
ON THE HARDNESS OF GRAPH ISOMORPHISM

�

JACOBO TOR

�

AN

y

Abstrat. We show that the graph isomorphism problem is hard under DLOGTIME uniform

AC

0

many-one redutions for the omplexity lasses NL, PL (probabilisti logarithmi spae), for

every logarithmi spae modular lass Mod

k

L and for the lass DET of problems NC

1

reduible to

the determinant. These are the strongest known hardness results for the graph isomorphism problem,

and imply a randomized logarithmi spae redution from the perfet mathing problem to graph

isomorphism. We also investigate hardness results for the graph automorphism problem.

1. Introdution. The graph isomorphism problem GI onsists in the deision

of whether two given graphs are isomorphi, or in other words, whether there is

a bijetion between the nodes of the graphs preserving the edges. This problem has

been intensively studied, in part beause of its many appliations, and in part beause

it is one of the few problems in NP that has resisted all attempts to be lassi�ed as NP-

omplete, or within P. The best existing upper bound for the problem given by Luks

and Zemlyahenko is exp

p

n logn (f [7℄), but there is no evidene of this bound being

optimal, and for many restrited graph lasses polynomial time algorithms are known.

This is for example the ase for planar graphs [19℄, graphs of bounded degree [29℄ or

graphs with bounded eigenvalue multipliity [6℄. In some ases, like trees [28, 11℄ or

graphs with olored verties and bounded olor lasses [30℄, even NC algorithms for

isomorphism are known.

Conerning the hardness of GI, there is evidene indiating that the problem

is not NP-omplete. On the one hand, the ounting version of GI is known to be

reduible to its deisional version [31℄, while for all known NP-omplete problems the

ounting version seems to be muh harder. On the other hand it has been shown

that if GI were NP-omplete then the polynomial time hierarhy would ollapse to its

seond level [9, 36℄. Beause of these fats, there is a ommon belief that GI does not

ontain enough struture or redundany to be hard for NP. The question of whether

GI is P-hard is also open, and moreover, the known lower bounds in terms of hardness

results for GI are surprisingly weak. It is only known that isomorphism for trees is

hard for NC

1

and for L (logarithmi spae) depending on the enoding of the input

[23℄.

In this paper we improve the existing hardness results by showing that GI is hard

for all omplexity lasses de�ned in terms of the number of aepting omputations

of a nondeterministi logarithmi spae mahine.

The key ingredient in the proof of our results, is a graph gadget showing that

GI has enough struture to enode a modular addition gate. Using this fat, we

are able to give for any (k 2 IN) an AC

0

many-one redution from the iruit value

problem for addition mod k gates, whih is omplete for Mod

k

L, to GI. Mod

k

L is the

omplexity lass orresponding to sets reognized by nondeterministi logarithmi

spae mahines in whih the number of aepting omputations satis�es a ongruene

modulo k [10℄, and it lies within NC

2

. We show that a iruit with modular gates an

be diretly transformed into a graph in whih any automorphism of a ertain kind

maps a speial vertex enoding the output gate to a vertex enoding the output of

the iruit. The graphs used in the redution have degree 3 and its verties an be

�

A preliminary version of this paper appeared in the onferene FOCS 2000.

y

Abteilung Theoretishe Informatik, Universit�at Ulm, Oberer Eselsberg, 89069 Ulm, Germany,

toran�informatik.uni-ulm.de

1

2 J. TOR

�

AN

partitioned into olor-lasses of size k

2

. Luks [30℄ has given an NC upper bound for

the omplexity of the isomorphism problem restrited to graphs with bounded olor

lasses. For isomorphism in this lass of graphs, the gap between our hardness results

and the upper bound given by Luks is therefore small. In fat, in [27℄ we have reently

shown that for graphs of bounded olor lasses of size 2 and 3, the graph isomorphism

problem is omplete for symmetri logarithmi spae.

By a simple use of the Chinese Remainder Theorem, the hardness results for the

modular lasses an be transformed into hardness results for NL. It is interesting to

observe that the graphs obtained in this redution have automorphism groups in whih

the size of the orbits of some of the nodes depend on the input size, and therefore

these graphs do not have lasses of olored verties of onstant size as in the modular

ase.

Using the reent result that division an be performed in TC

0

[17, 18℄, and the

fat that an NC

1

iruit an be enoded in an isomorphism problem [23℄, we an

moreover prove that any logarithmi spae ounting funtion an be redued to GI.

In partiular this implies that GI is many-one hard for C

=

L and for probabilisti

logarithmi spae, PL. The hardness results ulminate in Theorem 4.9 where it is

shown that GI is hard for DET, de�ned by Cook [13℄ as the lass of problems NC

1

Turing reduible to the determinant.

Perfet mathing problem is (as GI) another problem of the short list that has

resisted lassi�ation in terms of ompleteness. It was shown in [5℄ that perfet

mathing is randomly (or non-uniformly) reduible to Mod

k

L for every k. From our

results this implies a (random or non-uniform) redution from mathing to GI, whih

provides the �rst redution between the two well studied problems. Moreover, as a

onsequene of derandomization results from [21, 3, 25℄, under the natural hypothesis

that there is a set in DSPACE(n) with iruits of size 2

(n)

, our redution implies a

many-one AC

0

(deterministi) redution from perfet mathing to GI.

The graph automorphism problem GA, the deision of whether a given graph has

a nontrivial automorphism, is known to be many-one reduible to GI and seems to

be a slightly easier problem. We show in Setion 5 that the hardness results for GI

hold also for GA.

2. Preliminaries. We assume familiarity with basi notions of omplexity the-

ory suh as an be found in the standard textbooks in the area. We will prove hardness

results for several logarithmi spae omplexity lasses: NL is the lass of languages

aepted by nondeterministi Turing mahines using logarithmi spae. The graph

aessibility problem GAP (given a direted graph with two designated nodes s and

t deide whether there is a path from s to t) is known to be omplete for NL, even in

the ase of ayli graphs with in-degree at most 2.

#L de�ned in [4℄ analogously to Valiant's lass #P, is the lass of funtions

f : �

�

! IN that ount the number of aepting paths of a nondeterministi Turing

mahine M on input x. The omputation of a #L funtion on an input x an be

redued to the problem omputing the number paths from node s to node t in a

direted graph G

x

. The omplexity lasses PL (probabilisti logarithmi spae), C

=

L

(exat threshold in logarithmi spae), and Mod

k

L (modular ounting in logarithmi

spae, k � 2) an be de�ned in terms of #L funtions:

PL = fA : 9p 2 Poly; f 2 #L; x 2 A, f(x) � 2

p(jxj)

g [16; 35℄

ON THE HARDNESS OF GRAPH ISOMORPHISM 3

C

=

L = fA : 9p 2 Poly; f 2 #L; x 2 A, f(x) = 2

p(jxj)

g [2℄

Mod

k

L = fA : 9f 2 #L; x 2 A, f(x) = 1 mod kg [10℄

Mod

k

iruits (k � 2), are iruits where the input variables (and the wires) an

take values in ZZ

k

, and the gates ompute addition in ZZ

k

. The evaluation problem for

suh iruits (given �xed values for the inputs, deide whether the output value is for

example 1) is omplete for Mod

k

L under AC

0

many-one redutions. This is beause

a direted ayli graph with in-degree at most two, and two designated nodes, s; t,

an be easily transformed into a mod

k

iruit omputing the residue of the number

of paths from s to t in G, modulo k.

In some of the proofs we will make use of NC

1

iruits. These are families of

logarithmi depth, polynomial size Boolean iruits of bounded fan-in over the basis

f^;_;:g. DET [13℄ is the lass of problems NC

1

Turing reduible to the determinant,

or in other words, the lass of problems that an be solved by NC

1

iruits with

additional orale gates that an ompute the determinant of integer matries.

The known relationships among the onsidered lasses are:

Mod

k

L � DET;

NL � C

=

L � PL � DET:

Looking at the known inlusions, the hardness of GI for DET implies hardness with

respet to the other lasses. We prove however the result for all the lasses separately

showing how the graphs produed by the redutions inrease in omplexity.

2.1. Reduibilities. We prove our hardness results for the DLOGTIME uni-

form AC

0

many-one reduibility (in short AC

0

reduibility). A set A is AC

0

reduible

to another set B if there is family of iruits fC

n

j n 2 INg where eah iruit C

n

ontains only AND, OR and NOT gates, has size n

O(1)

and depth O(1) and for eah

x of length n, x 2 A , C

n

(x) 2 B. Moreover the uniformity ondition requires that

there is a DLOGTIME Turing mahine with diret aess to its input de�ning the

iruit in the sense that the mahine an reognize the diret onnetion language of

C

n

[34, 8℄. This language onsists of the set of tuples ht; a; b; yi where a and b are

numbers of nodes in C

n

, t is the type of a, b is a hild of a and y is a string of length

n.

2.2. Graph isomorphism, automorphism and promise isomorphism. An

automorphism in an undireted graph G = (V;E) is a permutation ' of the nodes,

that preserves adjaeny. That is, for every u; v 2 V; (u; v) 2 E , ('(u); '(v)) 2 E.

An isomorphism between two graphs G;H is a bijetion between their sets of verties

whih preserves the edges. G ' H denotes that G and H are isomorphi. GI is the

problem

GI = f(G;H) j G and H are isomorphi graphsg

and GA is de�ned as

GA = fGj G has an automorphism di�erent from the identityg:

4 J. TOR

�

AN

A graph G in GA is alled rigid. For tehnial reasons we will onsider the set of graph

pairs ((G;H); (I; J)) with exatly one of the pairs onsisting of isomorphi graphs:

PGI = f((G;H); (I; J))j G ' H if and only if I 6' Jgg:

For a tuple in PGI we are given the promise of G being isomorphi to H or I being

isomorphi to J and the question is to deide whih one is the isomorphi pair.

Sometimes we will deal with graphs with olored verties. A oloring with k

olors is a funtion f : V ! f1; : : : kg. In an isomorphism between olored graphs,

the olors have to be preserved. The isomorphism problem for olored graphs an

be easily redued (by AC

0

redutions) to graph isomorphism without olors (see e.g.

[26℄).

In some ases we will onsider the following restrited automorphism problem:

Given a graph G = (V;E) and two lists of nodes (x

1

; : : : ; x

k

); (y

1

; : : : ; y

k

), is there

an automorphism in G mapping x

i

to y

i

for 1 � i � k? This problem is also easily

reduible to GI. In order to hek whether there is an automorphism with the desired

properties one an make two opies of G, G

0

and G

00

. In G

0

eah of the nodes x

i

has olor i and in G

00

node y

i

reeives this olor. All the other nodes are olored

with a new olor 0, for example. G

0

and G

00

are isomorphi if and only if G has an

automorphism with the mentioned properties.

3. Hardness for the modular ounting lasses. We show now that GI is

hard for for all the logarithmi spae modular ounting lasses Mod

k

L (k � 2). The

idea for this proof is to simulate a modular gate with a graph gadget and then ombine

the gadgets for the di�erent gates into a graph, whose automorphisms simulate the

behavior of the modular iruit.

The gadgets are de�ned by the following graphs (shown in Figure 3.1 for the ase

k = 2):

Definition 3.1. Let k � 2 and denote by � the addition in ZZ

k

. We de�ne the

undireted graph G

k

= (V;E), given by the set of k

2

+ 3k nodes

V = fx

a

; y

a

; z

a

j a 2 f0; : : : ; k � 1g [

fu

a;b

j a; b 2 f0; : : : ; k � 1; gg

and edges

E = f(x

a

; u

a;b

) j a; b 2 f0; : : : ; k � 1gg [

f(y

b

; u

a;b

) j a; b 2 f0; : : : ; k � 1gg [

f(u

a;b

; z

a�b

) j a; b 2 f0; : : : ; k � 1gg:

The graph gadget for a modular gate has nodes enoding the inputs and outputs

of the gate. Any automorphism in the graph mapping the input nodes in a ertain

way, must map the output nodes aording to the value of the modular gate being

simulated.

Lemma 3.2. Fix k � 2, for any a; b 2 f0; : : : ; k � 1g,

1) there is a unique automorphism ' in G

k

mapping x

i

to x

a�i

and y

i

to y

b�i

for

i = 0 : : : k � 1, and

2) this automorphism maps z

i

to z

a�b�i

.

ON THE HARDNESS OF GRAPH ISOMORPHISM 5

y

x

z

�

b

b

b

b

b

b

b

b

b

b

x

0

x

1

y

0

y

1

u

1;1

u

1;0

u

0;1

u

0;0

z

0

z

1

Fig. 3.1. The graph G

2

simulating a parity gate.

Proof. Let a; b 2 f0; : : : ; k�1g, and denote by � the addition in ZZ

k

. We onsider

the following funtion ' : V ! V de�ned as

'(x

i

) = x

a�i

for i 2 0; : : : ; k � 1;

'(y

i

) = y

b�i

for i 2 0; : : : ; k � 1;

'(u

i;j

) = u

a�i;b�j

for i; j 2 0; : : : ; k � 1;

'(z

i

) = z

a�b�i

for i 2 0; : : : ; k � 1:

We prove �rst that ' is an automorphism. For this we have to show that for every

pair of nodes v; w, (v; w) 2 E if and only if ('(v); '(w)) 2 E. The nodes in graph

G

k

an be partitioned in three layers, the x and y nodes, (input layer) the u nodes

and the z nodes (output layer). Edges exist only between nodes from �rst and seond

layers, or between nodes from seond and third layers. We onsider �rst an edge

between the �rst two layers. Let v = x

i

and w = u

l;m

with i; l;m 2 f0; : : : ; k � 1g.

Then '(v) = x

a�i

and '(w) = u

a�l;b�m

. By the de�nition of G

k

,

(x

i

; u

l;m

) 2 E , i = l

, a� i = a� l

, (x

a�i

; u

a�l;b�m

) 2 E

, ('(x

i

); '(u

l;m

)) 2 E:

6 J. TOR

�

AN

In the ase v = y

j

the proof is analogous. For an edge (v; w) between the seond and

third layers, let (v; w) = (u

i;j

; z

l

) with i; j; l 2 f0; : : : ; k � 1g. Then '(v) = u

a�i;b�j

and '(w) = z

a�b�l

. By the de�nition of G

k

,

(u

i;j

; z

l

) 2 E , i� j = l

, a� b� i� j = a� b� l

, a� i� b� j = a� b� l

, (u

a�i;b�j

; z

a�b�l

) 2 E

, ('(u

i;j

); '(z

l

)) 2 E:

In any automorphism � with the restritions �(x

i

) = x

a�i

and �(y

i

) = y

b�i

, the

node �(u

i;j

) must have edges to x

a�i

and y

b�j

but the only node with suh onnetions

is u

a�i;b�j

= '(u

i;j

):

Analogously �(z

i

) must be onneted to �(u

0;i

) = u

a;b�i

and this implies �(z

i

) =

z

a�b�i

= '(z

i

). This means that ' is the unique automorphism in G

k

mapping x

i

to

x

a�i

and y

i

to y

b�i

We observe that the gadget in Lemma 3.2 for the ase k = 2 has been already

used for a di�erent appliation in [12℄. It is not hard to see that a gadget like the

one de�ned in Lemma 3.2 for (ZZ

k

;�) an be onstruted for any �nite Abelian group

G = (A; Æ). We mean by this that for any suh group a graph whose automorphism

group simulates the group operation Æ in the sense of the Lemma an be de�ned.

Theorem 3.3. For any k � 2, GI is hard for Mod

k

L under AC

0

many-one

redutions.

Proof. Let k � 2. We redue the mod

k

iruit value problem to GI. We transform

an instane C of the iruit value problem for mod

k

iruits into a graph G

C

by

onstruting for every modular gate g

j

of C a subgraph like the one desribed in

Lemma 3.2. Moreover, we olor the x; y; u and z nodes of the j-th gadget respetively

with one of the olors (x; j); (y; j); (u; j) and (z; j). Connetions between gates are

translated in the following way: If the output z of a gate in the iruit is onneted to

one of the inputs x of another gate, the redution puts k additional edges onneting

(for i 2 f0; : : : ; k � 1g) node z

i

from the �rst gate to node x

i

from the seond gate.

For an input variable v

j

, k nodes v

j

0

; : : : ; v

j

k�1

are onsidered in the redution. The

oloring implies that in any automorphism the nodes orresponding to a gate are

mapped to nodes from the same gate. Suppose the input variables of the iruit,

v

1

; : : : ; v

n

take values a

1

; : : : ; a

n

. It follows from Lemma 3.2, by indution on the

iruit depth, that the output gate z takes value b 2 f0; : : : ; k�1g if and only if there

is an automorphism in G

C

mapping v

j

i

to v

j

i�a

i

for all i = 0; : : : ; k�1 and j = 1; : : : ; n,

and mapping z

i

to z

i�b

.

All the steps in the redution an be done loally by an AC

0

iruit. The question

of whether the output of the iruit equals b 2 f0; : : : ; k � 1g an be easily redued

to whether a pair of graphs G

b

; G

0

b

are isomorphi, as explained in the preliminaries.

In fat this question an be redued to two graphs pairs ((G;H); (I; J)) 2 PGI with

G being isomorphi to H if the value of the iruit is b and I being isomorphi to J

otherwise. For this it suÆes to de�ne G as G

b

, H as G

0

b

, and I and J as the standard

OR-funtion for GI of

S

i 6=b

(G

i

; G

0

i

).

Observe that the graphs obtained in the redution, have at most k

2

nodes with

the same olor (the nodes u

i;j

in any of the gate gadgets). The maximum degree an

be redued to 3. In the above desription this does not neessarily hold beause of the

onnetion between gates. However, the redution an be easily modi�ed to ahieve

ON THE HARDNESS OF GRAPH ISOMORPHISM 7

degree 3 by adding some extra nodes and arranging the fan-out onnetions of the

gates in a tree-like fashion.

4. Hardness for other omplexity lasses. In this setion we show the hard-

ness of GI for nondeterministi logarithmi spae, for C

=

L, for probabilisti logarith-

mi spae and for the lass DET of problems NC

1

reduible to the determinant. The

proofs follow by the modular results, using the Chinese Remainder Theorem (CRT).

A Chinese remainder representation base is a set m

1

; : : : ;m

n

of pairwise oprime

integers. Let M =

Q

n

i=1

m

n

. By the CRT, every integer 0 � x < M is uniquely

represented by its Chinese remainder representation (x

1

; : : : ; x

n

), where 0 � x

i

< m

i

and x

i

= x mod m

i

. We will onsider the base B

n

formed by the �rst n prime

numbers.

Theorem 4.1. GI is hard for NL under AC

0

many-one redutions.

Proof. The graph aessibility problem for direted ayli graphs with fan-in

at most 2 is omplete for the lass NL. We redue the omplement of this set (non-

reahability) to GI. The result follows by the losure of NL under omplementation

[20, 37℄. Let G = (V;E) be suh a graph, with jV j = n and with two designated nodes

s and t. Let P the number of paths from s to t in G. Clearly P � 2

n

and P = 0 if

and only if for for every i between 1 and n it holds P mod i = 0.

In the redution, on input G, an AC

0

iruit, for eah i between 1 and n, trans-

forms G into a iruit C

i

with addition modulo i gates. The iruits have the property

that their outputs oinide with P mod i (see the preliminaries). In a seond step the

redution transforms the sequene of C

i

iruits into a sequene of graphs G

C

i

(as

in the proof of Theorem 3.3) in whih there is an automorphism mapping the input

nodes aording to the inputs of C

i

and mapping z

i

0

(the node orresponding to the

output gate of G

C

i

) to z

i

j

if and only if P = j mod i. The number of paths from s to

t in G is then 0 if and only if for all i � n there is an automorphism in G

C

i

mapping

the input nodes G

C

i

aording to the inputs of C

i

and mapping z

i

0

to itself. This an

be easily redued to GI as explained in the preliminaries.

Observe that in the graphs obtained in this redution, the size of the lasses of

the nodes with the same olor are not bounded by a onstant as before, but by n

2

.

In fat, we an redue any logarithmi spae ounting funtion to GI. We under-

stand by this that for any funtion f 2 #L the set

A

f

= fhx; 0

i

i j the i-th bit of f(x) is 1g

is many-one reduible to GI.

For proving this redution, we need two known results. On the one hand we need

the surprising fat that division an be omputed by uniform TC

0

iruits

1

. [17, 18℄.

More preisely we need the following part of the mentioned result:

Theorem 4.2. [17, 18℄ There is a DLOGTIME uniform family of TC

0

ir-

uits that on input the Chinese remainder representation (x

1

; : : : ; x

n

) in base B

n

of

a number x, outputs the binary representation of x.

We also need the fat that the result of an NC

1

iruit with �xed values in the

input nodes an be enoded as a graph isomorphism question. This follows from an

adaptation of the proof of Theorem 3.1 in [22℄ stating that GI is hard for NC

1

under

DLOGTIME uniform AC

0

many-one redutions. For ompleteness we give a sketh of

the proof. The reader is referred to [22℄ for the details. For tehnial reasons needed

1

In fat for our purposes suÆes the weaker result stating that division is in alternating time

O(log n) whih proved in [14℄

8 J. TOR

�

AN

in the proof of Theorem 4.9, we enode the values of the iruit as tuples of graphs

((G;H); (I; J)) in PGI, with G ' H and I 6' J for the enoding of a 1 and with

G 6' H and I ' J for the enoding of a 0. Reall that PGI was the set of graph tuples

((G;H); (I; J)) with exatly one of the graphs pairs being isomorphi.

Theorem 4.3. Given a uniform family of iruits C

n

with logarithmi depth and

polynomial size and given n tuples of graphs ((G

i

; H

i

); (I

i

; J

i

)) 2 PGI, there is an AC

0

redution onstruting a tuple ((G;H); (I; J)) 2 PGI with the property that G ' H if

and only if C

n

outputs 1 and I ' J if and only if C

n

outputs 0, where the i-th input

to C

n

onsists of the bit of the boolean value of the statement G

i

' H

i

.

Proof. (Sketh) An NC

1

iruit an be simulated by a balaned DLOGTIME

uniform family of iruits with fan out 1, logarithmi depth, polynomial size and

alternating layers of ANDs and ORs [8℄. We show how to transform these expressions

to graph tuples. The idea is to onstrut graph gadgets to simulate the AND and OR

onnetives in the iruit. Given two tuples ((G

1

; H

1

); (I

1

; J

1

)) and ((G

2

; H

2

); (I

2

; J

2

))

in PGI onsider the graphs G

^

; H

^

; I

^

and J

^

in Figure 4.1, where an edge between

two graphs represents that eah node of the �rst graph is onneted to eah node

of the seond graph. We an also suppose that the nodes of G

1

and H

1

are olored

with the same speial olor to handle the ases when G

1

' H

2

. This is represented

by a double ring arround the graphs in the �gure. The onstruted graphs have the

property that G

^

' H

^

if and only if G

1

' H

1

and G

2

' H

2

. Also I

^

' J

^

if and

only if G

1

6' H

1

or G

2

6' H

2

(in this ase I

1

' J

1

or I

2

' J

2

).

G

2

G

1

H

1

H

2

I

2

I

1

J

1

J

2

I

2

I

1

J

1

J

2

G

^

H

^

I

^

J

^

Fig. 4.1. Tuple (G

^

; H

^

; I

^

; J

^

) simulating AND.

Similarly, the graphs G

_

; H

_

; I

_

and J

_

from Figure 4.2 have the property that

G

_

' H

_

if and only if G

1

' H

1

or G

2

' H

2

and I

_

' J

_

if and only if G

1

6' H

1

and

G

2

6' H

2

. Observe that ((G

^

; H

^

); (I

^

; J

^

)) and ((G

_

; H

_

); (I

_

; J

_

)) belong to PGI.

G

2

G

1

H

1

H

2

G

2

G

1

H

1

H

2

I

2

I

1

J

1

J

2

G

_

H

_

I

_

J

_

Fig. 4.2. Tuple ((G

_

; H

_

); (I

_

; J

_

) simulating OR.

The onstrutions doubles the number of nodes of the initial tuples. Notie also

that it is easy to simulate a NOT by transforming ((G;H); (I; J)) to ((I; J); (G;H)).

A 1 in the iruit is represented by a tuple ((G;H); (I; J)) with G ' H and a 0

by a tuple with I ' J . Starting from the input nodes the redution transforms the

ON THE HARDNESS OF GRAPH ISOMORPHISM 9

nodes of the iruit into graph tuples enoding the values of the iruit gates . Sine

the iruit has logarithmi depth the tuples orresponding to the output gate have a

polynomial number of nodes.

We an now show the hardness of GI with respet to #L.

Theorem 4.4. Every #L funtion

2

is AC

0

many-one reduible to GI.

Proof. Let f 2 #L. For some polynomial q, it is possible to onstrut in AC

0

for x 2 �

�

a graph G

x

with at most q(jxj) nodes so that f(x) is the number of s� t

paths in G

x

. Let i be the bit of f(x) we want to redue to GI, and let m = q(jxj). By

Theorem 4.2, in order to ompute f(x), it suÆes to ompute its Chinese remainder

representation (f(x)

1

; : : : ; f(x)

m

) in B

m

. One this is done, f(x) an be omputed

by an NC

1

iruit.

The Chinese remainder representation an be obtained by omputing prime num-

ber p

i

, for every 1 � i � m, (this an be done by an NC

1

iruit) and reduing G

x

to

a iruit with addition gates in ZZ

p

i

, as in the proof of Theorem 4.1. The iruits are

transformed into p

i

graph tuples ((G

j

; H

j

); (I

j

; J

j

)) with the property that in the j-th

tuple the �rst two graphs are isomorphi if and only if f(x) = j � 1 mod p

i

. These

form a list of

P

m

i=1

p

i

graph tuples, and an be onsidered as an enoding of the

CRR of f(x) (f(x)

1

; : : : ; f(x)

m

) of the form (w

1

; : : : ; w

m

) where eah w

i

2 f0; 1g

p

i

is

formed by 0's with a 1 in position f(x)

i

+ 1. The 0's and 1's in the w

i

's are enoded

by tuples in PGI.

By Theorem 4.2 it is possible to onstrut in DLOGTIME a TC

0

(and therefore

also an NC

1

) iruit that having as inputs the CRR of f(x), outputs the i-th bit of

f(x). We an onsider the list of graph tuples as the inputs of this iruit.

So far we have shown that there is a uniform AC

0

redution that on input x om-

putes an NC

1

iruit that outputs the i-th bit of f(x) and has its input values enoded

as graph tuples in PGI. As done in the proof of Theorem 4.3, an AC

0

redution an

also transform the whole iruit into a single tuple of graphs ((G;H); (I; J)). G is

isomorphi to H or I is isomorphi to J depending on the output of the NC

1

iruit,

whih oinides with the i-th bit of f(x).

Basially the same proof as the one for the hardness for NL holds for proving

hardness for the lass C

=

L. Here instead of heking that the number of paths from

s to t is 0, we have to hek that this number oinides with some exat threshold

f(G) � 2

n

. For this the redution mahine has to ompute for eah small prime

p

i

the residue r

i

= f(G) mod p

i

(this an be done in NC

1

[32℄ and in fat in TC

0

by the mentioned result on division in [18℄), and then hek whether there is an

automorphism that for all i maps z

i

0

to z

i

r

i

.

Corollary 4.5. GI is hard for C

=

L under AC

0

many-one redutions.

As mentioned in the preliminaries, for a set L 2 PL, there is a funtion f 2 #L

and a polynomial p suh that for any input x, x 2 L if and only if f(x) � 2

p(jxj)

. The

next result follows then diretly from Theorem 4.4 sine an input x belongs to L if

an only if at least one of the bits orresponding to positions � p(jxj) (starting from

the right) in the binary representation of f(x) is a 1.

Corollary 4.6. GI is hard for the lass PL under AC

0

many-one redutions.

The lass DET of problems NC

1

Turing reduible to the determinant oinides

with NC

1

(#L) (see e.g. [2℄). Combining Theorems 4.3 and 4.4, we an prove the

hardness of GI for DET, whih is the strongest known hardness result for GI.

The proof of this result is based on a simulation of the NC

1

iruit as done in

Theorem 4.3 replaing eah of the orale queries to f by a small iruit as in the proof

2

In fat this result also holds for the more powerful lass of GapL funtions de�ned in [2℄.

10 J. TOR

�

AN

of Theorem 4.4. The main problem here is that while in Theorem 4.4 the input for the

#L funtion to be omputed is a binary string x, in the simulation of the NC

1

iruit

the input to the orale alls are not given as a sequene of bits but as a sequene of

graph tuples enoding these bits. To deal with this problem we need the following

lemma stating that Theorem 4.4 is also true when the input is enoded as a sequene

of tuples:

Lemma 4.7. For eah funtion f 2 #L there is a DLOGTIME uniform family

fC

n

g of AC

0

iruits suh that on input a sequene of graph tuples ((G

i

; H

i

); (I

i

; J

i

))

in PGI, 1 � i � n, of size polynomial in n enoding a binary string x 2 �

n

, C

n

onstruts a sequene of tuples ((G

0

i

; H

0

i

); (I

0

i

; J

0

i

)) in PGI, 1 � i � q(n); enoding the

bits of f(x).

Proof. Let f 2 #L and n; k;m 2 IN. From the desription of the nondeterministi

logarithmi spae mahine M omputing f the redution onstruts �rst in AC

0

a

graph G

n

f

of polynomial size in n related to the on�guration graph of M . We an

onsider that M has a read-only tape for the input and a work tape of logarithmi

size. The set of nodes of G

n

f

onsists of the set of tuples (s; ; p

1

; p

2

; b) where s is a

state of M , is a possible ontent of the work tape, p

1

and p

2

are the positions of the

tape heads on the input and work tape respetively, and b is one bit that will be used

to enode the ontent at position p

1

on the input tape. For a onrete input some

of these desriptions are not onsistent with the input information sine b might not

be the orret bit at position p

1

. Nevertheless we onsider the set of all suh possible

desriptions at this point. This set hat polynomial size in n. The set of edges in G

n

f

is given by the transition funtion of M . If the mahine an reah from a desription

d = (s; ; p

1

; p

2

; b) the on�guration (s

0

;

0

; p

0

1

; p

0

2

) in one step, then there is a direted

edge in G

n

f

from d to (s

0

;

0

; p

0

1

; p

0

2

; 0) and another one from d to (s

0

;

0

; p

0

1

; p

0

2

; 1).

Let x be the input for f enoded by a sequene of graph triplets in PGI. In order

to ompute whether f(x) mod k is ongruent with m we will onsider that the nodes

of G

n

f

are addition gates in ZZ

k

in a polynomial size iruit C. If all the nodes of

C would orrespond to desriptions onsistent with the input, then the output of

this iruit would be f(x) mod k. However, half of the gates in C orrespond to

inonsistent desriptions and they orrupt the �nal sum. To avoid this problem we

use a method that guarantees that the wires oming out of the inonsistent gates

always have value 0 and therefore do not ontribute to the �nal sum. This will be

done with a new graph gadget. Using �rst the graph gadgets in Setion 3, iruit C

an be transformed into a graph G

C

where eah of the mod k gates orresponding

to a mahine desription d = (s; ; p; p

0

; b) is transformed into a subgraph with input

nodes x

0

; : : : x

k�1

and y

0

; : : : y

k�1

and output nodes z

0

; : : : z

k�1

in suh a way that

if there is an automorphism mapping x

l

to x

l�i

and y

l

to y

l�j

in this subgraph,

then the automorphism maps z

l

to z

l�i�j

for i; j; l 2 f0; : : : k � 1g (Lemma 3.2).

The output nodes z

l

are then onneted with an edge to the input nodes of other

gates, nodes w

0

: : : w

k�1

(the nodes of z are onneted to as many nodes as the

fan out of the orresponding gate, for simpliity we onsider it is just one). Let us

suppose that the bit b in desription d is 1 (the 0 ase is ompletely analogous) and

let ((G

p

; H

p

); (I

p

; J

p

)) be the input tuple in PGI enoding the orret value for the

position p in the input x. The gate orresponding to d is a onsistent gate if and

only if b equals the Boolean value of G

p

' H

p

. To fore that the inonsistent gates

always propagate a 0 (an automorphism mapping z

0

to itself) the redution inludes

between the z and w nodes the following gadget Gad

k

that an be seen in Figure 4.3

for the ase k = 2. Connetions between a node v and a graph in the �gure and in

ON THE HARDNESS OF GRAPH ISOMORPHISM 11

the following desription of Gad

k

mean that there is an edge between v and eah of

the nodes in the graph.

4

3

2

1

b

G

p

I

0

p

J

0;1

p

b

b

H

1

p

I

1

p

J

1;0

p

b

w

0

w

1

z

0

z

1

Fig. 4.3. The graph Gad

2

.

Subgraph Gad

k

an be represented in four levels. Levels 1 and 4 ontain the

nodes z

i

; and w

i

, respetively, for i 2 f0; : : : k� 1g. Level 2 ontains for eah i a opy

I

i

p

of I

p

and k�1 opies of J

p

, J

i;j

p

, j 2 f0; : : : k�1g, j 6= i. Level 3 ontains a opy of

G

p

and for eah i in f1; : : : ; k� 1g a opy H

i

p

of H

p

. The edges are de�ned as follows:

{ Eah node z

i

is onneted to the graphs I

i

p

and to the k � 1 graphs J

l;i

p

for l 6= i

in the seond level.

{ Graph G

p

in the third level is onneted to I

0

p

and to eah of the graphs J

0;j

p

j 6= 0,

all of them in the seond level.

{ The graphs H

i

p

, i 6= 0 in the third level are onneted to I

i

p

and to J

i;j

p

, j 6= i.

{ Finally in the fourth level, node w

0

is onneted to G

p

and eah w

i

for i 6= 0 is

onneted to H

i

p

.

Gad

k

has very nie properties, as an be seen in the next lemma.

Lemma 4.8. Subgraph Gad

k

has the following properties:

1. If the gate is onsistent with the input, that is, if G

p

' H

p

then for any

 2 f0; : : : ; k � 1g there is an automorphism in Gad

k

mapping z

i

to z

i�

for

eah i. Suh automorphism maps also w

i

to w

i�

.

2. If the gate is inonsistent with the input, that is, if I

p

' J

p

then for any

 2 f0; : : : ; k � 1g there is an automorphism in Gad

k

mapping z

i

to z

i�

for

eah i. Suh automorphism maps also w

i

to w

i

.

Proof. In order to see 1), observe that if the automorphism maps z

i

to z

i�

, then

the graph I

i

p

onneted to z

i

has to be mapped to one of the graphs onneted to z

i�

,

J

j;i�

p

or I

i�

p

. But I

p

annot be mapped to J

p

sine these graphs are not isomorphi.

This implies that in any automorphism all the graphs I

p

in the seond level have to

be mapped to graphs of type I

p

. In partiular I

i

p

has to be mapped to I

i�

p

. This

means that the graph G

p

at the third level has to be mapped to the H

p

graph over w

(this an happen sine G

p

' H

p

) and this implies that for all i, w

i

has to be mapped

to w

i�

. An automorphism satisfying all these onditions an be de�ned by mapping

for all i; j with i 6= j J

i;j

p

to J

i�;j�

p

at the seond level. Observe that in ase G

p

, H

p

,

I

p

and J

p

are rigid graphs, then the desribed automorphism is the only one mapping

z

i

to z

i�

for eah i.

For the proof of 2) observe that in ase the gate is inonsistent with the input,

then the graph G

p

at the third level has to be mapped to itself and therefore the

12 J. TOR

�

AN

w nodes also have to be mapped to themselves. We have to prove that there is an

automorphism with these properties mapping z

i

to z

i�

for eah i. This is lear for

 = 0. For 6= 0 this automorphism maps in the seond level graph I

i

p

to J

i;i�

p

(this

is possible sine I

p

' J

p

) and maps G

i;j

p

to G

i;j�

p

, if i 6= j� or to I

i

p

in ase i = j�.

The automorphism �xes the third and fourth levels, and again, in ase G;H; I and J

are rigid graphs, it is the only one mapping z

i

to z

i�

for eah i.

We ontinue with the proof of Lemma 4.7. Let G

0

C

be the graph orresponding to

iruit C with the new gadgets on the edges oming out of the gates in C. The above

lemma guarantees that inonsistent gates always produe value 0 and therefore the

iruit produes the orret value for f(x) mod k. Let z

0

; : : : z

k�1

be the output nodes

in G

0

C

orresponding to the output gate of the iruit. By the results in Setion 3,

there is an automorphism in G

0

C

mapping for eah i z

i

to z

i�m

if and only if f(x) � m

mod k. This property an be enoded by the redution using standard methods into

a graph tuple ((G;H); (I; J)) in PGI satisfying that G ' H if f(x) � m mod k and

I ' J otherwise. Observe that if the graphs in the tuples have size at most s then

the size of the output graphs is at most p(n)s for a polynomial p depending on the

mahine M . The rest of the proof is exatly as in Theorem 4.4.

We an now prove the hardness of GI for DET. This result answers positively a

question posed by Allender in [1℄. Reall that DET an be haraterized as NC

1

(#L)

the lass of problems omputed by an AC

0

uniform family of polynomial size and

logarithmi depth iruits with orale gates to a funtion f in #L. By onvention, an

orale gate querying a string x ontributes log(jxj+ jf(x)j) to the total iruit depth.

Theorem 4.9. GI is hard for the lass DET under AC

0

many-one redutions.

Proof. Let L be a set in NC

1

(#L) and let fC

n

g be the family of NC

1

iruits

omputing L with funtional orale queries to a funtion f in #L.

We want to ompute C

n

(x) for a string x of length n. The redution an �rst

transform eah orale gate g into a iruit D

g

as done in Theorem 4.4. Observe that

the struture of the iruit omputing gate g does not depend on the input bits of g,

but just on the number of suh bits. D

g

omputes the query using modular gates as

well as AND and OR gates. D

g

has polynomial size (in the size of its input) and its

depth is not neessarily logarithmi, but the number of levels with AND or OR gates

in this iruit is logarithmi in the input size of g. If we only ount the depth of the

AND and OR gates (the maximum number of suh gates in a path from an input to

the output gate), C

n

with the expanded orales gates still has logarithmi depth in n

sine we are dealing with an NC

1

redution.

Eah gate in the iruit C

n

with expanded orale queries an be transformed by

the AC

0

redution into a tuple of four graphs ((G;H); (I; J)) enoding the value of

the gate as explained before. Using Theorems 4.3 and 4.9 the redution an onstrut

these tuples for all the levels of the iruit. The graph tuple orresponding to the

output gate enodes the result of the iruit omputation.

It is only left to show that the size of the graph tuples orresponding to the

iruit gates remain of polynomial size in n. The gadgets orresponding to the AND

and OR gates inrease the size of the graph tuples at most by a fator of 2 in eah

level, and the number of iruit levels with AND or OR gates is logarithmi in n.

The gadgets attahed to the modular omputations in the query gates inrease the

size of the tuples by a fator of p(m) where m is the size of the query and p is a

polynomial. Beause C

n

omputes an NC

1

redution, in a iruit path with orale

queries with sizes m

1

; : : : ;m

l

, it must hold that the sum of the logarithms of all the

query sizes is at most log(n) for some onstant . From this follows that the produt

ON THE HARDNESS OF GRAPH ISOMORPHISM 13

of the inreasing fators p(m

i

) orresponding to all the orale queries in the path is

bounded by a polynomial in n. These fats imply that the the size of the graph tuples

orresponding to every gate in C

n

is polynomial in n.

4.1. Mathing is reduible to GI. We mention an interesting onnetion

between the perfet mathing problem and GI. The perfet mathing problem onsists

in deiding whether a given undireted graph has a perfet mathing, that is, a set of

edges that ontain all the verties, and suh that no two of these edges share a vertex.

This problem has been intensively studied, but like GI, it has resisted all lassi�ation

attempts in terms of ompleteness in a lass. The problem has polynomial time

algorithms, and it is known to be in random NC [24, 33℄. In [5℄ it has been proved

that for any k � 2, the perfet mathing problem is randomly reduible to a set in

Mod

k

L. Together with Theorem 3.3 this implies:

Corollary 4.10. Mathing is reduible to GI under randomized redutions.

Sine the redution works orretly with probability exponentially lose to 1, for

eah input size n there is a sequene of random hoies that an be taken as orret

advie in the redution of all instanes of size n. This implies a non-uniform redution

from Mathing to GI. Moreover as noted in [3℄, under a natural hardness hypothesis,

the redution from Mathing to Mod

k

L an be derandomized using tehniques from

[21, 25℄. This yields:

Corollary 4.11. If there is a set A in DSPACE(n) and Æ > 0 with the property

that, for all large n, no iruits of size less than 2

Æn

aepts exatly the strings of

length n in A, then perfet mathing is inluded in Mod

k

L for any k � 2 and thus the

problem is reduible to GI under AC

0

many-one redutions.

5. Hardness results for graph automorphism. The graph automorphism

problem (GA) deiding whether a given graph has a nontrivial automorphism is many-

one reduible to GI and it seems to be a slightly easier problem. In this setion we

show that the proven hardness results for GI hold also for GA. We show �rst that the

hardness for the modular lasses an be easily translated to GA.

Theorem 5.1. For any k � 2, GA is hard for Mod

k

L under AC

0

many-one

redutions.

Proof. In Theorem 3.3 we transformed a iruit with addition gates in ZZ

k

and

values for the input gates, into a graph G having a unique automorphism with ertain

restritions (some nodes enoding the input and output values of the iruits had to

be mapped in a ertain way) if and only if the output value of the iruit is 1. The

question of whether G has an automorphism with the desired properties an in turn

be transformed into a GI problem by making two opies of G, G

1

and G

2

. These

graphs have to inlude some oloring in the nodes representing the input and output

values of the iruit in order to enode the restritions in the automorphism. Observe

that there is at most one isomorphism between G

1

and G

2

. From this follows that

there is a nontrivial automorphism in G

1

[G

2

if and only if the output of the original

iruit is 1.

Based on this Theorem the proof of the result 4.1 an be modi�ed to show hardness

of GA for NL.

Corollary 5.2. GA is hard for NL under AC

0

many-one redutions.

The additional ingredient that is needed to prove the stronger hardness results,

is the fat that an NC

1

omputation an be enoded as a GA question, that is, a

version of Theorem4.3 for GA. A diret translation of this result does not work sine

GA is not known to have AND-funtions. An AND-funtion for GA is a funtion that

is easy to ompute and transforms pairs of graphs into single graphs in suh a way

14 J. TOR

�

AN

that both of the original graphs have nontrivial automorphisms if and only if the �nal

graph has suh an automorphism. Dieter van Melkebeek has found a way to avoid

this problem.

Theorem 5.3. (van Melkebeek) Given a uniform family of iruits C

n

with loga-

rithmi depth and polynomial size and given n tuples of rigid graphs ((G

i

; H

i

); (I

i

; J

i

)) 2

PGI, there is an AC

0

redution onstruting a tuple of rigid graphs ((G;H); (I; J)) 2

PGI with the property that G ' H if and only if C

n

outputs 1 and I ' J if and only

if C

n

outputs 0, where the i-th input to C

n

onsists of the bit of the boolean value of

the statement G

i

' H

i

.

Proof. The proof is like the one for Theorem 4.3 simulating the alternating layers

of ANDs and ORs of an NC

1

iruit by graph gadgets for the tuples. The main

diÆulty is to preserve the rigidity of the tuple omponents.

In order to simulate the AND, given two tuples of rigid graphs ((G

1

; H

1

); (I

1

; J

1

))

and ((G

2

; H

2

); (I

2

; J

2

)) in PGI onsider the graphs G

^

; H

^

; I

^

and J

^

in Figure 5.1.

G

^

and H

^

are de�ned as the standard AND funtion for GI of the G and H graphs,

while I

^

and J

^

are onstruted as the OR of (I

1

; J

1

) and the AND of (G

1

; H

1

) and

(I

2

; J

2

). Again by a double ring arround some of the graphs we represent the fat

that these graphs are marked in some speial way and an only be mapped to other

graphs with the same marking.

These graphs have the property that G

^

' H

^

if and only if G

1

' H

1

and

G

2

' H

2

. Also I

^

' J

^

if and only if I

1

' J

1

(and therefore G

1

6' H

1

) or I

2

' J

2

(in this ase G

2

6' H

2

and either G

1

' H

1

or I

1

' J

1

). Although the standard OR

does not preserve rigidity in ase both inputs are isomorphi, observe that in this

onstrution if all the graphs in the input tuples are rigid then G

^

; H

^

; I

^

and J

^

are

also rigid. We avoid the ambiguous situation by rewriting \p or q" as \p or (not p

and q)" and expressing \not p" positively by swithing to the omplementary pair of

the tuple.

G

2

G

1

H

1

H

2

I

2

I

1

b

G

1

J

1

J

2

b

H

1

I

2

I

1

b

G

1

J

1

J

2

b

H

1

G

^

H

^

I

^

J

^

Fig. 5.1. Tuple (G

^

; H

^

; I

^

; J

^

) simulating AND.

Similarly, the graphs G

_

; H

_

; I

_

and J

_

from Figure 5.2 have the property that

G

_

' H

_

if and only if G

1

' H

1

or G

2

' H

2

and I

_

' J

_

if and only if G

1

6' H

1

and G

2

6' H

2

. These gadgets simulate therefore an OR gate. Moreover, if the all

the graphs G

i

; H

i

; I

i

and J

i

are rigid, for i 2 f1; 2g, then the onstruted graphs

G

_

; H

_

; I

_

and J

_

are also rigid.

Observe that the size of the onstruted gadgets is at most 3n, n being the sum of

all the nodes in the input tuples. Beause of this fat, for a logarithmi depth iruit

C with alternating layers of AND and OR fan-out 1 gates, a tuple of polynomial size

rigid graphs ((G;H)(I; J)) an be onstruted suh that C has value 1 if and only if

G ' H . Sine G and H are rigid, this is equivalent to G [H 2 GA.

An immediate onsequene of this result is that GA is hard for NC

1

. Using

this fat and Theorem 5.1, it is now possible to prove the hardness of GA for the

ON THE HARDNESS OF GRAPH ISOMORPHISM 15

I

2

I

1

J

1

J

2

I

1

G

1

b

G

2

H

1

J

1

b

H

2

I

1

G

1

b

G

2

H

1

J

1

b

H

2

G

_

H

_

I

_

J

_

Fig. 5.2. Tuple (G

_

;H

_

; I

_

; J

_

) simulating OR.

lass DET. The proof of this result follows exatly the same lines as the one for

Theorem 4.9 taking into onsideration that the graph pairs produed in the redution

from Theorem 3.3 are rigid, and that the gadgets in the proof of Theorem 4.9 also

preserve rigidity.

Corollary 5.4. GA is hard for the lass DET under AC

0

many-one redutions.

One �nal observation is that from Theorem 5.1 it follows also that the perfet

mathing problem is randomly reduible to GA.

Aknowledgments: I would like to thank D. van Melkebeek for providing the

proof for Theorem 5.3. He and an anonymous referee suggested also many improve-

ments to the original version of the results. I had several interesting disussions with

V. Arvind and J. K�obler that lari�ed the results of the paper. E. Allender pointed

to me the onnetion to the determinant. I also would like to thank D. Therien for

organizing the MGill Invitational Workshop where this researh started.

REFERENCES

[1℄ E. Allender. The division breakthroughs. Bulletin of the EATCS Computational Complexity

olumn June 2001.

[2℄ E. Allender and M. Ogihara, Relationships among PL, #L, and the determinant, RAIRO

Theoretial Information and Appliations 30:1{21, 1996.

[3℄ E. Allender, K. Rheinhardt and S. Zhou. Isolation, mathing and ounting: uniform and

nonuniform upper bounds. In Journal of Computer and System Sienes, 59:164{181 1999.

[4℄ C.

�

Alvarez and B. Jenner. A very hard logspae ounting lass. Theoretial Computer Siene,

107:3{30, 1993.

[5℄ L. Babai, A. G�al and A. Widgerson. Superpolynomial lower bounds for monotone span pro-

grams. Combinatoria 19, 1999.

[6℄ L. Babai, D. Grigoryev, and D. Mount. Isomorphism of graphs with bounded eigenvalue mul-

tipliity. In Pro. 14th ACM Symp on Theory of Computing pp. 310{324, 1982.

[7℄ L. Babai and E. Luks. Canonial labeling of graphs. In Pro. 15th ACM Symp on Theory of

Computing pp. 171{183, 1983.

[8℄ D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC

1

. Journal of

Computer and System Sienes, 41:274{306, 1990.

[9℄ R. Boppana J. Hastad and S. Zahos. Does o-NP have short interative proofs? In Information

Proessing Letters 25, pp. 27{32, 1987.

[10℄ G. Buntrok, C. Damm, U. Hertrampf and C. Meinel. Struture and importane of logspae-

MOD-lasses. In Math. System Theory 25: 223{237, 1992.

[11℄ S. R. Buss. Alogtime algorithms for tree isomorphism, omparison, and anonization. In

Computational Logi and Proof Theory, 5th Kurt G�odel Colloquium'97, Leture Notes in

Computer Siene #1289, Springer-Verlag, pp. 18-33, 1997.

[12℄ J. Cai, M. F�urer and N. Immerman, An optimal lower bound on the number of variables for

graph identi�ations. Combinatoria 12(4): 389-410, 1992

16 J. TOR

�

AN

[13℄ S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,

64(1):2{22, 1985.

[14℄ A. Chiu. Complexity of parallel arithmeti using the Chinese remainder representation. Master

Thesis U. Wisonsin 1995.

[15℄ A. Chiu, G. Davida and B. Litow. Division in logspae uniform NC

1

. Theoretial Informatis

and Appliations 35 (3) 259{275, 2001.

[16℄ J. Gill. Computational omplexity of probabilisti Turing mahines. SIAM Journal on Com-

puting 6:675{695, 1977.

[17℄ W. Hesse. Division is in uniform TC

0

. In Proeedings ICALP 2001. Leture Notes in Computer

Siene 2076, Springer Verlag 104{114, 2001.

[18℄ W. Hesse, E. Allender, and D. Mix Barrington. Uniform onstant-depth threshold iruits for

division and iterated multipliation, Journal of Computer and Systems Sienes 65:695{

716, 2002.

[19℄ J. E. Hoproft and R. E. Tarjan. A V

2

algorithm for determining isomorphism of planar graphs.

Information Proessing Letters, 32{34, 1971.

[20℄ N. Immerman. Nondeterministi spae is losed under omplement. SIAM Journal on Com-

puting, 17:935{938, 1988.

[21℄ R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential iruits: Derandomizing

the XOR lemma. Pro. 29th ACM Symp. on Theory of Computing 220{229, 1997.

[22℄ B. Jenner, J. K�obler, P.MKenzie and J. Tor�an. Completeness results for graph isomorphism.

Journal of Computer and System Sienes, 66: 549{566, 2003.

[23℄ B. Jenner, P.MKenzie and J. Tor�an. A note on the hardness of tree isomorphism. In Pro.

13th IEEE Computational Complexity Conferene 101{106, 1998.

[24℄ R. Karp, E. Upfal and A. Wigderson. Construting a perfet mathing is in random NC.

Combinatoria 6:35{48, 1986.

[25℄ A. Klivans and D. van Melkebeek. Graph isomorphism has subexponential size proofs unless the

polynomial time hierarhy ollapses. SIAM Journal on Computing 31: 1501{1526, 2002.

[26℄ J. K�obler, U. Sh�oning, and J. Tor�an. The Graph Isomorphism Problem | Its Strutural

Complexity. Progress in Theoretial Computer Siene. Birkh�auser, Boston, 1993.

[27℄ J. K�obler and J. Tor�an. The omplexity of Graph Isomorphism for olored graphs with olor

lasses of size 2 and 3. In Pro. 19th STACS Conferene, Springer Verlag LNCS 2285

121{132, 2002.

[28℄ S. Lindell. A logspae algorithm for tree anonization. In Pro. of the 24th STOC, 400{404.

ACM, 1992.

[29℄ E. Luks. Isomorphism of bounded valene an be tested in polynomial time. Journal of Com-

puter and System Sienes, 25:42{65, 1982.

[30℄ E. Luks. Parallel algorithms for permutation groups and graph isomorphism. Pro. 27th IEEE

Symp. on Foundations of Computer Siene, 292{302, 1986.

[31℄ R. Mathon. A note on the graph isomorphism ounting problem. Information Proessing

Letters, 8:131{132, 1979.

[32℄ P. MKenzie and S. Cook. The parallel omplexity of Abelian permutation group problems.

SIAM Journal on Computing 19:880{909, 1987.

[33℄ K. Mulmuley, U. Vazirani and V. Vazirani. Mathing is as easy as matrix inversion. Combina-

toria 7:105{113, 1987.

[34℄ W. Ruzzo. On uniform iruit omplexity. Journal of Computer and System Sienes, 22:365{

383, 1981.

[35℄ W. Ruzzo, J. Simon and M. Tompa. Spae bounded hierarhies and probabilisti omputations.

Journal of Computer and System Sienes, 28:216{230, 1984.

[36℄ U. Sh�oning. Graph isomorphism is in the low hierarhy. Journal of Computer and System

Sienes, 37:312{323, 1988.

[37℄ R. Szeleps�enyi. The method of fored enumeration for nondeterministi automata. Ata

Informatia 26:279{284, 1988.

