6 n) randombits are needed for this �rst task.We now re
all a version of Sipser's hashing lemma [23℄.Lemma 2.9 Let X be a nonempty subset of �t that does not 
ontain 0n. Let S be a randomvariable denoting the number of strings in X mapped to 0k by a uniformly 
hosen random lineartransformation h over F 2, h : �t ! �k. Then we have E(S) = 2�k � jXj and Var(S) = 2�k(1 �2�k) � jXj.Let k = log(4m7) and let h : �t ! �k be a random linear transformation as in the abovelemma, where Xp � �t. We are interested in the event that there is an x 2 Xp su
h that h(x) = 0k.By the above lemma, if G1 � G2 then E(S) � 4 and E(S) � 1=4 otherwise. Using Chebyshev'sinequality it now follows that if G1 �= G2 thenProbh[9x 2 Xp : h(x) = 0k℄ � 1=46



and if G1 � G2 we have Probh[9x 2 Xp : h(x) = 0k℄ � 3=4:We now des
ribe the AM(log6 n; log2 n) proto
ol below.Arthur Randomly sample numbers of log3 n bits until a prime number p is found. If after 5 log n trialsno prime number has been found, then reje
t the input. Otherwise pi
k a random F 2-linearfun
tion h : �t ! �k, where t = log3 n and k = log(4m7). Send p and h to Merlin.Merlin Sends ba
k two 7-tuples hx1; : : : ; x7i and hi1; : : : ; i7i. Where for j = 1; : : : ; 7, ij 2 f1; 2gand xj = (Sj; Tj ;  j), where Sj is a sequen
e of elements of f0; 1g4 log n of length 4 log n, Tjis a 
ube generating 4 log n-sequen
e for the group Gij , and  j : Sj ! f0; 1g4 log n is a 1-1mapping.Arthur For ea
h j = 1; : : : ; 7, Arthur does the following veri�
ation, all in polynomial time: Letxj = (Sj; Tj ;  j). Computes B(Tj; Gij ) = (S;Hj) and veri�es that S = Sj. Then usingthe group multipli
ation of Hj, Arthur extends  j to all of Hj and veri�es that it is anautomorphism of Hj. Now, let yj = (Sj;Hj ;  j) for 1 � j � 7 and let y = hy1; : : : ; y7i whi
his an element of X. Verify that h(num(y) (modp)) = 0k and if so, a

ept the pair (G1; G2)as nonisomorphi
.The analysis given before the proto
ol proves that the AM proto
ol a

epts nonisomorphi
 pairswith probability 1=2 + � and reje
ts isomorphi
 pairs with probability 1=2 + �, for some 
onstant� > 0. Furthermore, noti
e that Arthur uses O(log6 n) random bits and Merlin uses O(log2 n)nondeterministi
 bits. The error probability 
an be bounded by 1=4 whi
h only a 
onstant fa
torin
rease in the random bits of Arthur and nondeterministi
 bits of Merlin. We have thus provedthe following theorem.Theorem 2.10 There is a 2-round AM proto
ol with error probability 1=4 for Group Nonisomor-phism in whi
h Arthur uses O(log6 n) random bits and Merlin uses O(log2 n) nondeterministi
 bits.Hen
e, the problem is in AM(log6 n; log2 n).Remark. We brie
y explain how to eÆ
iently 
ompute num(y)(modp), given y = hy1; : : : ; y7i 2X, where yj = (Sj ;Hj;  j) for 1 � j � 7.Consider yj. Ea
h Tj is 
ontained in f0; 1g4 log n and has 4 log n elements. It 
an be en
odedas a binary string of length (4 log n)2. Similarly, ea
h Hj is a list of n2 triples from f0; 1g4 log n �f0; 1g4 log n�f0; 1g4 logn and 
an be en
oded as a binary string of length 12n2 log n. Likewise, ea
h�j 
onsists of 4 log n pairs of strings from f0; 1g4 log n, and 
an be en
oded as a binary string oflength 2(4 log n)2. The entire en
oding is a 
on
atenation of the en
odings of the yj, pre�xed bya 1 to give us num(y). The length of num(y) is 7(12n2 log n+ 3(4 log2 n)) + 1. Furthermore, it iseasy to see that given y as input we 
an 
ompute num(y)(modp) polynomial time and polylog(n)spa
e.We note here, without proof, that it is also possible to give a 2-round IP proto
ol for GroupNonisomorphism whi
h is somewhat more eÆ
ient in the number of random bits used by the veri�er.
7



3 Short Presentations for Solvable GroupsThe goal in the next se
tions is to derandomize the AM proto
ol for the 
ase of solvable groups. Wewill present two derandomization results. A key ingredient for these results is the representation ofthe groups is a su

in
t way in terms of generators and relations. To this end we need to developsome group theory, in
luding some simple algorithms.We re
all some group-theoreti
 de�nitions. Let A and B be two groups. We write B < A todenote that B is a subgroup of A. The subgroup B of A is said to be normal if for all a in A,aB = Ba, and we write BCA to denote that B is a normal subgroup of A. A group is simple if itdoes not 
ontain any nontrivial normal subgroups.A normal series of a group A is a �nite sequen
e of subgroups A0; : : : ; Ak su
h thatI = A0 CA1 C : : :CAk = A:A normal series is a 
omposition series if ea
h fa
tor group Ai+1=Ai is a simple group (i.e. ithas no nontrivial normal subgroup).A group A is solvable if it has a normal series su
h that ea
h normal fa
tor Ai+1=Ai is abelian.Equivalently, ea
h fa
tor in the 
omposition series for G will be 
y
li
.Let G be a solvable group with n elements given by its Cayley table. First, in time polynomialin n we 
an obtain a 
omposition series for G:G = Gk BGk�1 B � � �BG1 = f1g;where Gi+1=Gi is a 
y
li
 group of prime order, say pi, for i = 1; 2; : : : ; k � 1. Thus, n = Qk�1i=1 pi.To obtain su
h a 
omposition series in polynomial time, it suÆ
es to note that we 
an �nd anormal subgroup N of G in polynomial time: this is done by taking the normal 
losure of x 2 G fordi�erent elements x 2 G until one of them a
tually gives us a nontrivial normal subgroup. Note,that the normal 
losure of ea
h x 2 G n f1g gives the whole of G if and only if G is already simple(whi
h would mean G is 
y
li
 sin
e we are dealing with solvable groups). Now, the normal seriesG B N B f1g 
an be re�ned by re
ursively applying the same step to N and G=N . The overallalgorithm will be polynomial time (in n). This would also test G for solvability, be
ause if G is notsolvable then at least one of the fa
tor groups Gi+1=Gi in the 
omposition series will be nonabelian.Coming ba
k to the solvable 
ase, the algorithm will also give us a generator ai+1Gi for Gi+1=Gifor 1 � i � k � 1.Noti
e that every element of G is uniquely expressible as alkk alk�1k�1 : : : al22 , where 0 � lj � pj � 1for ea
h j. Thus, we 
an rename the elements of G using su
h produ
ts alkk alk�1k�1 : : : al22 and rewritethe Cayley table using these produ
ts.De�nition 3.1 A presentation of a group G with n elements is a pair (X;R) whereX is a generating set for G,R is a set of words over G [G�1 su
h that w 2 R de�nes the equation w = 1 and(X;R) de�nes the group G in the sense that there is an algorithm that on input a presentationfor a group G 
omputes the Cayley table of a group G0 isomorphi
 to G.For a 
onstant 
 > 0 we say that a presentation (X;R) is 
-short if its length j(X;R)j is at mostlog
 n. 8



We now show that in time polynomial in n we 
an 
onvert the 
omposition series for G intoa short presentation for G with generating set fa2; : : : ; akg = X. This is done indu
tively, byobtaining it for Gi for in
reasing values of i starting from i = 1. The base 
ase is trivial fori = 1. Thus, it 
learly suÆ
es to show that if (Xi; Ri) is a short presentation for Gi, then in timepolynomial in n we will obtain a short presentation (Xi+1; Ri+1) for Gi+1.We let Xi+1 = Xi[fai+1g. In order to de�ne Ri+1 we only need to use ai+1Gi = Giai+1, whi
hfollows from the normality of Gi in Gi+1. In parti
ular, this will give rise to the following set ofrelations. api+1i+1 = ui+1 ; where ui+1 2 Gi: (1)ajai+1 = ai+1wi+1;j : 1 � j � i; wi+1;j 2 Gi: (2)(3)Noti
e that here ui+1 and wi+1;j are words of the form alii ali�1i�1 : : : al22 , where 0 � lj � pj � 1 forea
h j, de�ning elements of Gi, as explained.We de�ne Ri+1 as the union of the above relations and Ri and 
laim that (Xi+1; Ri+1) de�nesthe group Gi+1. To see this it suÆ
es to note that Ri+1 
ompletely spe
i�es the Cayley table for G,in terms of the renamed elements ali+1i+1 alii : : : al22 . This is be
ause, the relations in Ri+1 will 
learlyallow arbitrary words over Xi+1 to be rewritten in the form ali+1i+1alii : : : al22 , where 0 � lj � pj � 1for ea
h j. Thus we have the following theorem.Theorem 3.2 Let G be solvable group with n elements, where G is given by its Cayley table, andlet G = GkBGk�1B� � �BG1 = f1g be a 
omposition series for G, where Gi+1=Gi is a 
y
li
 group ofprime order pi+1 generated by ai+1Gi for ea
h i. Then there is a polynomial (in n) time algorithmthat indu
tively 
omputes a short presentation (X;R) for G, des
ribed above, whi
h in
ludes a shortpresentation (Xi; Ri) for ea
h group Gi in the 
omposition series. Moreover, the size j(X;R)j ofthe short presentation is 
 log
 n, where 
 is a �xed 
onstant independent of the group.We now des
ribe an algorithm that on input a presentation (X;R) for a group G, 
onstru
tedas above, eÆ
iently 
omputes the Cayley table of a group G0 isomorphi
 to G. Let G be a solvablegroup with n elements given by a short presentation (X;R) obtained from G by applying thealgorithm of Theorem 3.2. Consider X = fak; ak�1; : : : ; a2g as an ordered list. Then the elementsofG0 will 
onsist of words of the form alkk alk�1k�1 : : : al22 , where 0 � lj � pj�1 for ea
h j. Noti
e that theprimes pj are already part of the presentation. We now des
ribe how to obtain the Cayley table forG0 from (X;R). Sin
e X is an ordered list, we 
an eÆ
iently obtain from (X;R) the presentations(Xi; Ri) for 2 � i � k, where (Xk; Rk) = (X;R), and the generating list Xi = fai; : : : ; a2g. Let G0ibe the group de�ned by (Xi; Ri) for 2 � i � k (note that G01 = f1g). We will obtain the Cayleytable for Gi indu
tively, for in
reasing values of i. It suÆ
es to show how to obtain the Cayleytable for G0i+1 from (Xi+1; Ri+1), given the Cayley table for G0i. Noti
e that elements of G0i+1 areali+1i+1 alii : : : al22 , where 0 � lj � pj � 1 for ea
h j. Thus, we only need to express the produ
t ofea
h pair of elements ali+1i+1 alii : : : al22 and ami+1i+1 amii : : : am22 from G0i+1 again as an element of G0i+1.To this end, write ali+1i+1 alii : : : al22 as ali+1i+1u and ami+1i+1 amii : : : am22 as ami+1i+1 v, where u; v 2 G0i. Now,by repeatedly applying the relations de�ned in Equation 1, in time polynomial in n we 
an rewriteali+1i+1uai+1 as ali+1i+1u � ai+1 = ali+1+1i+1 v1v2 : : : vr = ali+1+1i+1 w; (4)9



where the vj's are elements of G0i and r =Pi+1t=2 lt, and v1v2 : : : vr = w 2 G0i obtained in polynomialtime by using the multipli
ation of G0i. It is 
lear, that on mi+1 appli
ations of the rewrite rulegiven by Equation 4, we will obtain an element of the form ali+1+mi+1i+1 w0, where w0 2 G0i. Finally,we 
an further use Equation 1 to redu
e ali+1+mi+1i+1 w0 to ali+1w, where 0 � l � pi+1 � 1. Clearly,the 
omputation of this entry of the Cayley table requires polynomial in n time. Pro
eeding thus,the Cayley table for G0 
an be obtained in polynomial time. It is 
lear that G is isomorphi
 to G0.We summarize the above observation.Theorem 3.3 Let (X;R) be a short presentation as obtained by Theorem 3.2, for a solvable groupG with n elements. There is an algorithm with running time bounded by a polynomial in n that
onstru
ts from (X;R) the Cayley table of a group G0 that is isomorphi
 to G.The polynomial time algorithm of Theorem 3.2 
an be modi�ed to a polylog(n) spa
e boundedalgorithm that takes (X;R) (obtained from a solvable group G of order n) as input and outputsthe Cayley table of a group G0 isomorphi
 to G. This will be needed in the se
ond derandomizationresult. For this we �rst note that the algorithm of Theorem 3.3 is essentially a breadth-�rst sear
halgorithm: we need to 
ompute and store the table for G0i, whi
h is used to build the table for G0i+1.Thus, we get a polynomial time algorithm that requires O(nO(1)) spa
e. However, instead of storingthe table for G0i we 
an re
ursively 
ompute the produ
t of two words u; v 2 G0i when required.Noti
e that for the re
ursive 
omputation what is put on the sta
k, for ea
h re
ursive 
all, is ofpolylog(n) size and the depth of the re
ursion is bounded by log n (whi
h bounds the length of the
omposition series). Thus, the overall spa
e required by this modi�ed algorithm (whi
h is depth-�rst) is polylog(n). Observe that the time taken by this algorithm is not polynomial anymore. Wesummarize this observation in the following theorem.Theorem 3.4 Let (X;R) be a short presentation as obtained by Theorem 3.2, for a solvable groupG with n elements. There is a spa
e-bounded algorithm that requires spa
e logO(1) n, and on input(X;R) 
onstru
ts the Cayley table of a group G0 that is isomorphi
 to G.4 Derandomization without AssumptionsThroughout this se
tion we assume that the input instan
es (G1; G2) for GROUP-ISO are su
hthat G1 and G2 are solvable groups. Given an instan
e (G1; G2), by applying the algorithm ofTheorem 3.2 and then the algorithm of Theorem 3.3 to both G1 and G2 we 
an obtain a new pairof groups (G01; G02) su
h that G1 �= G2 if and only if G01 �= G02. We 
all su
h an instan
e (G01; G02) aredu
ed instan
e of GROUP-ISO. The key observation of this se
tion is that there is a 
onstant 
su
h that the number of redu
ed instan
es (G01; G02) for pairs of graphs with n elements is boundedby 2log
 n. This is immediate from the bound on the size of short presentations for solvable groupsgiven in Theorem 3.2.Lemma 4.1 The number of redu
ed instan
es (G01; G02) is bounded by 2log
 n for a �xed 
onstant
 > 0, where G01 and G02 are groups with n elements.For the derandomization of the AM proto
ol for GROUP-NONISO we give an easy generalizationof a theorem from the Goldrei
h and Wigderson paper [12, Theorem 3℄ for a nondeterministi
 set-ting. The idea is to try and derandomize 
ertain advi
e-taking randomized algorithms by extra
tingrandomness from the input. It 
an be proved almost exa
tly as [12, Theorem 3℄.10



Theorem 4.2 Let M be an advi
e-taking NP ma
hine for a problem �, where the length of theadvi
e is bounded by log
m for some 
onstant 
, for inputs x 2 f0; 1gm. Suppose it holds that atleast 2=3 fra
tion of the log
m-bit advi
e strings are good advi
e strings. More pre
iselyProbw2f0;1glog
 m [8x 2 f0; 1gm it holds that M(x;w) is 
orre
t℄ � 2=3:Then for every � > 1, there is an NP ma
hine M 0 for � that is in
orre
t on at most 2log
�m inputsx 2 f0; 1gm.In order to be able to use this result we have to transform the AM proto
ol for GROUP-NONISOof Se
tion 2 into an advi
e taking NP ma
hine (with short advi
e) for the problem. The standardampli�
ation of the su

ess probability of the AM proto
ol would not work sin
e the resultingadvi
e string would be of polynomial length. We show how the AM proto
ol 
an be modi�ed inorder to avoid this problem.Fix a standard en
oding of an instan
e (G1; G2) of groups of with n elements by a binary stringof length m = Cn2dlog ne, where C is some �xed 
onstant. Furthermore, we 
an assume that boththis en
oding and its inverse are 
omputable in time polynomial in n. In this se
tion m stands forthis number. We 
an assume that the AM proto
ol Se
tion 2 takes as input a string x 2 f0; 1gmand �rst 
he
ks if it en
odes an instan
e (G1; G2) of solvable groups and reje
ts if it does not. We
an think of the binary strings x as the input to the AM proto
ol.The AM proto
ol of Se
tion 2 is modi�ed as follows: on input x 2 f0; 1gm, �rst Arthur de
odesx to get (G1; G2) and 
he
ks that G1 and G2 are solvable groups. Then, applying the algorithmsof Theorems 3.2 and 3.3 in su

ession, Arthur 
onverts (G1; G2) to a redu
ed instan
e (G01; G02).Now, Arthur starts the AM proto
ol for the redu
ed instan
e (G01; G02). Merlin is also supposed to
ompute (G01; G02) and exe
ute his part of the proto
ol for (G01; G02). Observe that by Lemma 4.1there are only 2log
 n redu
ed instan
es for a �xed 
onstant 
 > 0. Noti
e that e�e
tively the originalAM proto
ol is now being applied only to redu
ed instan
es. By standard methods of amplifyingthe su

ess probability of the AM proto
ol, we 
an 
onvert the AM proto
ol to a (logO(1) n size)advi
e taking NP ma
hine M . We summarize the above observation as a theorem.Theorem 4.3 There is an (log(O(1) n size) advi
e-taking NP ma
hineM for GROUP-NONISO su
hthat that for inputs x 2 f0; 1gm the following holds:Probw2f0;1glog
 n [8x 2 f0; 1gm it holds that M(x;w) is 
orre
t℄ � 2=3:The AM proto
ol 
an be transformed using well-known te
hniques into a one-sided error proto
olfor GROUP-NONISO su
h that when the input groups are nonisomorphi
, the proto
ol a

eptswith probability 1, where the proto
ol still uses only a polylogarithmi
 number of random bits.Consequently, the advi
e-taking NP ma
hine M de�ned above also has only one-sided error.Now, applying Theorems 4.3 and 4.2 we immediately have the following 
onsequen
e for GROUP-ISOin the 
ase of solvable groups.Theorem 4.4 For some 
onstant 
 > 1 there is an NP \ 
oNP ma
hine M for GROUP-ISO forsolvable groups that is in
orre
t on at most 2log
m inputs x 2 f0; 1gm for every m.The proof follows by 
ombining the standard NP ma
hine for GROUP-ISO with the NP ma
hineM 0 for GROUP-NONISO given by Theorem 4.2. Observe that M 0 may be in
orre
t only when itsinput is a pair of isomorphi
 groups. 11



5 Derandomization under the Assumption EXP 6� i:o�PSPACEIn the previous se
tion we proved, un
onditionally, that there is an NP \ 
oNP ma
hine M forGROUP-ISO for solvable groups that is in
orre
t on only a few inputs. In this se
tion we applythe Nisan-Wigderson pseudorandom generator 
onstru
tion to prove that GROUP-ISO for solvablegroups is in NP \ 
oNP assuming EXP 6� i:o�PSPACE=poly3. Sin
e EXP � i:o�PSPACE=polyimplies EXP � i:o�PSPACE the result holds also under the uniform hardness assumption EXP 6�i:o�PSPACE.Theorem 5.1 If EXP 6� i:o�PSPACE=poly then GROUP-ISO for solvable groups is in NP\
oNP.Proof:Noti
e that in order to derandomize the AM proto
ol for GROUP-NONISO, it suÆ
es to build apseudorandom generator that stret
hes O(log n) random bits to O(log6 n) random bits, su
h thatthe pseudorandom string of O(log6 n) bits 
annot be distinguished from a truly random string ofthe same length by the proto
ol.We start by 
arefully examining the AM proto
ol for GROUP-NONISO. Similar to the proof ofTheorem 4.4, in the proto
ol Arthur begins by 
onverting the input instan
e (G1; G2) to a redu
edinstan
e (G01; G02) (Merlin is expe
ted to exe
ute his steps of the proto
ol for (G01; G02)). This isPhase I of the proto
ol. In Phase II of the proto
ol Arthur pi
ks a random hash fun
tion h anda random prime p, of suitable size as explained in the proto
ol, using O(log6 n) random bits andsends these to Merlin.The remainder of the proto
ol is Phase III: Merlin sends ba
k a string x of length O(log2 n) andArthur then performs a polynomial (in n) time deterministi
 
omputation. This �nal 
omputationof Arthur 
onsists of two parts. The �rst part 
onverts the string x to a string y = f(x) that is oflength O(n2 logn). It then 
onverts y to the natural number num(y) and 
omputes a t bit stringz = (num(y))(mod p). Then Arthur veri�es that h(z) = 0k. We re
all from the proto
ol des
riptionthat t, k, the sizes of h and p are all polylog(n) bits.Next, we will restru
ture Phase III of Arthur's 
omputation as an ora
le 
omputation withrunning time polynomial in log n. This is the 
ru
ial part of the proof.For that purpose we de�ne the following language L. Let (Y1; R1) and (Y2; R2) be the shortpresentations 
orresponding to the solvable groups G01 and G02 respe
tively, 
omputed in Phase Iby Arthur, as explained in Theorems 3.2 and 3.3.L = f((Y1; R1); (Y2; R2); h; p) j 9x = (x1; : : : ; x7) : xj = (Xj ; bj ; Tj ; �j) ; B(Xj ; Gbj ) = (Tj ;Hj);ea
h w 2 Xj is expressed usingYbj and �j : Tj ! f0; 1g4 log nextends to an automorphism of Hj ; 1 � j � 7 ; and h(num(y)(modp)) = 0kwhere y = ((T1;H1; �1); : : : ; (T7;H7; �7))gObserve that the languages L is designed so that Phase III of the AM proto
ol 
an be repla
edwith a single query to L, where (Y1; R1) and (Y2; R2) are the short presentations 
omputed for G1and G2 respe
tively. Thus the entire AM proto
ol 
an be repla
ed by the following three steps:1. On input G1 and G2, 
ompute their short presentations (Y1; R1) and (Y2; R2).3A language L is in i:o�PSPACE=poly if there is a PSPACE ma
hine that takes polynomial-size advi
e and is
orre
t on L for in�nitely many input lengths. 12



2. Uniformly at random pi
k h and p using O(log6 n) random bits.3. Query L for ((Y1; R1); (Y2; R2); h; p) and a

ept if it is in L.It is 
lear that on all inputs (G1; G2) the above 
omputation has the same a

eptan
e probabilityas the AM proto
ol.Furthermore, a 
ru
ial property of the language L is the following.Claim 1. Che
king if ((Y1; R1); (Y2; R2); h; p) is in L 
an be done in polylog(n) spa
e, where n isthe size of the inputs groups.To prove the 
laim we outline a polylog(n) spa
e algorithm by explaining its main aspe
ts:� In the de�nition of L noti
e that the guess x = (x1; : : : ; x7) is of length O(log2 n). Thepolylog(n) spa
e algorithm will exhaustively sear
h for x by 
y
ling through all strings oflength O(log2 n). Observe that for an x = (x1; : : : ; x7), where xj = (Xj ; bj ; Tj ; �j), ea
hw 2 Xj is expressed in terms of the generators in Yj. From Se
tion 3 we know that su
h anexpression is of polylog(n) size.� For an x = (x1; : : : ; x7), where xj = (Xj ; bj ; Tj ; �j), we need to simulate algorithm B inpolylog(n) spa
e to 
ompute B(Xj ; G0bj ) = (Tj ;Hj).The diÆ
ulty is in 
omputing the table for the n element group Hj (isomorphi
 to G0bj ).However, noti
e that we are interested in 
omputing the �nal value num(y)(mod p), wherey = ((T1;H1; �1); : : : ; (T7;H7; �7)). From the de�nition of num(y) (see remark at the end ofSe
tion 2), it is easy to see that in order to 
ompute num(y)(mod p), it suÆ
es to generatethe string y from left to right, bit by bit. In turn, it implies that it suÆ
es to generate theentries of the Cayley table for Hj one by one, for ea
h Hj; 1 � j � 7. We do not need tostore the entire table for the Hj's.In order to generate the entries for Hj , we exploit the fa
t that Tj is a 
ube-generatingsequen
e for Hj. In parti
ular:(a) We 
an identify elements of Hj as strings in f0; 1g4 log n, as explained in Se
tion 2, by
y
ling through the produ
ts in the 
ube generated by Tj . This 
an be done in polylog(n)spa
e.(b) To �nd the entries of the Cayley table for Hj we need to use the Cayley table for G0bj .Although we do not expli
itly have the table for G0bj , we have its short presentation(Ybj ; Rbj ). Now, we 
an apply Theorem 3.4 in order to multiply elements of G0bj usingjust the presentation (Ybj ; Rbj ).Then, as des
ribed above, in polylog spa
e the entries of the table for Hj 
an be generated.As we obtain the entries for Hj in a lexi
ographi
 order, we are e�e
tively getting the tupley from left to right. We 
an 
onvert it into the bits of num(y) and in
rementally 
omputenum(y)(modp) with the following standard method: for the k-bit pre�x z of num(y) if wehave 
omputed z(modp) and we have the k + 1st bit of num(y), then 2z + 1(modp) is thek+1-bit pre�x of num(y) modulo p. Continuing thus, we will �nally 
ompute num(y)(mod p),and the algorithm now simply has to 
he
k if h(num(y)(mod p)) = 0k, whi
h 
an be done inpolylog(n) spa
e.Now, we are ready to des
ribe the derandomization. We shall use the Nisan-Wigderson pseu-dorandom generator [19℄, that stret
hes O(logn) random bits to O(log6 n) random bits using an13



EXP 
omplete language as the hard fun
tion. We re
all the 
onstru
tion and the key properties ofthe generator.Let r; l;m; k be positive integers. A 
olle
tion D = (D1; : : : ;Dr) of sets Di � f1; : : : ; lg is 
alleda (r; l;m; k)-design if kDik = m for all i, and for all i 6= j, kDi \Djk � k. Using D we get froma boolean fun
tion g : f0; 1gm ! f0; 1g a sequen
e of boolean fun
tions gi : f0; 1gl ! f0; 1g, i =1; : : : ; r, de�ned as gi(s1; : : : ; sl) = g(si1 ; : : : ; sim) where Di = fi1; : : : ; img. By 
on
atenating thevalues of these fun
tions we get a fun
tion gD : f0; 1gl ! f0; 1gr where gD(s) = g1(s) : : : gr(s). Nisanand Wigderson show [19, Lemma 2.4℄ that the output of gD looks random to a small deterministi

ir
uit, provided g is hard to approximate by deterministi
 
ir
uits of a 
ertain size (in other words,the hardness of g implies that the pseudorandom generator gD is se
ure against small 
ir
uits). Thefollowing makes this more pre
ise.For a set A let CIRA(n; s) stand for the set of n-input boolean fun
tions that 
an be 
omputedby deterministi
 
ir
uits of size at most s, having besides the normal gates ora
le gates evaluatingthe 
hara
teristi
 fun
tion of A.For an ora
le A, a boolean fun
tion g : f0; 1gm ! f0; 1g is said to be a CIRA(n; r(n))-hardfun
tion if 12 � 1r(n) < kfx 2 f0; 1gn j f(x) = g(x)gk2n < 12 + 1r(n)holds for all fun
tions g 2 CIRA(n; r(n)).Let r : N ! R+ and let L be any language. L is said to be CIRA(r)-hard if for all but �nitelymany n, the n-ary boolean fun
tion L=n is CIRA(n; r(n))-hard.We state a 
ru
ial lemma due to Nisan and Wigderson [19℄, in a form used in [2℄.Lemma 5.2 [19℄ Let D be a (r; l;m; k)-design and let g : f0; 1gm ! f0; 1g be an CIRA(m; r2+r2k)-hard fun
tion (for some ora
le A). Then the fun
tion gD has the property that for every r-input
ir
uit 
 of size at most r2,���Proby2Rf0;1gr [
A(y) = 1℄� Probs2Rf0;1gl [
A(gD(s)) = 1℄��� � 1=r:Choose r = O(log6 n), l = log n, m = plogn, and k = log log n. By [19, Lemma 2.5℄ weknow that there is an (r; l;m; k)-design, 
all it D, for these values, that is 
omputable in spa
ek = log log n, and hen
e in time polynomial in logn.Our goal is to derandomize the AM proto
ol using the pseudorandom generator gD that stret
hesan O(log n) bit random seed to O(log6 n) pseudorandom bits. From our pre
eding dis
ussion aboutthe AM proto
ol it is 
lear that it is Phase III of the proto
ol that uses the random bits h andp. Furthermore, the 
omputation of Phase III 
an be simulated by a polylog(n) size 
ir
uit withora
le L that takes as input the short presentations (Y1; R1) and (Y2; R2) and the random bits hand p.Now, let g be the 
hara
teristi
 fun
tion of an EXP-
omplete language in E. Furthermore, letthe language L de�ned above be the ora
le A of Lemma 5.2. As already explained, Phase III's
omputation 
an be 
arried out by a polylog(n) size 
ir
uit with L as ora
le.We 
laim that the derandomization is 
orre
t on all but �nitely many inputs.Suppose not. In parti
ular, suppose the derandomization of the AM proto
ol fails for some inputpair (G1; G2) of solvable groups. Let (Y1; R1) and (Y2; R2) be their short presentations 
omputed inPhase I. As a 
onsequen
e of the failure of the derandomization, it follows that the polylog(n) size14




ir
uit with ora
le L for Phase III with input �xed as (Y1; R1) and (Y2; R2) is a distinguisher 
ir
uitthat distinguishes between the output of gD and the truly random bits. Applying Yao's methodas explained in [19℄, we 
an 
onvert the distinguisher into a next bit predi
tor, and �nally obtaina polylog(n) size 
ir
uit with ora
le L that 
omputes g 
orre
tly on a 1=2 + 1= logO(1) n fra
tionof O(log n) size inputs. Noti
e here that we are using the fa
t that gD 
an be 
omputed in timepolynomial in logn.By applying the methods of [6℄, we 
an apply Yao's XOR lemma and the fa
t that EXPhas random-self redu
ible 
omplete sets to 
on
lude that an EXP-
omplete set 
an be 
orre
tly
omputed on all logn size inputs4 by a polylog(n) size 
ir
uit with ora
le L. This is true forin�nitely many input lengths logn (sin
e we assumed that the derandomization fails for in�nitelymany inputs). But that implies EXP � i:o�PSPACE=poly, 
ontradi
ting the hardness assumption.This 
ompletes the proof.Bal
�azar proved in [3℄ that EXP � PSPACE=poly implies the in
lusion of EXP in uniformPSPACE. The same holds for the 
ase of i.o. 
lasses, that is:Lemma 5.3 If EXP � i:o�PSPACE=poly then EXP � i:o�PSPACE.From this lemma and Theorem 5.1 the uniform derandomization result follows.Theorem 5.4 If EXP 6� i:o�PSPACE then GROUP-ISO for solvable groups is in NP \ 
oNP.6 Limited NondeterminismIn this se
tion we apply our AM proto
ol for GROUP-NONISO to show that GROUP-ISO 
annotbe 
omplete for the limited nondeterminism 
lass NP(log2 n) unless the 
oNP-
omplete problemCLIQUE has nonuniform subexponential size proofs. We also study the parameterized 
omplexityof the problem with the size of generating sets of the groups as parameter. We show that thehardness of Group Isomorphism for the parameterized 
lass W[1℄ would also imply an unexpe
tedupper bound for the 
omplexity of the 
lique problem.Complexity sub
lasses of NP that arise when the number of nondeterministi
 bits is boundedhave been de�ned in the literature in di�erent 
ontexts (see [11℄ for a survey). In parti
ular Kintalaand Fis
her introdu
ed in [14℄ sub
lasses on NP with a polylogarithmi
 number of nondeterministi
bits. Let us denote by NP(logk n) the sub
lass of NP in whi
h for an input of size n only O(logk n)nondeterministi
 steps are allowed. As we have seen in the introdu
tion, GROUP-ISO is 
ontainedin NP(log2 n). Papadimitriou and Yannakakis ask in [22℄ whether this problem is in fa
t 
ompletefor NP(log2 n). In this se
tion we give some eviden
e suggesting that this is not the 
ase. We showthat if GROUP-ISO is 
omplete for NP(log2 n) then the Clique problem is 
ontained in the 
lass
oNTIME[2o(n)℄=poly.We will 
onsider the following version of the general 
lique problem CLIQUE = fG j G has nverti
es and a 
lique of size n=2g. Noti
e that CLIQUE is NP-
omplete.Theorem 6.1 If GROUP-ISO is many-one 
omplete for NP(log2 n) then CLIQUE is in the 
lass
oNTIME[nO(1); 2O(log npn)℄=poly. I.e. for inputs of length n, CLIQUE has polynomial-size proofswhi
h 
an be veri�ed in 2O(log npn) time with a polynomial-size advi
e.4There will be 
hange in input length whi
h we 
an ignore here without a�e
ting the results.15



Proof: Consider the problem log-CLIQUE = f(G; k) j G has n verti
es, k � logn and G has a
lique of size kg. log-CLIQUE is 
learly in NP(log2 n). If GROUP-ISO is 
omplete for this 
lass,then there is a many-one polynomial time redu
tion from log-CLIQUE to GROUP-ISO and by theresults of the previous se
tion the 
omplement of the problem, log-CLIQUE 2 AM(log6; log2n).We will now apply an idea of Feige and Kilian [10℄: Let G be a graph with n nodes and forsimpli
ity assume that n=2 is a perfe
t square. We 
an 
onvert in time nO(pn) the instan
e G ofCLIQUE to a pair (G0; l0) in the following way: G0 is a graph with at most � npn=2� nodes. Ea
h nodeof G0 
orresponds to a subset of V (G) of size pn=2, and there is an edge between two nodes of G0if and only if their 
orresponding sets of nodes in G are disjoint and form a 
lique of size 2pn=2.Clearly G0 has a 
lique of size pn=2 if and only if G 2 CLIQUE. We set l0 to pn=2. Let N be thenumber of verti
es in G0. N = � npn=2�. l0 is smaller than logN and therefore (G0; l0) is an instan
eof the log-CLIQUEproblem. The AM proto
ol on input (G0; l0) will use O(log6N) random bits andO(log2N) nondeterministi
 bits. Also observe that the �nal deterministi
 
omputation done byArthur after the 
ommuni
ation rounds is of polynomial time in N . This implies the following
laim.Claim 6.2 There is an AM(nO(1); nO(1)) proto
ol for the 
oNP 
omplete problem CLIQUE, wherethe �nal deterministi
 
omputation done by Arthur after the 
ommuni
ation rounds is of time2O(log npn). Furthermore, the proto
ol has error probability bounded by 1=4.Applying the standard method of repeating the proto
ol nO(1) times and taking a majorityvote, we get an AM(nO(1); nO(1)) proto
ol for CLIQUE where the �nal deterministi
 
omputationdone by Arthur is still of time 2O(log npn) and the error probability is now bounded by 2�nO(1) . We
an derandomize the proto
ol by �xing for ea
h length n the random bits to an nO(1) size advi
estring. Thus, we have shown that CLIQUE is in NTIME[nO(1); 2O(log npn)℄=poly. This 
ompletesthe proof.6.1 Parameterized 
omplexity settingA di�erent perspe
tive to GROUP-ISO is given by the parameterized 
omplexity setting introdu
edby Downey and Fellows [8℄, whi
h is a useful and ri
h paradigm for 
lassifying problems. Parame-terized 
omplexity deals with problems where the instan
es are pairs (x; k) where the parameter k isusually a positive integer that measures the \size" of a solution to the input x. The parameterizedde
ision problem now is to test if there is a solution of size at most k (and the sear
h problem is to�nd su
h a solution). Algorithms with time bounds of the form f(k)nO(1), for arbitrary fun
tionsf , are 
onsidered eÆ
ient. Problems with su
h algorithms are �xed parameter tra
table. Analogousto NP-
ompleteness, there is a theory of hardness [8℄ whi
h 
lassi�es parameterized problems. Let� and �0 be two parameterized problems. A parameterized many-one redu
tions from � to �0maps instan
e (x; k) of � to instan
es (x0; k0) of �0, su
h that the running time of the redu
tionis bounded by f(k)jxjO(1) and k0 � f(k) for an arbitrary fun
tion f . Re
all from [8℄ that W[P℄ isthe 
lass of parameterized problems redu
ible via parameterized redu
tions to the weight-k 
ir
uitsatis�ability problem. The weight-k 
ir
uit value problem is: given a boolean 
ir
uit with n inputgates, is there an input of hamming weight k a

epted by the 
ir
uit. The k�CLIQUE problem isthe parameterized 
lique problem with instan
es (G; k) and the question is whether G has a 
liqueof size k. The 
lass W[1℄ 
an be de�ned as parameterized problems that are many-one redu
ible viaparameterized redu
tions to the k�CLIQUE problem. The k�CLIQUE problem is W[1℄-
ompleteand is 
onsidered unlikely to be �xed parameter tra
table [8℄. Noti
e that W[1℄ �W[P℄.16



We 
onsider the following natural parameterized version of group isomorphism k-GROUP-ISO:let G1 and G2 be groups with n elements ea
h given by their Cayley tables and generating sets S1and S2 of size k ea
h. The problem is to test if the groups are isomorphi
 (and, if so, to �nd anisomorphism).As noted in the introdu
tion, this parameterization makes sense for GROUP-ISO be
ause thereare natural 
lasses of groups with small generating sets. E.g. every simple group of size n has agenerating sets with just two elements.There is an easy nO(k) algorithm for k-GROUP-ISO whi
h puts it in the 
lass W[P℄. But, noalgorithm with running time of the form f(k)nO(1) is known for k�GROUP-ISO. Thus, we do notknow if it is �xed parameter tra
table. We are interested in the question of whether k-GROUP-ISOis 
omplete for W [P ℄. We show that probably this is not the 
ase sin
e the problem does not evenseem to be hard for W [1℄. We now provide eviden
e of this fa
t by showing that this assumptionimplies a nonuniform nondeterministi
 subexponential time algorithm for CLIQUE.Theorem 6.3 If k�GROUP-ISO is W[1℄-hard then CLIQUE is in NTIME[nO(1); 2o(n)℄=poly. I.e.for inputs of length n, CLIQUE has polynomial-size proofs whi
h 
an be veri�ed in 2o(n) time witha polynomial-size advi
e.Proof: Suppose k�GROUP-ISO is W[1℄-hard. Then there is a parameterized redu
tion from k-CLIQUE to k�GROUP-ISO. By 
ombining the redu
tion with the AM(O(log6 n); O(log2 n)) proto
olfor GROUP-NONISO, we get an AM(O(f(k) log6 n); O(f(k) log2 n)) proto
ol for k-CLIQUE (the
omplement of k-CLIQUE), in whi
h the �nal deterministi
 
omputation done by Arthur after the
ommuni
ation rounds takes time f(k)nO(1), where f is some monotoni
ally in
reasing fun
tion.We 
an assume w.l.o.g. that f(k) � k for all k. Now, de�ne the fun
tion f�1(n) to be the largestpositive integer m su
h that f(m) � n. Observe that f�1(n) tends to 1 monotoni
ally with n.Re
all that CLIQUE = fG j G has n verti
es and a 
lique of size n=2g. For an instan
e G ofCLIQUE, set l0 = f�1(n=2). Let �(n) denote 12f�1(n=2) . Noti
e that �(n) tends to 0 monotoni
allyas n in
reases.We again apply the Feige-Kilian 
onstru
tion [10℄: in time � nO(n�(n))� we 
an 
onvert G to apair (G0; l0), where G0 is a graph with at most � nn�(n)� nodes, and ea
h node of G0 is a subset ofV (G) of size n�(n) that indu
es a 
lique in G. Furthermore, two nodes u and v in G0 are adja
entif their union (as subsets of V (G)) forms a 
lique in G. Clearly, G has an n=2-
lique if and onlyif G0 has an l0-
lique. Now, 
onsider (G0; l0) as an instan
e of the parameterized 
lique problem.Noti
e that the above AM proto
ol on input (G0; l0) will use O(f(k) log6 n) = O(f(l0) log6N) =O(n7 log6 n) random bits and O(f(k) log2 n) = O(f(l0) log2N) = O(n3 log2 n) nondeterministi
bits. Also observe that the �nal deterministi
 
omputation done by Arthur after the 
ommuni
ationrounds is of time � nO(n�(n))�. Then the running time for the �nal deterministi
 
omputation of Arthur
an be bounded by 2n�H(
��(n)) where 
 is a 
onstant and H denotes the entropy fun
tion. Observethat H(
 ��(n)) ! 0 as n!1, sin
e �(n) tends to 0 as n!1. Thus, 2n�H(
��(n)) is 2o(n). Puttingit together, we have shown the following 
laim.Claim 6.4 Let G be an instan
e of CLIQUE. There is an AM(nO(1); nO(1)) proto
ol where the�nal deterministi
 
omputation done by Arthur after the 
ommuni
ation rounds is of time 2o(n).Furthermore, the proto
ol has error probability bounded by 1=4.Now, as done in the proof of Theorem 6.1, by applying the standard method of repeatingthe proto
ol nO(1) times and taking a majority vote, we get an AM(nO(1); nO(1)) proto
ol for17



CLIQUE where the �nal deterministi
 
omputation done by Arthur is still of time 2o(n) and the errorprobability is now bounded by 2�nO(1) . We 
an derandomize the proto
ol by �xing the random bitsto an nO(1) size advi
e string. Thus, we have shown that CLIQUE is in NTIME[nO(1); 2o(n)℄=poly.This 
ompletes the proof.7 Con
luding RemarksAs the main result of this paper, we have studied the group isomorphism problem for the 
ase ofsolvable groups. We brie
y here outline how our derandomization results 
ould be generalized toarbitrary groups. First, we observe that it suÆ
es to have analogues of Theorems 3.2, 3.3, and 3.4for general �nite groups. With these theorems, we 
an pro
eed as in Se
tions 4 and 5 to obtainthe same derandomization results for general groups. Noti
e that the analogue of Theorem 3.2for general �nite groups is an e�e
tive version of the short presentation 
onje
ture: namely, that ashort presentation for every �nite group G 
an be 
omputed in time polynomial in jGj. In fa
t, astronger e�e
tive version is 
onje
tured in [7, Conje
ture 3℄. We re
all that the short presentation
onje
ture (see [7, Conje
ture 1℄ for details) states that every �nite group has a short presentation.Regarding analogues for Theorems 3.3 and 3.4, it is possible to show that if analogues of thesetheorems are true for all �nite simple groups, then they hold for all �nite groups.Referen
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