ON THE HARDNESS OF GRAPH ISOMORPHISM*

JACOBO TORANT

Abstract. We show that the graph isomorphism problem is hard under DLOGTIME uniform
ACP® many-one reductions for the complexity classes NT., PL (probabilistic logarithmic space), for
every logarithmic space modular class ModL and for the class DET of problems NC! reducible to
the determinant. These are the strongest known hardness results for the graph isomorphism problem,
and imply a randomized logarithmic space reduction from the perfect matching problem to graph
isomorphism. We also investigate hardness results for the graph automorphism problem.

1. Introduction. The graph isomorphism problem GI consists in the decision
of whether two given graphs are isomorphic, or in other words, whether there is
a bijection between the nodes of the graphs preserving the edges. This problem has
been intensively studied, in part because of its many applications, and in part because
it is one of the few problems in NP that has resisted all attempts to be classified as NP-
complete, or within P. The best existing upper bound for the problem given by Luks
and Zemlyachenko is exp v/en logn (cf [7]), but there is no evidence of this bound being
optimal, and for many restricted graph classes polynomial time algorithms are known.
This is for example the case for planar graphs [19], graphs of bounded degree [29] or
graphs with bounded eigenvalue multiplicity [6]. In some cases, like trees [28, 11] or
graphs with colored vertices and bounded color classes [30], even NC algorithms for
isomorphism are known.

Concerning the hardness of GI, there is evidence indicating that the problem
is not NP-complete. On the one hand, the counting version of GI is known to be
reducible to its decisional version [31], while for all known NP-complete problems the
counting version seems to be much harder. On the other hand it has been shown
that if GI were NP-complete then the polynomial time hierarchy would collapse to its
second level [9, 36]. Because of these facts, there is a common belief that GI does not
contain enough structure or redundancy to be hard for NP. The question of whether
GI is P-hard is also open, and moreover, the known lower bounds in terms of hardness
results for GI are surprisingly weak. It is only known that isomorphism for trees is
hard for NC! and for L (logarithmic space) depending on the encoding of the input
[23].

In this paper we improve the existing hardness results by showing that GI is hard
for all complexity classes defined in terms of the number of accepting computations
of a nondeterministic logarithmic space machine.

The key ingredient in the proof of our results, is a graph gadget showing that
GI has enough structure to encode a modular addition gate. Using this fact, we
are able to give for any (k € IN) an AC® many-one reduction from the circuit value
problem for addition mod k gates, which is complete for ModL, to GI. ModL is the
complexity class corresponding to sets recognized by nondeterministic logarithmic
space machines in which the number of accepting computations satisfies a congruence
modulo % [10], and it lies within NC?. We show that a circuit with modular gates can
be directly transformed into a graph in which any automorphism of a certain kind
maps a special vertex encoding the output gate to a vertex encoding the output of
the circuit. The graphs used in the reduction have degree 3 and its vertices can be
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partitioned into color-classes of size k?. Luks [30] has given an NC upper bound for
the complexity of the isomorphism problem restricted to graphs with bounded color
classes. For isomorphism in this class of graphs, the gap between our hardness results
and the upper bound given by Luks is therefore small. In fact, in [27] we have recently
shown that for graphs of bounded color classes of size 2 and 3, the graph isomorphism
problem is complete for symmetric logarithmic space.

By a simple use of the Chinese Remainder Theorem, the hardness results for the
modular classes can be transformed into hardness results for NL. It is interesting to
observe that the graphs obtained in this reduction have automorphism groups in which
the size of the orbits of some of the nodes depend on the input size, and therefore
these graphs do not have classes of colored vertices of constant size as in the modular
case.

Using the recent result that division can be performed in TC® [17, 18], and the
fact that an NC! circuit can be encoded in an isomorphism problem [23], we can
moreover prove that any logarithmic space counting function can be reduced to GI.
In particular this implies that GI is many-one hard for C_L and for probabilistic
logarithmic space, PL. The hardness results culminate in Theorem 4.9 where it is
shown that GI is hard for DET, defined by Cook [13] as the class of problems NC!
Turing reducible to the determinant.

Perfect matching problem is (as GI) another problem of the short list that has
resisted classification in terms of completeness. It was shown in [5] that perfect
matching is randomly (or non-uniformly) reducible to ModL for every k. From our
results this implies a (random or non-uniform) reduction from matching to GI, which
provides the first reduction between the two well studied problems. Moreover, as a
consequence of derandomization results from [21, 3, 25], under the natural hypothesis
that there is a set in DSPACE(n) with circuits of size 2%(") | our reduction implies a
many-one AC? (deterministic) reduction from perfect matching to GI.

The graph automorphism problem GA, the decision of whether a given graph has
a nontrivial automorphism, is known to be many-one reducible to GI and seems to
be a slightly easier problem. We show in Section 5 that the hardness results for GI
hold also for GA.

2. Preliminaries. We assume familiarity with basic notions of complexity the-
ory such as can be found in the standard textbooks in the area. We will prove hardness
results for several logarithmic space complexity classes: NL is the class of languages
accepted by nondeterministic Turing machines using logarithmic space. The graph
accessibility problem GAP (given a directed graph with two designated nodes s and
t decide whether there is a path from s to t) is known to be complete for NL, even in
the case of acyclic graphs with in-degree at most 2.

#L defined in [4] analogously to Valiant’s class #P, is the class of functions
f:¥* = IN that count the number of accepting paths of a nondeterministic Turing
machine M on input z. The computation of a #L function on an input x can be
reduced to the problem computing the number paths from node s to node ¢ in a
directed graph G,. The complexity classes PL (probabilistic logarithmic space), C_L
(exact threshold in logarithmic space), and Mod;L (modular counting in logarithmic
space, k > 2) can be defined in terms of #L functions:

PL={A:3pe Poly,f e #L, z € A f(z)>2°1#D} [16, 35]
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C_L={A:3pe Poly,f € #L, z € A& f(z) = 272D} [2]

ModyL={A:3f € #L, z € A< f(z) = 1 mod k} [10]

Mody, circuits (k > 2), are circuits where the input variables (and the wires) can
take values in Zy, and the gates compute addition in Zj,. The evaluation problem for
such circuits (given fixed values for the inputs, decide whether the output value is for
example 1) is complete for Mod;L under AC® many-one reductions. This is because
a directed acyclic graph with in-degree at most two, and two designated nodes, s,t,
can be easily transformed into a mody, circuit computing the residue of the number
of paths from s to ¢ in G, modulo &.

In some of the proofs we will make use of NC! circuits. These are families of
logarithmic depth, polynomial size Boolean circuits of bounded fan-in over the basis
{A,V,—}. DET [13] is the class of problems NC! Turing reducible to the determinant,
or in other words, the class of problems that can be solved by NC! circuits with
additional oracle gates that can compute the determinant of integer matrices.

The known relationships among the considered classes are:

Mod;L C DET,

NL C C_L C PL C DET.

Looking at the known inclusions, the hardness of GI for DET implies hardness with
respect to the other classes. We prove however the result for all the classes separately
showing how the graphs produced by the reductions increase in complexity.

2.1. Reducibilities. We prove our hardness results for the DLOGTIME uni-
form AC® many-one reducibility (in short AC? reducibility). A set A is AC® reducible
to another set B if there is family of circuits {C,, | n € IN} where each circuit C,,
contains only AND, OR and NOT gates, has size n°(!) and depth O(1) and for each
x of length n, z € A & C,(x) € B. Moreover the uniformity condition requires that
there is a DLOGTIME Turing machine with direct access to its input defining the
circuit in the sense that the machine can recognize the direct connection language of
C, [34, 8]. This language consists of the set of tuples (t,a,b,y) where a and b are
numbers of nodes in C),, t is the type of a, b is a child of a and y is a string of length
n.

2.2. Graph isomorphism, automorphism and promise isomorphism. An
automorphism in an undirected graph G = (V, E) is a permutation ¢ of the nodes,
that preserves adjacency. That is, for every u,v € V, (u,v) € E < (p(u),¢(v)) € E.
An isomorphism between two graphs G, H is a bijection between their sets of vertices
which preserves the edges. G ~ H denotes that G and H are isomorphic. GI is the
problem

GI ={(G,H) | G and H are isomorphic graphs}
and GA is defined as

GA = {@| G has an automorphism different from the identity}.
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A graph G in GA is called rigid. For technical reasons we will consider the set of graph
pairs ((G, H), (I, .J)) with exactly one of the pairs consisting of isomorphic graphs:

PGI = {((G,H),(I,J))| G ~ H if and only if I % J}}.

For a tuple in PGI we are given the promise of G being isomorphic to H or I being
isomorphic to J and the question is to decide which one is the isomorphic pair.

Sometimes we will deal with graphs with colored vertices. A coloring with &
colors is a function f : V' — {1,...k}. In an isomorphism between colored graphs,
the colors have to be preserved. The isomorphism problem for colored graphs can
be easily reduced (by ACP reductions) to graph isomorphism without colors (see e.g.
[26]).

In some cases we will consider the following restricted automorphism problem:
Given a graph G = (V, E) and two lists of nodes (z1,...,2%), (y1,-.-,Yk), is there
an automorphism in G mapping x; to y; for 1 < ¢ < k? This problem is also easily
reducible to GI. In order to check whether there is an automorphism with the desired
properties one can make two copies of G, G' and G”. In G’ each of the nodes z;
has color ¢ and in G node y; receives this color. All the other nodes are colored
with a new color 0, for example. G’ and G" are isomorphic if and only if G has an
automorphism with the mentioned properties.

3. Hardness for the modular counting classes. We show now that GI is
hard for for all the logarithmic space modular counting classes ModL (k > 2). The
idea for this proof is to simulate a modular gate with a graph gadget and then combine
the gadgets for the different gates into a graph, whose automorphisms simulate the
behavior of the modular circuit.

The gadgets are defined by the following graphs (shown in Figure 3.1 for the case
k=2):

DEFINITION 3.1. Let k > 2 and denote by @ the addition in Zj. We define the
undirected graph G* = (V, E), given by the set of k*> + 3k nodes

V ={%a,Ya: % | a € {0,...,k =1} U
{thap | a,b€{0,....,k—1,}}

and edges

E = {(zq,Uap) | a,b€{0,....,k—1}}U
{(yp,ap) | @, b€ {0,....,k—1}} U
{(wa,p, zawp) | a,b € {0,...,k—1}}.

The graph gadget for a modular gate has nodes encoding the inputs and outputs
of the gate. Any automorphism in the graph mapping the input nodes in a certain
way, must map the output nodes according to the value of the modular gate being
simulated.

LEMMA 3.2. Fiz k > 2, for any a,b€ {0,...,k -1},

1) there is a unique automorphism ¢ in G* mapping z; to x.m; and y; to ype: for
1=0...k—1, and
2) this automorphism maps z; t0 Zacpmi-
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Fic. 3.1. The graph G? simulating a parity gate.

Proof. Let a,b € {0,...,k—1}, and denote by ¢ the addition in Zj,. We consider
the following function ¢ : V' — V defined as

O(2;) = Tagi for i €0,...,k—1,

©(yi) = ypei for i € 0,..., k —1,
QUi ;) = Uaipp; fori,j €0,... k—1,

©(2i) = zagpei for i €0,... k—1.

We prove first that ¢ is an automorphism. For this we have to show that for every
pair of nodes v,w, (v,w) € E if and only if (p(v), p(w)) € E. The nodes in graph
G* can be partitioned in three layers, the 2 and y nodes, (input layer) the u nodes
and the z nodes (output layer). Edges exist only between nodes from first and second
layers, or between nodes from second and third layers. We consider first an edge
between the first two layers. Let v = z; and w = uy,, with 4,l,m € {0,...,k —1}.
Then p(v) = Tagi and Y(w) = waarpem- By the definition of G¥,

(i, upm) EESi=1
Sadi=adl
& (Tais Yasibom) € E
& (p(@i), p(u,m)) € E.
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In the case v = y; the proof is analogous. For an edge (v,w) between the second and
third layers, let (v,w) = (u; j, 2) with 4,j,1 € {0,...,k —1}. Then ¢(v) = ugmie;
and p(w) = z,@per. By the definition of G*,

(uij,z1) E E&idj=1
SadbBidj=adbDl
Sadidbdj=adbDl
& (Uamib®j, Zambal) € B
& (p(uiyg), p(21)) € E.

In any automorphism ¢ with the restrictions ¢(z;) = e and ¢(y;) = yYpei, the
node ¢(u; ;) must have edges to 2, and yse; but the only node with such connections
1S wamipm; = P(Uij)-

Analogously ¢(z;) must be connected to ¢(ug ;) = uqe,pe; and this implies ¢(z;) =
Zambmi = ©(2;). This means that ¢ is the unique automorphism in G*¥ mapping z; to
Taai and y; t0 ypei O

We observe that the gadget in Lemma 3.2 for the case k¥ = 2 has been already
used for a different application in [12]. Tt is not hard to see that a gadget like the
one defined in Lemma 3.2 for (Zj,, ®) can be constructed for any finite Abelian group
G = (A,0). We mean by this that for any such group a graph whose automorphism
group simulates the group operation o in the sense of the Lemma can be defined.

THEOREM 3.3. For any k > 2, GI is hard for ModyL under AC® many-one
reductions.

Proof. Let k > 2. We reduce the mody, circuit value problem to GI. We transform
an instance C of the circuit value problem for mody circuits into a graph G¢ by
constructing for every modular gate g; of C' a subgraph like the one described in
Lemma 3.2. Moreover, we color the z,y,u and z nodes of the j-th gadget respectively
with one of the colors (z,7), (y,7), (u,j) and (z,j). Connections between gates are
translated in the following way: If the output z of a gate in the circuit is connected to
one of the inputs x of another gate, the reduction puts &k additional edges connecting
(for i € {0,...,k —1}) node z; from the first gate to node z; from the second gate.
For an input variable v/, k nodes vj,...,v] , are considered in the reduction. The
coloring implies that in any automorphism the nodes corresponding to a gate are
mapped to nodes from the same gate. Suppose the input variables of the circuit,

v, ..., v" take values a,...,a,. It follows from Lemma 3.2, by induction on the
circuit depth, that the output gate z takes value b € {0, ...,k —1} if and only if there
is an automorphism in G¢ mapping v} to v}, foralli =0,...,k—landj =1,...,n,

and mapping z; t0 z;qp-

All the steps in the reduction can be done locally by an ACP circuit. The question
of whether the output of the circuit equals b € {0,...,k — 1} can be easily reduced
to whether a pair of graphs Gy, G} are isomorphic, as explained in the preliminaries.
In fact this question can be reduced to two graphs pairs ((G, H), (I, J)) € PGI with
G being isomorphic to H if the value of the circuit is b and I being isomorphic to J
otherwise. For this it suffices to define G as Gy, H as G}, and I and J as the standard
OR-function for GI of U, (G4, G})- O

Observe that the graphs obtained in the reduction, have at most k2 nodes with
the same color (the nodes u; ; in any of the gate gadgets). The maximum degree can
be reduced to 3. In the above description this does not necessarily hold because of the
connection between gates. However, the reduction can be easily modified to achieve
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degree 3 by adding some extra nodes and arranging the fan-out connections of the
gates in a tree-like fashion.

4. Hardness for other complexity classes. In this section we show the hard-
ness of GI for nondeterministic logarithmic space, for C_L, for probabilistic logarith-
mic space and for the class DET of problems NC! reducible to the determinant. The
proofs follow by the modular results, using the Chinese Remainder Theorem (CRT).

A Chinese remainder representation base is a set myq, ..., m, of pairwise coprime
integers. Let M = []_, m,. By the CRT, every integer 0 < z < M is uniquely
represented by its Chinese remainder representation (z1,...,z,), where 0 < z; < m;

and z; = z mod m;. We will consider the base B, formed by the first n prime
numbers.

THEOREM 4.1. GI is hard for NL under AC® many-one reductions.

Proof. The graph accessibility problem for directed acyclic graphs with fan-in
at most 2 is complete for the class NL. We reduce the complement of this set (non-
reachability) to GI. The result follows by the closure of NL under complementation
[20, 37]. Let G = (V, E) be such a graph, with |V| = n and with two designated nodes
s and t. Let P the number of paths from s to ¢ in G. Clearly P < 2™ and P = 0 if
and only if for for every i between 1 and n it holds P mod i = 0.

In the reduction, on input G, an ACP circuit, for each i between 1 and n, trans-
forms @ into a circuit C; with addition modulo ¢ gates. The circuits have the property
that their outputs coincide with P mod i (see the preliminaries). In a second step the
reduction transforms the sequence of C; circuits into a sequence of graphs G¢, (as
in the proof of Theorem 3.3) in which there is an automorphism mapping the input
nodes according to the inputs of C; and mapping z} (the node corresponding to the
output gate of G¢;) to z; if and only if P = j mod i. The number of paths from s to
t in G is then 0 if and only if for all i <n there is an automorphism in G, mapping
the input nodes G¢, according to the inputs of C; and mapping z¢ to itself. This can
be easily reduced to GI as explained in the preliminaries. O

Observe that in the graphs obtained in this reduction, the size of the classes of
the nodes with the same color are not bounded by a constant as before, but by n?.

In fact, we can reduce any logarithmic space counting function to GI. We under-
stand by this that for any function f € #L the set

Ay = {(x,0") | the i-th bit of f(z) is 1}

is many-one reducible to GI.

For proving this reduction, we need two known results. On the one hand we need
the surprising fact that division can be computed by uniform TC? circuits®. [17, 18].
More precisely we need the following part of the mentioned result:

THEOREM 4.2. [17, 18] There is a DLOGTIME uniform family of TC® cir-
cuits that on input the Chinese remainder representation (x1,...,xy,) in base B, of
a number x, outputs the binary representation of x.

We also need the fact that the result of an NC! circuit with fixed values in the
input nodes can be encoded as a graph isomorphism question. This follows from an
adaptation of the proof of Theorem 3.1 in [22] stating that GI is hard for NC' under
DLOGTIME uniform AC® many-one reductions. For completeness we give a sketch of
the proof. The reader is referred to [22] for the details. For technical reasons needed

In fact for our purposes suffices the weaker result stating that division is in alternating time
O(logn) which proved in [14]
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in the proof of Theorem 4.9, we encode the values of the circuit as tuples of graphs
((G,H),(I,J)) in PGI, with G ~ H and I # J for the encoding of a 1 and with
G # H and I ~ J for the encoding of a 0. Recall that PGI was the set of graph tuples
((G,H),(I,J)) with exactly one of the graphs pairs being isomorphic.

THEOREM 4.3. Given a uniform family of circuits C\, with logarithmic depth and
polynomial size and given n tuples of graphs ((G;, H;), (I;, J;)) € PGI, there is an AC°
reduction constructing a tuple (G, H), (I,J)) € PGI with the property that G ~ H if
and only if Cy, outputs 1 and I ~ J if and only if C,, outputs 0, where the i-th input
to Cy, consists of the bit of the boolean value of the statement G; ~ H;.

Proof. (Sketch) An NC! circuit can be simulated by a balanced DLOGTIME
uniform family of circuits with fan out 1, logarithmic depth, polynomial size and
alternating layers of ANDs and ORs [8]. We show how to transform these expressions
to graph tuples. The idea is to construct graph gadgets to simulate the AND and OR
connectives in the circuit. Given two tuples ((G1, H1), (I1,J1)) and ((Ga, H2), (I3, J2))
in PGI consider the graphs GA, Hn, In and J, in Figure 4.1, where an edge between
two graphs represents that each node of the first graph is connected to each node
of the second graph. We can also suppose that the nodes of Gy and H; are colored
with the same special color to handle the cases when Gy ~ Hs. This is represented
by a double ring arround the graphs in the figure. The constructed graphs have the
property that G ~ H, if and only if Gy ~ Hy and G5 ~ Hs. Also I, ~ J, if and
only if G; % Hy or G2 % H, (in this case I} ~ J; or Iy ~ J5).

Fic. 4.1. Tuple (Ga, Hr,In, JA) simulating AND.

Similarly, the graphs G\, Hy, I, and Jy from Figure 4.2 have the property that
Gy ~ Hy if and only if G; ~ H; or G5 ~ Hy and I, ~ J if and only if G; 2 H; and
G2 # H,. Observe that ((Ga, Hp), (In,JA)) and ((Gy, Hy), (Iy,Jv)) belong to PGL

F1c. 4.2. Tuple ((Gv, Hv),(Iv,Jv) simulating OR.

The constructions doubles the number of nodes of the initial tuples. Notice also
that it is easy to simulate a NOT by transforming ((G, H), (I, J)) to ((I,J), (G, H)).
A 1 in the circuit is represented by a tuple ((G, H), (I, J)) with G ~ H and a 0
by a tuple with I ~ J. Starting from the input nodes the reduction transforms the



ON THE HARDNESS OF GRAPH ISOMORPHISM 9

nodes of the circuit into graph tuples encoding the values of the circuit gates . Since
the circuit has logarithmic depth the tuples corresponding to the output gate have a
polynomial number of nodes. O

We can now show the hardness of GI with respect to #L.

THEOREM 4.4. Every #L function® is AC° many-one reducible to GI.

Proof. Let f € #L. For some polynomial g, it is possible to construct in ACP
for © € ¥* a graph G, with at most ¢(|z|) nodes so that f(z) is the number of s — ¢
paths in G,,. Let i be the bit of f(x) we want to reduce to GI, and let m = ¢(]z|). By
Theorem 4.2, in order to compute f(z), it suffices to compute its Chinese remainder
representation (f(z)1,..., f(2)m) in By. Once this is done, f(x) can be computed
by an NC! circuit.

The Chinese remainder representation can be obtained by computing prime num-
ber p;, for every 1 < i < m, (this can be done by an NC! circuit) and reducing G, to
a circuit with addition gates in Z,,,, as in the proof of Theorem 4.1. The circuits are
transformed into p; graph tuples ((G;, H;), (I, J;)) with the property that in the j-th
tuple the first two graphs are isomorphic if and only if f(z) = j — 1 mod p;. These
form a list of 2111 p; graph tuples, and can be considered as an encoding of the
CRR of f(z) (f(x)1,..., f(x)m) of the form (wq,...,w,,) where each w; € {0,1}?¢ is
formed by 0’s with a 1 in position f(z); + 1. The 0’s and 1’s in the w;’s are encoded
by tuples in PGI.

By Theorem 4.2 it is possible to construct in DLOGTIME a TC® (and therefore
also an NC) circuit that having as inputs the CRR of f(z), outputs the i-th bit of
f(x). We can consider the list of graph tuples as the inputs of this circuit.

So far we have shown that there is a uniform AC° reduction that on input 2 com-
putes an NC! circuit that outputs the i-th bit of f(z) and has its input values encoded
as graph tuples in PGI. As done in the proof of Theorem 4.3, an ACP reduction can
also transform the whole circuit into a single tuple of graphs ((G, H), (I, J)). G is
isomorphic to H or I is isomorphic to .J depending on the output of the NC' circuit,
which coincides with the i-th bit of f(x). O

Basically the same proof as the one for the hardness for NL holds for proving
hardness for the class C_L. Here instead of checking that the number of paths from
s to t is 0, we have to check that this number coincides with some exact threshold
f(G) < 2™ For this the reduction machine has to compute for each small prime
pi the residue r; = f(G) mod p; (this can be done in NC! [32] and in fact in TC
by the mentioned result on division in [18]), and then check whether there is an
automorphism that for all ¢ maps z{ to 2. .

COROLLARY 4.5. GI is hard for C—L under AC® many-one reductions.

As mentioned in the preliminaries, for a set L € PL, there is a function f € #L
and a polynomial p such that for any input =, z € L if and only if f(z) > 22D The
next result follows then directly from Theorem 4.4 since an input x belongs to L if
an only if at least one of the bits corresponding to positions > p(|z|) (starting from
the right) in the binary representation of f(z) is a 1.

COROLLARY 4.6. GI is hard for the class PL under AC® many-one reductions.

The class DET of problems NC' Turing reducible to the determinant coincides
with NC'(#L) (see e.g. [2]). Combining Theorems 4.3 and 4.4, we can prove the
hardness of GI for DET, which is the strongest known hardness result for GI.

The proof of this result is based on a simulation of the NC! circuit as done in
Theorem 4.3 replacing each of the oracle queries to f by a small circuit as in the proof

2In fact this result also holds for the more powerful class of GapL functions defined in [2].
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of Theorem 4.4. The main problem here is that while in Theorem 4.4 the input for the
#L function to be computed is a binary string z, in the simulation of the NC! circuit
the input to the oracle calls are not given as a sequence of bits but as a sequence of
graph tuples encoding these bits. To deal with this problem we need the following
lemma stating that Theorem 4.4 is also true when the input is encoded as a sequence
of tuples:

LeEMMA 4.7. For each function f € #L there is a DLOGTIME uniform family
{Cy} of AC® circuits such that on input a sequence of graph tuples ((G;, H;), (I;, J;))
in PGI, 1 < i < n, of size polynomial in n encoding a binary string x € ¥", C,
constructs a sequence of tuples (G, H}), (I}, J!)) in PGI, 1 <i < q(n), encoding the
bits of f(x).

Proof. Let f € #L and n, k,m € IN. From the description of the nondeterministic
logarithmic space machine M computing f the reduction constructs first in AC° a
graph G of polynomial size in n related to the configuration graph of M. We can
consider that M has a read-only tape for the input and a work tape of logarithmic
size. The set of nodes of G? consists of the set of tuples (s, ¢, p1,p2,b) where s is a
state of M, cis a possible content of the work tape, p; and py are the positions of the
tape heads on the input and work tape respectively, and b is one bit that will be used
to encode the content at position p; on the input tape. For a concrete input some
of these descriptions are not consistent with the input information since b might not
be the correct bit at position p;. Nevertheless we consider the set of all such possible
descriptions at this point. This set hat polynomial size in n. The set of edges in G?
is given by the transition function of M. If the machine can reach from a description
d = (s, c,p1,p2,b) the configuration (s',¢’,p],ph) in one step, then there is a directed
edge in G'} from d to (s',c,pi, ph,0) and another one from d to (s',¢’, p, py, 1).

Let x be the input for f encoded by a sequence of graph triplets in PGI. In order
to compute whether f(z) mod k is congruent with m we will consider that the nodes
of G are addition gates in Zj, in a polynomial size circuit C. If all the nodes of
C would correspond to descriptions consistent with the input, then the output of
this circuit would be f(z) mod k. However, half of the gates in C' correspond to
inconsistent descriptions and they corrupt the final sum. To avoid this problem we
use a method that guarantees that the wires coming out of the inconsistent gates
always have value 0 and therefore do not contribute to the final sum. This will be
done with a new graph gadget. Using first the graph gadgets in Section 3, circuit C
can be transformed into a graph G¢ where each of the mod k gates corresponding
to a machine description d = (s, ¢,p,p',b) is transformed into a subgraph with input
nodes zg,...-xr—1 and ¥yo,-.-yr—1 and output nodes zg,...zr—1 in such a way that
if there is an automorphism mapping z; to z;g; and y; to yie; in this subgraph,
then the automorphism maps 2 to zigie; for 4,5, € {0,...k — 1} (Lemma 3.2).
The output nodes z; are then connected with an edge to the input nodes of other
gates, nodes wy ... wg—1 (the nodes of z are connected to as many nodes as the
fan out of the corresponding gate, for simplicity we consider it is just one). Let us
suppose that the bit b in description d is 1 (the 0 case is completely analogous) and
let ((Gp, Hp), (I, Jp)) be the input tuple in PGI encoding the correct value for the
position p in the input 2. The gate corresponding to d is a consistent gate if and
only if b equals the Boolean value of G, ~ H,. To force that the inconsistent gates
always propagate a 0 (an automorphism mapping zq to itself) the reduction includes
between the z and w nodes the following gadget Gad), that can be seen in Figure 4.3
for the case £ = 2. Connections between a node v and a graph in the figure and in
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the following description of Gadj mean that there is an edge between v and each of
the nodes in the graph.

20 21

4
D))

(=)

F1a. 4.3. The graph Gads.

Subgraph Gadj, can be represented in four levels. Levels 1 and 4 contain the
nodes z;, and w;, respectively, for i € {0,...k — 1}. Level 2 contains for each i a copy
I;; of I, and k —1 copies of Jp, JI’;’j, j€40,...k—1}, j #i. Level 3 contains a copy of
Gp and for each i in {1,...,k—1} a copy H;; of H,. The edges are defined as follows:

— Bach node z; is connected to the graphs I} and to the k — 1 graphs JL¥ for [ # i
in the second level.

— Graph G, in the third level is connected to IS and to each of the graphs Jg’j j#0,
all of them in the second level.

— The graphs H;;, i # 0 in the third level are connected to I;; and to J;;’j, Jj Fi.

— Finally in the fourth level, node wp is connected to G, and each w; for i # 0 is
connected to Hj.

Gady, has very nice properties, as can be seen in the next lemma.

LEMMA 4.8. Subgraph Gady has the following properties:

1. If the gate is consistent with the input, that is, if G, ~ H, then for any
c€{0,...,k— 1} there is an automorphism in Gadj, mapping z; to zip. for
each i. Such automorphism maps also w; to wig..

2. If the gate is inconsistent with the input, that is, iof I, ~ J, then for any
c€{0,...,k— 1} there is an automorphism in Gady mapping z; to zig. for
each i. Such automorphism maps also w; to w.

Proof. In order to see 1), observe that if the automorphism maps z; to z;g., then
the graph Il’; connected to z; has to be mapped to one of the graphs connected to z;g.,
Jg’i@c or I;;@C. But I, cannot be mapped to J, since these graphs are not isomorphic.
This implies that in any automorphism all the graphs I, in the second level have to
be mapped to graphs of type I,. In particular Il’; has to be mapped to I;F%. This
means that the graph G, at the third level has to be mapped to the H, graph over w,
(this can happen since G}, ~ H,) and this implies that for all i, w; has to be mapped
t0 wige. An automorphism satisfying all these conditions can be defined by mapping
for all 4,5 with i # j J57 to Ji®©I9¢ af, the second level. Observe that in case G, Hp,
I, and J, are rigid graphs, then the described automorphism is the only one mapping
z; to z;g. for each i.

For the proof of 2) observe that in case the gate is inconsistent with the input,
then the graph G, at the third level has to be mapped to itself and therefore the
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w nodes also have to be mapped to themselves. We have to prove that there is an
automorphism with these properties mapping z; to z;g. for each ¢. This is clear for
¢ = 0. For ¢ # 0 this automorphism maps in the second level graph II’; to J;’i@c (this
is possible since I, ~ .J,) and maps G557 to GL7%¢ if i # j@cor to Il in case i = jde.
The automorphism fixes the third and fourth levels, and again, in case G, H, I and J
are rigid graphs, it is the only one mapping z; to z;q. for each i. O

We continue with the proof of Lemma 4.7. Let G, be the graph corresponding to
circuit C' with the new gadgets on the edges coming out of the gates in C. The above
lemma guarantees that inconsistent gates always produce value 0 and therefore the
circuit produces the correct value for f(z) mod k. Let zp,...2,_1 be the output nodes
in G{, corresponding to the output gate of the circuit. By the results in Section 3,
there is an automorphism in G, mapping for each i z; to zjpm if and only if f(z) =m
mod k. This property can be encoded by the reduction using standard methods into
a graph tuple ((G, H),(I,J)) in PGI satisfying that G ~ H if f(x) = m mod k and
I ~ J otherwise. Observe that if the graphs in the tuples have size at most s then
the size of the output graphs is at most p(n)s for a polynomial p depending on the
machine M. The rest of the proof is exactly as in Theorem 4.4. O

We can now prove the hardness of GI for DET. This result answers positively a
question posed by Allender in [1]. Recall that DET can be characterized as NC! (#L)
the class of problems computed by an AC® uniform family of polynomial size and
logarithmic depth circuits with oracle gates to a function f in #L. By convention, an
oracle gate querying a string = contributes log(|z| + | f(x)]) to the total circuit depth.

THEOREM 4.9. GI is hard for the class DET under AC° many-one reductions.

Proof. Let L be a set in NC!(#L) and let {C,,} be the family of NC! circuits
computing L with functional oracle queries to a function f in #L.

We want to compute Cp(z) for a string = of length n. The reduction can first
transform each oracle gate g into a circuit D, as done in Theorem 4.4. Observe that
the structure of the circuit computing gate g does not depend on the input bits of g,
but just on the number of such bits. D, computes the query using modular gates as
well as AND and OR gates. D, has polynomial size (in the size of its input) and its
depth is not necessarily logarithmic, but the number of levels with AND or OR gates
in this circuit is logarithmic in the input size of g. If we only count the depth of the
AND and OR gates (the maximum number of such gates in a path from an input to
the output gate), C, with the expanded oracles gates still has logarithmic depth in n
since we are dealing with an NC! reduction.

Each gate in the circuit C,, with expanded oracle queries can be transformed by
the AC® reduction into a tuple of four graphs ((G, H), (I, J)) encoding the value of
the gate as explained before. Using Theorems 4.3 and 4.9 the reduction can construct
these tuples for all the levels of the circuit. The graph tuple corresponding to the
output gate encodes the result of the circuit computation.

It is only left to show that the size of the graph tuples corresponding to the
circuit gates remain of polynomial size in n. The gadgets corresponding to the AND
and OR gates increase the size of the graph tuples at most by a factor of 2 in each
level, and the number of circuit levels with AND or OR gates is logarithmic in n.
The gadgets attached to the modular computations in the query gates increase the
size of the tuples by a factor of p(m) where m is the size of the query and p is a
polynomial. Because C,, computes an NC' reduction, in a circuit path with oracle
queries with sizes mq, ..., my, it must hold that the sum of the logarithms of all the
query sizes is at most clog(n) for some constant c. From this follows that the product
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of the increasing factors p(m;) corresponding to all the oracle queries in the path is
bounded by a polynomial in n. These facts imply that the the size of the graph tuples
corresponding to every gate in C,, is polynomial in n. O

4.1. Matching is reducible to GI. We mention an interesting connection
between the perfect matching problem and GI. The perfect matching problem consists
in deciding whether a given undirected graph has a perfect matching, that is, a set of
edges that contain all the vertices, and such that no two of these edges share a vertex.
This problem has been intensively studied, but like GI, it has resisted all classification
attempts in terms of completeness in a class. The problem has polynomial time
algorithms, and it is known to be in random NC [24, 33]. In [5] it has been proved
that for any k& > 2, the perfect matching problem is randomly reducible to a set in
ModyL. Together with Theorem 3.3 this implies:

COROLLARY 4.10. Matching is reducible to GI under randomized reductions.

Since the reduction works correctly with probability exponentially close to 1, for
each input size n there is a sequence of random choices that can be taken as correct
advice in the reduction of all instances of size n. This implies a non-uniform reduction
from Matching to GI. Moreover as noted in [3], under a natural hardness hypothesis,
the reduction from Matching to ModyL can be derandomized using techniques from
[21, 25]. This yields:

COROLLARY 4.11. If there is a set A in DSPACE(n) and § > 0 with the property
that, for all large n, no circuits of size less than 2°" accepts exactly the strings of
length n in A, then perfect matching is included in Mody L for any k > 2 and thus the
problem is reducible to GI under AC® many-one reductions.

5. Hardness results for graph automorphism. The graph automorphism
problem (GA) deciding whether a given graph has a nontrivial automorphism is many-
one reducible to GI and it seems to be a slightly easier problem. In this section we
show that the proven hardness results for GI hold also for GA. We show first that the
hardness for the modular classes can be easily translated to GA.

THEOREM 5.1. For any k > 2, GA is hard for Mod,L under AC° many-one
reductions.

Proof. In Theorem 3.3 we transformed a circuit with addition gates in Zj and
values for the input gates, into a graph G having a unique automorphism with certain
restrictions (some nodes encoding the input and output values of the circuits had to
be mapped in a certain way) if and only if the output value of the circuit is 1. The
question of whether G has an automorphism with the desired properties can in turn
be transformed into a GI problem by making two copies of G, G; and GG5. These
graphs have to include some coloring in the nodes representing the input and output
values of the circuit in order to encode the restrictions in the automorphism. Observe
that there is at most one isomorphism between G; and G5. From this follows that
there is a nontrivial automorphism in Gy UG> if and only if the output of the original
circuit is 1. O

Based on this Theorem the proof of the result 4.1 can be modified to show hardness
of GA for NL.

COROLLARY 5.2. GA is hard for NL under AC® many-one reductions.

The additional ingredient that is needed to prove the stronger hardness results,
is the fact that an NC! computation can be encoded as a GA question, that is, a
version of Theorem4.3 for GA. A direct translation of this result does not work since
GA is not known to have AND-functions. An AND-function for GA is a function that
is easy to compute and transforms pairs of graphs into single graphs in such a way
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that both of the original graphs have nontrivial automorphisms if and only if the final
graph has such an automorphism. Dieter van Melkebeek has found a way to avoid
this problem.

THEOREM 5.3. (van Melkebeek) Given a uniform family of circuits C,, with loga-
rithmic depth and polynomial size and given n tuples of rigid graphs ((G;, H;), (I;, J;)) €I}
PGI, there is an AC® reduction constructing a tuple of rigid graphs (G, H),(I,.J)) €
PGI with the property that G ~ H if and only if C,, outputs 1 and I ~ J if and only
if Cy, outputs 0, where the i-th input to C,, consists of the bit of the boolean value of
the statement G; ~ H;.

Proof. The proof is like the one for Theorem 4.3 simulating the alternating layers
of ANDs and ORs of an NC! circuit by graph gadgets for the tuples. The main
difficulty is to preserve the rigidity of the tuple components.

In order to simulate the AND, given two tuples of rigid graphs ((G1, H1), (11, J1))
and ((Ga, Hy), (I2, J>)) in PGI consider the graphs G, Ha, In and Jx in Figure 5.1.
Ga and Hp are defined as the standard AND function for GI of the G and H graphs,
while I and J, are constructed as the OR of (I, .J;) and the AND of (G, H;) and
(I3, .J2). Again by a double ring arround some of the graphs we represent the fact
that these graphs are marked in some special way and can only be mapped to other
graphs with the same marking.

These graphs have the property that Gn ~ H, if and only if G; ~ H; and
G2 ~ H,. Also In ~ J, if and only if I} ~ J; (and therefore G; % H;) or I, ~ J,
(in this case G2 # Hs and either Gy ~ Hy or I} ~ Jy). Although the standard OR
does not preserve rigidity in case both inputs are isomorphic, observe that in this
construction if all the graphs in the input tuples are rigid then Gx, Ha, Ix and J are
also rigid. We avoid the ambiguous situation by rewriting “p or ¢” as “p or (not p
and ¢)” and expressing “not p” positively by switching to the complementary pair of
the tuple.

8 6 dodo ¢

F1G. 5.1. Tuple (Gn, Ha,In, JA) simulating AND.

Similarly, the graphs G, Hy, I, and Jy from Figure 5.2 have the property that
Gy ~ Hy if and only if G; ~ Hy; or Gy ~ Hy and I, ~ Jy if and only if Gy # H;
and Gy # Hs. These gadgets simulate therefore an OR gate. Moreover, if the all
the graphs G, H;, I; and J; are rigid, for ¢ € {1,2}, then the constructed graphs
Gv,Hy, I, and Jy are also rigid.

Observe that the size of the constructed gadgets is at most 3n, n being the sum of
all the nodes in the input tuples. Because of this fact, for a logarithmic depth circuit
C with alternating layers of AND and OR fan-out 1 gates, a tuple of polynomial size
rigid graphs ((G, H)(I,J)) can be constructed such that C has value 1 if and only if
G ~ H. Since G and H are rigid, this is equivalent to G U H € GA. [

An immediate consequence of this result is that GA is hard for NC!. Using
this fact and Theorem 5.1, it is now possible to prove the hardness of GA for the
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Iy Jv

F1G. 5.2. Tuple (Gv,Hy,Iv,Jv) simulating OR.

class DET. The proof of this result follows exactly the same lines as the one for
Theorem 4.9 taking into consideration that the graph pairs produced in the reduction
from Theorem 3.3 are rigid, and that the gadgets in the proof of Theorem 4.9 also
preserve rigidity.
COROLLARY 5.4. GA is hard for the class DET under AC® many-one reductions.
One final observation is that from Theorem 5.1 it follows also that the perfect
matching problem is randomly reducible to GA.
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