Complexity classes

defined by counting quantifiers*

Jacobo Toran
Dept. L.S.1.
Universidad Politecnica de Cataluna
Pau Gargallo 5
08028 Barcelona, Spain

Abstract:

We study the polynomial time counting hierarchy, a hierarchy of complexity classes related
to the notion of counting. We investigate some of their structural properties, settling many
open questions dealing with oracle characterizations, closure under boolean operations,
and relations with other complexity classes. We develop a new combinatorial technique
to obtain relativized separations for some of the studied classes, which imply absolute
separations for some logarithmic time bounded complexity classes.

1. Introduction.

One of the main goals of complexity theory is the classification of computational
problems in complexity classes according to the amount of resources these problems need.
Probably the best known complexity classes are P and NP since hoth of them capture the
complexity of many natural problems, and also because the long standing open question

P < NP has motivated most of the research in the area. The similarities in the definitions of
the class NP and the recursion-theoretic class of the recursively enumerable sets (both can
be characterized by an existential quantifier) provoked the “translation” of other recursion-
theoretic notions into the field of complexity theory, and the analogous concept to the
arithmetic hierarchy, the polynomial time hierarchy [St,77] was defined. The idea is a
natural generalization of the class NP, and provided a good tool to classify more complex
problems. It was taken also by many researchers as a frame for the study of structural
complexity theory and the idea behind the hierarchy, the alternation of existential and
universal quantifiers [Ch,Ko0,5t,81] influenced very much the work in the area.
Nevertheless there are many natural computational problems whose complexity can-
not be modelized in terms of existential or universal quantifiers; on the other hand this

* This article is part of the Ph.D. Thesis of the author. Some of its results have been
presented at the international conferences STRUCT’88 and ICALP’89.

complexity is captured by other complexity classes, more adapted to the idea of counting.

Following this motivation, Simon defines in [Sim,75] the class of threshold languages.
A language L is in this class if there is a polynomial time Turing machine M such that for
every input x, M has at least k accepting computation paths if and only if = is in L, where
k is a fixed constant or fraction. This class is placed between NP and PSPACE and it is
closely related to Valiant’s class #P of functions that count the number of accepting paths
in a nondeterministic Turing machine [Va,79]. It contains natural complete problems; a
typical problem in this class is

SAT = {(F,k) | F is a boolean formula with at least k satisfying assignments}

Simon also shows that the class of threshold languages is the same as the class PP,
of langunages accepted by polynomial time probabilistic Turing machines [Gi,77]. The
languages in this class are those recognized by polynomial time bounded Turing machines
which accept an input if and only if more than half of the computation paths accept.

In order to characterize the complexity of some languages called “games against na-
ture”, Papadimitriou [Pa,83] generalizes the idea of probabilistic machine and obtains the
class PPSPACE of languages accepted by polynomial time bounded Turing machines which
alternate between nondeterministic and probabilistic configurations. The class PPSPACE
turns out to be equal to PSPACE. Papadimitriou shows that in the same way as a language
L in PSPACE can be characterized by an alternating string of existential and universal
quantifiers followed by a polynomial time predicate, they can also be formulated by alter-
nating the existential quantifier and R, a probabilistic (or random) quantifier:

v €L < Pr RPaesIPu, ... Ploy,29,...,0,)

where RP(™) 2, P(21) means that there exist more than half of the strings of length p(n)
satisfying the predicate P.

One step further is taken by Wagner [Wa,86] when he defines the counting hierarchy
(CH) in a similar way as the polynomial time hierarchy (PH), trying to classify the com-
plexity of certain combinatorial problems in which counting is involved. Instead of using
the probabilistic quantifier R, Wagner introduces the quantifier C inspired in the idea of

(n)

threshold machines. As we will see more formally, C?(m) y P(y) means that there are at

least f() strings y of length p(n) satisfying predicate P. This quantifier is equivalent to
the probabilistic one, R, in the same way that the probabilistic machines recognize the
same languages as the threshold machines. The hierarchy arises in a natural way combin-
ing the counting quantifier not only with the existential quantifier, as in [Pa,83], but also
with the universal one. The counting hierarchy turns out to be a very useful tool to express
the complexity of many natural problems. It contains the polynomial time hierarchy and
is included in PSPACE. Wagner shows that every level of CH has complete problems and
proves some other results about the hierarchy.

As we have already mentioned, many concepts in complexity theory are direct “trans-
lations” of the same concepts in the recursive function theory to the polynomial time case
(ideas like reduction, polynomial time hierarchy, oracles, etc. are taken from the same
ideas in the theory of recursive functions). It is interesting to observe that the polynomial
counting quantifier is particular to complexity theory, since the analogous concept in re-

2

cursive function theory, the unbounded counting quantifier, is equivalent to an unbounded
existential quantifier. In our opinion, the lack of a parallel concept in recursion theory has
determined the late appearence of the concept in complexity theory.

As we have said, the counting hierarchy has great importance for the classification of
a variety of computation problems. Nevertheless its structural properties have never been
studied in depth, and it was assumed to hehave in a similar way as other better known
hierarchies, like the polynomial time hierarchy. This has been shown to be true only to
a certain extent. In this work we try to complete this knowledge, investigating different
aspects of CH, and solving some open problems related to the hierarchy.

The article is divided into different sections. After introducing notation and prelim-
inaries in sections 3 and 4 we basically continue the work started by Wagner when he
defined the polynomial counting hierarchy. We study the boolean properties of the classes
in CH, showing that a class is closed under union and intersection if the first quantifier
defining it is either 4 or V, and closed under complement and symmetric difference if it
is the C quantifier. Classes whose characterization starts by a C quantifier do not seem
to be closed under union and intersection, and this fact makes that the classes in CH
behave in a very different way than the classes in PH. We also study the “unbounded
cartesian product” operation which can be considered as a certain kind of unbounded in-
tersection, showing that the classes closed under unbounded cartesian product coincide
with the classes closed under intersection, and also that the closure under this operation
of a class whose characterization starts with quantifier C implies certain collapse result
in CH. Using these results we are able to characterize the counting hierarchy in terms of
nondeterministic and probabilistic machines with access to oracles. This characterization
was only known for the classes of type X%, (oracle characterization of the PH) and CX7,
[Wa,86]. Our result completes the characterization for every class.

Section 5 is motivated by the problem of whether the classes studied can be separated.
We introduce a new combinatiorial method to obtain relativized separations of the count-
ing classes defined in the previous sections. Although counting classes have been separated
from the polynomial time hierarchy before, [An,80], [Ya,85], [Ha,86], to our knowledge this
is the first time that counting classes have been separated from other counting classes. The
technique used to obtain our results is new since the methods from previous relativizations
do not seem to work for counting complexity classes. The idea is to diagonalize gathering
the number of accepting computation paths of the oracle Turing machines in combinatorial
formulas in which the oracle is a variable, and then argue over the formulas using combina-
torial techniques and the fact that our machines are polynomial time bounded. We present
three relativizations separating NP from G (exact coumtilrlg)7 NP from @P and &P from
PP. As a consequence we obtain relativizations in which the three classes NP, &P, and G
are incomparable, &P and PP are incomparable, and NP and G are strictly contained in
PP. These separations also imply a relativization in which PP is different from PSPACE,
solving an open problem proposed by Angluin in [An,80], as well as relativized separations
of the lower levels of the counting hierarchy. Another consequence of the relativizations
presented is the absolute separation of log-time complexity classes.

We include at the end of the article a section of conclusions and further research areas.

2. Notation and preliminaries

The notation used in this article is the standard one in stuctural complexity theory,
and when new concepts are used, a definition of them is included. However trying to avoid
any possible confusion, we include a short summary of notation.

The sets that we will considered are languages over some fixed alphabet ¥. For a
sett A C ¥* ||A|| will represent the cardinality of A; and for a string » € ¥*, |z| will
denote its length. The complement of a set A will be denoted A, and its characteristic
function y 4. Easily computable pairing functions are assumed, and denoted by angular
parenthesis, as in (x,y). The marked union or join of two sets A and B is defined as
A B={0x |2 e A}U{lx | » € B}.

Our model of computation will be the multi-tape Turing machine. If M is a Turing
machine, L(M) represents the langnage accepted by M. If M is a nondeterministic Turing
machine, for a pair of strings x,y, M,(2) represents the computation of M on input x
following computation path y; if M has access to some oracle, MyA (x) represents the
computation on following path y and oracle A and L(M, A) represents the langnage
accepted by machine M with oracle A. In some parts of this work it is assumed without
explicit mention that the input tape alphabet of Turing machines is {0,1}.

For a definition of the language classes P, NP, PSPACE, UP, LOGSPACE and the
ones in the polynomial time hierarchy we refer the reader to the books written on the
subject [Ba,Di,Ga,88], [Sc,85], [Wa,We,86]. PP [Gi,77] is the class of language recognized
by polynomial time nondeterministic machines that accept an input 2 if and only if more
than one half of all the computation paths of the machine accept . For a language class
K, P" represents the class of languages computed by a polynomial time machine with
access to an oracle in K. Moreover, PXl008 ™) denotes the same class of languages, with
the restriction that the polynomial time machine can only make O(logn) queries to the
oracle.

We will also consider different function classes. We will denote by FP the class of
polynomial time computable functions and by FP# the class of functions computable in
polynomial time by a deterministic machine with access to oracle A.

The polynomial time reducibilities used are the many-one reducibility (<)), and the
Turing reducibility (<%.), whose definition can be seen in the mentioned books.

3. The counting hierarchy

As mentioned before, the polynomial time counting hierarchy was first introduced by
Wagner [Wa,86] as a tool to classify certain combinatorial problems in which counting is
involved. However, many problems were left open by his work; among them, many of the
structural properties of this hierarchy, such as equivalent definitions by oracle machines
(similar to the case of the polynomial time hierarchy), closure under boolean operations,
and ability to extract information from oracle sets. In this and the following section we

4

address these problems, extending the work of Wagner.

We first study closure properties of the classes in the hierarchy. We show that they
depend only on the first quantifier of the string of alternating quantifiers defining the class,
being a class closed under complement and symmetric difference if its first quantifier is
a counting one, and closed under union and intersection if the first quantifier is either
existential or universal. We also study the closure of the classes under “unbounded carte-
sian product”, an operation which is needed to obtain other characterizations of CH. We
show that the classes that are closed under unbounded cartesian product, coincide with
the classes closed under intersection. Using these results, we also prove that for certain
classes K in CH, a deterministic oracle machine asking just one question to a set in K,
can only recognize sets in K.

The following definitions are taken from the article [Wa,86].

Definition 3.1: The polynomial counting quantifier C, is defined in the following way;
for a function f: ¥* — IN, f €FP, a polynomial p and a two argument predicate Q,

Cliy v @ Qey) <= [{y: |yl < p(lz]) and Q(z,y)}| > f(2).

If K is a language class, for any set A, A € CK if there 1s a function f in FP, s.t. for
every x, f(x) > 0, a polynomial p and a langnage B € K such that for any » € ¥*

reAe=Cl 1y :(r,y)€B

Recall that bounded quantifiers have been used before to define complexity classes.
For example, in [Wr,77] a characterization of the polynomial time hierarchy in terms of
the polynomially bounded existencial and universal quantifiers 97 and V" is given.

We alternate now the polynomial counting quantifier C with the existential and the
universal quantifiers in order to define the counting hierarchy.

Definition 3.2: The polynomial counting hierarchy (CH) is the smallest family of langnage
classes satisfying:

i/ PeCH

ii/ If K €CH then 37K, V?K and CP?K €CH.

Since in this section we will talk only about quantifiers ranging over strings of poly-
nomial length, we drop the superscript p from all the quantifiers. Also, for simplicity, C
will denote the class CP, and the context will make clear when we talk about a quantifier
and when about a language class.

The next lemma shows that the threshold function of the C quantifier can be changed
to strictly more than one half of the possible quantified strings. As a consequence, the

)

class C is the same as the class PP of languages accepted by probabilistic Turing machines.

This fact has been observed in [Sim,75], [Wa,86].

Lemma 3.3:
i/ C=PP

ii/ For any class K in CH and any function f: IN — IN, f €¢FP C?I(C C?Qp(n)f1 +1)I(.

To locate CH with respect to other complexity classes, we observe the following prop-
erties:

Lemma 3.4: [Wa,86]

a/ Every language in CH can be accepted in polynomial space.
b/ PHCCH

¢/ For every class K in CH, idK UVK C CK C 4CK NVCK.
d/ Every class in CH is closed under <? reducibility.

e/ Every class in CH has <!°9 complete problems.

Some easy closure properties of the classes in CH that will be used later are:

Lemma 3.5: For any class K in CH, any sets Ly, L, in K and any set P; in P:
i/ Ly &Ly € K.
i/ Ly xIN € K.
Wi/ LyNPeK.

Next we define the “exact” counting quantifier G, which is a little different than C in
its definition, but as we will see, has very different properties. This difference between C
and G, will be crucial in the proof of our results. G was also defined for the first time in
[Wa,86]. In section 5 we present a relativization in which G # C (considered as language
classes).

Definition 3.6: For a function f: IN — IN, f €FP, a polynomial p and a two argument
predicate (),

Gl vy Qy) = {y: |yl <p(lz]) and Q. y)}| = f().

The definition of GK for a language class K is analogous to the definition of CK,

using the new quantifier. Also lemma 3.5 holds for any class K in CH, and any sets Ly, Lo
in GK.

In order to show the closure under certain boolean operations of the classes in CH,
we need to prove the following results, which will be improved later in corollary 3.11.

6

Lemma 3.7: For any class K in CH,
i/ ACK C 4GK.
i/ CCK C CGK.
i/ GCK C GGK.
iv/] GK CCK ACK.

Proof: i/: Let K be a class in CH and L a set in 3CK. There is a function f in FP and
a set A € K such that for every x € ©*

vel— 31/(316(7’,1,1) z <'777]/7 Z> €A
< JyFvCGyy) 2 - [(7,y,2) € Aand v <z

ii/ and iii/: Analogous to i/.
iv/: Let K be a class in CH and L a set in GK. There is a function f in FP and a
set A € K such that for every » € ©*
r €L G,y : (x,y) €A
Let Ly = {2 : Cyyy : (x,y) € A} and Ly = {2 : Cpyy1 y @ (x,y) € A}
Ly and Ly arein CK and L = Ly A L. |

We will improve the above result in corollary 3.11 after proving certain hoolean prop-
erties of the classes in CH.

In [Wa,86] it is mentioned that the class G is closed under intersection. This can be
extended to any class starting by the G quantifier and to a certain kind of unbounded
intersection, the unbounded cartesian product. This extension will be necessary for the
oracle characterization of CH in the next section.

Definition 3.8: For any set L define the unbounded cartesian product of L, L™, as the
set

LX :{<.7717.7727...7.77k>:/\.737j EL}

13

Theorem 3.9: For any class K in CH, GK is closed under unbounded cartesian product.

Proof: Let L he a set in GK. Thereis a set A in K, a function f in FP | and a polynomial
p such that for any € ¥* f(x) < or(z]) and

Given a sequence of strings (@1, 29, ..., 25) let m = max{|x|,...|rk|}, and define

G,) = Flon) + Flr)200MHT G f(ag)2200mF2 4 f(y)20k DO,

7

Notice that from g(a1,...x) it is possible to recover the unique values of f(xq)... f(a).

<.”I?17.”1727...7.77k> € LX <~
=Gy vl < pllea]). (wyn) € AN A Gy vk lyrl < p(loel), (e yn) € A
=G (s 1s..20) (21,22, 23) (there exists an 7 such that 2z = 2; and [z2] < p(|2;])

and (w;,20) € A and |z3] = (7 — 1)(p(m) + 1).

This is true because we have multiplied the witnesses of x; € L in such a way that
there must be exactly 'f(.’lfi)Q(i71)(p(m)+1) of them for every x;. It follows

<.”I?17.”1727...7.77k> € LX <~
C s o) (21,22,23) © (21,22,23) € A’

being A’ in K, which implies L* € GK. |
We prove now the main result of this section.

Theorem 3.10: Let K be the class in CH characterized by the quantifiers Q1 Q- ... Qx

i/ If @, is either 3 or V then the class K is closed under intersection and union.
ii/ If Q1 is C then the class K is closed under complement and symmetric difference.

i/ If @ is 3 (V) then co-K C VK (co-K C AK).
(Fact iii/ is a technical property needed for the proof of the rest of the theorem.)

Proof: The proof is by induction over k, the minimum number of quantifiers characterizing
the class K. Tt is divided in different cases, in order to cover all types of quantifiers.
Induction basis: k=1
i/ If Q1 is either 3 or V then trivially K is closed under intersection and union.
ii/ If @y is C then
K is closed under complement [Gi,77], and
K is closed under symmetric difference [Ru,85].
i/ If @y is 3 then co-K = TIy and trivially TI; C TI,. If @ is V then co-K = ¥; and
trivially ¥4 C ¥,.

Induction step: k¥ =k +1
Let K bein CH, K = Q1K' = Q1Q- K", (if @y is either 3 or V then @y # Q».)

1/ Q1 ISH

Intersection.

a/ Q2 is V
K is the class VK" with K" in CH and characterized by k — 1 quantifiers. Let
Ly and L, be two sets in K. There are two sets By, B in VK", and a polynomial
p such that for 7 = 1,2 and for any » € ¥*

v € Ly < 3y ly| = p(|~[) and (2, y) € B;

8

€ LiNLy <= Hyr,y2) = ({a,y1),{(x,y2)) € (B x N)N(IN x By) (1)

By lemma 3.5, (By x IN), (IN x By) € VK”; by induction hypothesis (B x IN) N
(Nx By) e VK", and LyNLy € VK", A similar argument works for K = V3K".

b/ QQ 1s C
There are two sets By, By in CK" satisfying the above formula (1). By lemma 3.7
these two sets can be substituted by two new ones D¢, Dy in GK”, and combining

(the G version of) lemma 3.5 and lemma 3.9, (Dy x N) N (IN x D,) € GK". By
the third part of lemma 3.7 (D¢ x IN) N (IN x D) is in the symmetric difference
of two sets in CK" which by induction hypothesis is in CK”. It follows that
LyNnLy, e 3CK".

Union.

a/ Q2 is V

The proof is completely analogous to the intersection case.

b/ QQ 1s C
Let By, By be the sets in CK"” defined in the intersection case. For every x € ¥*

v € LiULy <= Hy1,y2,a) :a € {0,1} and a({x,y1), (2, y2)) € (B1 xIN)DH(INx By)

by lemma 3.5, (By X IN) @ (IN x By) € CK"” and L, U L, € 3CK".

If 1 is V then the proof follows from the above J-case using the complementary
classes; for example for the intersection, if we have two sets Ly and Ly in VK’, then Ly
and Ly are in Jeo-K' and Ly U Ly € Fco-K'. L1 N Ly = L1 U Ly € YK'. The union case is
analogous.

i/ Qqis C

Complement.

Let L be a set in CK. There is a set A in K’, a function f in FP and a polynomial

p, such that for any » € ¥*

r € T ~(Cyny v ol = plla]) = {ro) € A o)
= Corten—yay ¥ lyl = p(l2]) : (z,y) € A
a/ Q2 is V
The set A in the above formula is in VK. There is a set B in K’ such that
2 €L <= Coutiay_yry ¥ lyl = p(l2]) 3= = (2,y,2) ¢ B
— CQP(Iml)—f(m) <y7 Z> : [<.77,y7 Z> Q B and VZI(ZI <z= <'777y7 ZI> € B)]
= Cortirh (o) (92 2) 1 (2,9,2) € (BN D)

being D a set in VK. B € VK" (by fact iii/ if K" = K", or by fact ii/ if
K" = CK"). By induction hypothesis BN D € VK" and then L € CYK"”. We
have shown co-CVK"” C CVK" Tt follows co-CVEK" = CVK".

b/ Qs is 3

co-CHd = CH since co-CAK"” = Cco-AK" = CVco-K" =co-(CVco-K") = CAK".

c/ Qs is C
In this case, set A in (2) is in the class CK” which by hypothesis is closed nunder

complement.
Symmetric difference.
Let Lq, Ly be two sets in CK’. By lemma 3.3 we can change the threshold of the first
quantifier to be more than half of the possible strings. There are two sets By, Bo in
K’ and a polynomial p such that for any » € ¥*

€ Li <= Coptsn— 1 y [yl =p(l2]) : (2,y) € B;

Following the same idea as in Russo’s proof that PP is closed under symmetric differ-
ence [Ru,85], let € ¥* and let ay and as be the two integers (not necesarily positive)
such that

{yi = (e, y5) € BY||=2"" "

Let

t={{y1,y2) : [({z,y1) € By and (2,y2) & B2) or ((x,31) & B1 and (x,y2) € Byl

$— (Qp(n)*1 + (11)(279(”)*1 —ay) + (Qp(n)*1 _ (11)(279(”)*1 + ay) = oM =1 94 a4y

If 2 € Ly A Ly then either (a; > 1 and as < 1) or (ay <1 and as > 1). In both cases
5 omin 1

If & & Ly /A Ly then either (ay > 1 and az > 1) or (ay < 1 and a2 < 1), and in both
cases t < 227(") =1 Therefore

x € Ly A Ly <= Cyoptien—141 (y1,y2) @ [((z,y1) € By and (z,y2) & Bo)
or ((w,31) ¢ By and (x,y2) € By)]
<= Coman—141 (Y1,y2) * ((#,91),(x,92)) € (Br x IN) A (IN x B»(3)

a/ Qs is 3

The above sets B; are then in the class 3K". There are two sets Dy, Dy in K"
such that

¥ € Ly ALy <= Coopaty—141 (y1,y2) = [Tz + ({(2,y1,2) € Dy or (x,y2,2) € Ds)
and (Vz1,22 : (w,y1,21) & Dy or (2,92, 22) & D)

= Coman-141 (Y1,¥y2,2) : [({(z,41,2) € Dy or (x,y2,2) € D>)
and (VZUZ? : <.”I?7y1721>€D1 or <.”I?7y2722>€D2)
and (V2" 2" < 2= ({x,y1,2") & Dy and (x,y,,2") € Dy))]

It follows that L, A Ly € CVco-K"”. As we have seen this class is closed under
complements and Ly A Ly €co-(CVeo-K") = CAK".

10

b/ QQ 1s C
By lemma 3.5,the sets (By xIN) and (IN x Bs) in (3) are in CK” and by induction
hypothesis the symmetric difference of these sets is in CK” and Ly AL, € CCK".

i/ Qs 3 (V)
a/ Qs is ¥V (3)
K is the class 9K’ and K’ = VK", by induction hypothesis co-K’ C 3K’ and
therefore co-K = Veo-K’' C VAK' = VK.

b/ QQ 1s C

By induction hypothesis K’ =co-K’. Therefore co-K' C K' C VK.
O

Later we will need a stronger version of part ii/ of the theorem; for any class K in
CH, 4K and VK are closed under unbounded cartesian product. The proof of this fact is
analogous to the above one.

Corollary 3.11: For any class K in CH
i/ ACK = 4GK.
i/ CCK =CGK.
i/ GCK = GGK.
iv/ GK C CK.

The next result shows that it is not likely that the classes starting with quantifier C
are closed under unbounded cartesian product. As mentioned before, for a language class
K, PKIOUog] Jenotes the class of languages accepted by a polynomial time deterministic
machine that queries an oracle in K at most a logarithmic number of times.

Theorem 3.12: For any class K in CH, if CK is closed under unbounded cartesian
product, then CK =PCKIOUogn)]

Proof: The inclusion from left to right is straightforward, for the other one, let K be a
class in CH, and L ePCKIOUog)] yia a polynomial time deterministic Turing machine M
quering at the most clogn times an oracle A € CK. For a given input x, we can encode
the oracle answers from A on the computation of M, by a string of clog(|#|) bits y.

r € L <=3y, ly| < clog(|=|)
(MY(2) A fi(e,y) € AD AN fole,y) € AD A fl,(z,y) € AD A)

where MY(2) means that M accepts x, following the oracle answers encoded in y, and
fi(x,y) = (w,a) being w the i-th query that M on input # and following y makes to the
oracle, and a the i-th bit of y. We can write the above expression as

v € L= Ty ly| < clog(le)(M? (2) A (fi (2.y), fola,y)s - Fiyy(.y)) € (A& D))

11

denote (fi(x,y), fo(x.9)...., fly|(x,y)) by h(x,y), and (A & A)* by B. By the closure of
CK under complements, unbounded cartesian product (hypothesis) and intersection with
polynomial time predicates, the set B belongs to CK, and

r € L <= 3y, ly| < clog(|x|), MY(x) A h(x,y) € B

Since the y in the quantifier has logarithmic length, we can avoid it by writing explicitely
all the strings of this length.

v @ L= (h(x,y0),h(x,y1), h(2, Yy)) & (B)*

Being y; the i-th string of length < clog(|x|) in lexicographical order. Using again
that CK is closed under complements and the hypothesis, it follows that L € CK and
PCF('[O(Iog n)] C CK. M

Another consequence of theorem 3.10 is that deterministic polynomial time oracle
Turing machines that can make just one question to an oracle in a CH class whose char-
acterization starts with the counting quantifier, can only recognize those languages in the
class.

Corollary 3.13: For any class K in CH, PCrUl = CK.

Proof: The inclusion from left to right is straightforward; for the converse, let A be a
m-complete set in CK, [Wa,86]. It is clear that for any langnage L in PCAN L <P Aq A,
By the closure of CK under complements and m-reducibility, L € CK.

O

4. Characterizing the counting hierarchy with oracles

In this section, we show that the counting hierarchy coincides with the hierarchy
obtained by iterating nondeterministic and probabilistic machines with oracles; We unify
both concepts by giving an oracle characterization of the hierarchy, similar to the oracle
characterization of the polynomial time hierarchy; the difference is that here instead of
using only nondeterministic Turing machines, we also use probabilistic machines. This
characterization extends a result from [Wa,86] where it is shown that for any class X% in

PH, PPY: = CXY.

Theorem 4.1: For any class K in CH,
i/ PPN = CK.
ii/ NP3 =NPY" = 3VK and NPCF = 3CK.

Statement ii/ is divided in two cases depending of the quantifier characterization of the
class in the oracle.

12

Proof: We prove i/, we will see later that the proof of ii/ is completely analogous.
D : Straightforward.

C : Let K be a class in CH, K = @ K’, being () the first quantifier characterizing the
class, and K’ in CH.

Let L bhe a set in PP*. There is a probabhilistic Turing machine M, a polynomial p
bounding the computation time of M, and a set A in K such that L = L(M, A). For every
re X,

¥ €L Cypan-141 9y : MUA(T) accepts

a/ Qis 3
Let By be the set

B1 = { <m7y7(q1721)"' (Qk7Zk)7Qk+17---7Qm>
() m < p(|x|) and M with input «, following computation path y, asks all questions

gi; in the list (not neccessarily in the same order), and answering them “yes” if
1 <k and “no” if 1 > k., M accepts, and
(k) fori=1...k ¢ € A and z; is the smallest string witnessing this fact, and
(xxx) fori=Fk+1...m, ;€A }

We claim that By € Yco-K'. Since for every x and for every y such that MUA (x)
accepts, there is exactly one string v such that (x,y,v) € By, it is clear that

¥ €L Cyan-144 w : (x,w) € By

It is only left to show that By € Veo-K'. (x) can be checked in polynomial time.
Since A is in Yco-K' and this class is closed under unbounded cartesian product,
(5 %) is a predicate in Veo-K'. Condition (x*) can be written

fori=1...k [{gi,z) € Dand Vz : (2 < z; = (¢;,2) & D)]

being D a set in K’'. By theorem 3.10, the predicate between [| is in Vco-K'.
Condition (¥*) is therefore an unbounded cartesian product of predicates in Vco-
K', and by theorem 3.10 it is a predicate in Yco-K' and By € Vco-K'.

We have shown PP3%" C CVco-K’, but by theorem 3.10, CVeo-K' = CIK’ =
CK.

b/ Q1 1s C.
The set A is in the class CK’. By theorem 3.10 and lemma 3.5, the set A @ A is also
in CK’, and there is a function f €PF and a set D € K’ such that for every u € ©*,

wEAGA— Ciuwyv : (u,v) €D

Let Bs be the set
B, :{ <'777y7 (q1va1721)---(Qmaamazm)>

13

() m < p(|x|) and M with input «, following computation path y, asks all questions
gi; in the list (not neccessarily in the same order), and answering them “yes” if
a; = 0 and “no” if a; = 1, M accepts, and
(xx) fori=1...k qa; € A® A and {ga;,z) € D and there are exactly f(g;) strings
zl, greater than or equal to z;, such that (q;a;,z) € D }

We claim that B; € GK'. Again, since for every x and for every y such that MUA (x)
accepts, there is exactly one string v such that (x,y,v) € Bo,

v €L <= Cyan-14 w : (x,w) € By

and it is left to show that By € GR'. (%) is a predicate that can be checked in
polynomial time and condition () can be written in the following way

for i =1...m [(ga;,2) € D and G 140 z (zi < 2 and (@i, i) € D)
and (g;a,, z;) € D]

(5x) is therefore an unbounded cartesian product of predicates in GK’ and by theorem
3.9, it is a predicate in GK". It follows that B, € GK’ and PPC* C CGK’. But by
corollary 3.11, CGK’' C CCK' = CK.

ii/ The proof is completely analogous to the one ahove being 1 instead of 2°(7D=1 4 1
the threshold of the machine. 0

Observe that from the above proof it can also be derived that every language recog-
nized by nondeterministic or probabilistic oracle machines, with an oracle in CH, can be
decided by a machine of the same type, quering the oracle just once.

5. Separations

In this section we try to show that the containments between the classes in the studied
language hierarchy are strict. Absolute separations are very hard to accomplish, since they
would immediately imply P#£PSPACE, solving a long time standing open problem. A more
modest approach is to try to find relativized separations. These relativized separations are
still important for different reasons: One of them is that these separations, together with
the relativization in which PSPACE is used as oracle (forcing all the classes in CH to
collapse together), show that there are contradictory relativizations for this classes, giving
stronger evidence that the absolute separation problem is very hard. Quoting Hartmanis,
“...the proof that a problem can be relativized in two contradictory ways serves today in
theoretical computer science almost the same role as proving a problem NP hard in the
study of algorithms. If a problem is NP hard, we are very unlikely to solve it in reasonable
time sufficiently big instances of this problem. Similarly, the contradictory relativization

14

(of a sufficiently “rich” problem) is good indication that it can not be solved with our
current mathematical techniques” [Har,87]. Another reason for the importance of the
relativized separations of the classes in CH, is that they provide absolute separations for
the corresponding classes in the logarithmic time counting hierarchy [To,88a).

We introduce a new technique based on counting the number of accepting computa-
tions of the machines over which we diagonalize. Lemma 5.4 is the main result in which
our constructions are based; we try to motivate it with the example of the separation of
NP from G. Apart from this mentioned separation we also separate P from PP, and NP
from @&P, (HP is the class “parity” of languages recognized by nondeterministic polynomial
time machines with an even number of computation paths for words in the language, and
an odd number of accepting paths for words that are not in the langnage). Using the
known inclusions between these classes we are able to prove other results, separating the
lower levels of CH. As a consequence we obtain absolute separations for the lower levels of
the logarithmic time counting hierarchy.

Although there are several references in the literature of relativizations separating
counting classes from classes in the polynomial time hierarchy, [An,80], [Ya,85], [Has,86],
to our knowledge these are the first relativizations separating counting classes from other
counting classes. In [Be,Gi,81] it was claimed that &P4 ¢PPA for a random oracle A, but
the proof of this result was incorrect.

We start separating NP from G.

Let My, M, ... be an enumeration of all the probabilistic Turing machines, and py,ps ...
an enumeration of the polynomials. W.l.o.g. we can suppose that for every k, My has
computation time bounded by p;.

Theorem 5.1: There is an oracle A such that NP4 ¢ GA.

Proof: For every set A, define L4 = {0” : Fw(|w| = n and w € A)} clearly, for every set
A, L4 € NP, We construct in stages a set A such that L4 ¢ G

Stage 0. Ag := 0;ng := 0.

Stage s. Let ng be the smallest integer such that
Ng > N1
ny > max{p;(ns_1) i < s}
2™ > pe(ng)

(%) As:= As_1UB, being B C ¥" such that B # () < 0" ¢ L(M,, As_1 U B);

(Here, for a string # and an oracle B, # € L(M,, B) means that machine M, has
exactly th accepting computation paths for this input, being th the threshold of the machine
for input .)

15

Let A = |JAs. Tt is clear, following the same ideas as in [Ba,Gi,So0,75], that if we

prove the existence of set B in (%), then the set L4 is not in G*. In the following, we
show that the set B in (%) always exists.

Notation: Q7

a1y, (br,.b
As_1 U B and input 07, in which all the words ay ...a; are queried, and none of the
w1 ,Wg

wq ,wo,(wa,wye)

accepting paths from M, with oracle A,_{ U {w;, w3} and input 0"+, in which the words
pting p) P)

b) denotes the number of accepting paths from M, with oracle

words by ... b; is queried to the oracle. For example,) denotes the number of

wy and wq are queried, and none of the words w3, w, are queried to the oracle. Notice
that we have omitted the “{’s” from the set notation, from the superscript of the Q). Also

observe that if a word is not queried, it doesn’t make any difference if we drop it into, or
w1 ,Wg

is equivalent
wq ,wa,(wa,wa)

take it away from the oracle, for example, the above expression)

to Qum
' wq ,wo,(wa,wye)

The following lemma is needed for proving the result. We omit the proof since it is
straightforward. Tt just says that we can decompose the set of accepting computations
quering wq ... wy into two: those that query also wyy and those that do not.

Lemma 5.2: For any set B and any k41 words wy,...wgyy € ¥ the following equality
holds:

Quy o = Qi +Qu
Wy ,.wy T W LW W4 Wy ,...wg,(Wh 1)

. . . . B _ B -
(Sometimes we will use the above equality in the form @, v wny = @, (1)
B

W .. W
In order to operate in a concise form, the defined Q-expressions representing the

which should not create any confussion).

number of accepting paths with different oracles, will be grouped into a combinatorial
formula. The motivation for this is presented with more detail in [To,88a].

Notation: For any B, D C ¥"+ with BN D =0,

[ERl

=YY ep

i=0 ACD
| All=1

This formalism is needed for our proofs since otherwise using only the “Q)’s”, we would
have to carry very long symbol strings.

We introduce now the main lemma in this section, that would enable us to prove the
existence of the oracles separating the classes.

Lemma 5.3: For any sequence of words wy, ..., wg,wryy in ¥ and any set B C ¥,
with BN {wq, ..., wg,wpe1} =0

JRU{wk_H} _ JR o JR

W .. W W .. W WA W W 1

16

Proof: For the proof, first we decompose the .J's into (Q’s following the definition, and
then manipulate the Q)’s either decomposing them into two by lemma 5.2, or deleting from
the oracle some words that are not queried.

Let D = {wq...wi}.

k
Jgu{wk_p} _ 2(71)1 Z QqFlf:J{q;j]12+1 JUA
=0 ACD
[All=2
k
; BuU{w UA
= 2(71)1 Z (ng{q;::ﬁ”iiﬁ + Q7U1--{-7U2-|(—71U}k+1))
=0 ACD
[All=2
k
= 2(71)1 Z (QZH{q;jJZT;]ii;A + Z:J..éwk(wk_lq))
=0 ACD
[All=2

I
] =

) BU UA BUA BUA
(71)1 Z (Quu {77[1];;111} + Qum L Qum cWE)

i—0 ACD
[All=2
k k
= Z((ily Z quiUAwk) + 2(71)1 Z (QZR.{.ZJ}Z:—_E}UA - QZ:J..AW,{M)
i=0 ACD i=0 ACD
[All=2 [All=2
k
= ']g + 2(71)1(Z Z:J.A.wk_p o Z Z:J.A.wk_p o Z Z:J.A.wk_p)
1=0 ACDU{wg41} ACD ACD
Al|=5+1 [[Al=2+41 [All=2

k
= ']g + Z((71)1(Z QZR%U}]f_lq) o QZ1 ---7”k+1 (3)
1=0

ACDU{wp41}

[[All=1+1
k+1
o B 7 BUA B
- JD o E ((71) (E 2w ...wk+1) T g
=1 ACDU{wg41}
| Al|=1

B B
- JD o JDU{wk_H}

Maybe the step taken to obtain the expression in (3) needs some clarification. Observe
that in the expression before (3), the two last sums only differ in the size of || A ||. Since

these sums are part of another sum and are multiplied by (—1)?, the terms cancel, the sum

B
W W

k BUA
(71) Z Quuu...wk_H

ACD
| All=k+1

“telescopes”, remaining only () and

17

but this last term is 0 since ||D|| = k. 0

Lemma 5.4: For s > 1, if for every set R C Y7+, it is true that
0" € L(M,,As 1 UR) <= R #0

then for any nonempty sequence of words wy ... w; in ¥+, and any oracle B, with B # (),
B # ¥ and {w;...w,} N B =0, it holds that J? ~=0. Moreover, J¢ =78 =
QY —th
Proof: By hypothesis, and using the definition of .J, for every set B # 0, J% = Q” = th.
By lemma 5.3
JR _]B o]BU{7I}k+1}
W . Wh T .owyg T .owy

We prove the first claim by induction on k.
Fork=1,J8 =B — gBwt —4p —th =0

w
For k > 1, JB =B — LﬁU{Zﬁ,ﬁL where by induction hypothesis both terms

W .. Wy W .. W1
are (.

The second claim is proved also by induction on k.

For k=1,

T =@ —Qu=0Q"-0q,, - Q" +Q(, =Q"-Q" =Q"—th

For k > 1, .]9]1“_“”{ = .77(?]1___“”{71 — J3¥ ., » but by the first part of the result,
Jfl’jfn_wkq = 0. By induction hypothesis .75)]1 s = .]9]1. Thus .75)]1 o, = .75)]1. O

Now we are ready to prove the existence of the set B in (x).

Lemma 5.5: For every s > 1 there is a set B C ¥"” such that B # () — 0" ¢
L(Ms, As—1 UB).

Proof: Let th be the threshold of the machine for input 0”. Suppose that the mentioned
set B does not exist, then for every set B C £", B # (), Q” = th. We are in the hypothesis
of lemma 5.4.

Let p = py,(ns). Since the running time of M, on input 0" is bounded by p, the
machine can make at the most p queries to the oracle on every computation path, and

therefore .J? = 0. (Recall that Je is a sum of computation paths in which
Wy W Wy Wy
all words wy ... w,41 are queried).
On the other hand, by lemma 5.4, .75)]1 gy = .75)]1 — Q% th. Tt follows that Q% = th,
which contradicts the hypothesis since 0™ & L(M,, As_y). O

Corollary 5.6: There is an oracle A such that G4 £ CA

Proof: Straightforward from the above separation, considering that the proof of NPC C
relativizes. 0

Corollary 5.7: There is an oracle A such that G* is not closed under complements.

18

Proof: Follows from theorem 4.1 and the fact that co-NP is included in G, and the proof
relativizes. 0

We present now separations dealing with the class P (parity). This class was defined
in [Pa,Za,83]. Recently some results have appeared separating this class from the polyno-
mial time hierarchy [Fu,Sa,S1,84], [Ya,85], [Has,86]. We show relativizations separating PP
and &P. As a consequence, these results will imply separations in the lower levels of PH.

Definition 5.8: &P={L C ¥* : there is a nondeterministic polynomial time machine
recognizing L with an even number of accepting computation paths for input strings in L,
and an odd number of accepting computation paths for input strings in L}.

We present now an oracle separating NP from @®P.
Theorem 5.9: There is an oracle A such that NP4 7 aPA.

Let My, M, ... be an enumeration of all the nondeterministic Turing machines, and
P1, P2 - .. an enumeration of the polynomials. W.l.o.g. we can suppose that for every k,
M} has computation time bounded by p;.

For every set A, define L4 = {0" : Jw|w| = n and w € A}. Clearly, for every set
A, L4 eNPA. We construct in stages a set A such that L4 ¢ aPA.

Stage 0. Ag := 0;ng := 0.

Stage s. Let ng be the smallest integer such that
Ng > Ng_1
ny > max{p;(ns_1) i < s}
2" > pﬂ(”ﬂ)

(+%) Ag:= A;_1 U B, being B C X", such that B # 0 < 0" ¢ L(M,,As_1 U B);

Let A = |JA,. Observe that since we are trying to diagonalize away from parity,

the expression 0" & L(M,, A;_y U B) means that machine M, on input 0™, and oracle
As_1 U B has an odd number of computation paths. Tt should be clear that if we manage
to prove the existence of set B in (%), then the set L 4 cannot be in GPA. Tn the following,
we show that the set B in (xx) always exists, we will make use of lemma 5.3.

Lemma 5.10: For s > 1, if for every set R C X"+ it is true that
0" € L(M,,As 1 UR) <= R #0
then for any nonempty sequence of words wy ... w; in ¥+, and any oracle B, with B # (),

B # %" and {w; ... wx} N B =, it holds that .J? is even. Moreover, ']31...wk is odd.

W .. W

Proof: By the definition of acceptance of M, and the hypothesis, for every set B, B # (),

19

JB is even, and by lemma 5.3

J’R — J’R 7J'RU{7H]<+1}

W W41 w .. Wy W .. W

We prove the first claim by induction on k.
For k=1, 78 = g8 — 7BY“it gince J2 and JP{1“} are even, so is JP

un w "

For k > 1, JB — JB — .L?R{,Zﬁ,ﬁﬂ and by induction hypothesis, both

W ... W W W
members of the right hand side of the equation are even.

The second claim is proved also by induction on k.
For k=1, .77(?]1 — J% — Jvr. 7% is odd by hypothesis and J" is even by the first part
of the result.

For k > 1, .]9]1“_“”{ = .77(?]1___“”{71 — J3¥ ., » but by the first part of the result,
Tk ., 18 even. By induction hypothesis .77(?]1___“”{71 1s odd, and it follows that ']31...wk
1s also odd. O

Now we are ready to prove the existence of set B in ().

Lemma 5.11: For every s > 1 there is a set B C "+ such that B # () «<— 0" ¢
L(M,, A, , UB).

Proof: Suppose that the mentioned set B does not exist, then we are in the hypothesis
of lemma 5.10.

Let p = py,(ns). Since the running time of M, on input 0" is bounded by p, the
machine can make at most p queries to the oracle on each computation path, and therefore

']7(21)J w =0.
1---Wp41

On the other hand, by lemma 5.10, .75)]1 w4, 18 0odd. This is a contradiction and it
follows that the mentioned set B always exists. |

Corollary 5.12: There is an oracle A such that pp4 7 aPA.

Proof: Straightforward considering that the proof of NPCPP relativizes. 0

We present now the last separation, this time separating (P from PP. This result will
bring as a consequence the separation of different classes in the counting hierarchy.

Theorem 5.13: There is an oracle A such that &P gZPPA.

Let My, M, ... be an enumeration of all the probabilistic Turing machines, and py,ps ...
an enumeration of the polynomials. W.l.o.g. we can suppose that for every k, My has
computation time bounded by p;.

For every set A, define L4 = {0" : ||[AN X7|| is even}. Clearly, for every set A, L4 €
@PA. We construct in stages a set A such that L4 ¢ CcA.

20

Stage 0. Ag := 0;ng := 0.

Stage s. Let ng be the smallest integer such that
Ng > Ng_1
ny > max{p;(ns_1) i < s}
2™ > pe(ng)

(kx*) Ag:= A, 1 UB, being B C ¥" such that 0" € L(M,,A;_1 U B) < ||B|| is odd;

Let A =J As. In the following, we show that the set B in (%% %) always exists, which

implies that LA ZPPA.

Lemma 5.14: For s > 1, if for every set R C ¥+ it is true that

0" € L(My,As—1 UR) < ||R|| is even
then for any nonempty sequence of words wy ... wy in ¥" and any oracle B, with B # X"+
and {w;...wi} N B = @, it holds that .J # 0. More precisely, if ||B]| is even then

w .. Wy

JP > 0 and if || B|| is odd then .J < 0.

W .. W W .. W

Proof: By the definition of acceptance of M, and the hypothesis, for every set B, ||B]| is
even <= J? > th, and by lemma 5.3

B 1B BU{wg41}

Cwywppr T Twrwg T .owy

By induction on k. (Suppose ||B]] is even, the odd case is analogous.)
Fork=1,72 = JB — JBY"} gince JB > th and JPY1"} < th, we obtain J? > 0.

un un

For k > 1, JB =B — L}ZU{Zﬁ,}:L , and by induction hypothesis JB >

wq ...y W W1 W W1
BU{wyg}

0 and J,,, ‘., < 0. It follows that JB > (). O

W .. W

Now we are ready to prove the existence of set B in (% x *).

Lemma 5.15: For every s > 1 there is a set B C ¥ such that
0" € L(My,As_1 U B) < ||B|| is odd

Proof: Let th be the threshold of the machine for input 0”. Suppose that the mentioned
set B does not exist, then we are in the hypothesis of lemma 5.14.

Let p = py,(ns). Since the running time of M, on input 0" is bounded by p, the
machine can make at most p queries to the oracle on each computation path, and therefore

Jo — 0.

W Wy

On the other hand, by lemma 5.14, J? > (. This is a contradiction and it

W1 .. Wy
follows that the mentioned set B always exists. |

Corollary 5.16: There is an oracle 4 such that 3C4 # C4 and VCA # C*.

21

In [To,88a] a counting hierarchy of classes operating in logarithmic time has been
defined. Tt is not hard to prove that the above relativized separations imply absolute
separations for the lower levels of the logarithmic time counting hierarchy.

6. Conclusions and further research areas

Our work has been motivated by the study of a hierarchy connected with the idea
of counting: the polynomial time counting hierarchy. We have studied the closure of
the classes in CH under boolean operations and unbounded cartesian product, showing
that for these properties, this hierarchy behaves in a different way as PH. Using these
results we have given an oracle characterization of CH, parallel to the one existing for the
polynomial time hierarchy, closing an open problem and unifying concepts. From the oracle
characterization of CH, follows also that probabilistic oracle machines can be simmulated
by machines of the same type querying a new oracle once at the most on every computation
path.

Finally in section 5, we have separated some of the studied classes. Three relativiza-
tions have been given, separating NP from G, NP from @®P, and ®P from PP. These
relativizations provoke other separations, such as G from C, 4C and VC from C, etc., as
well as some other classes related with the closure under boolean operations of the counting
classes. The relativized separations for the classes in CH imply absolute separations for
the corresponding logarithmic time classes, and thus, we have separated the lower levels
of the logarithmic time counting hierarchy.

Although we have obtained many new results, solving some open problems, there
are still several questions connected with the counting hierarchies, that remain open. In
the following we give a list of some of these questions. We will not include in this list

obvious open problems of type P Z PP or NP = PP, which we believe are still far from
being solved; we will concentrate more in problems that apparently can be solved with the
existing techniques of structural complexity theory (or at least they do not seem so far as
the ones mentioned in the first place).

If the class NP is closed under complements then the polynomial hierarchy collapses;
does the counting hierarchy collapse if PP is closed under intersection? Observe that in
theorem 3.12 we have shown a collapse of the class PPPI08)] ¢ PP in case PP is closed
under unbounded cartesian product, a certain kind of unbounded intersection.

Recently, Toda [Tod,89] has obtained a remarkable result showing that PHCPYP. This
implies that if C is included in PH, then the polynomial time hierarchy collapses. Is this
fact also true if G CPH?

The obvious open problem related with the last section is to know if there is an
oracle separating every classes in the counting hierarchy, in analogy with the result for PH
[Ya,85], [Has,86], [Ko,87]. This question is closely related to the existence of exponential
lower bounds for constant depth circuits made of threshold gates, and seems to need new
techniques. Nevertheless there are interesting relativization questions that still remain

22

open and might be easier; for example, is there an oracle for which PP is not closed under
intersection?

References

[An,80] D. Angluin: On counting problems and the polynomial-time hierarchy. Theo-
retical Computer Science 12 (1980), 161 173.

[Ba,Gi,50,75] T.P. Baker, J. Gill, and R.M. Solovay: Relativizations of the P=7NP
question. STAM .Journal of Computing 4 (1975), 431 442.

[Ba,Di,Ga,88] J.L. Balcazar, J. Diaz, and J. Gabarrd: Structural Complexity (vol. T).
Springer-Verlag (1987).

[Be,Gi,82] C.H. Bennet and J. Gill: Relative to a random oracle A p* #NP4 £co-NPA
with probability 1. STAM Journal of Computing 10 (1981) 96 112.

[Ch,Ko,St,81] A.K. Chandra, D.C. Kozen, L.J. Stockmeyer: Alternation. Journal of
the ACM 28 (1981), 114 133.

[Fu,Sa,51,84] M. Furst, J.B. Saxe, M. Sipser: Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory 17 (1984), 13 27.

[G1,77] J. Gill: Computational complexity of probabilistic Turing machines. STAM
Journal of Computing 6 (1977), 675 695.

[Har,87] .J. Hartmanis: The structural complexity column: Sparse complete sets for
NP and the optimal collapse of the polynomial hierarchy. Bull. EATCS 32 (1987),
73 81.

[Has,86] .J. Hastad: Computational limitations for small depth circuits. Ph.D. Thesis,
M.I.T. (1986).

[Ko0,87] K. Ko: Relativized polynomial time hierarchies having exactly K levels. Proc.
3rd Structure in Complexity Theory Conference (1988) 251 252.

[Pa,83] C.H. Papadimitrion: Games against nature. Proc. 24th FOCS (1983), 446 450.

[Pa,Za,83] C.H. Papadimitriou, S. Zachos: Two remarks on the power of counting.
6th GI Conference on Theoret. Comput. Sci., Lect. Notes in Comp. Sei. 145 (1983),
Springer-Verlag, 269 276.

[R1,85] D.A. Russo: Structural properties of complexity classes. Ph.D. Thesis, Uni-
versity of California, Santa Barbara (1985).

[Sc,85] U. Schoning: Complexity and structure. Lect. Notes in Comp. Sci. 211, Springer-
Verlag (1985).

[Sim,75] J. Simon: On some central problems in computational complexity. Ph.D.

Thesis, Cornell University (1975).

[St,77] L.J. Stockmeyer: The polynomial time hierarchy. Theoretical Computer Science
3(1977), 1 22.

23

[Tod,89] S. Toda: On the computational power of PP and &P, Proc. 30th FOCS,
(1989) 514 519.

[To,88a] J. Toran: Structural properties of the counting hierarchies. Ph.D. Thesis.
Facultat d’Informdtica de Barcelona, (1988).

[To,88b] J. Toran: An oracle characterization of the counting hierarchy. Proc. 3rd
Structure in Complexity Theory Conference (1988) 213 223.

[Va,79] L..G. Valiant: The complexity of computing the permanent. Theoretical Com-
puter Science 8 (1979), 189 201.

[Wa,86] K. Wagner: The complexity of combinatorial problems with succinct input
representation. Acta Informatica 23 (1986), 325 356.

[Wa,We,86] K. Wagner and G. Wechsung: Computational complexity. Reidel (1986).

[Wr,77] C. Wrathall: Complete sets and the polynomial time hierarchy, Theoretical
Computer Science3 (1977) 23 33.

[Ya,85] A.Yao: Separating the polynomial time hierarchy with oracles, Proc. 26th
FOCS, (1985), 1 10.

24

