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Abstract

This paper studies the class MP of languages which can be solved in poly-
nomial time with the additional information of one bit from a #P function f .
The middle bit of f(x) is shown to be as powerful as any other bit, whereas the
O(log n) bits at either end are apparently weaker. The polynomial hierarchy
and the classes ModkP, k ≥ 2, are shown to be low for MP. They are also low
for a class we call AmpMP which is defined by abstracting the “amplification”
methods of Toda (SIAM J. Comput. 20 (1991), 865–877). Consequences of
these results for circuit complexity are obtained using the concept of a Mid-
Bit gate, which is defined to take binary inputs x1, . . . , xw and output the
⌊log2(w)/2⌋th bit in the binary representation of the number

∑w
i=1 xi. Every

language in ACC can be computed by a family of depth-2 deterministic cir-
cuits of size 2(log n)O(1)

with a MidBit gate at the root and AND-gates of fan-in
(log n)O(1) at the leaves. This result improves the known upper bounds for the
class ACC.

1 Introduction

The celebrated results of Toda [Tod 91] have sparked renewed interest in the com-

plexity classes #P [Va 79], PP (probabilistic polynomial time [Gi 77]), and ⊕P (pa-
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rity polynomial time [PaZa 83, GoPa 86]). One relationship among these classes is

that ⊕P comprises exactly those languages which are decided with the information

in the rightmost bit of a #P function f , and PP, those decided with the information

in the leftmost bit. (For the latter statement we arrange, as described later, that

binary values f(x) are padded with leading 0’s out to a length which depends only

on |x|.) Toda’s two main theorems are that the polynomial-time hierarchy (PH)

is contained in BPP
⊕P, and that the evidently larger class PP

⊕P is contained in

P#P. The observation which inspired the present work is that in Toda’s proof of

the second result, the full power of P#P is not needed. Namely, the P#P machine

M in the proof makes only one query x to its oracle f ∈ #P, and furthermore the

machine’s decision depends on only one bit of the answer f(x) in binary notation.

Hence it is natural to ask which other languages can be decided by looking at just

one bit of a #P function. The class of languages with this property is defined by:

Definition 1.1 A language L is in MP if there exists a #P function f and a

polynomial-time function g such that for all x, x ∈ L ⇔ (⌊f(x)/2g(x)⌋ mod 2) = 1.

Put another way, x ∈ L iff there is a 1 at position g(x) in the standard binary

representation of f(x). We call g a bit-selection function. The “M” stands for

“middle bit,” since we show, by judicious padding of values f(x) to odd length,

that g can be the function which indexes the middle bit of the binary representation

of f(x). In Section 3 we establish some basic properties of the class MP, including

that MP is closed downward under polynomial-time many-one reductions and has

complete problems.

One motivation for studying MP is that very little is known about the structure of

classes in the neighborhood of P#P, even under relativizations. Indeed, it is not even

known whether there exists an oracle set A for which PP⊕PA

6= PSPACEA; hence no

A for which P#PA[1] 6= PSPACEA is known either. One surprising property of P#P[1]

which follows from the proof of Toda’s theorem is that a rich array of languages A

are low for the class, meaning that P#PA[1] = P#P[1]. The main result of this paper

is that all of the languages that are known to be low for P#P[1] are also low for the

possibly smaller class MP. As shown in Section 4, the class BPP
⊕P from Toda’s first

theorem is low for MP. In proving these lowness results, we interpret the familiar

probability amplification in Toda’s first theorem as a means of inserting many 0’s to

the right of the important bit, and the novel “amplifying polynomials” in his second

theorem as a means of inserting 0’s to the left of that bit. We abstract these two

properties to define the subclass AmpMP of MP languages whose representations

2



in Definition 1.1 can be transformed to insert any desired number of 0’s on both the

left and the right of the selected bit. We show that any class C ⊆ AmpMP which

is closed under both ≤p
ctt and ≤p

dtt (that is, under polynomial-time conjunctive

and disjunctive truth-table reducibilities, respectively) is low for both MP and for

AmpMP itself. It follows that if MP = AmpMP, or even if C=P ⊆ AmpMP, then

the entire counting hierarchy [Wa 86] collapses to MP. We had hoped to be able

to show lowness without any extra closure conditions on C. However, very recently

Köbler and Toda [KöTo 93] showed that if the class AmpMP defined in this paper

is low for MP, then the counting hierarchy likewise collapses. We return to this

question and give other open problems about MP in our concluding Section 7.

While it is immediate that ⊕P ⊆ MP, it is not obvious à priori that Mod3P ⊆

MP, since in order to decide whether a number written in base 2 is congruent to 0

modulo 3, one needs the information of all of its bits. Nevertheless, in Section 5 we

show that for all k ≥ 2, all languages in ModkP (see [CaHe 89b, He 90, BeGi 92])

are low for MP. Sections 5 and 6 together present our main application, which is an

improvement on previous simulations of the circuit class ACC (originally defined

by Barrington [Ba 89]).

Some background and explanation of how our work builds on prior techniques is

in order. It is by now well known that relationships among Turing machine classes,

both with and without relativization, correspond closely to circuit simulations or

circuit-class separations. Toda proved his first theorem, PH⊆BP·⊕P, using tech-

niques introduced by Valiant and Vazirani [ValVaz 86]. The circuit analogue of

this result was proved by Allender [Al 89], using polynomial methods introduced

by Razborov [Raz 87] and Smolensky [Smo 87]. It states that any AC0 predicate is

computed with high probability by a family of circuits of quasi-polynomial size (i.e.,

size 2(log n)O(1)
) which consist of a parity gate connected to AND gates which are

small (i.e., have polylog fan-in). Allender and Hertrampf [AlHe 90] subsequently

applied the Valiant-Vazirani technique to obtain a uniform version of Allender’s

result.

Yao [Yao 90] then used these techniques to obtain the first non-trivial upper

bound for ACC. By combining the Valiant-Vazirani method with improved versions

of Toda’s “amplifying polynomials,” he showed that every language in ACC is

recognized by a family of depth-2 probabilistic circuits of quasipolynomial size with

a symmetric gate at the root and small AND gates at the leaves. Then Beigel and

Tarui [BeTa 91] simplified Yao’s proof and strengthened the result in two respects:

(1) the circuits given by Yao can be made deterministic without increasing their
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size, and (2) the simulation applies not only to ACC circuits, but also to circuits

consisting of one symmetric gate (at the root) connected to ACC subcircuits. This

is the circuit analogue of the result that PH and all the ModkP classes are low for

P#P[1], and shows that this lowness relationship holds relative to all oracles.

In the results of both [Yao 90] and [BeTa 91], the symmetric gate at the root

depends on the number of inputs and the types of modular gates used in the ACC

circuit. It seems very hard to work directly with depth-2 circuits of the type given

in [Yao 90] or [BeTa 91] in proving lower bounds, since all that can be said about

the gates at the root is that they belong to an infinite subfamily of the symmetric

functions. Our improvement is that such circuits can be restricted to have a sym-

metric gate of type MidBit at the root and still have the power of ACC. A MidBit

gate over w inputs x1, . . . , xw is a gate which outputs the value of the ⌊log2(w)/2⌋th

bit in the binary representation of the number
∑w

i=1 xi. Let the term MidBit+ refer

to families of depth-2 deterministic circuits of quasipolynomial size with a MidBit

gate at the root and small AND-gates at the leaves (see Definition 6.2). Our result

is that ACC circuits can be simulated by MidBit+ circuits. Furthermore, as follows

from our lowness results, even a circuit consisting of a Midbit of ACC circuits can

be simulated by MidBit+ circuits. Much of the above can be proved by applying the

ideas and techniques of [BeTa 91]. Our main technical contribution regarding the

ACC problem is a means of converting representations involving counting modulo

some prime p into “Midbit” representations in binary notation. By multiplying by

a carefully chosen number which is not too large, the rightmost “bit” of a number

written in base p can be represented as a single bit in the middle of a binary string

(Lemma 5.1). By choosing an appropriate Toda polynomial, the bit can be “isola-

ted” from the rest of the string, and this leads to our Theorem 5.2, and in circuit

form, Theorem 6.3.

Yao [Yao 90] conjectured that there are languages in TC0 which cannot be com-

puted by probabilistic circuits consisting of a symmetric gate over small AND’s,

and Beigel and Tarui [BeTa 91] make a similar, nominally weaker conjecture for

deterministic circuits of this kind. Likewise, we believe that there are TC0 langua-

ges that cannot be computed by MidBit+ circuits. The study of these circuits may

therefore provide a way to show that TC0 is not contained in ACC.
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2 Preliminaries and Notation

All languages considered here are over the alphabet Σ = {0, 1}. The length of a

string x ∈ Σ∗ is denoted by |x|. If n is a natural number, |n| denotes the length

of its binary encoding, namely |n| = ⌈log2(n + 1)⌉. For a set A, |A| denotes its

cardinality. The characteristic function of a set A is denoted by χA. The set

{0, 1, 2, . . .} of non-negative integers is denoted by N . We fix some standard means

of injectively encoding sequences (x1, . . . xk) of strings, where k > 0 is arbitrary, by

single strings 〈x1, . . . , xk〉, such that |〈x1, . . . , xk〉| depends only on
∑k

i=1 |xi|, and

both the encoding and decoding are computable in polynomial time. Where intent

is clear we write f(x1, . . . , xk) or χA(x, y) in place of f(〈x1, . . . , xk〉) or χA(〈x, y〉).

We write FP for the class of deterministic polynomial-time computable functions.

To every polynomial-time bounded nondeterministic Turing machine (NTM) we

associate the counting function #accN(x), defined to be the number of accepting

computations which N has on input x. The class of such functions is denoted by

#P. A language L belongs to the class PP if there is an NTM N with polynomial

time bound p such that for all x, x ∈ L iff #accN(x) > 2p(|x|)−1. For any natural

number k ≥ 2, L belongs to the class ModkP if there exist N and p such that for

all x, x ∈ L iff #accN(x) 6≡ 0 (mod k). With k = 2 we have x ∈ L iff #accM(x) is

odd, and this class is called ⊕P (“parity-P”).

It is well-known that #P is closed not only under addition and multiplication but

also under summation of exponentially many #P functions and multiplication of

polynomially many #P functions. That is, if f(·, ·) is in #P and p is a polynomial,

then the functions
∑

y,|y|≤p(|x|) f(x, y) and
∏

m≤p(|x|) f(x, 0m) are also in #P.

An oracle machine M may have a function f instead of a language as its oracle.

M is nonadaptive if for every computation path leading up to some query z, the

set of possible next queries does not depend on the answer f(z). Otherwise M

is adaptive. The class of languages (respectively, functions) computed by such

machines M with an oracle from some class C is denoted by PC
tt (respectively, FPC

tt).

When M is deterministic and nonadaptive, and accepts iff at least one of its queries

is answered “yes” (respectively, iff all of its queries are answered “yes”), M is said

to compute a polynomial-time disjunctive (resp. conjunctive) truth-table reduction,

and the corresponding reducibility relations are denoted by ≤p
dtt and ≤p

ctt. Finally,

given k > 0, a relativizable language class C, and a class D of either languages or

functions, CD[k] is the class of all languages in CD witnessed by a machine of type

C which asks at most k queries on every computation path; these queries may be
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adaptive. The class D is low for C if the class D, when used as an oracle for C,

does not increase the power of C, that is, CD = C. Further information on these

concepts may be found in [BaDiGa 87, Schö 86].

3 Bits of #P Functions and Counting Classes

If a given pair of functions f ∈ #P and g ∈ FP satisfy Definition 1.1 for some

language L, then we say L ∈ MP via f and g. For visual convenience we also

use a second representation which involves a bounding polynomial for f , meaning

a polynomial p such that for all x, f(x) < 2p(|x|). Then f(x) is written as a

binary string of length exactly p(|x|), using leading 0’s if necessary, with the least

significant bit numbered 0 and written rightmost, and the most significant bit

numbered p(|x|)−1. As noted in Section 1, PP consists of the languages decided by

the leftmost bit under this representation, and ⊕P, those decided by the rightmost

bit. The name MP comes from our first result, which shows that all languages

L ∈ MP have MP-representations by which membership of x in L is decided by the

middle bit.

Proposition 3.1 Let L ∈ MP. Then there is a #P function f such that for all x,

|f(x)| is odd, and x ∈ L iff the middle bit of f(x) is a 1. Furthermore, the index

of the middle bit is given by a polynomial in |x| alone.

Proof. Take f0 ∈ #P and g ∈ FP such that L ∈ MP via f0 and g, and let p

be a bounding polynomial for f0. Let p be a bounding polynomial for f . Then

we may also suppose without loss of generality that for all x, g(x) ≤ p(|x|). Then

the function f defined by f(x) = 22p(|x|) + 2p(|x|)−g(x)f0(x) belongs to #P. Since for

all x, f0(x) < 2p(|x|), we have f(x) < 22p(|x|)+1, and so |f(x)| = 2p(|x|) + 1. (Thus

no leading 0’s are needed.) The bit of f0(x) originally selected by g(x) is now in

position p(|x|), which is the middle bit of f(x). 2

We note that in this and later proofs, in place of asking for one bit of the con-

structed #P function f evaluated on the input x, one can ask for the same bit of the

#P-complete function #SAT evaluated at some other argument y = h(x) where

h is a polynomial-time computable polynomially honest function. The next result

implies that, modulo the belief that PP and ⊕P are proper subclasses of P#P[1],

the bits at distance O(logn) (where n = |x|) from either the left or right end of
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#SAT are easier than the middle bit (this follows easily from known results). On

the other hand, it is possible to push the decision bit of any MP language quite

close to either end of the binary string representing f(x), in comparison with the

length of f(x). That is, for any L ∈MP, for any ǫ > 0, there is a #P function f

such that the deciding bit for x ∈ L is as close as |f(x)|ǫ to either end of the binary

representation of f(x). In this sense, a wide range of bits around the middle are

equally as powerful as the middle bit.

Proposition 3.2

(a) Let L be in MP via a function f ∈ #P and a bit selection function g ∈ FP.

If g(x) = O(log(|x|)), then L ∈ ⊕P, while if |f(x)|− g(x) = O(log(|x|)), then

L ∈ PP.

(b) Let L ∈ MP. Let 0 < ǫ < 1, and let g be a polynomial-time computable

function which takes a string x and a number m as arguments, such that

always mǫ < g(x, m) < m − mǫ. Then there exists a #P function f ′ with

bounding polynomial p′ such that upon taking g′(x) = g(x, p′(|x|)) as bit-

selection function, L ∈ MP via f ′ and g′.

Proof. (a) The statement for ⊕P is immediate from [BeGi 92]. The statement

for PP follows quickly from the result PPP[O(log n)] = PP in [BeReSp 91]: Let c

be a constant such that |f(x)| − g(x) ≤ c log2(|x|) for all x ∈ Σ∗. Then f(x) <

2g(x)+c log2(|x|), and the bits at the positions g(x) + c log2(|x|) − 1, . . . , g(x) in the

binary representation of f(x) can be computed in polynomial time by binary search

asking c log2(|x|) many queries to the PP oracle set {〈x, i〉 | f(x) ≥ i}.

(b) Let f and the middle-bit selector p be as in Proposition 3.1, and let p′(n) =

(p(n)+2)⌈1/ǫ⌉. With g′ as given in the statement of this proposition, define f ′(x) =

2p′(n)−1 + 2g′(x)−p(n)f(x), where n = |x|. Then bit number p(n) of f(x) is the same

as bit number g′(x) of f ′(x). Because g′ is in FP and g′(x) > p′(n)ǫ ≥ p(n), f ′ is in

#P. Hence f ′ and g′ form an MP representation for L. (Note that p′ also serves

as a bounding polynomial for f ′.) 2

With m = p′(n), the selected bit may be as low as mǫ or as high as m − mǫ,

depending only on g. We do not have any quantitative results on the difficulty of

the bits in positions between O(log n) and mǫ. Next we collect some basic structural

properties of MP.
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Proposition 3.3

(a) PP
⊕P ⊆ MP ⊆ P#P[1].

(b) MP has complete sets under ≤p
m.

(c) MP is closed downward under ≤p
m, and is closed under complements and join.

(d) MP = PMP[1].

(e) MP is closed under intersection if and only if MP =
⋃

k≥1 PMP[k].

Proof. (a) The inclusion PP
⊕P ⊆ MP follows from inspection of Toda’s proof

[Tod 91] that PP
⊕P ⊆ P#P, as discussed in Section 1. The inclusion MP ⊆ P#P[1]

is obvious.

(b) The language UMP = {〈N, x, 0k, 0m〉 | N is a nondeterministic TM and there

is a 1 at position k in the binary representation of the number of all accepting paths

of length ≤ m of N on input x} is easily seen to be complete for MP under ≤p
m.

Complete languages based on counting satisfying assignments to Boolean formulas

can also be defined.

(c) Let B be in MP via some fB ∈ #P and g ∈ FP, and suppose that A ≤p
m B

via some FP function h. Then the function fA = fB ◦ h is in #P, and the function

g ◦ h is in FP. For all x ∈ Σ∗, x ∈ A if and only if there is a 1 at position g(h(x))

in the binary representation of f(h(x)), so A ∈ MP.

For complements, consider the function f ′(x) = f(x)+2g(x), which belongs to #P

and flips the bit at position g(x) in the binary representation of f(x). Given A, B ∈

MP with #P functions fA and fB respectively, the join 0A ∪ 1B is represented by

the #P function f defined by f(0x) = fA(x), f(1x) = fB(x).

(d) This holds for any class which contains P and has the closure properties in

(c).

(e) Likewise, since MP contains P and is closed under ≤p
m, it follows (see

[KöScWa 87]) that
⋃

k≥1 PMP[k] coincides with the Boolean closure of MP, which

equals MP iff MP is closed under intersection. 2

Finally we compare the polynomial-time Turing and truth-table closures of MP.

Proposition 3.4

(a) PMP = PPP = P#P.
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(b) FPMP
tt = FP#P

tt = FP#P[1].

(c) PMP
tt = P#P[1].

Proof. Part (a) is obvious, and (c) follows immediately from (b). The first equality

in (b) follows from the fact that the value of a #P function can be computed

in polynomial time by asking nonadaptive queries to an MP oracle. The second

equality, namely that a round of nonadaptive queries to a #P oracle function can

be simulated by one query to a #P oracle function, is shown in [CaHe 89a]. 2

Fortnow and Reingold [FoRe 91] proved that PP is closed downward under

polynomial-time truth-table reductions (≤p
tt). Since their result relativizes, the

class PP
⊕P is also closed downward under ≤p

tt. Hence if MP = PP
⊕P, then both

classes equal P#P[1]. The open problems of whether MP = PP
⊕P or whether MP is

closed under intersection are discussed at the end of the paper.

4 The Class AmpMP

In this section we introduce a subclass AmpMP of MP that will be very useful in

obtaining lowness results for a variety of complexity classes including ⊕P, BPP, PH,

and ModkP, k ≥ 2. Toda’s proof, which as mentioned in Proposition 3.3(a) yields

PP
⊕P ⊆ MP, actually shows that languages L in PP

⊕P have MP-representations

of a special kind. Namely, for every polynomial r, there is a #P function f such

that for all x, not only does the middle bit of f(x) equal 1 iff x ∈ L, but also the

r(|x|) bits to the left of this bit are always 0. We call this property “amplification

on the left of the decision bit.” As noted below, familiar probability-amplification

methods for languages L in BPP yield #P functions which allow 0’s to be inserted

to the right of the bit χL(x). When the construction implicit in the whole of Toda’s

paper is carried out on a language L in the polynomial hierarchy (more precisely,

to L in BPP
⊕P), any desired number m of 0’s (bounded by a polynomial in |x|)

can be inserted on both the left and the right of the decision bit. This motivated

us to study the class of all languages with this amplification property, and to call

the class AmpMP.

Definition 4.1 A language L is in AmpMP if there are functions f ∈ #P and

u ∈ FP such that for all x ∈ Σ∗ and m > 0 there exist nonnegative integers a and
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b with b < 2u(x,0m) such that

f(x, 0m) = a2u(x,0m)+2m+1 + χL(x)2u(x,0m)+m + b.

Put another way, L is in AmpMP if there are functions f ∈ #P and u, v ∈ FP such

that for every x ∈ Σ∗ and m > 0, the binary representation of f(x, 0m) is of the

form

av(x,0m)−1 . . . a0 0 . . . 0
︸ ︷︷ ︸

m times

χL(x) 0 . . . 0
︸ ︷︷ ︸

m times

bu(x,0m)−1 . . . b0. (1)

We say the functions f, u, v form an AmpMP representation of L. Here and later, it

is understood that av(x,0m)−1 . . . a0 and bu(x,0m)−1 . . . b0 are strings which may depend

on x and m; only their lengths and not their actual values matter.

Proposition 4.2 BPP and ⊕P are subclasses of AmpMP.

Proof. Let L ∈ BPP. The standard method for reducing the error probability

to 2−(m+1) (see e.g. [Sch 83]) takes the majority result of O(m) trials. Making

m a second argument yields a #P function f(x, 0m) and a polynomial p(n, m)

with the following property: Whenever x ∈ L, f(x) in binary begins with 1m+1

(or equals 2p(n,m)), and when x /∈ L, f(x) begins with 0m+1. Then the function

f ′(x, 0m) = f(x, 0m) + 2p(n,m)−(m+1) belongs to #P and has the decision bit χL(x)

in position p(n, m), followed by 0m to its right. Since χL(x) is the leading bit, this

satisfies Definition 4.1 with a = 0.

Given L ∈ ⊕P, Toda’s amplifying polynomials yield a #P function f such that for

all x and m, if x ∈ L then f(x, 0m) ≡ 0 (mod 2m), and if x /∈ L, then f(x, 0m) ≡ −1

(mod 2m) (see [Tod 91]). Defining f ′(x, 0m) = 2m(f(x, 0m+1) + 1) then places 0m

on the right as well as the left of the bit χL(x). 2

It follows by bit-shifting methods similar to those of Proposition 3.1 that every

AmpMP language L has a representation as in (1) above, in which u and v are

polynomials in m and |x|. In fact, one can arrange that v = u, so that the decision

bit χL(x) is in the middle. However, we prefer to keep v and u separate.

Lemma 4.3

(a) AmpMP is closed under complementation,

(b) AmpMP is closed under intersection,
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(c) AmpMP is closed under bounded truth-table reductions.

Proof. (a) Let L be in AmpMP, and let u, v ∈ FP and f ∈ #P provide the

AmpMP representation as in (1). Here and below we write v and u as short for

v(x, 0m) and u(x, 0m). Consider the function f ′(x, 0m) whose value in binary is

av−1 . . . a0 1 . . . 1
︸ ︷︷ ︸

m times

χL(x) 1 . . . 1
︸ ︷︷ ︸

m times

bu−1 . . . b0.

Since this equals f(x, 0m) plus some powers of 2 determined by m and u alone,

f ′ is in #P. Let p′ be a polynomial which bounds the running time of some

nondeterministic Turing machine N whose counting function #accN is the same as

f ′. Then, by interchanging accept and reject states in N , the function f ′′(x, 0m) =

2p′(|〈x,0m〉|)+1 − 1 − f ′(x, 0m) is also in #P. In f ′′(x, 0m), the complement of the bit

χL(x) is flanked by m 0’s.

(b) Let L1, L2 be two sets in AmpMP, with respective representations f1, u1, v1

and f2, u2, v2. Then f1(x, 0m) has the form

av1−1 . . . a0 0 . . . 0
︸ ︷︷ ︸

m times

χL1(x) 0 . . . 0
︸ ︷︷ ︸

m times

bu1−1 . . . b0.

Let h(x, 0m) = v1(x, 0m) + 2m + 1 + u1(x, 0m), which bounds the length of

f1(x, 0m). Let v′
2 abbreviate v2(x, 0h(x,0m)), and let u′

2 abbreviate u2(x, 0h(x,0m)).

Then f2(x, 0h(x,0m)) has the form

a′
v′2−1 . . . a′

0 0 . . . 0
︸ ︷︷ ︸

h(x,0m) times

χL2(x) 0 . . . 0
︸ ︷︷ ︸

h(x,0m) times

b′u′
2−1 . . . b′0,

for some strings a′ and b′. The function f3(x, 0m) = f1(x, 0m) · f2(x, 0h(x,0m)) also

belongs to #P. Because of all the 0’s around the bit χL2(x), the value χL2(x) ·

f1(x, 0m) appears as a substring of f3(x, 0m), and in particular, the decision bit

χL1(x) · χL2(x) for L1 ∩ L2 appears at position u1 + m + u′
2 + h(x, 0m).

(c) Since by (a) and (b) AmpMP is closed under Boolean operations, it suffices to

show that AmpMP is closed under many-one reductions. Suppose A ≤p
m L where

L ∈ AmpMP. Let f , u, and v provide the representation as in (1) for L, and let

t be the polynomial-time computable function used in the reduction. Define the

function f ′(x, 0m) = f(t(x), 0m). The value f ′(x, 0m) has the form

av(t(x),0m)−1 . . . a0 0 . . . 0
︸ ︷︷ ︸

m times

χL(t(x)) 0 . . . 0
︸ ︷︷ ︸

m times

bu(t(x),0m)−1 . . . b0.
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Then χL(t(x)) = χA(x), and the functions u′(x, 0m) = u(t(x), 0m) and v′(x, 0m) =

v(t(x), 0m) complete an AmpMP-representation for A. 2

The technical key to our lowness results is a lemma which shows that the value

of a function which is in #P with a bounded number of queries to AmpMP can

be obtained as a substring of the value of a function in #P, with no queries. By

(c) above, for any k > 0, PAmpMP[k] = AmpMP. Hence #PAmpMP[k] = #AmpMP,

where #AmpMP equals the class of functions f such that for some language A in

AmpMP and polynomial q, and all x ∈ Σ∗,

f(x) =
∑

y∈{0,1}q(|x|)

χA(x, y). (2)

Lemma 4.4 For every function f ∈ #AmpMP there is a function f ′ ∈ #P such

that for all x ∈ Σ∗ and m ≥ 0, the binary representation of f ′(x, 0m) has the form

av−1 . . . a0 0 . . . 0
︸ ︷︷ ︸

m times

f(x) 0 . . . 0
︸ ︷︷ ︸

m times

bu−1 . . . b0.

As usual we suppose that f(x) is written as a string of length exactly p(|x|), where

p is some bounding polynomial. Then the above states that ⌊f ′(x, 0m)/2u+m⌋ is

congruent to f(x) modulo 2p(|x|)+m.

Proof. Given f , take A ∈ AmpMP and the polynomial q from (2). By the remarks

following Proposition 4.2, there are polynomials u, v and a #P function fA such

that for all pairs 〈x, y〉 ∈ Σ∗ and k > 0, the binary representation of fA(〈x, y〉, 0k)

has the form

av(n′,k)−1 . . . a0 0 . . . 0
︸ ︷︷ ︸

k times

χA(x, y) 0 . . . 0
︸ ︷︷ ︸

k times

bu(n′,k)−1 . . . b0, (3)

where n′ = |〈x, y〉|. By our particular choice of tupling function in Section 2, and

since |y| = q(|x|), |〈x, y〉| depends only on |x|. Thus the position of the bit χA(x, y)

is the same for all y. Now given x ∈ Σn and m ≥ 0, take k = m + q(n) + 1, and

define

f ′(x, 0m) =
∑

y∈{0,1}q(n)

fA(〈x, y〉, 0k).

Then f ′ ∈ #P. The binary representation of f ′(x, 0m) is obtained by summing

the representations in (3), and by Eq. (2) and the choice of k, f(x) appears as a

substring of length exactly q(n) + 1 flanked by m 0’s on both sides. (Also note u

and v are polynomials in n and m.) 2
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Corollary 4.5

(a)
⋃

k>1 MPAmpMP[k] = MP.

(b)
⋃

k>1 AmpMPAmpMP[k] = AmpMP.

Proof. Given L ∈ MPAmpMP[k], L has a representing function f ∈ #PAmpMP[k].

Then the function f ′ in Lemma 4.4 provides an MP-representation for L—here m

is immaterial and can be fixed to 0. For (b), if f is an AmpMP-representation,

then so is f ′. 2

The limitation of this corollary is that it only applies to bounded truth-table re-

ductions to AmpMP. To apply it for full Turing reductions, we seek technical

conditions on subclasses C of AmpMP under which any number of queries to C

made by a nondeterministic machine can be replaced by two queries.

Theorem 4.6 Let C be a subclass of AmpMP which is closed downward under both

≤p
ctt and ≤p

dtt. Then C is low both for MP and for AmpMP.

Proof. Let L ∈ MPA where A ∈ C. Let B = {0〈x1, . . . , xk〉 : each xi belongs to

A}, and let C = {1〈x1, . . . , xk〉 : some xi belongs to A}. By the closure properties

of C, B and C belong to C, and by the closure properties of AmpMP, the language

D = B ∪ C belongs to AmpMP. Let N be a nondeterministic oracle TM such

that the counting function #accNA(x) gives an MP representation for L. By a

standard trick, replace N by a nondeterministic OTM N ′ which on any input x

guesses a computation path of N(x) and also guesses the oracle answers along the

path. Let y1, . . . , yk denote the query strings whose answers were guessed as “yes”

along this path, and z1, . . . , zl, those guessed “no.” Then this path by N ′ accepts

iff 0〈y1, . . . , yk〉 ∈ B, 1〈z1, . . . , zl〉 /∈ C, and the path guessed by N accepts. N ′

need make only two queries to its AmpMP oracle D, and since this trick does not

change the number of accepting computations, Corollary 4.5 implies that L ∈ MP.

The case AmpMPA = AmpMP is similar. 2

Since BPP and ⊕P are closed under polynomial-time Turing reductions (≤p
T)

[Ko 82, PaZa 83], it follows from Proposition 4.2 and Theorem 4.6 that they are

low for both MP and AmpMP. We can quickly show the same lowness property

for the class BPP
⊕P shown in [Tod 91] to contain the polynomial hierarchy (PH).

Proposition 4.7 BPP
⊕P and PH are low for MP and for AmpMP.
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Proof. Proposition 4.2 relativizes to show that for any oracle set A, BPPA ⊆

AmpMPA. Hence BPP
⊕P ⊆ AmpMP

⊕P. Since ⊕P is low for AmpMP, it follows

that BPP
⊕P ⊆ AmpMP. Since BPP

⊕P is closed downward under ≤p
T, it too is low

for AmpMP. Lowness for MP is similar, and the conclusions for PH follow since

PH ⊆ BPP
⊕P. 2

By careful examination of the proof in [Tod 91], we find that the lowness of

BPP
⊕P for MP is a consequence of the more general result that any #PBPP⊕P

function reduces to the “middle bits” of some #P function (see [ToWa 92] for

related results about #PPH). Furthermore, the bits can be isolated any distance m

from the left part of the string, independent of the input length |x|.

Theorem 4.8 For every function f in #PBPP⊕P

there exist a function h ∈ #P

and a polynomial p such that for all x and m,

f(x) ≡ ⌊h(x, 0m)/2p(|x|)⌋ (mod 2m).

Proof. Let f be in #PBPP⊕P

. Since PBPP⊕P
= BPP

⊕P, there exist a language

A ∈ BPP
⊕P and a polynomial q such that for all x ∈ Σ∗,

f(x) =
∑

y∈{0,1}q(|x|)

χA(x, y).

By Proposition 4.2 for BPP relativized to ⊕P, we obtain a function f ′ ∈ #P
⊕P and

a polynomial u such that for all x and y, the binary representation of f ′(〈x, y〉, 0m)

has the form

χA(x, y) 0 . . . 0
︸ ︷︷ ︸

m times

bu(|〈x,y〉|)−1 . . . b0.

For all x, with n = |x|, define

g(x) =
∑

y∈{0,1}q(n)

f ′(〈x, y〉, 0q(n)).

Because of the choice m = q(|x|), the sum of the bu−1 . . . b0 terms does not spill

any carries into the sum of the χA(x, y) terms. Since |〈x, y〉| depends only on n for

y ∈ Σq(n), there is a polynomial p(n) such that for all x, g(x) has the form

g(x) = f(x)b′p(|x|)−1 . . . b′0.
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Now g also belongs to #P
⊕P. Since P⊕P = ⊕P, there exists a language B ∈ ⊕P

and a polynomial r such that for all x,

g(x) =
∑

z∈{0,1}r(|x|)

χB(x, z).

Next, by using Toda’s amplifying polynomials as in the proof of Proposition 4.2,

we obtain a function g′ ∈ #P such that for all x, z ∈ Σ∗ and m ∈ N ,

g′(x, z, 0m) ≡ χB(x, z) (mod 2m).

Finally define

h(x, 0m) =
∑

z∈{0,1}r(|x|)

g′(x, z, 0m).

Then h ∈ #P, and for all x and m,

h(x, 0m) ≡ g(x) (mod 2m).

The conclusion follows on noting that ⌊g(x)/2p(|x|)⌋ = f(x). 2

We return to this in connection with open problems about AmpMP in Section 7.

Before presenting our new idea which gives analogous lowness results for the classes

ModkP, k ≥ 3, we observe one more consequence of the results in this section.

Proposition 4.9 If C=P ⊆ AmpMP, then CH = MP.

Proof. Assume that C=P ⊆ AmpMP. Since the class C=P is closed under

disjunctive and conjunctive reductions ([Tor 88, GuNaWe 90, Gr 93, BeChOg 93])

it follows from Theorem 4.6 that C=P would be low for MP. However, from the

result of [Tor 88] that PPPP = PPC=P, this would give PPPP ⊆ MPC=P = MP,

implying that the entire counting hierarchy collapses to MP. 2

5 Lowness of Mod Classes for the Class MP

In this section we show that for any k, ModkP is low for MP and AmpMP. The

key to this result is the following lemma, which says that the “amplification” of

a #P-function in k-adic representation can, in some sense, be saved in dyadic

representation.
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Lemma 5.1 Let k > 1, let f ∈ #P with bounding polynomial s, and let FP func-

tions q and r be given such that for all z, 2q(z) and kr(z) are at most 2s(|z|). For

all z write a(z) = ⌊f(z)/kr(z)⌋ and b(z) = f(z) mod kr(z). Suppose that for all z,

b(z) ≤ kr(z)/2q(z)+1. Then there exist a #P function h, an FP function u, and a

non-negative integer-valued function a′ such that for all z,

h(z) = a′(z)a(z)2u(z)+q(z) + b(z)2u(z) + c(z), where c(z) < 2u(z). (4)

Proof. We have that for all z, f(z) = a(z)kr(z)+b(z), where b(z) ≤ kr(z)/2q(z)+1. We

first claim that we can find g ∈ #P, a polynomial u, and a function b′ : Σ∗ −→ N

such that for all z,

g(z) = a(z)2u(z) + b′(z), where b′(z) < 2u(z)−q(z).

For all z ∈ Σ∗, let u(z) = q(z)+s(z)+1 and g(z) = f(z)⌈2u(z)/kr(z)⌉. The quantity

⌈2u(z)/kr(z)⌉ is polynomial-time computable, because the functions u(z) and r(z)

are bounded by a polynomial in |z|. Hence g is in #P.

Clearly g(z) ≥ a(z)2u(z). Then

g(z) − a(z)2u(z) ≤ f(z)

(

1 +
2u(z)

kr(z)

)

− a(z)2u(z)

= f(z) + (a(z)kr(z) + b(z))
2u(z)

kr(z)
− a(z)2u(z)

= f(z) + b(z)
2u(z)

kr(z)

< 2s(z) + 2u(z)−q(z)−1 = 2u(z)−q(z).

The last line follows by f(z) < 2s(z), b(z) ≤ kr(z)/2q(z)+1, and the definition of u.

This proves the claim. Now define

h(z) = f(z)2u(z) + g(z)i(z),

where i(z) is the unique integer which satisfies 0 ≤ i(z) < 2q(z) and i(z) ≡ −kr(z)

(mod 2q(z)). Then it follows that

h(z) = a(z)kr(z)2u(z) + b(z)2u(z) + a(z)2u(z)i(z) + b′(z)i(z)

= a(z)2u(z)[kr(z) + i(z)] + b(z)2u(z) + b′(z)i(z),

where b′(z)i(z) < 2u(z) and kr(z) + i(z) ≡ 0 (mod 2q(z)). 2
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Theorem 5.2 For every prime k, ModkP ⊆ AmpMP.

Proof. Let A be a set in ModkP and let r be the FP function r(x, 0m) = 2m + 2,

so that kr(x,0m) ≥ 22m+2. Since k is prime, we can adapt results from Toda [Tod 91]

and Beigel and Gill [BeGi 92] to obtain a function fA ∈ #P such that for all x and

m,

fA(x, 0m) ≡ χA(x) (mod km).

Now let f(x, 0m) = fA(x, 0r(x,0m)) · 2m. Then f ∈ #P, and there is a function

a0 : Σ∗ → N such that for all x and m,

f(x, 0m) = a0(x, 0m)2mkr(x,0m) + χA(x)2m,

where χA(x)2m ≤ kr(x,0m)/2m+2. With reference to the statement of Lemma 5.1

and the quantities a(z) and b(z) in the proof, taking z = 〈x, 0m〉, we have a(z) =

a0(x, 0m)2m, b(z) = χA(x)2m, and q(z) = m + 1. Then Lemma 5.1 yields h ∈ #P,

a polynomial u, and a′, c : Σ∗ → N such that for all x and m,

h(x, 0m) = a′(x, 0m)a0(x, 0m)2m · 2u(x,0m)+m+1 + χA(x)2m+u(x,0m) + c(x, 0m),

where c(x, 0m) < 2u(x,0m). In binary representation, this places m 0’s on both the

left and the right of the bit χA(x). 2

Corollary 5.3 For any k ≥ 2, ModkP is low for MP and for AmpMP.

Proof. First suppose k is prime. Then ModkP is closed under ≤p
T [BeGi 92]. Hence

by Theorems 4.6 and 5.1, ModkP is low for MP and for AmpMP. Now suppose k is

composite; then one can write k = pek′ where p is prime, e ≥ 1, and gcd(p, k′) = 1.

Then by the representation theorem of Hertrampf [He 90],

ModkP ⊆ ModpP
Mod

k′
P.

Since the above lowness proof for the prime case relativizes, the lowness of ModkP

follows by iterating this argument for all the prime factors of k. 2

The next statement follows quickly from the above by a proof similar to that of

Theorem 4.8.
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Corollary 5.4 For any k ≥ 2 and every function f in #PModkP there exist a

function g ∈ #P and a polynomial p such that for all x,

f(x) ≡ ⌊g(x, 0m)/2p(|x|+m)⌋ (mod 2m).

As a side remark, let ModPH be the closure of P under the operations C 7→ NPC

and C 7→ ModkP
C for k ≥ 2. This is intuitively an extension of the polynomial hier-

archy by the ModkP classes, and can be regarded as the polynomial-time analogue

of the circuit class ACC.

Corollary 5.5 ModPH is low for MP and for AmpMP.

6 A New Upper Bound for ACC

The methods of the preceding section relativize. It is thus not surprising that

there are analogous circuit results. In this section we prove them directly. Our

main result in this section is that there is one particular symmetric function which,

together with AND gates of small fan-in, can capture all of ACC: namely, the

symmetric function which outputs the middle bit of the sum of the inputs.

Definition 6.1 A MidBit gate over w inputs x1, ..., xw is a gate which outputs the

value of the ⌊log2(w)/2⌋th bit in the binary representation of the number
∑w

i=1 xi.

A Modk gate over w inputs x1, ..., xw is defined to output 1 if
∑w

i=1 xi 6≡ 0

(mod k) and 0 otherwise.

In our simulations circuits consisting of a particular gate over small AND gates

arise frequently, so we introduce the following notation.

Definition 6.2 Let G be a Boolean gate. A family of circuits {Cn} is called a

family of G+ circuits if there is a polynomial p such that for each n, Cn consists

of a gate of type G at the root whose inputs are at most 2p(log n) AND gates each of

size at most p(log n). A family of Boolean functions {fn} is computable by a family

of G+ circuits {Cn} if for each n, fn(x1, ..., xn) = Cn(x1, ..., xn).

Note that we will always speak of families of MidBit+ or Mod+
k circuits. Even

when we refer to a MidBit+ or Mod+
k circuit individually, it should be understood

that what is meant is a member of a particular family of such circuits.
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The following theorem gives the circuit analogue of Corollary 5.4. We find that

for any family of functions which can be expressed as sums of Mod+
k circuits, there

is a family of low-degree polynomials whose middle bits agree with the bits of the

original functions.

Theorem 6.3 Let k be prime and let {bn} be a family of functions such that there

exists a polynomial r where for each n, bn is of the form

bn(x1, ..., xn) =
w∑

i=1

ci(x1, ..., xn),

where each ci is a Mod+
k circuit and w ≤ 2r(log n). Then for any polynomial t there

are polynomials p and q and a family of polynomials {hn} of degree p(log n) such

that for each n,

bn(x1, ..., xn) ≡ ⌊hn(x1, ..., xn)/2q(log n)⌋ (mod 2t(log n)).

Proof. This is similar to the proof of Theorem 5.2. To simplify notation, un-

less explicitly stated, p, p′, q, r, s, and t denote p(log n), p′(log n),q(logn), r(logn),

s(log n), and t(log n), respectively. Also denote any function g of x1, ..., xn as g(x).

We have that each Mod+
k circuit ci outputs 1 if and only if a certain sum σi of

AND-gates is nonzero mod k. (From an observation of Beigel and Gill [BeGi 92],

without loss of generality σi is always 0 or 1 (mod k), by Fermat’s little theorem.)

Note that we can think of each σi as a polynomial in {x1, ..., xn} of polylog degree.

We make use of polynomials of a type first constructed by Toda [Tod 91] and suc-

cessively improved by [Yao 90, BeTa 91]. The modulus-amplifying polynomials Qd

have the property that for every k ≥ 1 and X ≥ 0,

X ≡ 0 (mod k) ⇒ Qd(X) ≡ 0 (mod kd),

X ≡ 1 (mod k) ⇒ Qd(X) ≡ 1 (mod kd).

(The modulus-amplifying polynomials constructed by Beigel and Tarui [BeTa 91]

have degree 2d − 1.) Now it follows that

bn(x) =
w∑

i=1

[

Qd(σi) mod kd
]

.

We choose d = p′(log n) where p′ is a polynomial such that kp′ > 2r+t+2. Then

bn(x) ≤ 2r < kp′. Now the outer sum in the equation above for bn is less than kp′,

so the “mod” can be moved outside:

bn(x) ≡

[
w∑

i=1

Qp′(σi)

]

(mod kp′).
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We write

fn(x) =
w∑

i=1

Qp′(σi).

Then

fn(x) = an(x)kp′ + bn(x)

for some an(x). Note that for some polynomial s, fn(x) < 2s. Also note that since

σi is a polynomial of polylog degree, there is some polynomial p such that fn is a

polynomial of degree p(log n) in the variables x1, ..., xn. Define the degree p(log n)

polynomial hn as follows:

hn(x) = i(n)
⌈

2q/kp′
⌉

fn(x) + 2qfn(x),

where i(n) ≡ −kp′ (mod 2t) and q is a polynomial such that q ≥ s+ t+2, following

the proof of Lemma 5.1. Analogously we find that ⌈2q/kp′⌉fn(x) = an(x)2q + b′n(x),

where b′n(x) < 2q−t−1. Hence

hn(x) ≡ 2qbn(x) + i(n)b′n(x) (mod 2q+t),

where i(n)b′n(x) < 2q−1. This completes the proof. 2

Corollary 6.4 Let k be prime and {Cn} be a family of circuits where for each n,

Cn consists of a MidBit gate over 2polylog Mod+
k circuits. Then {Cn} is computable

by a family of MidBit+ circuits.

Proof. Each Cn is the MidBit of a sum bn of Mod+
k circuits. Using the previous

theorem and adopting the notations of the proof, we can find a family of polylog-

degree polynomials {hn} obeying

hn(x) ≡ 2qbn(x) + cn(x) (mod 2q+t) (5)

for some cn(x) < 2q−1. Choose t > r. We can express hn (mod 2q+t) as a sum of

non-negative terms with coefficients < 2q+t. This can further be rewritten as a sum

h′
n(x) of AND gates by replacing terms with coefficients > 1 by a sum of identical

terms with unit coefficients. Reducing the right hand side of the congruence (5)

mod 2q+t, we obtain 2q(bn(x) mod 2t) + cn(x). Now the output bit of Cn is in

position ⌊r/2⌋ of bn(x) and is therefore in position q + ⌊r/2⌋ of h′
n(x). We can

multiply the sum by repeated addition so that this is precisely the middle bit. 2
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We now turn our attention to MidBit gates at the root and pure ACC subcircuits

[Yao 90]. A family {Cn} of circuits belongs to pure-ACC if there is a fixed m such

that for all n, every gate in Cn is a Modm gate. This theorem as well as its proof

is the circuit analogue of Corollary 5.3.

Theorem 6.5 Let {Cn} be a family of depth-d circuits consisting of a MidBit gate

at the root and Modm gates at remaining levels. Then {Cn} is computable by a

family of MidBit+-circuits.

Proof. Beigel and Tarui [BeTa 91] have shown that a Modm gate can be simulated

by a “stratified” circuit of Modk1 , Modk2 , ..., Modkl
gates where k1, k2, ..., kl are the

prime divisors of m, on levels 1, 2, ..., l, respectively, and polylog fan-in AND gates

on the lowest level. They also showed that a polylog-size AND of Modk gates

(for k prime) can be switched with the Modk’s to produce a Mod+
k circuit. Using

these facts, Corollary 6.4 and an inductive argument as in the proof of Lemma 6

in [BeTa 91], each layer of Modki
gates can be “absorbed” in the MidBit gate, and

the resulting polylog fan-in AND gates “pushed” down to the leaves. The resulting

circuit is a MidBit+ circuit. 2

The following main theorem uses a combination of the above results, techni-

ques of Valiant and Vazirani [ValVaz 86], Toda [Tod 91], Allender and Hertrampf

[AlHe 90], and the lowness methods of Section 4. It says that circuits consisting

of a MidBit gate over ACC subcircuits can be simulated by MidBit+ circuits. The

proof is similar to those of Theorems 1 and 2 in [BeTa 91].

Theorem 6.6 Let {Cn} be a family of depth-d circuits of size 2polylog(n) consisting

of a MidBit gate at the root and Modm, AND, OR, and NOT gates at remaining

levels. Then {Cn} is computable by a family of MidBit+-circuits.

Proof. Let Cn = 1 iff the ⌊log2(s)/2⌋th bit of S is 1, where S =
∑s

i=1 ci, with

each subcircuit ci consisting of AND, OR, NOT, and Modm gates, and without

loss of generality, s = 2q(log n) where q is a polynomial. The AND and OR gates in

each ci can be replaced by probabilistic Mod+
m circuits with polylog-many random

bits, using the techniques of [ValVaz 86] as applied by [AlHe 90]. By pushing the

AND-gates to the leaves, as in the preceding theorem, ci can be simulated by a

probabilistic circuit c′i comprised of Modm gates and AND gates of polylog fan-in

at the lowest level, so that Pr[c′i 6= ci] ≤ 2−q(log n)−2. It is possible to simulate ci with
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such a c′i using t(log n) random bits where t is a polynomial such that t > q + 2.

Let c′′i denote the sum of c′i over all possible settings of the random bits of c′i,

and let S ′ =
∑s

i=1(c
′′
i + 2t(log n)−q(log n)−2). One can show that S ′ = 2t(log n)S + r

where r < 2t(log n). The output of the desired MidBit+ circuit is the bit in position

⌊log2(s)/2⌋ + t(log n) of S ′. 2

7 Conclusion and Open Problems

The class MP is important not only for its role as the implicit upper bound in

Toda’s proofs [Tod 91], but also for its place at the frontier of counting classes whose

relationships are not well understood. We have established several properties of the

class which make it a natural and attractive object of study, and used results about

it to improve the known upper bounds on the circuit class ACC. The first open

problem is whether one can construct an oracle relative to which the inclusions in

Proposition 3.3(a) are proper. It is not even known whether there exists an oracle

A such that PP
⊕PA

is different from PSPACEA.

A second problem which seems amenable to attack is whether MP is equal to

PP
⊕P. If so, then by Proposition 3.4, both classes are equal to P#P[1]. Interestingly,

we can entertain intuitive arguments both for and against MP = PP
⊕P. Let L be

in MP via the #P function f and midbit-selecting polynomial p. On the “for”

side, one can seek a probabilistic hashing construction whose object is to divide

the number of witnesses by 2−p(n), and try to prove a slight correlation between

bit p(n) of f(x) being 1 and the reduced number of witnesses being odd. On the

negative side, every language L ∈ PP
⊕P has an MP representation which allows

0’s to be inserted to the left of the bit χL(x), and it would be noteworthy if every

MP language had this property. A sub-problem is whether MP is closed under

intersection. The direct attempt to solve this by writing polynomial equations,

after the fashion of the proof that PP is closed under intersection [BeReSp 91],

leads to the following purely numerical question, which we have circulated among

mathematicians. (Say x is top modulo 2k if (x mod 2k) ≥ 2k−1.)

In terms of k, what is the minimum degree of an integer-valued poly-

nomial p(x, y) such that for some polynomial t and all x and y, p(x, y)

is top modulo 2t(k) ⇐⇒ both x and y are top modulo 2k?

The simplest polynomial we know which satisfies this congruence relation (with
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t(k) = k) is p(x, y) =
(

x
2k−1

)(
y

2k−1

)

2k−1. A. Odlyzko and M. Coster [personal com-

munication, 1991] have found solutions with degree and coefficient size that are

smaller, but still 2Θ(k). If such p can be found with degree polynomial in k, then p

can be written as a polynomial-sized sum of small binomial coefficients in x and y,

which can then be used in building polynomial-time NTMs. Then by “lining-up”

decision bits as in the proof of Proposition 3.1, it would follow that MP is closed

under intersection. A similar congruence relation modulo 2k with the same open

problem is p(x, y) = 0 ⇐⇒ (x = 0 ∧ y = 0).

The remaining discussion is motivated by the important general problem of com-

paring the power of computing mod 2 versus computing mod k for k > 2. First, we

ask whether the class MP remains the same when values f(x) are written in some

other prime or composite base, where the acceptance condition may be defined

either as the selected bit being a 1, or as its being nonzero. If MP = PP
⊕P then the

answer is immediately yes, but unconditionally we have not been able to extend

the methods of Section 5 to show this. In view of the strong belief that the classes

ModkP are different for all different values of k, it would not seem surprising if the

answer were no.

Second, it follows from the proof of Theorem 4.8 (which is essentially Toda’s

proof) that languages in BPP
⊕P enjoy a property which is somewhat stronger than

our definition of AmpMP in Section 4.

Proposition 7.1 For every language L ∈ BPP
⊕P there are functions f ∈ #P and

u, v ∈ FP such that for all x ∈ Σ∗ and m1, m2 ∈ N , f(x, 0m1, 0m2) has the form

av(x,m1,m2)−1 . . . a0 0 . . . 0
︸ ︷︷ ︸

m1 times

χL(x) 0 . . . 0
︸ ︷︷ ︸

m2 times

bu(x,m2)−1 . . . b0. (6)

The point is that u(x, m2) is independent of m1. Intuitively speaking, this says

that languages L ∈ BPP
⊕P have AmpMP representations in which one can first

amplify on the right of the bit χL(x), fix the length of the “garbage term” b, and

then amplify on the left to insert as many 0’s as desired.

However, we were unable to obtain this stronger amplification property given

L ∈ ModkP, k ≥ 3 (and k prime). In Theorem 5.2, the trick was to multiply fA

by 2m to get f , and this makes it hard to separate m into m1 and m2. Moreover,

the polynomial u which bounds the length of the “garbage term” c depends on

a bounding polynomial for f , which in turn depends on the number of 0’s to be

inserted on the left anyway.
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The interest in whether these results can be improved was heightened by recent

work of one of the present authors and Toda [KöTo 93]. They define a language L

to belong to the class ModP if there are functions f ∈ #P and g ∈ FP such that for

all x, g(x) = 0p where p is prime, and x ∈ L ⇐⇒ f(x) 6= 0 (mod p). Then they

prove that ModP ⊆ AmpMP and that PModP
tt = P#P[1]. Hence if either AmpMP or

ModP is low for MP, then the counting hierarchy collapses to MP. This is fairly

strong evidence that AmpMP itself is not low for MP, and that Theorem 4.6 cannot

be improved much further. However, intuitively speaking, the proof in [KöTo 93]

that a given language L in ModP belongs to AmpMP first amplifies on the left of

the bit χL(x) (“Claim 1” in [KöTo 93]), and then on the right (“Claim 2”).

We considered the stronger amplification property (6) in early work on this paper,

but rejected it because the simpler Definition 4.1 expedited our main results. With

(6) we were able to weaken the condition on the class C in Theorem 4.6 from closure

under ≤p
ctt and ≤p

dtt to closure under ≤p
m. This still does not achieve our desire for

a natural structural condition for a language to be low for MP (or for P#P). We

leave as our final open problem the question of whether the stronger amplification

property does capture lowness for MP, or to the contrary, whether the arguments

of [KöTo 93] can be applied to this case as well. This last problem may seem very

arcane, but the results of [KöTo 93] show that a slight technical distinction can

make a large difference in the power of a class, and we suspect that at least some of

the keys to unlocking the secrets of counting classes may be concealed in problems

like this one.
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