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Abstra
t. We show that the graph isomorphism problem is hard under DLOGTIME uniform

AC

0

many-one redu
tions for the 
omplexity 
lasses NL, PL (probabilisti
 logarithmi
 spa
e), for

every logarithmi
 spa
e modular 
lass Mod

k

L and for the 
lass DET of problems NC

1

redu
ible to

the determinant. These are the strongest known hardness results for the graph isomorphism problem,

and imply a randomized logarithmi
 spa
e redu
tion from the perfe
t mat
hing problem to graph

isomorphism. We also investigate hardness results for the graph automorphism problem.

1. Introdu
tion. The graph isomorphism problem GI 
onsists in the de
ision

of whether two given graphs are isomorphi
, or in other words, whether there is

a bije
tion between the nodes of the graphs preserving the edges. This problem has

been intensively studied, in part be
ause of its many appli
ations, and in part be
ause

it is one of the few problems in NP that has resisted all attempts to be 
lassi�ed as NP-


omplete, or within P. The best existing upper bound for the problem given by Luks

and Zemlya
henko is exp

p


n logn (
f [7℄), but there is no eviden
e of this bound being

optimal, and for many restri
ted graph 
lasses polynomial time algorithms are known.

This is for example the 
ase for planar graphs [19℄, graphs of bounded degree [29℄ or

graphs with bounded eigenvalue multipli
ity [6℄. In some 
ases, like trees [28, 11℄ or

graphs with 
olored verti
es and bounded 
olor 
lasses [30℄, even NC algorithms for

isomorphism are known.

Con
erning the hardness of GI, there is eviden
e indi
ating that the problem

is not NP-
omplete. On the one hand, the 
ounting version of GI is known to be

redu
ible to its de
isional version [31℄, while for all known NP-
omplete problems the


ounting version seems to be mu
h harder. On the other hand it has been shown

that if GI were NP-
omplete then the polynomial time hierar
hy would 
ollapse to its

se
ond level [9, 36℄. Be
ause of these fa
ts, there is a 
ommon belief that GI does not


ontain enough stru
ture or redundan
y to be hard for NP. The question of whether

GI is P-hard is also open, and moreover, the known lower bounds in terms of hardness

results for GI are surprisingly weak. It is only known that isomorphism for trees is

hard for NC

1

and for L (logarithmi
 spa
e) depending on the en
oding of the input

[23℄.

In this paper we improve the existing hardness results by showing that GI is hard

for all 
omplexity 
lasses de�ned in terms of the number of a

epting 
omputations

of a nondeterministi
 logarithmi
 spa
e ma
hine.

The key ingredient in the proof of our results, is a graph gadget showing that

GI has enough stru
ture to en
ode a modular addition gate. Using this fa
t, we

are able to give for any (k 2 IN) an AC

0

many-one redu
tion from the 
ir
uit value

problem for addition mod k gates, whi
h is 
omplete for Mod

k

L, to GI. Mod

k

L is the


omplexity 
lass 
orresponding to sets re
ognized by nondeterministi
 logarithmi


spa
e ma
hines in whi
h the number of a

epting 
omputations satis�es a 
ongruen
e

modulo k [10℄, and it lies within NC

2

. We show that a 
ir
uit with modular gates 
an

be dire
tly transformed into a graph in whi
h any automorphism of a 
ertain kind

maps a spe
ial vertex en
oding the output gate to a vertex en
oding the output of

the 
ir
uit. The graphs used in the redu
tion have degree 3 and its verti
es 
an be

�
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partitioned into 
olor-
lasses of size k

2

. Luks [30℄ has given an NC upper bound for

the 
omplexity of the isomorphism problem restri
ted to graphs with bounded 
olor


lasses. For isomorphism in this 
lass of graphs, the gap between our hardness results

and the upper bound given by Luks is therefore small. In fa
t, in [27℄ we have re
ently

shown that for graphs of bounded 
olor 
lasses of size 2 and 3, the graph isomorphism

problem is 
omplete for symmetri
 logarithmi
 spa
e.

By a simple use of the Chinese Remainder Theorem, the hardness results for the

modular 
lasses 
an be transformed into hardness results for NL. It is interesting to

observe that the graphs obtained in this redu
tion have automorphism groups in whi
h

the size of the orbits of some of the nodes depend on the input size, and therefore

these graphs do not have 
lasses of 
olored verti
es of 
onstant size as in the modular


ase.

Using the re
ent result that division 
an be performed in TC

0

[17, 18℄, and the

fa
t that an NC

1


ir
uit 
an be en
oded in an isomorphism problem [23℄, we 
an

moreover prove that any logarithmi
 spa
e 
ounting fun
tion 
an be redu
ed to GI.

In parti
ular this implies that GI is many-one hard for C

=

L and for probabilisti


logarithmi
 spa
e, PL. The hardness results 
ulminate in Theorem 4.9 where it is

shown that GI is hard for DET, de�ned by Cook [13℄ as the 
lass of problems NC

1

Turing redu
ible to the determinant.

Perfe
t mat
hing problem is (as GI) another problem of the short list that has

resisted 
lassi�
ation in terms of 
ompleteness. It was shown in [5℄ that perfe
t

mat
hing is randomly (or non-uniformly) redu
ible to Mod

k

L for every k. From our

results this implies a (random or non-uniform) redu
tion from mat
hing to GI, whi
h

provides the �rst redu
tion between the two well studied problems. Moreover, as a


onsequen
e of derandomization results from [21, 3, 25℄, under the natural hypothesis

that there is a set in DSPACE(n) with 
ir
uits of size 2


(n)

, our redu
tion implies a

many-one AC

0

(deterministi
) redu
tion from perfe
t mat
hing to GI.

The graph automorphism problem GA, the de
ision of whether a given graph has

a nontrivial automorphism, is known to be many-one redu
ible to GI and seems to

be a slightly easier problem. We show in Se
tion 5 that the hardness results for GI

hold also for GA.

2. Preliminaries. We assume familiarity with basi
 notions of 
omplexity the-

ory su
h as 
an be found in the standard textbooks in the area. We will prove hardness

results for several logarithmi
 spa
e 
omplexity 
lasses: NL is the 
lass of languages

a

epted by nondeterministi
 Turing ma
hines using logarithmi
 spa
e. The graph

a

essibility problem GAP (given a dire
ted graph with two designated nodes s and

t de
ide whether there is a path from s to t) is known to be 
omplete for NL, even in

the 
ase of a
y
li
 graphs with in-degree at most 2.

#L de�ned in [4℄ analogously to Valiant's 
lass #P, is the 
lass of fun
tions

f : �

�

! IN that 
ount the number of a

epting paths of a nondeterministi
 Turing

ma
hine M on input x. The 
omputation of a #L fun
tion on an input x 
an be

redu
ed to the problem 
omputing the number paths from node s to node t in a

dire
ted graph G

x

. The 
omplexity 
lasses PL (probabilisti
 logarithmi
 spa
e), C

=

L

(exa
t threshold in logarithmi
 spa
e), and Mod

k

L (modular 
ounting in logarithmi


spa
e, k � 2) 
an be de�ned in terms of #L fun
tions:

PL = fA : 9p 2 Poly; f 2 #L; x 2 A, f(x) � 2

p(jxj)

g [16; 35℄
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C

=

L = fA : 9p 2 Poly; f 2 #L; x 2 A, f(x) = 2

p(jxj)

g [2℄

Mod

k

L = fA : 9f 2 #L; x 2 A, f(x) = 1 mod kg [10℄

Mod

k


ir
uits (k � 2), are 
ir
uits where the input variables (and the wires) 
an

take values in ZZ

k

, and the gates 
ompute addition in ZZ

k

. The evaluation problem for

su
h 
ir
uits (given �xed values for the inputs, de
ide whether the output value is for

example 1) is 
omplete for Mod

k

L under AC

0

many-one redu
tions. This is be
ause

a dire
ted a
y
li
 graph with in-degree at most two, and two designated nodes, s; t,


an be easily transformed into a mod

k


ir
uit 
omputing the residue of the number

of paths from s to t in G, modulo k.

In some of the proofs we will make use of NC

1


ir
uits. These are families of

logarithmi
 depth, polynomial size Boolean 
ir
uits of bounded fan-in over the basis

f^;_;:g. DET [13℄ is the 
lass of problems NC

1

Turing redu
ible to the determinant,

or in other words, the 
lass of problems that 
an be solved by NC

1


ir
uits with

additional ora
le gates that 
an 
ompute the determinant of integer matri
es.

The known relationships among the 
onsidered 
lasses are:

Mod

k

L � DET;

NL � C

=

L � PL � DET:

Looking at the known in
lusions, the hardness of GI for DET implies hardness with

respe
t to the other 
lasses. We prove however the result for all the 
lasses separately

showing how the graphs produ
ed by the redu
tions in
rease in 
omplexity.

2.1. Redu
ibilities. We prove our hardness results for the DLOGTIME uni-

form AC

0

many-one redu
ibility (in short AC

0

redu
ibility). A set A is AC

0

redu
ible

to another set B if there is family of 
ir
uits fC

n

j n 2 INg where ea
h 
ir
uit C

n


ontains only AND, OR and NOT gates, has size n

O(1)

and depth O(1) and for ea
h

x of length n, x 2 A , C

n

(x) 2 B. Moreover the uniformity 
ondition requires that

there is a DLOGTIME Turing ma
hine with dire
t a

ess to its input de�ning the


ir
uit in the sense that the ma
hine 
an re
ognize the dire
t 
onne
tion language of

C

n

[34, 8℄. This language 
onsists of the set of tuples ht; a; b; yi where a and b are

numbers of nodes in C

n

, t is the type of a, b is a 
hild of a and y is a string of length

n.

2.2. Graph isomorphism, automorphism and promise isomorphism. An

automorphism in an undire
ted graph G = (V;E) is a permutation ' of the nodes,

that preserves adja
en
y. That is, for every u; v 2 V; (u; v) 2 E , ('(u); '(v)) 2 E.

An isomorphism between two graphs G;H is a bije
tion between their sets of verti
es

whi
h preserves the edges. G ' H denotes that G and H are isomorphi
. GI is the

problem

GI = f(G;H) j G and H are isomorphi
 graphsg

and GA is de�ned as

GA = fGj G has an automorphism di�erent from the identityg:



4 J. TOR

�

AN

A graph G in GA is 
alled rigid. For te
hni
al reasons we will 
onsider the set of graph

pairs ((G;H); (I; J)) with exa
tly one of the pairs 
onsisting of isomorphi
 graphs:

PGI = f((G;H); (I; J))j G ' H if and only if I 6' Jgg:

For a tuple in PGI we are given the promise of G being isomorphi
 to H or I being

isomorphi
 to J and the question is to de
ide whi
h one is the isomorphi
 pair.

Sometimes we will deal with graphs with 
olored verti
es. A 
oloring with k


olors is a fun
tion f : V ! f1; : : : kg. In an isomorphism between 
olored graphs,

the 
olors have to be preserved. The isomorphism problem for 
olored graphs 
an

be easily redu
ed (by AC

0

redu
tions) to graph isomorphism without 
olors (see e.g.

[26℄).

In some 
ases we will 
onsider the following restri
ted automorphism problem:

Given a graph G = (V;E) and two lists of nodes (x

1

; : : : ; x

k

); (y

1

; : : : ; y

k

), is there

an automorphism in G mapping x

i

to y

i

for 1 � i � k? This problem is also easily

redu
ible to GI. In order to 
he
k whether there is an automorphism with the desired

properties one 
an make two 
opies of G, G

0

and G

00

. In G

0

ea
h of the nodes x

i

has 
olor i and in G

00

node y

i

re
eives this 
olor. All the other nodes are 
olored

with a new 
olor 0, for example. G

0

and G

00

are isomorphi
 if and only if G has an

automorphism with the mentioned properties.

3. Hardness for the modular 
ounting 
lasses. We show now that GI is

hard for for all the logarithmi
 spa
e modular 
ounting 
lasses Mod

k

L (k � 2). The

idea for this proof is to simulate a modular gate with a graph gadget and then 
ombine

the gadgets for the di�erent gates into a graph, whose automorphisms simulate the

behavior of the modular 
ir
uit.

The gadgets are de�ned by the following graphs (shown in Figure 3.1 for the 
ase

k = 2):

Definition 3.1. Let k � 2 and denote by � the addition in ZZ

k

. We de�ne the

undire
ted graph G

k

= (V;E), given by the set of k

2

+ 3k nodes

V = fx

a

; y

a

; z

a

j a 2 f0; : : : ; k � 1g [

fu

a;b

j a; b 2 f0; : : : ; k � 1; gg

and edges

E = f(x

a

; u

a;b

) j a; b 2 f0; : : : ; k � 1gg [

f(y

b

; u

a;b

) j a; b 2 f0; : : : ; k � 1gg [

f(u

a;b

; z

a�b

) j a; b 2 f0; : : : ; k � 1gg:

The graph gadget for a modular gate has nodes en
oding the inputs and outputs

of the gate. Any automorphism in the graph mapping the input nodes in a 
ertain

way, must map the output nodes a

ording to the value of the modular gate being

simulated.

Lemma 3.2. Fix k � 2, for any a; b 2 f0; : : : ; k � 1g,

1) there is a unique automorphism ' in G

k

mapping x

i

to x

a�i

and y

i

to y

b�i

for

i = 0 : : : k � 1, and

2) this automorphism maps z

i

to z

a�b�i

.
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Fig. 3.1. The graph G

2

simulating a parity gate.

Proof. Let a; b 2 f0; : : : ; k�1g, and denote by � the addition in ZZ

k

. We 
onsider

the following fun
tion ' : V ! V de�ned as

'(x

i

) = x

a�i

for i 2 0; : : : ; k � 1;

'(y

i

) = y

b�i

for i 2 0; : : : ; k � 1;

'(u

i;j

) = u

a�i;b�j

for i; j 2 0; : : : ; k � 1;

'(z

i

) = z

a�b�i

for i 2 0; : : : ; k � 1:

We prove �rst that ' is an automorphism. For this we have to show that for every

pair of nodes v; w, (v; w) 2 E if and only if ('(v); '(w)) 2 E. The nodes in graph

G

k


an be partitioned in three layers, the x and y nodes, (input layer) the u nodes

and the z nodes (output layer). Edges exist only between nodes from �rst and se
ond

layers, or between nodes from se
ond and third layers. We 
onsider �rst an edge

between the �rst two layers. Let v = x

i

and w = u

l;m

with i; l;m 2 f0; : : : ; k � 1g.

Then '(v) = x

a�i

and '(w) = u

a�l;b�m

. By the de�nition of G

k

,

(x

i

; u

l;m

) 2 E , i = l

, a� i = a� l

, (x

a�i

; u

a�l;b�m

) 2 E

, ('(x

i

); '(u

l;m

)) 2 E:
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In the 
ase v = y

j

the proof is analogous. For an edge (v; w) between the se
ond and

third layers, let (v; w) = (u

i;j

; z

l

) with i; j; l 2 f0; : : : ; k � 1g. Then '(v) = u

a�i;b�j

and '(w) = z

a�b�l

. By the de�nition of G

k

,

(u

i;j

; z

l

) 2 E , i� j = l

, a� b� i� j = a� b� l

, a� i� b� j = a� b� l

, (u

a�i;b�j

; z

a�b�l

) 2 E

, ('(u

i;j

); '(z

l

)) 2 E:

In any automorphism � with the restri
tions �(x

i

) = x

a�i

and �(y

i

) = y

b�i

, the

node �(u

i;j

) must have edges to x

a�i

and y

b�j

but the only node with su
h 
onne
tions

is u

a�i;b�j

= '(u

i;j

):

Analogously �(z

i

) must be 
onne
ted to �(u

0;i

) = u

a;b�i

and this implies �(z

i

) =

z

a�b�i

= '(z

i

). This means that ' is the unique automorphism in G

k

mapping x

i

to

x

a�i

and y

i

to y

b�i

We observe that the gadget in Lemma 3.2 for the 
ase k = 2 has been already

used for a di�erent appli
ation in [12℄. It is not hard to see that a gadget like the

one de�ned in Lemma 3.2 for (ZZ

k

;�) 
an be 
onstru
ted for any �nite Abelian group

G = (A; Æ). We mean by this that for any su
h group a graph whose automorphism

group simulates the group operation Æ in the sense of the Lemma 
an be de�ned.

Theorem 3.3. For any k � 2, GI is hard for Mod

k

L under AC

0

many-one

redu
tions.

Proof. Let k � 2. We redu
e the mod

k


ir
uit value problem to GI. We transform

an instan
e C of the 
ir
uit value problem for mod

k


ir
uits into a graph G

C

by


onstru
ting for every modular gate g

j

of C a subgraph like the one des
ribed in

Lemma 3.2. Moreover, we 
olor the x; y; u and z nodes of the j-th gadget respe
tively

with one of the 
olors (x; j); (y; j); (u; j) and (z; j). Conne
tions between gates are

translated in the following way: If the output z of a gate in the 
ir
uit is 
onne
ted to

one of the inputs x of another gate, the redu
tion puts k additional edges 
onne
ting

(for i 2 f0; : : : ; k � 1g) node z

i

from the �rst gate to node x

i

from the se
ond gate.

For an input variable v

j

, k nodes v

j

0

; : : : ; v

j

k�1

are 
onsidered in the redu
tion. The


oloring implies that in any automorphism the nodes 
orresponding to a gate are

mapped to nodes from the same gate. Suppose the input variables of the 
ir
uit,

v

1

; : : : ; v

n

take values a

1

; : : : ; a

n

. It follows from Lemma 3.2, by indu
tion on the


ir
uit depth, that the output gate z takes value b 2 f0; : : : ; k�1g if and only if there

is an automorphism in G

C

mapping v

j

i

to v

j

i�a

i

for all i = 0; : : : ; k�1 and j = 1; : : : ; n,

and mapping z

i

to z

i�b

.

All the steps in the redu
tion 
an be done lo
ally by an AC

0


ir
uit. The question

of whether the output of the 
ir
uit equals b 2 f0; : : : ; k � 1g 
an be easily redu
ed

to whether a pair of graphs G

b

; G

0

b

are isomorphi
, as explained in the preliminaries.

In fa
t this question 
an be redu
ed to two graphs pairs ((G;H); (I; J)) 2 PGI with

G being isomorphi
 to H if the value of the 
ir
uit is b and I being isomorphi
 to J

otherwise. For this it suÆ
es to de�ne G as G

b

, H as G

0

b

, and I and J as the standard

OR-fun
tion for GI of

S

i 6=b

(G

i

; G

0

i

).

Observe that the graphs obtained in the redu
tion, have at most k

2

nodes with

the same 
olor (the nodes u

i;j

in any of the gate gadgets). The maximum degree 
an

be redu
ed to 3. In the above des
ription this does not ne
essarily hold be
ause of the


onne
tion between gates. However, the redu
tion 
an be easily modi�ed to a
hieve
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degree 3 by adding some extra nodes and arranging the fan-out 
onne
tions of the

gates in a tree-like fashion.

4. Hardness for other 
omplexity 
lasses. In this se
tion we show the hard-

ness of GI for nondeterministi
 logarithmi
 spa
e, for C

=

L, for probabilisti
 logarith-

mi
 spa
e and for the 
lass DET of problems NC

1

redu
ible to the determinant. The

proofs follow by the modular results, using the Chinese Remainder Theorem (CRT).

A Chinese remainder representation base is a set m

1

; : : : ;m

n

of pairwise 
oprime

integers. Let M =

Q

n

i=1

m

n

. By the CRT, every integer 0 � x < M is uniquely

represented by its Chinese remainder representation (x

1

; : : : ; x

n

), where 0 � x

i

< m

i

and x

i

= x mod m

i

. We will 
onsider the base B

n

formed by the �rst n prime

numbers.

Theorem 4.1. GI is hard for NL under AC

0

many-one redu
tions.

Proof. The graph a

essibility problem for dire
ted a
y
li
 graphs with fan-in

at most 2 is 
omplete for the 
lass NL. We redu
e the 
omplement of this set (non-

rea
hability) to GI. The result follows by the 
losure of NL under 
omplementation

[20, 37℄. Let G = (V;E) be su
h a graph, with jV j = n and with two designated nodes

s and t. Let P the number of paths from s to t in G. Clearly P � 2

n

and P = 0 if

and only if for for every i between 1 and n it holds P mod i = 0.

In the redu
tion, on input G, an AC

0


ir
uit, for ea
h i between 1 and n, trans-

forms G into a 
ir
uit C

i

with addition modulo i gates. The 
ir
uits have the property

that their outputs 
oin
ide with P mod i (see the preliminaries). In a se
ond step the

redu
tion transforms the sequen
e of C

i


ir
uits into a sequen
e of graphs G

C

i

(as

in the proof of Theorem 3.3) in whi
h there is an automorphism mapping the input

nodes a

ording to the inputs of C

i

and mapping z

i

0

(the node 
orresponding to the

output gate of G

C

i

) to z

i

j

if and only if P = j mod i. The number of paths from s to

t in G is then 0 if and only if for all i � n there is an automorphism in G

C

i

mapping

the input nodes G

C

i

a

ording to the inputs of C

i

and mapping z

i

0

to itself. This 
an

be easily redu
ed to GI as explained in the preliminaries.

Observe that in the graphs obtained in this redu
tion, the size of the 
lasses of

the nodes with the same 
olor are not bounded by a 
onstant as before, but by n

2

.

In fa
t, we 
an redu
e any logarithmi
 spa
e 
ounting fun
tion to GI. We under-

stand by this that for any fun
tion f 2 #L the set

A

f

= fhx; 0

i

i j the i-th bit of f(x) is 1g

is many-one redu
ible to GI.

For proving this redu
tion, we need two known results. On the one hand we need

the surprising fa
t that division 
an be 
omputed by uniform TC

0


ir
uits

1

. [17, 18℄.

More pre
isely we need the following part of the mentioned result:

Theorem 4.2. [17, 18℄ There is a DLOGTIME uniform family of TC

0


ir-


uits that on input the Chinese remainder representation (x

1

; : : : ; x

n

) in base B

n

of

a number x, outputs the binary representation of x.

We also need the fa
t that the result of an NC

1


ir
uit with �xed values in the

input nodes 
an be en
oded as a graph isomorphism question. This follows from an

adaptation of the proof of Theorem 3.1 in [22℄ stating that GI is hard for NC

1

under

DLOGTIME uniform AC

0

many-one redu
tions. For 
ompleteness we give a sket
h of

the proof. The reader is referred to [22℄ for the details. For te
hni
al reasons needed

1

In fa
t for our purposes suÆ
es the weaker result stating that division is in alternating time

O(log n) whi
h proved in [14℄
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in the proof of Theorem 4.9, we en
ode the values of the 
ir
uit as tuples of graphs

((G;H); (I; J)) in PGI, with G ' H and I 6' J for the en
oding of a 1 and with

G 6' H and I ' J for the en
oding of a 0. Re
all that PGI was the set of graph tuples

((G;H); (I; J)) with exa
tly one of the graphs pairs being isomorphi
.

Theorem 4.3. Given a uniform family of 
ir
uits C

n

with logarithmi
 depth and

polynomial size and given n tuples of graphs ((G

i

; H

i

); (I

i

; J

i

)) 2 PGI, there is an AC

0

redu
tion 
onstru
ting a tuple ((G;H); (I; J)) 2 PGI with the property that G ' H if

and only if C

n

outputs 1 and I ' J if and only if C

n

outputs 0, where the i-th input

to C

n


onsists of the bit of the boolean value of the statement G

i

' H

i

.

Proof. (Sket
h) An NC

1


ir
uit 
an be simulated by a balan
ed DLOGTIME

uniform family of 
ir
uits with fan out 1, logarithmi
 depth, polynomial size and

alternating layers of ANDs and ORs [8℄. We show how to transform these expressions

to graph tuples. The idea is to 
onstru
t graph gadgets to simulate the AND and OR


onne
tives in the 
ir
uit. Given two tuples ((G

1

; H

1

); (I

1

; J

1

)) and ((G

2

; H

2

); (I

2

; J

2

))

in PGI 
onsider the graphs G

^

; H

^

; I

^

and J

^

in Figure 4.1, where an edge between

two graphs represents that ea
h node of the �rst graph is 
onne
ted to ea
h node

of the se
ond graph. We 
an also suppose that the nodes of G

1

and H

1

are 
olored

with the same spe
ial 
olor to handle the 
ases when G

1

' H

2

. This is represented

by a double ring arround the graphs in the �gure. The 
onstru
ted graphs have the

property that G

^

' H

^

if and only if G

1

' H

1

and G

2

' H

2

. Also I

^

' J

^

if and

only if G

1

6' H

1

or G

2

6' H

2

(in this 
ase I

1

' J

1

or I

2

' J

2

).

G

2

G

1

H

1

H

2

I

2

I

1

J

1

J

2

I

2

I

1

J

1

J

2

G

^

H

^

I

^

J

^

Fig. 4.1. Tuple (G

^

; H

^

; I

^

; J

^

) simulating AND.

Similarly, the graphs G

_

; H

_

; I

_

and J

_

from Figure 4.2 have the property that

G

_

' H

_

if and only if G

1

' H

1

or G

2

' H

2

and I

_

' J

_

if and only if G

1

6' H

1

and

G

2

6' H

2

. Observe that ((G

^

; H

^

); (I

^

; J

^

)) and ((G

_

; H

_

); (I

_

; J

_

)) belong to PGI.

G

2

G

1

H

1

H

2

G

2

G

1

H

1

H

2

I

2

I

1

J

1

J

2

G

_

H

_

I

_

J

_

Fig. 4.2. Tuple ((G

_

; H

_

); (I

_

; J

_

) simulating OR.

The 
onstru
tions doubles the number of nodes of the initial tuples. Noti
e also

that it is easy to simulate a NOT by transforming ((G;H); (I; J)) to ((I; J); (G;H)).

A 1 in the 
ir
uit is represented by a tuple ((G;H); (I; J)) with G ' H and a 0

by a tuple with I ' J . Starting from the input nodes the redu
tion transforms the
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nodes of the 
ir
uit into graph tuples en
oding the values of the 
ir
uit gates . Sin
e

the 
ir
uit has logarithmi
 depth the tuples 
orresponding to the output gate have a

polynomial number of nodes.

We 
an now show the hardness of GI with respe
t to #L.

Theorem 4.4. Every #L fun
tion

2

is AC

0

many-one redu
ible to GI.

Proof. Let f 2 #L. For some polynomial q, it is possible to 
onstru
t in AC

0

for x 2 �

�

a graph G

x

with at most q(jxj) nodes so that f(x) is the number of s� t

paths in G

x

. Let i be the bit of f(x) we want to redu
e to GI, and let m = q(jxj). By

Theorem 4.2, in order to 
ompute f(x), it suÆ
es to 
ompute its Chinese remainder

representation (f(x)

1

; : : : ; f(x)

m

) in B

m

. On
e this is done, f(x) 
an be 
omputed

by an NC

1


ir
uit.

The Chinese remainder representation 
an be obtained by 
omputing prime num-

ber p

i

, for every 1 � i � m, (this 
an be done by an NC

1


ir
uit) and redu
ing G

x

to

a 
ir
uit with addition gates in ZZ

p

i

, as in the proof of Theorem 4.1. The 
ir
uits are

transformed into p

i

graph tuples ((G

j

; H

j

); (I

j

; J

j

)) with the property that in the j-th

tuple the �rst two graphs are isomorphi
 if and only if f(x) = j � 1 mod p

i

. These

form a list of

P

m

i=1

p

i

graph tuples, and 
an be 
onsidered as an en
oding of the

CRR of f(x) (f(x)

1

; : : : ; f(x)

m

) of the form (w

1

; : : : ; w

m

) where ea
h w

i

2 f0; 1g

p

i

is

formed by 0's with a 1 in position f(x)

i

+ 1. The 0's and 1's in the w

i

's are en
oded

by tuples in PGI.

By Theorem 4.2 it is possible to 
onstru
t in DLOGTIME a TC

0

(and therefore

also an NC

1

) 
ir
uit that having as inputs the CRR of f(x), outputs the i-th bit of

f(x). We 
an 
onsider the list of graph tuples as the inputs of this 
ir
uit.

So far we have shown that there is a uniform AC

0

redu
tion that on input x 
om-

putes an NC

1


ir
uit that outputs the i-th bit of f(x) and has its input values en
oded

as graph tuples in PGI. As done in the proof of Theorem 4.3, an AC

0

redu
tion 
an

also transform the whole 
ir
uit into a single tuple of graphs ((G;H); (I; J)). G is

isomorphi
 to H or I is isomorphi
 to J depending on the output of the NC

1


ir
uit,

whi
h 
oin
ides with the i-th bit of f(x).

Basi
ally the same proof as the one for the hardness for NL holds for proving

hardness for the 
lass C

=

L. Here instead of 
he
king that the number of paths from

s to t is 0, we have to 
he
k that this number 
oin
ides with some exa
t threshold

f(G) � 2

n

. For this the redu
tion ma
hine has to 
ompute for ea
h small prime

p

i

the residue r

i

= f(G) mod p

i

(this 
an be done in NC

1

[32℄ and in fa
t in TC

0

by the mentioned result on division in [18℄), and then 
he
k whether there is an

automorphism that for all i maps z

i

0

to z

i

r

i

.

Corollary 4.5. GI is hard for C

=

L under AC

0

many-one redu
tions.

As mentioned in the preliminaries, for a set L 2 PL, there is a fun
tion f 2 #L

and a polynomial p su
h that for any input x, x 2 L if and only if f(x) � 2

p(jxj)

. The

next result follows then dire
tly from Theorem 4.4 sin
e an input x belongs to L if

an only if at least one of the bits 
orresponding to positions � p(jxj) (starting from

the right) in the binary representation of f(x) is a 1.

Corollary 4.6. GI is hard for the 
lass PL under AC

0

many-one redu
tions.

The 
lass DET of problems NC

1

Turing redu
ible to the determinant 
oin
ides

with NC

1

(#L) (see e.g. [2℄). Combining Theorems 4.3 and 4.4, we 
an prove the

hardness of GI for DET, whi
h is the strongest known hardness result for GI.

The proof of this result is based on a simulation of the NC

1


ir
uit as done in

Theorem 4.3 repla
ing ea
h of the ora
le queries to f by a small 
ir
uit as in the proof

2

In fa
t this result also holds for the more powerful 
lass of GapL fun
tions de�ned in [2℄.
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of Theorem 4.4. The main problem here is that while in Theorem 4.4 the input for the

#L fun
tion to be 
omputed is a binary string x, in the simulation of the NC

1


ir
uit

the input to the ora
le 
alls are not given as a sequen
e of bits but as a sequen
e of

graph tuples en
oding these bits. To deal with this problem we need the following

lemma stating that Theorem 4.4 is also true when the input is en
oded as a sequen
e

of tuples:

Lemma 4.7. For ea
h fun
tion f 2 #L there is a DLOGTIME uniform family

fC

n

g of AC

0


ir
uits su
h that on input a sequen
e of graph tuples ((G

i

; H

i

); (I

i

; J

i

))

in PGI, 1 � i � n, of size polynomial in n en
oding a binary string x 2 �

n

, C

n


onstru
ts a sequen
e of tuples ((G

0

i

; H

0

i

); (I

0

i

; J

0

i

)) in PGI, 1 � i � q(n); en
oding the

bits of f(x).

Proof. Let f 2 #L and n; k;m 2 IN. From the des
ription of the nondeterministi


logarithmi
 spa
e ma
hine M 
omputing f the redu
tion 
onstru
ts �rst in AC

0

a

graph G

n

f

of polynomial size in n related to the 
on�guration graph of M . We 
an


onsider that M has a read-only tape for the input and a work tape of logarithmi


size. The set of nodes of G

n

f


onsists of the set of tuples (s; 
; p

1

; p

2

; b) where s is a

state of M , 
 is a possible 
ontent of the work tape, p

1

and p

2

are the positions of the

tape heads on the input and work tape respe
tively, and b is one bit that will be used

to en
ode the 
ontent at position p

1

on the input tape. For a 
on
rete input some

of these des
riptions are not 
onsistent with the input information sin
e b might not

be the 
orre
t bit at position p

1

. Nevertheless we 
onsider the set of all su
h possible

des
riptions at this point. This set hat polynomial size in n. The set of edges in G

n

f

is given by the transition fun
tion of M . If the ma
hine 
an rea
h from a des
ription

d = (s; 
; p

1

; p

2

; b) the 
on�guration (s

0

; 


0

; p

0

1

; p

0

2

) in one step, then there is a dire
ted

edge in G

n

f

from d to (s

0

; 


0

; p

0

1

; p

0

2

; 0) and another one from d to (s

0

; 


0

; p

0

1

; p

0

2

; 1).

Let x be the input for f en
oded by a sequen
e of graph triplets in PGI. In order

to 
ompute whether f(x) mod k is 
ongruent with m we will 
onsider that the nodes

of G

n

f

are addition gates in ZZ

k

in a polynomial size 
ir
uit C. If all the nodes of

C would 
orrespond to des
riptions 
onsistent with the input, then the output of

this 
ir
uit would be f(x) mod k. However, half of the gates in C 
orrespond to

in
onsistent des
riptions and they 
orrupt the �nal sum. To avoid this problem we

use a method that guarantees that the wires 
oming out of the in
onsistent gates

always have value 0 and therefore do not 
ontribute to the �nal sum. This will be

done with a new graph gadget. Using �rst the graph gadgets in Se
tion 3, 
ir
uit C


an be transformed into a graph G

C

where ea
h of the mod k gates 
orresponding

to a ma
hine des
ription d = (s; 
; p; p

0

; b) is transformed into a subgraph with input

nodes x

0

; : : : x

k�1

and y

0

; : : : y

k�1

and output nodes z

0

; : : : z

k�1

in su
h a way that

if there is an automorphism mapping x

l

to x

l�i

and y

l

to y

l�j

in this subgraph,

then the automorphism maps z

l

to z

l�i�j

for i; j; l 2 f0; : : : k � 1g (Lemma 3.2).

The output nodes z

l

are then 
onne
ted with an edge to the input nodes of other

gates, nodes w

0

: : : w

k�1

(the nodes of z are 
onne
ted to as many nodes as the

fan out of the 
orresponding gate, for simpli
ity we 
onsider it is just one). Let us

suppose that the bit b in des
ription d is 1 (the 0 
ase is 
ompletely analogous) and

let ((G

p

; H

p

); (I

p

; J

p

)) be the input tuple in PGI en
oding the 
orre
t value for the

position p in the input x. The gate 
orresponding to d is a 
onsistent gate if and

only if b equals the Boolean value of G

p

' H

p

. To for
e that the in
onsistent gates

always propagate a 0 (an automorphism mapping z

0

to itself) the redu
tion in
ludes

between the z and w nodes the following gadget Gad

k

that 
an be seen in Figure 4.3

for the 
ase k = 2. Conne
tions between a node v and a graph in the �gure and in
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the following des
ription of Gad

k

mean that there is an edge between v and ea
h of

the nodes in the graph.

4

3

2

1

b

G

p

I

0

p

J

0;1

p

b

b

H

1

p

I

1

p

J

1;0

p

b

w

0

w

1

z

0

z

1

Fig. 4.3. The graph Gad

2

.

Subgraph Gad

k


an be represented in four levels. Levels 1 and 4 
ontain the

nodes z

i

; and w

i

, respe
tively, for i 2 f0; : : : k� 1g. Level 2 
ontains for ea
h i a 
opy

I

i

p

of I

p

and k�1 
opies of J

p

, J

i;j

p

, j 2 f0; : : : k�1g, j 6= i. Level 3 
ontains a 
opy of

G

p

and for ea
h i in f1; : : : ; k� 1g a 
opy H

i

p

of H

p

. The edges are de�ned as follows:

{ Ea
h node z

i

is 
onne
ted to the graphs I

i

p

and to the k � 1 graphs J

l;i

p

for l 6= i

in the se
ond level.

{ Graph G

p

in the third level is 
onne
ted to I

0

p

and to ea
h of the graphs J

0;j

p

j 6= 0,

all of them in the se
ond level.

{ The graphs H

i

p

, i 6= 0 in the third level are 
onne
ted to I

i

p

and to J

i;j

p

, j 6= i.

{ Finally in the fourth level, node w

0

is 
onne
ted to G

p

and ea
h w

i

for i 6= 0 is


onne
ted to H

i

p

.

Gad

k

has very ni
e properties, as 
an be seen in the next lemma.

Lemma 4.8. Subgraph Gad

k

has the following properties:

1. If the gate is 
onsistent with the input, that is, if G

p

' H

p

then for any


 2 f0; : : : ; k � 1g there is an automorphism in Gad

k

mapping z

i

to z

i�


for

ea
h i. Su
h automorphism maps also w

i

to w

i�


.

2. If the gate is in
onsistent with the input, that is, if I

p

' J

p

then for any


 2 f0; : : : ; k � 1g there is an automorphism in Gad

k

mapping z

i

to z

i�


for

ea
h i. Su
h automorphism maps also w

i

to w

i

.

Proof. In order to see 1), observe that if the automorphism maps z

i

to z

i�


, then

the graph I

i

p


onne
ted to z

i

has to be mapped to one of the graphs 
onne
ted to z

i�


,

J

j;i�


p

or I

i�


p

. But I

p


annot be mapped to J

p

sin
e these graphs are not isomorphi
.

This implies that in any automorphism all the graphs I

p

in the se
ond level have to

be mapped to graphs of type I

p

. In parti
ular I

i

p

has to be mapped to I

i�


p

. This

means that the graph G

p

at the third level has to be mapped to the H

p

graph over w




(this 
an happen sin
e G

p

' H

p

) and this implies that for all i, w

i

has to be mapped

to w

i�


. An automorphism satisfying all these 
onditions 
an be de�ned by mapping

for all i; j with i 6= j J

i;j

p

to J

i�
;j�


p

at the se
ond level. Observe that in 
ase G

p

, H

p

,

I

p

and J

p

are rigid graphs, then the des
ribed automorphism is the only one mapping

z

i

to z

i�


for ea
h i.

For the proof of 2) observe that in 
ase the gate is in
onsistent with the input,

then the graph G

p

at the third level has to be mapped to itself and therefore the
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w nodes also have to be mapped to themselves. We have to prove that there is an

automorphism with these properties mapping z

i

to z

i�


for ea
h i. This is 
lear for


 = 0. For 
 6= 0 this automorphism maps in the se
ond level graph I

i

p

to J

i;i�


p

(this

is possible sin
e I

p

' J

p

) and maps G

i;j

p

to G

i;j�


p

, if i 6= j�
 or to I

i

p

in 
ase i = j�
.

The automorphism �xes the third and fourth levels, and again, in 
ase G;H; I and J

are rigid graphs, it is the only one mapping z

i

to z

i�


for ea
h i.

We 
ontinue with the proof of Lemma 4.7. Let G

0

C

be the graph 
orresponding to


ir
uit C with the new gadgets on the edges 
oming out of the gates in C. The above

lemma guarantees that in
onsistent gates always produ
e value 0 and therefore the


ir
uit produ
es the 
orre
t value for f(x) mod k. Let z

0

; : : : z

k�1

be the output nodes

in G

0

C


orresponding to the output gate of the 
ir
uit. By the results in Se
tion 3,

there is an automorphism in G

0

C

mapping for ea
h i z

i

to z

i�m

if and only if f(x) � m

mod k. This property 
an be en
oded by the redu
tion using standard methods into

a graph tuple ((G;H); (I; J)) in PGI satisfying that G ' H if f(x) � m mod k and

I ' J otherwise. Observe that if the graphs in the tuples have size at most s then

the size of the output graphs is at most p(n)s for a polynomial p depending on the

ma
hine M . The rest of the proof is exa
tly as in Theorem 4.4.

We 
an now prove the hardness of GI for DET. This result answers positively a

question posed by Allender in [1℄. Re
all that DET 
an be 
hara
terized as NC

1

(#L)

the 
lass of problems 
omputed by an AC

0

uniform family of polynomial size and

logarithmi
 depth 
ir
uits with ora
le gates to a fun
tion f in #L. By 
onvention, an

ora
le gate querying a string x 
ontributes log(jxj+ jf(x)j) to the total 
ir
uit depth.

Theorem 4.9. GI is hard for the 
lass DET under AC

0

many-one redu
tions.

Proof. Let L be a set in NC

1

(#L) and let fC

n

g be the family of NC

1


ir
uits


omputing L with fun
tional ora
le queries to a fun
tion f in #L.

We want to 
ompute C

n

(x) for a string x of length n. The redu
tion 
an �rst

transform ea
h ora
le gate g into a 
ir
uit D

g

as done in Theorem 4.4. Observe that

the stru
ture of the 
ir
uit 
omputing gate g does not depend on the input bits of g,

but just on the number of su
h bits. D

g


omputes the query using modular gates as

well as AND and OR gates. D

g

has polynomial size (in the size of its input) and its

depth is not ne
essarily logarithmi
, but the number of levels with AND or OR gates

in this 
ir
uit is logarithmi
 in the input size of g. If we only 
ount the depth of the

AND and OR gates (the maximum number of su
h gates in a path from an input to

the output gate), C

n

with the expanded ora
les gates still has logarithmi
 depth in n

sin
e we are dealing with an NC

1

redu
tion.

Ea
h gate in the 
ir
uit C

n

with expanded ora
le queries 
an be transformed by

the AC

0

redu
tion into a tuple of four graphs ((G;H); (I; J)) en
oding the value of

the gate as explained before. Using Theorems 4.3 and 4.9 the redu
tion 
an 
onstru
t

these tuples for all the levels of the 
ir
uit. The graph tuple 
orresponding to the

output gate en
odes the result of the 
ir
uit 
omputation.

It is only left to show that the size of the graph tuples 
orresponding to the


ir
uit gates remain of polynomial size in n. The gadgets 
orresponding to the AND

and OR gates in
rease the size of the graph tuples at most by a fa
tor of 2 in ea
h

level, and the number of 
ir
uit levels with AND or OR gates is logarithmi
 in n.

The gadgets atta
hed to the modular 
omputations in the query gates in
rease the

size of the tuples by a fa
tor of p(m) where m is the size of the query and p is a

polynomial. Be
ause C

n


omputes an NC

1

redu
tion, in a 
ir
uit path with ora
le

queries with sizes m

1

; : : : ;m

l

, it must hold that the sum of the logarithms of all the

query sizes is at most 
 log(n) for some 
onstant 
. From this follows that the produ
t
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of the in
reasing fa
tors p(m

i

) 
orresponding to all the ora
le queries in the path is

bounded by a polynomial in n. These fa
ts imply that the the size of the graph tuples


orresponding to every gate in C

n

is polynomial in n.

4.1. Mat
hing is redu
ible to GI. We mention an interesting 
onne
tion

between the perfe
t mat
hing problem and GI. The perfe
t mat
hing problem 
onsists

in de
iding whether a given undire
ted graph has a perfe
t mat
hing, that is, a set of

edges that 
ontain all the verti
es, and su
h that no two of these edges share a vertex.

This problem has been intensively studied, but like GI, it has resisted all 
lassi�
ation

attempts in terms of 
ompleteness in a 
lass. The problem has polynomial time

algorithms, and it is known to be in random NC [24, 33℄. In [5℄ it has been proved

that for any k � 2, the perfe
t mat
hing problem is randomly redu
ible to a set in

Mod

k

L. Together with Theorem 3.3 this implies:

Corollary 4.10. Mat
hing is redu
ible to GI under randomized redu
tions.

Sin
e the redu
tion works 
orre
tly with probability exponentially 
lose to 1, for

ea
h input size n there is a sequen
e of random 
hoi
es that 
an be taken as 
orre
t

advi
e in the redu
tion of all instan
es of size n. This implies a non-uniform redu
tion

from Mat
hing to GI. Moreover as noted in [3℄, under a natural hardness hypothesis,

the redu
tion from Mat
hing to Mod

k

L 
an be derandomized using te
hniques from

[21, 25℄. This yields:

Corollary 4.11. If there is a set A in DSPACE(n) and Æ > 0 with the property

that, for all large n, no 
ir
uits of size less than 2

Æn

a

epts exa
tly the strings of

length n in A, then perfe
t mat
hing is in
luded in Mod

k

L for any k � 2 and thus the

problem is redu
ible to GI under AC

0

many-one redu
tions.

5. Hardness results for graph automorphism. The graph automorphism

problem (GA) de
iding whether a given graph has a nontrivial automorphism is many-

one redu
ible to GI and it seems to be a slightly easier problem. In this se
tion we

show that the proven hardness results for GI hold also for GA. We show �rst that the

hardness for the modular 
lasses 
an be easily translated to GA.

Theorem 5.1. For any k � 2, GA is hard for Mod

k

L under AC

0

many-one

redu
tions.

Proof. In Theorem 3.3 we transformed a 
ir
uit with addition gates in ZZ

k

and

values for the input gates, into a graph G having a unique automorphism with 
ertain

restri
tions (some nodes en
oding the input and output values of the 
ir
uits had to

be mapped in a 
ertain way) if and only if the output value of the 
ir
uit is 1. The

question of whether G has an automorphism with the desired properties 
an in turn

be transformed into a GI problem by making two 
opies of G, G

1

and G

2

. These

graphs have to in
lude some 
oloring in the nodes representing the input and output

values of the 
ir
uit in order to en
ode the restri
tions in the automorphism. Observe

that there is at most one isomorphism between G

1

and G

2

. From this follows that

there is a nontrivial automorphism in G

1

[G

2

if and only if the output of the original


ir
uit is 1.

Based on this Theorem the proof of the result 4.1 
an be modi�ed to show hardness

of GA for NL.

Corollary 5.2. GA is hard for NL under AC

0

many-one redu
tions.

The additional ingredient that is needed to prove the stronger hardness results,

is the fa
t that an NC

1


omputation 
an be en
oded as a GA question, that is, a

version of Theorem4.3 for GA. A dire
t translation of this result does not work sin
e

GA is not known to have AND-fun
tions. An AND-fun
tion for GA is a fun
tion that

is easy to 
ompute and transforms pairs of graphs into single graphs in su
h a way
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that both of the original graphs have nontrivial automorphisms if and only if the �nal

graph has su
h an automorphism. Dieter van Melkebeek has found a way to avoid

this problem.

Theorem 5.3. (van Melkebeek) Given a uniform family of 
ir
uits C

n

with loga-

rithmi
 depth and polynomial size and given n tuples of rigid graphs ((G

i

; H

i

); (I

i

; J

i

)) 2

PGI, there is an AC

0

redu
tion 
onstru
ting a tuple of rigid graphs ((G;H); (I; J)) 2

PGI with the property that G ' H if and only if C

n

outputs 1 and I ' J if and only

if C

n

outputs 0, where the i-th input to C

n


onsists of the bit of the boolean value of

the statement G

i

' H

i

.

Proof. The proof is like the one for Theorem 4.3 simulating the alternating layers

of ANDs and ORs of an NC

1


ir
uit by graph gadgets for the tuples. The main

diÆ
ulty is to preserve the rigidity of the tuple 
omponents.

In order to simulate the AND, given two tuples of rigid graphs ((G

1

; H

1

); (I

1

; J

1

))

and ((G

2

; H

2

); (I

2

; J

2

)) in PGI 
onsider the graphs G

^

; H

^

; I

^

and J

^

in Figure 5.1.

G

^

and H

^

are de�ned as the standard AND fun
tion for GI of the G and H graphs,

while I

^

and J

^

are 
onstru
ted as the OR of (I

1

; J

1

) and the AND of (G

1

; H

1

) and

(I

2

; J

2

). Again by a double ring arround some of the graphs we represent the fa
t

that these graphs are marked in some spe
ial way and 
an only be mapped to other

graphs with the same marking.

These graphs have the property that G

^

' H

^

if and only if G

1

' H

1

and

G

2

' H

2

. Also I

^

' J

^

if and only if I

1

' J

1

(and therefore G

1

6' H

1

) or I

2

' J

2

(in this 
ase G

2

6' H

2

and either G

1

' H

1

or I

1

' J

1

). Although the standard OR

does not preserve rigidity in 
ase both inputs are isomorphi
, observe that in this


onstru
tion if all the graphs in the input tuples are rigid then G

^

; H

^

; I

^

and J

^

are

also rigid. We avoid the ambiguous situation by rewriting \p or q" as \p or (not p

and q)" and expressing \not p" positively by swit
hing to the 
omplementary pair of

the tuple.

G

2

G

1

H

1

H

2

I

2

I

1

b

G

1

J

1

J

2

b

H

1

I

2

I

1

b

G

1

J

1

J

2

b

H

1

G

^

H

^

I

^

J

^

Fig. 5.1. Tuple (G

^

; H

^

; I

^

; J

^

) simulating AND.

Similarly, the graphs G

_

; H

_

; I

_

and J

_

from Figure 5.2 have the property that

G

_

' H

_

if and only if G

1

' H

1

or G

2

' H

2

and I

_

' J

_

if and only if G

1

6' H

1

and G

2

6' H

2

. These gadgets simulate therefore an OR gate. Moreover, if the all

the graphs G

i

; H

i

; I

i

and J

i

are rigid, for i 2 f1; 2g, then the 
onstru
ted graphs

G

_

; H

_

; I

_

and J

_

are also rigid.

Observe that the size of the 
onstru
ted gadgets is at most 3n, n being the sum of

all the nodes in the input tuples. Be
ause of this fa
t, for a logarithmi
 depth 
ir
uit

C with alternating layers of AND and OR fan-out 1 gates, a tuple of polynomial size

rigid graphs ((G;H)(I; J)) 
an be 
onstru
ted su
h that C has value 1 if and only if

G ' H . Sin
e G and H are rigid, this is equivalent to G [H 2 GA.

An immediate 
onsequen
e of this result is that GA is hard for NC

1

. Using

this fa
t and Theorem 5.1, it is now possible to prove the hardness of GA for the
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I

2

I

1

J

1

J

2

I

1

G

1

b

G

2

H

1

J

1

b

H

2

I

1

G

1

b

G

2

H

1

J

1

b

H

2

G

_

H

_

I

_

J

_

Fig. 5.2. Tuple (G

_

;H

_

; I

_

; J

_

) simulating OR.


lass DET. The proof of this result follows exa
tly the same lines as the one for

Theorem 4.9 taking into 
onsideration that the graph pairs produ
ed in the redu
tion

from Theorem 3.3 are rigid, and that the gadgets in the proof of Theorem 4.9 also

preserve rigidity.

Corollary 5.4. GA is hard for the 
lass DET under AC

0

many-one redu
tions.

One �nal observation is that from Theorem 5.1 it follows also that the perfe
t

mat
hing problem is randomly redu
ible to GA.
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