Solvable Group Isomorphism is (almost) in NP N coNP

V. Arvind Jacobo Toran
Institute of Mathematical Sciences Theoretische Informatik
C. I. T. Campus Universitat Ulm
Chennai 600 113, India D-89069 Ulm, Germany
arvind@imsc.res.in toran@informatik.uni-ulm.de

November 27, 2003

Abstract

The Group Isomorphism problem consists in deciding whether two input groups G; and
G given by their multiplication tables are isomorphic. We first give a 2-round Arthur-Merlin
protocol for the Group Non-Isomorphism problem such that on input groups (G4, Gs) of size
n, Arthur uses O(log®n) random bits and Merlin uses O(log” n) nondeterministic bits. We
derandomize this protocol for the case of solvable groups showing the following two results:

(a) When the input groups are solvable, we give a uniform NP machine for Group Non-
Isomorphism, that works correctly on all but 2P°W1°&(") inputs of any length n. Further-
more, this NP machine is always correct when the input groups are nonisomorphic. The
NP machine is obtained by an unconditional derandomization of the AM protocol, and
the derandomization is done using the Goldreich and Wigderson method [12] of extracting
randomness from the input.

(b) Using the Nisan-Wigderson generator we get another derandomization of the above AM
protocol under the assumption that EXP Z i.0—PSPACE. Thus, EXP ¢ i.o—PSPACE
implies that Group Isomorphism for solvable groups is in NP N coNP.

Finally, we use the above AM protocol to show that Group Isomorphism (for arbitrary
groups) cannot be complete for the limited nondeterminism class NP(log? n) unless the coNP-
complete problem CLIQUE has polynomial-size proofs that can be checked in subexponential
time with a polynomial-size advice. We also show that the hardness of Group Isomorphism for
the parameterized class W[1] would have a similar unlikely consequence for CLIQUE.

1 Introduction

The Group Isomorphism problem, GROUP-ISO is stated as follows: given two groups G; and G,
of order n as input given by their multiplication tables (also known as their Cayley tables), test
whether they are isomorphic groups. Recall that an isomorphism between G and G5 is a bijection ¢
between the groups such that for every pair i, j € G1, ¢(ij) = ¢(i)@(j)." This is a natural problem
and its computational complexity has already been studied for nearly three decades. Groups of
order n have generator sets of size bounded by logn and because of this fact an isomorphism
algorithm running in time n!°8"+C0() can be obtained by computing a generator set of size logn
in GG1, mapping this set in every possible way to a set of elements in G5. The map has to be

!For convenience we represent the group operation by concatenation in both groups.

extended to the entire group G; using the multiplication table and it has then to be checked that
an isomorphism is defined. This algorithm is attributed to Tarjan in [18]. A stronger result showing
that GROUP-ISO can be solved in space O(log® n) was given in [16]. Observe that Tarjan’s algorithm
can in fact be converted into a polynomial time nondeterministic procedure for GROUP-ISO that
uses only log? n nondeterministic bits, by guessing the mapping from the generator in Gy to Gy
instead of testing all possible 1-1 mappings.

For abelian groups it is known that GROUP-ISO can be solved in polynomial time. Also efficient
algorithms for special classes of nilpotent groups can be found in [13]. However, no deterministic
polynomial time algorithm for the problem is known. Indeed, from a computational complexity
perspective, it is not known if GROUP-ISO is in NP N coNP, even even for special classes of groups
like solvable groups or even nilpotent groups.

In this paper we make progress on this question (mainly for solvable groups as input). Our
results are summarized below.

1. We present a new Arthur-Merlin protocol for GROUP-NONISO with the property that on
input groups of size n, Arthur uses O(log®n) random bits and Merlin uses only O(log?n)
guess bits. The protocol works for arbitrary groups and is carefully tailored so it can be
derandomized in the case of solvable groups.

2. We apply the powerful derandomization method of Goldreich and Wigderson [12] to deran-
domize the above protocol, by extracting randomness from the input itself. We exploit the
fact that finite solvable groups have short presentations to show that this derandomization is

In

incorrect for at most 21°6°" inputs of length n.

3. Finally, under the assumption EXP ¢ i.0—PSPACE we use the Nisan-Wigderson genera-
tor [19] to completely derandomize the AM protocol for GROUP-NONISO, implying that
GROUP-ISO is in NP N coNP under the assumption.

We give some background to this line of research. Arthur-Merlin games were introduced by
Babai in [5] as a randomized version of NP. It turns out that several important group problems,
including the Graph Isomorphism problem, are in either NP N coAM or AM N coAM. With the
development of derandomization techniques, building on Nisan and Wigderson’s research [19], sev-
eral results on derandomizing AM under a hardness assumption were shown. In [2], applying the
methods of Nisan and Wigderson [19], an average-case hardness assumption is used to construct
a pseudorandom number generator that suffices for derandomizing AM to NP. This result was
improved to worst-case non-uniform hardness assumptions in [15] and MiVi99. Finally Lu gave in
[17] a uniform worst-case assumption for the derandomization of AM.

GROUP-ISO is known to be polynomial-time reducible to Graph Isomorphism and it appears
to be an easier problem since GROUP-ISO has an n©(°8™) time algorithm. In our approach to
put GROUP-ISO in NP N coNP, we basically proceed along similar lines as the above-mentioned
research on Graph Isomorphism. However, there are two crucial results for GROUP-ISO, that allow
us to derive new derandomization results for GROUP-ISO (not applicable to Graph Isomorphism).
On the one hand, we design an AM protocol for GROUP-NONISO in which Arthur uses only a
polylogarithmic number of random bits and Merlin uses a polylogarithmic number of guess bits.
On the other hand, we exploit the fact that the inputs (for solvable groups) admit short encodings
in a certain precise sense. We focus upon the case of solvable groups. It is known that solvable
groups have short presentations [7]. It turns out that from such a presentation for a solvable group
G, a group isomorphic to G can be easily recomputed (in time polynomial in |G|).

In Section 4 we use a derandomization method due to Goldreich and Wigderson [12]. The idea
here is to extract randomness from the input string (using an extractor with suitable parameters).
Notice that there is a penalty incurred in this approach: the derandomization procedure might be
incorrect on the small fraction of input instances from which not enough randomness can be ex-
tracted. We use this method to show that the AM protocol for GROUP-NONISO can be transformed
into a polynomial time nondeterministic algorithm that correctly solves the problem on all but at
most 2108”1 of the groups of order n. The fact that solvable groups have short presentations as
described plays a crucial role. Also, it is important to mention that this result does not rely on
any unproven hardness assumptions. Such a derandomization is not known for the AM protocol
for Graph Isomorphism.

In Section 5, we further analyze the AM protocol for GROUP-NONISO and observe that the cru-
cial verification part that Arthur has to do for solvable groups of order n, can in fact be done in poly-
logarithmic space in n. Using this fact we apply the Nisan-Wigderson [19] generator to derandomize
the AM protocol for GROUP-NONISO under the plausible assumption EXP ¢ i.o—PSPACE.? This
hardness assumption is weaker than the assumption used in [17], which is the only known uniform
hardness assumption for derandomizing the class AM.

We observe here that our derandomization results cannot be used for arbitrary AM protocols
which use polylog(n) random bits and guess bits. Our results exploit properties that are specific
to the Group Isomorphism problem.

In Section 7 we briefly outline how these results can be extended to arbitrary finite groups
assuming an unproven conjecture on short presentations for finite groups [7].

In Section 6 we apply the AM protocol result to show that Group Isomorphism cannot be com-
plete for the limited nondeterminism class NP (log? n) unless the coNP-complete problem CLIQUE
has polynomial-size proofs that can be checked in subexponential time with a polynomial-size ad-
vice. We also show that the hardness of Group Isomorphism for the parameterized class W[1] would
have a similar unlikely consequence for CLIQUE. These results are for general groups.

Most of the concepts used in the paper are defined when required. For the definition of standard
complexity classes we refer the reader to books in the area like [4, 21].

2 AM protocol for Group Nonisomorphism

Denote by AM(r(n),s(n)) the class of languages accepted by 2-round AM protocols, with error
probability 1/4, in which Arthur uses O(r(n)) random bits and Merlin uses O(s(n)) nondetermin-
istic bits. Formally, a language L is in AM(r(n), s(n)) if there is a set B € P such that for all z,
|z| = n,

reA = PrObwGR{U,l}T'(n) [E‘y, ‘y| = Sl(n) : (x,y,w) € B] > 3/47
T € A = PrObwGR{U,l}T’(") [Vya ‘y| = sl(n) : <$7y7w> € B] < 1/47

where 7' and s are functions in O(r(n)) and O(s(n)) respectively. Notice that the above definition
is equivalent to the definition in terms of 2-round Arthur-Merlin protocols. Indeed, the standard
AM class is AM () pOM),

We present a two-round AM protocol for Group Nonisomorphism that has constant success
probability, and Arthur uses O(log®n) random bits and Merlin uses O(log?n) nondeterministic
bits. Thus Group Nonisomorphism is in AM(log® n, log? n).

2A language L is in i.0—~PSPACE if there is a PSPACE machine that is correct on L for infinitely many input
lengths.

Let G be a group with n elements. A sequence of k group elements X = (g1,...,gx) is called a
cube generating k-sequence for G if

G={g{'g5> - g;* | & € {0,1}}.

The set {g'g5> -+ g;* | € € {0,1}} is the cube Cube(X) generated by the sequence X. Erdds
and Renyi [9] proved the following important theorem about the probability that Cube(X) = G,
for a k-sequence X chosen uniformly at random from G*.

Theorem 2.1 [9] Let G be a finite group with n elements. For k > logn +loglogn+2log1/§+5,
Probyc [X is a cube generating sequence for G] > 1 — .
For G with n elements we choose k = 4logn and obtain the following useful corollary.
Corollary 2.2 Let G be a finite group with n elements and k = 4logn. Then
Proby ¢ qk[u is a cube generating sequence for G] > 1 — 1/n.

n*1°%8" sequences in G¥ are cube generating

In particular, for k¥ = 4logn, more than (1 — 1/n)
sequences for G.

Now, we make the following easy observation.

Proposition 2.3 Let G be a group with n elements and S be a set of n elements. Let ¢ : G — S be
a 1-1 onto function. Then there is a group H (defined on the set S) such that ¢ is an isomorphism
from G to H. Furthermore, given ¢ and the Cayley table for G, the Cayley table for H can be
computed in polynomial time.

Proof: It is easy to see that the group multiplication for H defined as follows will suffice:

z-y=p(d(2)d ' (y)).

|
Now, let G be a group with n elements and X = (g1, ¢9,...,9%) be a cube generating sequence
for G. There is a natural 1-1 mapping 7x : G — {0,1}* that is defined by the cube generating
sequence X. The mapping 7y is defined as follows: wx(g) = (e1,€9,...,€;), where (€1, €9,...,¢€;) is

the lexicographically first k-tuple in {0, 1}* such that g = g{'gs® - - -gz’“. Clearly 7x is an injective

mapping and, given the Cayley table for G as input, 7x can be computed in polynomial time.

Let S = wx(G). Applying the algorithm described in Proposition 2.3 we can construct the
Cayley table of a group H isomorphic to G, where the isomorphism is given by the mapping 7y.
We summarize this procedure in the following lemma.

Lemma 2.4 Let G be a group with n elements given by its Cayley table, and X is a cube generating
k-sequence for G. There is a polynomial (in n) time procedure B that takes as input the pair (X, Q)
and outputs a pair (Y, H), where H is the Cayley table of a group defined on the set 1x(G) C {0,1}*
and Y = wx(X) is a cube generating sequence for H.

Proof: It suffices to note that given mx, we can apply the algorithm in Proposition 2.3 and compute
the group H as a Cayley table in polynomial time. Furthermore, since G is isomorphic to H, it is
easy to see that the image of X under the isomorphism will be a cube generating sequence for H.

The following proposition is an important property of 5.

Proposition 2.5 Let G1 and G5 be groups of order n and ¢ be an isomorphism from Gy to Go. Let
X be a cube generating k-sequence of G1. Then B(X,G1) = (Y, H) implies B(¢(X),G2) = (Y, H).

Proof: Let X = (¢1,...,9x). Clearly, ¢(X) = (é(g1),...,¢(gx)) is a cube generating k-sequence
for G5. To prove the proposition, it suffices to observe that for every g € Gy, g = gflg? . -g;k if and

c()nly if ng(g)]) = ¢(g1) " d(g2)® - P(gr). Thus, 7x(g9) = (€1,...,€) if and only if myx)(4(g)) =
€1y...4€EL). I

Now, for a group G with n elements we define the following set.

C(G) = {(S,H,) | there is a cube generating 4 log n-sequence X C G such that
B(X,G) = (S,H) and ¢ € Aut(H)}.

Lemma 2.6 If Gy and Gy are isomorphic finite groups then C(G1) = C(G2) and if Gy and G
are nonisomorphic then C(G1) N C(G3) = 0.

Proof: Suppose G; and G5 are isomorphic and ¢ is an isomorphism from G to Gs. Let
(S,H,¢) € C(Gy) and B(X,G1) = (S,H). By Proposition 2.5 we have B(¢(X),G2) = (S, H).
Thus, (S, H,v) € C(G9). Tt follows that C(G1) C C(G3). By a similar argument, C(Gs) C C(Gy),
and hence C(G1) = C(G9).

On the other hand, suppose (S, H, 1) is C(G1) N C(G2). Then clearly it follows that G; = H
and Go = H, which implies that G; 2 Go. |

Let C(G1,G2) = C(G1) UC(G2). We estimate the size of C'(G1, G2) in the two cases: G = Gy
and G1 Qé' GQ.

Lemma 2.7 For a group G with n elements
(1 _ 1/n)n410gn < |C(G)| < n410gn‘

Proof: Let k = 4logn and Nj(G) C G* be the collection of cube generating k-sequences for the
group G. By Theorem 2.1 and Corollary 2.2 we have

(1 _ 1/n)n410gn < |Nk(G)| < n410gn

by the choice of k = 4logn.

It suffices to show that |Nx(G)| = |C(G)|. We consider the following natural action of the
automorphisms of G on cube generating k-sequences in G: p € Aut(G) maps a cube generating
k-sequence X = (gi1,...,9x) to the cube generating k-sequence p(X) = (p(91),-..,p(gr)). Now,
let X; and X5 be two cube generating k-sequences of G such that B(Xy,G) = B(Xs, G) = (S, H).
Then 71';(;71')(1 is an automorphism of G that maps X; to Xs. On the other hand, suppose p is an

5

automorphism of G. Let B(X1,G) = (S, H), where X; is a cube generating k-sequence of G. Then,
by Proposition 2.5, B(p(X1),G) = (S, H). Thus, for two cube generating k-sequences X; and Xy
of G, B(X1,G) = B(Xs2,G) = (S, H) if and only if there is an automorphism p of G that maps the
sequence X7 to the sequence Xs. Notice that only the identity automorphism of G fixes a cube
generating k-sequence. Hence, it follows that for each (S, H,) € C(G) there are exactly |Aut(G)]
generating k-sequences X such that B(X,G) = (S,H). But (S,H,v) € C(G) implies H and G
are isomorphic and therefore |Aut(G)| = |Aut(H)|. Putting it together, it follows that |C(G)] is
exactly the number of cube generating k-sequences of G. Le. |[N,(G)| = |C(G)|. 1

We have the immediate corollary which is crucial to the AM protocol.

Corollary 2.8 Let G and G2 be groups of n elements. For n > 4 we have:
1. Gy = Gy implies |C(Gy,Gy)| < ntloen,
2. Gy 2 Gy implies |C(G1,G2)‘ > 1.5p4logn,

Proof: It directly follows from the previous lemma that if G; and G> are isomorphic groups of n
elements then (1 — 1/n)n*l%8" < |C(Gy,Gs)| < n*'°8™ and if G| and G5 are nonisomorphic then
(1—1/n)-2-n*%en < |C(Gy,Gs)| <2 n*!°8", The corollary follows as (2 — 2/n) > 1.5 for n > 4.
|

In the sequel let m denote n*!°28". Let the set X be the 7-fold Cartesian product C(G1,Gs)”
of C(G1,Gy) with itself. As we have shown above, if G; = G5 then |X| < m” and if they are not
isomorphic then |X| > 1.57 - m”. Although | X| = n?(°8™) the elements in X have polynomial in
n length. We can assume that each element z € X is encoded as a positive integer num(z), so
that in the AM protocol (which we are about to describe) we can use fingerprints obtained from
Chinese remaindering in order to restrict the number of random bits needed. Let p be a random
prime number of log®n bits. Since |X| = n@°€") with probability more than 1 — 2-10g"n the
following event succeeds: num(z) (mod p) # num(y) (modp) for every pair z,y € X such that
xz # y. Call p a good prime if this event succeeds for p. For a good prime, let X, denote the set
{num(z) (modp) | z € X}. Then |X,| = |X| for good primes p. Notice that elements of X, can
be represented as bit strings of length ¢ = log3n. In the first part of the protocol Arthur selects
a random prime number p of log® n bits. This can be done by sampling random numbers for the
given length and using the primality test algorithm [1]. With a sample of size O(log®n), Arthur
has a constant success probability of picking a random prime number. Thus, O(log®n) random
bits are needed for this first task.

We now recall a version of Sipser’s hashing lemma [23].

Lemma 2.9 Let X be a nonempty subset of X! that does not contain 0". Let S be a random
variable denoting the number of strings in X mapped to 0% by a uniformly chosen random linear
transformation h over Fo, h : ' — YF. Then we have E(S) = 27% - |X| and Var(S) = 27%(1 —
27F) - |1X].

Let k& = log(4m”) and let h : ¥! — X% be a random linear transformation as in the above
lemma, where X, C %.t. We are interested in the event that there is an = € X, such that h(z) = 0*.
By the above lemma, if G; 2 G5 then E(S) > 4 and E(S) < 1/4 otherwise. Using Chebyshev’s
inequality it now follows that if G; =2 G5 then

Proby[3z € X, : h(z) =0 < 1/4

and if G; 2 G5 we have
Prob,[3z € X, : h(z) = 0F] > 3/4.

We now describe the AM(log® n,log? n) protocol below.

Arthur Randomly sample numbers of log® n bits until a prime number p is found. If after 5 log n trials
no prime number has been found, then reject the input. Otherwise pick a random Fa-linear
function h : ©¢ — ©¥ where ¢ = log® n and k = log(4m”). Send p and h to Merlin.

Merlin Sends back two 7-tuples (zi,...,27) and (i1,...,i7). Where for j = 1,...,7, i; € {1,2}
and z; = (S;,T;,v;), where S; is a sequence of elements of {0,1}*1°6™ of length 4logn, T}
is a cube generating 4log n-sequence for the group Gj;, and 9; : S; — {0, 1}4logn g 5 1-1
mapping.

Arthur For each j = 1,...,7, Arthur does the following verification, all in polynomial time: Let
z; = (Sj,Tj,;). Computes B(T;,Gy;) = (S, H;) and verifies that S = S;. Then using
the group multiplication of Hj;, Arthur extends +; to all of H; and verifies that it is an
automorphism of H;. Now, let y; = (S;, Hj,1;) for 1 < j <7 and let y = (y1,...,y7) which
is an element of X. Verify that h(num(y) (modp)) = 0% and if so, accept the pair (G, Go)
as nonisomorphic.

The analysis given before the protocol proves that the AM protocol accepts nonisomorphic pairs
with probability 1/2 + € and rejects isomorphic pairs with probability 1/2 + €, for some constant
e > 0. Furthermore, notice that Arthur uses O(log®n) random bits and Merlin uses O(log?n)
nondeterministic bits. The error probability can be bounded by 1/4 which only a constant factor
increase in the random bits of Arthur and nondeterministic bits of Merlin. We have thus proved
the following theorem.

Theorem 2.10 There is a 2-round AM protocol with error probability 1/4 for Group Nonisomor-
phism, in which Arthur uses O(log® n) random bits and Merlin uses O(log? n) nondeterministic bits.
Hence, the problem is in AM(log® n,log?n).

Remark. We briefly explain how to efficiently compute num(y)(modp), given y = (y1,...,y7) €
X, where Y; = (Sj,Hj,’lﬂj) for 1 S] < 7.

Consider y;. Each T} is contained in {0, 1}41°¢" and has 4logn elements. It can be encoded
as a binary string of length (4logn)?. Similarly, each H; is a list of n? triples from {0, 1}4logn
{0,1}*1987 x {0,1}1°8™ and can be encoded as a binary string of length 12n? logn. Likewise, each
¢; consists of 4logn pairs of strings from {0, 1341867 and can be encoded as a binary string of
length 2(4logn)2. The entire encoding is a concatenation of the encodings of the y;, prefixed by
a 1 to give us num(y). The length of num(y) is 7(12n%logn + 3(4log? n)) 4+ 1. Furthermore, it is
easy to see that given y as input we can compute num(y)(modp) polynomial time and polylog(n)
space.

We note here, without proof, that it is also possible to give a 2-round IP protocol for Group
Nonisomorphism which is somewhat more efficient in the number of random bits used by the verifier.

3 Short Presentations for Solvable Groups

The goal in the next sections is to derandomize the AM protocol for the case of solvable groups. We
will present two derandomization results. A key ingredient for these results is the representation of
the groups is a succinct way in terms of generators and relations. To this end we need to develop
some group theory, including some simple algorithms.

We recall some group-theoretic definitions. Let A and B be two groups. We write B < A to
denote that B is a subgroup of A. The subgroup B of A is said to be normal if for all a in A,
aB = Ba, and we write B </ A to denote that B is a normal subgroup of A. A group is simple if it
does not contain any nontrivial normal subgroups.

A normal series of a group A is a finite sequence of subgroups Ay, ..., Ay such that

I=A<Aq...<A; = A

A normal series is a composition series if each factor group A;;1/A; is a simple group (i.e. it
has no nontrivial normal subgroup).

A group A is solvable if it has a normal series such that each normal factor A;;1/A; is abelian.
Equivalently, each factor in the composition series for G will be cyclic.

Let G be a solvable group with n elements given by its Cayley table. First, in time polynomial
in n we can obtain a composition series for G:

GZGkDkalb"'DGlz{l}a

where G;11/G; is a cyclic group of prime order, say p;, for i = 1,2,...,k — 1. Thus, n = Hf;ll Dj.
To obtain such a composition series in polynomial time, it suffices to note that we can find a
normal subgroup N of G in polynomial time: this is done by taking the normal closure of z € G for
different elements = € G until one of them actually gives us a nontrivial normal subgroup. Note,
that the normal closure of each z € G \ {1} gives the whole of G if and only if G is already simple
(which would mean G is cyclic since we are dealing with solvable groups). Now, the normal series
G > N > {1} can be refined by recursively applying the same step to N and G/N. The overall
algorithm will be polynomial time (in 7). This would also test G for solvability, because if G is not
solvable then at least one of the factor groups G;11/G; in the composition series will be nonabelian.

Coming back to the solvable case, the algorithm will also give us a generator a;1G; for Gj;1/G;
for1<i<k-—1.

Notice that every element of G is uniquely expressible as aﬁf aick_’ll ...al;, where 0 <[; <p; — 1

. . L .
for each j. Thus, we can rename the elements of G using such products af,c" ak’il1 ...aé2 and rewrite

the Cayley table using these products.

Definition 3.1 A presentation of a group G with n elements is a pair (X, R) where
X is a generating set for G,
R is a set of words over G U G~! such that w € R defines the equation w = 1 and

(X, R) defines the group G in the sense that there is an algorithm that on input a presentation
for a group G computes the Cayley table of a group G’ isomorphic to G.

For a constant ¢ > 0 we say that a presentation (X, R) is c-short if its length |(X, R)| is at most
log€n.

We now show that in time polynomial in n we can convert the composition series for G into
a short presentation for G with generating set {ao,...,ar} = X. This is done inductively, by
obtaining it for G; for increasing values of i starting from ¢ = 1. The base case is trivial for
i = 1. Thus, it clearly suffices to show that if (X;, R;) is a short presentation for G;, then in time
polynomial in n we will obtain a short presentation (X; 1, Rj+1) for Gjiq.

We let X;11 = X;U{ajt1}. In order to define R; ;1 we only need to use a;+1G; = Gja;+1, which
follows from the normality of G; in G;11. In particular, this will give rise to the following set of
relations.

pi
a; ' =uip1 , where ui € G (1)
ajaiy1 = aipwitr,; ¢ 1 <7 <i,wiqr; €G;. (2)

Notice that here u; i and w;;1; are words of the form aif'aﬁi_f . alf, where 0 < [; < p; —1 for

each 7, defining elements of G;, as explained.

We define R;; as the union of the above relations and R; and claim that (X;y1, R;11) defines
the group G;41. To see this it suffices to note that R;,; completely specifies the Cayley table for G,
in terms of the renamed elements ai."_i'fll aﬁi . al22. This is because, the relations in R; | will clearly
allow arbitrary words over X;,; to be rewritten in the form aéi_lfll aﬁi o al;, where 0 < 1; <p; —1
for each j. Thus we have the following theorem.

Theorem 3.2 Let G be solvable group with n elements, where G is given by its Cayley table, and
let G = Gx> G 1>+ >G1 = {1} be a composition series for G, where G;i11/G; is a cyclic group of
prime order p; 11 generated by a;11G; for each i. Then there is a polynomial (in n) time algorithm
that inductively computes a short presentation (X, R) for G, described above, which includes a short
presentation (X;, R;) for each group G; in the composition series. Moreover, the size |(X, R)| of
the short presentation is clog®n, where c is a fized constant independent of the group.

We now describe an algorithm that on input a presentation (X, R) for a group G, constructed
as above, efficiently computes the Cayley table of a group G’ isomorphic to G. Let G be a solvable
group with n elements given by a short presentation (X, R) obtained from G by applying the
algorithm of Theorem 3.2. Consider X = {ay,ax_1,...,a2} as an ordered list. Then the elements
of G’ will consist of words of the form af,f aickjll . alf, where 0 < [; < p;—1 for each j. Notice that the
primes p; are already part of the presentation. We now describe how to obtain the Cayley table for
G’ from (X, R). Since X is an ordered list, we can efficiently obtain from (X, R) the presentations
(X, R;) for 2 <4 <k, where (X, R) = (X, R), and the generating list X; = {aj,...,a2}. Let G}
be the group defined by (X;, R;) for 2 < i < k (note that G| = {1}). We will obtain the Cayley
table for GG; inductively, for increasing values of 7. It suffices to show how to obtain the Cayley
table for G | from (X;y1, R;41), given the Cayley table for Gj. Notice that elements of G, ; are
it gl ..al22, where 0 < [; < p; — 1 for each j. Thus, we only need to express the product of

i+1 9
. liv1 U ls m;4+1 m; ms ’ . 1
each pair of elements a1 a;' ... a3 and a;,'"a;"" ... ay? from G} | again as an element of G; ;.
. . liv1 I; Iy liv1 miy1 m; ms mit1 '
To this end, write a; "/ a;' ...ay as af u and a; ' a;"" ... ay? as a; (" v, where u,v € G;. Now,
b?{ repeatedly applying the relations defined in Equation 1, in time polynomial in n we can rewrite

a;' 1 uaip as

a

lit1 i+t i+t
a v aip = al T vve v = a0l w, (4)

where the v;’s are elements of G} and r = Ziié l;, and vjvy ... v, = w € G} obtained in polynomial
time by using the multiplication of G}. It is clear, that on m;;; applications of the rewrite rule

given by Equation 4, we will obtain an element of the form ai."_i'fll—l_mi“wg, where wg € G}. Finally,
we can further use Equation 1 to reduce ai.i_iflﬁmi“wo to al ,w, where 0 <1 < p;y; — 1. Clearly,

the computation of this entry of the Cayley table requires polynomial in n time. Proceeding thus,
the Cayley table for G’ can be obtained in polynomial time. It is clear that G is isomorphic to G'.
We summarize the above observation.

Theorem 3.3 Let (X, R) be a short presentation as obtained by Theorem 3.2, for a solvable group
G with n elements. There is an algorithm with running time bounded by a polynomial in n that
constructs from (X, R) the Cayley table of a group G' that is isomorphic to G.

The polynomial time algorithm of Theorem 3.2 can be modified to a polylog(n) space bounded
algorithm that takes (X, R) (obtained from a solvable group G of order n) as input and outputs
the Cayley table of a group G’ isomorphic to G. This will be needed in the second derandomization
result. For this we first note that the algorithm of Theorem 3.3 is essentially a breadth-first search
algorithm: we need to compute and store the table for G}, which is used to build the table for G;_ ;.
Thus, we get a polynomial time algorithm that requires O(no(l)) space. However, instead of storing
the table for G} we can recursively compute the product of two words u,v € G} when required.
Notice that for the recursive computation what is put on the stack, for each recursive call, is of
polylog(n) size and the depth of the recursion is bounded by logn (which bounds the length of the
composition series). Thus, the overall space required by this modified algorithm (which is depth-
first) is polylog(n). Observe that the time taken by this algorithm is not polynomial anymore. We
summarize this observation in the following theorem.

Theorem 3.4 Let (X, R) be a short presentation as obtained by Theorem 3.2, for a solvable group
G with n elements. There is a space-bounded algorithm that requires space logo(l) n, and on input
(X, R) constructs the Cayley table of a group G' that is isomorphic to G.

4 Derandomization without Assumptions

Throughout this section we assume that the input instances (Gp,G2) for GROUP-ISO are such
that G7 and Gy are solvable groups. Given an instance (G1,G3), by applying the algorithm of
Theorem 3.2 and then the algorithm of Theorem 3.3 to both G; and G2 we can obtain a new pair
of groups (G, G,) such that Gy = G if and only if G| = G. We call such an instance (G}, G}) a
reduced instance of GROUP-ISO. The key observation of this section is that there is a constant ¢
such that the number of reduced instances (G, G}) for pairs of graphs with n elements is bounded
by 2'°6°". This is immediate from the bound on the size of short presentations for solvable groups
given in Theorem 3.2.

Lemma 4.1 The number of reduced instances (G, GS) is bounded by 218° ™ for a fized constant
¢ > 0, where G} and GY% are groups with n elements.

For the derandomization of the AM protocol for GROUP-NONISO we give an easy generalization
of a theorem from the Goldreich and Wigderson paper [12, Theorem 3] for a nondeterministic set-
ting. The idea is to try and derandomize certain advice-taking randomized algorithms by extracting
randomness from the input. It can be proved almost exactly as [12, Theorem 3].

10

Theorem 4.2 Let M be an advice-taking NP machine for a problem II, where the length of the
advice is bounded by log®m for some constant c, for inputs x € {0,1}™. Suppose it holds that at
least 2/3 fraction of the log® m-bit advice strings are good advice strings. More precisely

Probwe{oyl}mgcm[Va: € {0,1}™ it holds that M (x,w) is correct] > 2/3.

Then for every € > 1, there is an NP machine M' for II that is incorrect on at most 26 ™ inputs
xz € {0,1}™.

In order to be able to use this result we have to transform the AM protocol for GROUP-NONISO
of Section 2 into an advice taking NP machine (with short advice) for the problem. The standard
amplification of the success probability of the AM protocol would not work since the resulting
advice string would be of polynomial length. We show how the AM protocol can be modified in
order to avoid this problem.

Fix a standard encoding of an instance (G, G3) of groups of with n elements by a binary string
of length m = Cn?[logn], where C is some fixed constant. Furthermore, we can assume that both
this encoding and its inverse are computable in time polynomial in n. In this section m stands for
this number. We can assume that the AM protocol Section 2 takes as input a string z € {0,1}"
and first checks if it encodes an instance (G1, G2) of solvable groups and rejects if it does not. We
can think of the binary strings = as the input to the AM protocol.

The AM protocol of Section 2 is modified as follows: on input z € {0, 1}™, first Arthur decodes
z to get (G1,G3) and checks that Gy and Gs are solvable groups. Then, applying the algorithms
of Theorems 3.2 and 3.3 in succession, Arthur converts (G1,G2) to a reduced instance (G, G5).
Now, Arthur starts the AM protocol for the reduced instance (G, G5). Merlin is also supposed to
compute (G, G,) and execute his part of the protocol for (G, G)). Observe that by Lemma 4.1
there are only 2'°¢° " reduced instances for a fixed constant ¢ > 0. Notice that effectively the original
AM protocol is now being applied only to reduced instances. By standard methods of amplifying
the success probability of the AM protocol, we can convert the AM protocol to a (logo(l) n size)
advice taking NP machine M. We summarize the above observation as a theorem.

Theorem 4.3 There is an (log(o(l) n size) advice-taking NP machine M for GROUP-NONISO such
that that for inputs x € {0,1}™ the following holds:

Probwe{o’l}mgcn[vgc € {0,1}™ it holds that M(x,w) is correct] > 2/3.

The AM protocol can be transformed using well-known techniques into a one-sided error protocol
for GROUP-NONISO such that when the input groups are nonisomorphic, the protocol accepts
with probability 1, where the protocol still uses only a polylogarithmic number of random bits.
Consequently, the advice-taking NP machine M defined above also has only one-sided error.

Now, applying Theorems 4.3 and 4.2 we immediately have the following consequence for GROUP-ISO
in the case of solvable groups.

Theorem 4.4 For some constant ¢ > 1 there is an NP N coNP machine M for GROUP-ISO for
solvable groups that is incorrect on at most 2'°6°™ inputs = € {0,1}™ for every m.

The proof follows by combining the standard NP machine for GROUP-ISO with the NP machine
M’ for GROUP-NONISO given by Theorem 4.2. Observe that M’ may be incorrect only when its
input is a pair of isomorphic groups.

11

5 Derandomization under the Assumption EXP ¢ i.0o—PSPACE

In the previous section we proved, unconditionally, that there is an NP N coNP machine M for
GROUP-ISO for solvable groups that is incorrect on only a few inputs. In this section we apply
the Nisan-Wigderson pseudorandom generator construction to prove that GROUP-ISO for solvable
groups is in NP N coNP assuming EXP ¢ i.o—PSPACE/poly?. Since EXP C i.o—PSPACE/poly
implies EXP C i.0—PSPACE the result holds also under the uniform hardness assumption EXP ¢
i.o—PSPACE.

Theorem 5.1 If EXP ¢ i.0o—PSPACE /poly then GROUP-ISO for solvable groups is in NP NcoNP.

Proof:

Notice that in order to derandomize the AM protocol for GROUP-NONISO, it suffices to build a
pseudorandom generator that stretches O(logn) random bits to O(log® n) random bits, such that
the pseudorandom string of O(log®n) bits cannot be distinguished from a truly random string of
the same length by the protocol.

We start by carefully examining the AM protocol for GROUP-NONISO. Similar to the proof of
Theorem 4.4, in the protocol Arthur begins by converting the input instance (G1, G3) to a reduced
instance (G, GY) (Merlin is expected to execute his steps of the protocol for (G, GY%)). This is
Phase I of the protocol. In Phase II of the protocol Arthur picks a random hash function h and
a random prime p, of suitable size as explained in the protocol, using O(log® n) random bits and
sends these to Merlin.

The remainder of the protocol is Phase ITI: Merlin sends back a string z of length O(log? n) and
Arthur then performs a polynomial (in n) time deterministic computation. This final computation
of Arthur consists of two parts. The first part converts the string x to a string y = f(x) that is of
length O(n?logn). It then converts y to the natural number num(y) and computes a ¢ bit string
z = (num(y))(mod p). Then Arthur verifies that h(z) = 0*. We recall from the protocol description
that t, k, the sizes of h and p are all polylog(n) bits.

Next, we will restructure Phase III of Arthur’s computation as an oracle computation with
running time polynomial in logn. This is the crucial part of the proof.

For that purpose we define the following language L. Let (Y1, R;) and (Y2, R2) be the short
presentations corresponding to the solvable groups G and G respectively, computed in Phase I
by Arthur, as explained in Theorems 3.2 and 3.3.

L = {(V1,R),(Ya,Ro),hp) | 3z = (21,...,27) : @ = (X;,b;,Tj, ¢;) , B(X;,Gy,) = (T}, Hy),
each w € X is expressed usingYy, and ¢; : T; — {0, 1}4logn
extends to an automorphism of H; , 1 <37 <7, and h(num(y)(modp)) = 0k
where y = ((T1, Hy, ¢1), ..., (T7, H7, ¢7))}

Observe that the languages L is designed so that Phase III of the AM protocol can be replaced
with a single query to L, where (Y7, Ry) and (Y3, Ry) are the short presentations computed for G4
and G4 respectively. Thus the entire AM protocol can be replaced by the following three steps:

1. On input Gy and G, compute their short presentations (Y7, Ry) and (Y, Rs).

A language L is in i.0-PSPACE/poly if there is a PSPACE machine that takes polynomial-size advice and is
correct on L for infinitely many input lengths.

12

2. Uniformly at random pick h and p using O(log® n) random bits.

3. Query L for ((Y1,R1), (Y2, R2),h,p) and accept if it is in L.

It is clear that on all inputs (G, G2) the above computation has the same acceptance probability
as the AM protocol.

Furthermore, a crucial property of the language L is the following.
Claim 1. Checking if ((Y1, R1), (Y2, R2),h,p) is in L can be done in polylog(n) space, where n is
the size of the inputs groups.

To prove the claim we outline a polylog(n) space algorithm by explaining its main aspects:

e In the definition of L notice that the guess z = (zy,...,27) is of length O(log?n). The
polylog(n) space algorithm will exhaustively search for z by cycling through all strings of
length O(log?n). Observe that for an z = (z1,...,z7), where z; = (X;,b5,Tj,¢;), each
w € X is expressed in terms of the generators in Y;. From Section 3 we know that such an
expression is of polylog(n) size.

e For an z = (z1,...,27), where z; = (Xj,b;,Tj, ¢;), we need to simulate algorithm B in
polylog(n) space to compute B(X}, G;)j) = (T}, Hy).

The difficulty is in computing the table for the n element group H; (isomorphic to G;)j).
However, notice that we are interested in computing the final value num(y)(mod p), where
y= ((T1,Hy,$1),...,(T7, H7, ¢7)). From the definition of num(y) (see remark at the end of
Section 2), it is easy to see that in order to compute num(y)(mod p), it suffices to generate
the string y from left to right, bit by bit. In turn, it implies that it suffices to generate the
entries of the Cayley table for H; one by one, for each H;,1 < j < 7. We do not need to
store the entire table for the H;’s.

In order to generate the entries for H;, we exploit the fact that T; is a cube-generating
sequence for H;. In particular:

(a) We can identify elements of H; as strings in {0, 1}4108n a5 explained in Section 2, by
cycling through the products in the cube generated by T;. This can be done in polylog(n)
space.

(b) To find the entries of the Cayley table for H; we need to use the Cayley table for sz.
Although we do not explicitly have the table for sz, we have its short presentation
(Y, Ry,;). Now, we can apply Theorem 3.4 in order to multiply elements of G;,j using
just the presentation (Y, Ry,).

Then, as described above, in polylog space the entries of the table for H; can be generated.
As we obtain the entries for H; in a lexicographic order, we are effectively getting the tuple
y from left to right. We can convert it into the bits of num(y) and incrementally compute
num(y)(modp) with the following standard method: for the k-bit prefix z of num(y) if we
have computed z(modp) and we have the k + 15 bit of num(y), then 2z + 1(modp) is the
k+ 1-bit prefix of num(y) modulo p. Continuing thus, we will finally compute num(y)(mod p),
and the algorithm now simply has to check if h(num(y)(mod p)) = 0%, which can be done in
polylog(n) space.

Now, we are ready to describe the derandomization. We shall use the Nisan-Wigderson pseu-
dorandom generator [19], that stretches O(logn) random bits to O(log®n) random bits using an

13

EXP complete language as the hard function. We recall the construction and the key properties of
the generator.

Let r,l, m, k be positive integers. A collection D = (Dq,...,D,) of sets D; C {1,...,1} is called
a (r,l,m, k)-design if || D;|| = m for all 4, and for all i # j, ||[D; N D;|| < k. Using D we get from
a boolean function g : {0,1}™ — {0,1} a sequence of boolean functions g; : {0,1}} — {0,1}, i =
1,...,r, defined as g;(s1,...,5)) = g(Siy,---,Si,) where D; = {i1,...,in}. By concatenating the
values of these functions we get a function gp : {0,1}! — {0,1}" where gp(s) = ¢1(s) ... g,(s). Nisan
and Wigderson show [19, Lemma 2.4] that the output of gp looks random to a small deterministic
circuit, provided g is hard to approximate by deterministic circuits of a certain size (in other words,
the hardness of g implies that the pseudorandom generator gp is secure against small circuits). The
following makes this more precise.

For a set A let CIRA(n, s) stand for the set of n-input boolean functions that can be computed
by deterministic circuits of size at most s, having besides the normal gates oracle gates evaluating
the characteristic function of A.

For an oracle A, a boolean function g : {0,1}™ — {0,1} is said to be a CZR*(n,r(n))-hard
function if

11 {z € {0,1}" | f(z) =g(=)}] _ 1
2 r(n) < AL <3

1
i)
holds for all functions g € CZR" (n,r(n)).
Let r : N — Rt and let L be any language. L is said to be CZR”(r)-hard if for all but finitely
many 7, the n-ary boolean function L=" is CZR*(n, r(n))-hard.

We state a crucial lemma due to Nisan and Wigderson [19], in a form used in [2].

Lemma 5.2 [19] Let D be a (r,1,m, k)-design and let g : {0,1}™ — {0,1} be an CTRA (m, r?+1r2¥)-
hard function (for some oracle A). Then the function gp has the property that for every r-input
circuit ¢ of size at most r2,

Probye (0,13 [¢” (y) = 1] = Probye 0.1y (gn () = 1]| < 1/r,

Choose r = O(log®n), I = logn, m = y/logn, and k = loglogn. By [19, Lemma 2.5] we
know that there is an (r,1, m, k)-design, call it D, for these values, that is computable in space
k =loglogn, and hence in time polynomial in logn.

Our goal is to derandomize the AM protocol using the pseudorandom generator gp that stretches
an O(logn) bit random seed to O(log® n) pseudorandom bits. From our preceding discussion about
the AM protocol it is clear that it is Phase III of the protocol that uses the random bits h and
p. Furthermore, the computation of Phase III can be simulated by a polylog(n) size circuit with
oracle L that takes as input the short presentations (Y1, R;) and (Y2, Ry) and the random bits h
and p.

Now, let g be the characteristic function of an EXP-complete language in E. Furthermore, let
the language L defined above be the oracle A of Lemma 5.2. As already explained, Phase III’s
computation can be carried out by a polylog(n) size circuit with L as oracle.

We claim that the derandomization is correct on all but finitely many inputs.

Suppose not. In particular, suppose the derandomization of the AM protocol fails for some input
pair (G1, G2) of solvable groups. Let (Y7, R1) and (Y2, Rg) be their short presentations computed in
Phase I. As a consequence of the failure of the derandomization, it follows that the polylog(n) size

14

circuit with oracle L for Phase III with input fixed as (Y7, R;) and (Y2, R2) is a distinguisher circuit
that distinguishes between the output of gp and the truly random bits. Applying Yao’s method
as explained in [19], we can convert the distinguisher into a next bit predictor, and finally obtain
a polylog(n) size circuit with oracle I that computes g correctly on a 1/2 + 1/1log®) n fraction
of O(logn) size inputs. Notice here that we are using the fact that gp can be computed in time
polynomial in logn.

By applying the methods of [6], we can apply Yao’s XOR lemma and the fact that EXP
has random-self reducible complete sets to conclude that an EXP-complete set can be correctly
computed on all logn size inputs® by a polylog(n) size circuit with oracle L. This is true for
infinitely many input lengths logn (since we assumed that the derandomization fails for infinitely
many inputs). But that implies EXP C i.0—PSPACE/poly, contradicting the hardness assumption.
This completes the proof. |

Balcézar proved in [3] that EXP C PSPACE/poly implies the inclusion of EXP in uniform
PSPACE. The same holds for the case of i.0. classes, that is:

Lemma 5.3 If EXP C i.o—PSPACE/poly then EXP C i.0o—PSPACE.
From this lemma and Theorem 5.1 the uniform derandomization result follows.

Theorem 5.4 If EXP Z i.0—PSPACE then GROUP-ISO for solvable groups is in NP N coNP.

6 Limited Nondeterminism

In this section we apply our AM protocol for GROUP-NONISO to show that GROUP-ISO cannot
be complete for the limited nondeterminism class NP(log2 n) unless the coNP-complete problem
CLIQUE has nonuniform subexponential size proofs. We also study the parameterized complexity
of the problem with the size of generating sets of the groups as parameter. We show that the
hardness of Group Isomorphism for the parameterized class W[1] would also imply an unexpected
upper bound for the complexity of the clique problem.

Complexity subclasses of NP that arise when the number of nondeterministic bits is bounded
have been defined in the literature in different contexts (see [11] for a survey). In particular Kintala
and Fischer introduced in [14] subclasses on NP with a polylogarithmic number of nondeterministic
bits. Let us denote by NP (log¥ n) the subclass of NP in which for an input of size n only O(log® n)
nondeterministic steps are allowed. As we have seen in the introduction, GROUP-ISO is contained
in NP(log? n). Papadimitriou and Yannakakis ask in [22] whether this problem is in fact complete
for NP(log? n). In this section we give some evidence suggesting that this is not the case. We show
that if GROUP-ISO is complete for NP(log? n) then the Clique problem is contained in the class
coNTIME[2°(™)] /poly.

We will consider the following version of the general clique problem CLIQUE = {G | G has n
vertices and a clique of size n/2}. Notice that CLIQUE is NP-complete.

Theorem 6.1 If GROUP-ISO is many-one complete for NP(log2 n) then CLIQUE is in the class
coNTIl\/IE[nO(I),QO(log "\/ﬁ)]/poly. Le. for inputs of length n, CLIQUE has polynomial-size proofs
which can be verified in 200°87V1) time with a polynomial-size advice.

“There will be change in input length which we can ignore here without affecting the results.

15

Proof: Consider the problem log-CLIQUE = {(G,k) | G has n vertices, £ < logn and G has a
clique of size k}. log-CLIQUE is clearly in NP(log?n). If GROUP-ISO is complete for this class,
then there is a many-one polynomial time reduction from log-CLIQUE to GROUP-ISO and by the
results of the previous section the complement of the problem, log-CLIQUE € AM(logG, log?n).
We will now apply an idea of Feige and Kilian [10]: Let G be a graph with n nodes and for
simplicity assume that n/2 is a perfect square. We can convert in time nPW") the instance G of

CLIQUE to a pair (G',!') in the following way: G’ is a graph with at most (\/;%) nodes. Each node

of G' corresponds to a subset of V(G) of size \/n/2, and there is an edge between two nodes of G’
if and only if their corresponding sets of nodes in G are disjoint and form a clique of size 24/n/2.
Clearly G’ has a clique of size \/n/2 if and only if G € CLIQUE. We set I’ to \/n/2. Let N be the
number of vertices in G'. N = (\/%) I' is smaller than log N and therefore (G’,1’) is an instance

of the log-CLIQUEproblem. The AM protocol on input (G, ') will use O(log® N') random bits and
O(log® N) nondeterministic bits. Also observe that the final deterministic computation done by
Arthur after the communication rounds is of polynomial time in N. This implies the following
claim.

Claim 6.2 There is an AM(nO(l),nO(l)) protocol for the coNP complete problem CLIQUE, where
the final deterministic computation done by Arthur after the communication rounds is of time
20(lognv/n) Furthermore, the protocol has error probability bounded by 1/4.

Applying the standard method of repeating the protocol n®() times and taking a majority
vote, we get an AM(n?(") n9(M) protocol for CLIQUE where the final deterministic computation
done by Arthur is still of time 20(°87v%) and the error probability is now bounded by 2170 We
can derandomize the protocol by fixing for each length n the random bits to an n®() size advice
string. Thus, we have shown that CLIQUE is in NTIME[nO(1), 20008 nvn)] /poly. This completes
the proof. |

6.1 Parameterized complexity setting

A different perspective to GROUP-ISO is given by the parameterized complexity setting introduced
by Downey and Fellows [8], which is a useful and rich paradigm for classifying problems. Parame-
terized complexity deals with problems where the instances are pairs (z, k) where the parameter k is
usually a positive integer that measures the “size” of a solution to the input z. The parameterized
decision problem now is to test if there is a solution of size at most & (and the search problem is to
find such a solution). Algorithms with time bounds of the form f(k)n®") for arbitrary functions
f, are considered efficient. Problems with such algorithms are fized parameter tractable. Analogous
to NP-completeness, there is a theory of hardness [8] which classifies parameterized problems. Let
IT and IT" be two parameterized problems. A parameterized many-one reductions from II to IT'
maps instance (z,k) of II to instances (z', k') of I, such that the running time of the reduction
is bounded by f(k)|z|°) and k' < f(k) for an arbitrary function f. Recall from [8] that W[P] is
the class of parameterized problems reducible via parameterized reductions to the weight-£ circuit
satisfiability problem. The weight-k circuit value problem is: given a boolean circuit with n input
gates, is there an input of hamming weight k£ accepted by the circuit. The k—CLIQUE problem is
the parameterized clique problem with instances (G, k) and the question is whether G has a clique
of size k. The class W[1] can be defined as parameterized problems that are many-one reducible via
parameterized reductions to the k—CLIQUE problem. The k—CLIQUE problem is W[1]-complete
and is considered unlikely to be fixed parameter tractable [8]. Notice that W[1] C W[P].

16

We consider the following natural parameterized version of group isomorphism k-GROUP-ISO:
let G1 and G5 be groups with n elements each given by their Cayley tables and generating sets Sy
and Ss of size k each. The problem is to test if the groups are isomorphic (and, if so, to find an
isomorphism).

As noted in the introduction, this parameterization makes sense for GROUP-ISO because there
are natural classes of groups with small generating sets. E.g. every simple group of size n has a
generating sets with just two elements.

There is an easy n?*) algorithm for k~-GROUP-ISO which puts it in the class W[P]. But, no
algorithm with running time of the form f(k)n®(") is known for k—GROUP-ISO. Thus, we do not
know if it is fixed parameter tractable. We are interested in the question of whether k-GROUP-ISO
is complete for W[P]. We show that probably this is not the case since the problem does not even
seem to be hard for W[1]. We now provide evidence of this fact by showing that this assumption
implies a nonuniform nondeterministic subexponential time algorithm for CLIQUE.

Theorem 6.3 If k—GROUP-ISO is W[1]-hard then CLIQUE is in NTIME[n®(1), 200" /poly. ILe.
for inputs of length n, CLIQUE has polynomial-size proofs which can be verified in 2°") time with
a polynomial-size advice.

Proof: Suppose k—GROUP-ISO is W[l]-hard. Then there is a parameterized reduction from k-
CLIQUE to k—GROUP-ISO. By combining the reduction with the AM(O(log® n), O(log? n)) protocol
for GROUP-NONISO, we get an AM(O(f(k)log®n), O(f(k)log?n)) protocol for k-CLIQUE (the
complement of k-CLIQUE), in which the final deterministic computation done by Arthur after the
communication rounds takes time f (k)no(l), where f is some monotonically increasing function.
We can assume w.l.o.g. that f(k) > k for all k. Now, define the function f!(n) to be the largest
positive integer m such that f(m) < n. Observe that f~!(n) tends to oo monotonically with n.

Recall that CLIQUE = {G | G has n vertices and a clique of size n/2}. For an instance G of
CLIQUE, set I’ = f'(n/2). Let a(n) denote m Notice that a(n) tends to 0 monotonically
as n increases.

We again apply the Feige-Kilian construction [10]: in time (O(nZ(n))) we can convert G to a
nozn)
V(G) of size na(n) that induces a clique in G. Furthermore, two nodes v and v in G’ are adjacent
if their union (as subsets of V(G)) forms a clique in G. Clearly, G has an n/2-clique if and only
if G’ has an [’-clique. Now, consider (G’,I') as an instance of the parameterized clique problem.
Notice that the above AM protocol on input (G',1') will use O(f(k)log®n) = O(f(1")log® N) =
O(n"log® n) random bits and O(f(k)log?n) = O(f(I")1og? N) = O(n?log?n) nondeterministic
bits. Also observe that the final deterministic computation done by Arthur after the communication
rounds is of time (O(nZ(n)))' Then the running time for the final deterministic computation of Arthur

gn-H(c-a(n))

pair (G',1'), where G’ is a graph with at most () nodes, and each node of G’ is a subset of

can be bounded by where ¢ is a constant and H denotes the entropy function. Observe
that H(c-a(n)) — 0 as n — oo, since a(n) tends to 0 as n — oo. Thus, 27 () j5 20(") Putting
it together, we have shown the following claim.

Claim 6.4 Let G be an instance of CLIQUE. There is an AM(nO(l),nO(l)) protocol where the
final deterministic computation done by Arthur after the communication rounds is of time 2°0).
Furthermore, the protocol has error probability bounded by 1/4.

Now, as done in the proof of Theorem 6.1, by applying the standard method of repeating
the protocol n®M) times and taking a majority vote, we get an AM(nO(l),nO(l)) protocol for

17

CLIQUE where the final deterministic computation done by Arthur is still of time 2°®) and the error
probability is now bounded by 21" We can derandomize the protocol by fixing the random bits
to an n°(") size advice string. Thus, we have shown that CLIQUE is in NTIME[n?(1) 20(")]/poly.
This completes the proof. 1

7 Concluding Remarks

As the main result of this paper, we have studied the group isomorphism problem for the case of
solvable groups. We briefly here outline how our derandomization results could be generalized to
arbitrary groups. First, we observe that it suffices to have analogues of Theorems 3.2, 3.3, and 3.4
for general finite groups. With these theorems, we can proceed as in Sections 4 and 5 to obtain
the same derandomization results for general groups. Notice that the analogue of Theorem 3.2
for general finite groups is an effective version of the short presentation conjecture: namely, that a
short presentation for every finite group G can be computed in time polynomial in |G|. In fact, a
stronger effective version is conjectured in [7, Conjecture 3]. We recall that the short presentation
conjecture (see [7, Conjecture 1] for details) states that every finite group has a short presentation.
Regarding analogues for Theorems 3.3 and 3.4, it is possible to show that if analogues of these
theorems are true for all finite simple groups, then they hold for all finite groups.

References

[1] M. AcrawarL, N. KavarL anD N. Saxena, PRIMES is in P. Preprint, August 4, 2002,
http://www.cse.iitk.ac.in/users/manindra/.

[2] V. ARVIND AND J. KOBLER, On resource bounded measure and pseudorandomness, Proc. 17th FSTT
Conference Lecture Notes in Computer Science 1346 Springer Verlag, 235-249, (1997).

[3] J. L. BALCAZAR, Self-Reducibility, Journal of Computer and System Sciences 41-3, 367-388, (1990).

[4] J. L. BALCAZAR, J. Dfaz, J. GABARRO, Structural Complexity I, EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, 1989.

[5] L. BaBAI, Trading group theory for randomness, Proc. 17th ACM Symposium on Theory of Computing,
421-429, 1985.

[6] L. BABAIL, L. FOrRTNOW, N. NISAN, AND A. WIGDERSON, BPP has subexponential simulations unless
EXPTIME has publishable proofs, Computational Complexity, 3, pp. 307-318, 1993.

[7] L. BaBAI, A.J. GoOOoDMAN, W. KANTOR, E. Luks, P.P. PALFY, Short presentation for finite groups,
in Journal of Algebra, 194, 79-112, 1997.

[8] R.G. DOwWNEY AND M.R. FELLOWS Parameterized Complexity, Springer Verlag 1992.

[9] P. ErRDOS, A. RENYI, Probabilistic Methods in group theory, Jour. Analyse Mathématique, vol. 14,
(1965), 127-138.

[10] U. FEIGE, J. KILIAN, On Limited versus Polynomial Nondeterminism, Chicago Journal of Theoretical
Computer Science, March (1997).

[11] J. GoLpsMITH, M. LEVY AND M. MUNDHENK, Limited nondeterminism in SIGACT news, june 1996.

[12] O. GOLDREICH, A. WIGDERSON, Derandomizing that is rarely wrong from short advice that is typically
good, in Proc. 6th RANDOM workshop Lecture Notes in Computer Science 2483, 2002, 209-223.

18

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

GARZON AND ZALCSTEIN, On Isomorphism Testing of a Class of 2-Nilpotent Groups, in Journal of
Computer and System Sciences, vol. 42(2), 237-248, 1991.

C. KINTALA AND P. FISCHER, Refining nondeterminism in relativized polynomial time computations,
SIAM J. on Computing, 9, 1980, 46—53.

A. KL1vaNs AND D. vAN MELKEBEEK, Graph Isomorphism has subexponential size provers unless the
polynomial time hierarchy collapses. In Proc. 31st ACM STOC, 1999, 659-667.

R.J. LipTON, L. SNYDER, Y. ZALCSTEIN The complexity of word and isomorphism problems for finite
groups. Johns Hopkins University 1976.

C.-J. Lu, Derandomizing Arthur-Merlin games under uniform assumptions, in Journal of Computa-
tional Complexity, 10 2001, 247-259.

G.L. MILLER, On the n'°8" isomorphism technique, in Proc. 10th ACM Symposium on the Theory of
Computing, 1978, 51-58.

N. N1saN AND A. WIGDERSON, Hardness vs randomness, in Journal of Computer and System Sciences,
49:149-167, 1994.

P.B. MILTERSEN, N. VINODCHANDRAN, Derandomizing Arthur-Merlin games using hitting sets, in
Proc. 40th IEEE Symposium on Foundations of Computer Science, 1999, 71-80.

C. PAapaDIMITRIOU, Computational Complexity, Addison Wesley, 1994.

C. PAPADIMITRIOU, M. YANNAKAKIS On limited nondeterminism and the complexity of the VC di-
mension. In Journal of Computer and System Sciences, 53(2): 161-170, 1996.

M. SIPSER,A complexity theoretic approach to randomness. In Proc. 15th ACM Symp. Theory of
Computer Science 1983, 330-335.

19

