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Johen Messner, Jaobo Tor�anAbt. Theoretishe InformatikUniversit�at Ulm89069 Ulm, Germanymessner,toran�informatik.uni-ulm.deJuly 4, 2001AbstratA polynomial time omputable funtion h : �� ! �� whose range isa set L is alled a proof system for L. In this setting, an h-proof forx 2 L is just a string w with h(w) = x. Cook and Rekhow de�ned thisonept in [11℄ and in order to ompare the relative strength of di�erentproof systems for the set TAUT of tautologies in propositional logi, theyonsidered the notion of p-simulation. Intuitively, a proof system h0 p-simulates h if any h-proof w an be translated in polynomial time intoan h0-proof w0 for h(w). Kraj���ek and Pudl�ak [18℄ onsidered the relatednotion of simulation between proof systems where it is only required thatfor any h-proof w there exists an h0-proof w0 whose size is polynomiallybounded in the size of w.A proof system is alled (p-)optimal for a set L if it (p-)simulates everyother proof system for L. The question whether p-optimal or optimal proofsystems for TAUT exist is an important one in the �eld. In this paper weshow a lose onnetion between the existene of (p-)optimal proof systemsand the existene of omplete problems for ertain promise omplexitylasses like UP , NP \ Sparse, RP or BPP . For this we introdue thenotion of a test set for a promise lass C and prove that C has a many-oneomplete set if and only if C has a test set T with a p-optimal proof system.If in addition the mahines de�ning a promise lass have a ertain abilityto guess proofs, then the existene of a p-optimal proof system for T anbe replaed by the presumably weaker assumption that T has an optimalproof system.Strengthening a result from Kraj���ek and Pudl�ak [18℄, we also give suf-�ient onditions for the existene of optimal and p-optimal proof systems.�Results inluded in this paper have appeared in the onferenes STACS'98 [19℄ and CCC'98[14℄. 1



1 IntrodutionA systemati study of the (proof length) omplexity of di�erent proof systemsfor Propositional Logi was started some time ago by Cook and Rekhow in [11℄.There they de�ned the abstrat notion of a proof system in the following way.De�nition 1 Let L � ��. A proof system for L is a (possibly partial) polynomialtime omputable funtion h : �� ! �� whose range is L1. A string w withh(w) = x is alled an h-proof for x.Observe that a proof system h need not be polynomially honest sine theshortest proof for x 2 L might be muh longer than x.Example 2 The funtion h de�ned ash(w) = � ' if w = h'; vi and v is a resolution refutation of ';undef. otherwiseis a proof system for the o-NP omplete set TAUT of all propositional tautologiesin disjuntive normal form.Following [11℄, a polynomially bounded proof system h for TAUT is a proofsystem in whih every tautology has a short proof. More formally, there is apolynomial q suh that for every ' 2 TAUT, there is a string w of length boundedby q(j'j) with h(w) = '. Many onrete proof systems for TAUT have beenshown not to be polynomially bounded (see for example [25℄). Besides the interestthat onrete proof systems like, for example, resolution or Frege systems have intheir own, a main motivation for the study of proof systems omes in fat fromthe following relation between the NP versus o-NP question and the existeneof polynomially bounded systems.Theorem 3 [11℄ NP = o-NP if and only if a polynomially bounded proof sys-tem for TAUT exists.This result was the motivation for the so alled Cook-Rekhow Program: away to prove that NP is di�erent from o-NP might be to study more and morepowerful proof systems, showing that they are not polynomially bounded, untilhopefully we have gained enough knowledge to be able to separate NP fromo-NP (see [8℄).In order to ompare the relative power of di�erent proof systems, the notionof p-simulation was introdued in [11℄. We also onsider the presumably weakernotion of simulation studied in [18℄.1The original de�nition allows in fat the use of di�erent alphabets for the domain and rangeof h, but for the purposes of this paper the given de�nition suÆes.2



De�nition 4 Let h and h0 be proof systems for a language L. We say thath simulates h0 if there is a polynomial p and a funtion  : �� ! �� withj(x)j � p(jxj) for every x 2 �� suh that  translates h0-proofs into h-proofs. Inother words, for every x 2 L and every h0-proof w of x, (w) is an h-proof of x.If additionally  2 FP, we say h p-simulates h0.It is easy to see that simulation and p-simulation are preorders, i.e. reex-ive and transitive relations. It is also lear that if a proof system h whih isnot polynomially bounded simulates another proof system h0, then h0 annot bepolynomially bounded. Cook and Rekhow used p-simulation in order to lassifydi�erent proof systems for TAUT aording to their derivation strength.The notion of (p-)simulation between proof systems is losely related to thenotion of reduibility between deision problems. Continuing with this analogy,the notion of a omplete problem orresponds to the notion of an optimal proofsystem.De�nition 5 (f. [18, 17, 8℄) A proof system for a language L is optimal (p-optimal) if it simulates (p-simulates) every proof system for L.An important open problem (posed in [18, 8℄) is whether an optimal or evenp-optimal proof system for TAUT exists. Observe that if this were the ase, thenin order to separate NP from o-NP it would suÆe to prove that some spei�proof system is not polynomially bounded.We show that the assumption that there is a (p-)optimal proof system forertain languages is losely related to the existene of omplete problems for er-tain promise lasses. The onnetion between the existene of (p-)optimal proofsystems and the existene of many-one omplete sets is formalized by introduingthe onept of test sets. Roughly speaking, a test set allows us to verify that agiven nondeterministi polynomial-time mahine behaves well (i.e., in aordanewith the promise) on a given input x. Hene, in some sense, the omplexity ofa promise is represented by the omplexity of its test sets. We then obtain in amaster theorem that a promise lass C has a many-one omplete set if and onlyif C has a test set with a p-optimal proof system.As the lasses UP , FewP, Few , and NP\Sparse have test sets in o-NP thisin turn implies that a p-optimal proof system for TAUT suÆes to obtain many-one omplete sets for these lasses. We also show that the probabilisti lassesBPP , RP , ZPP , and MA have test sets in �p2 as well as in �p2, and that AMhas test sets in �p3 and in �p3. Hene, a many-one omplete set for BPP , RP ,ZPP , and MA (resp. AM) is implied by a p-optimal proof system for TAUT2or for SAT2 (resp. for TAUT3 or for SAT3). We also show that NP \ o-NPhas a test set reduible to SAT � TAUT whih allows us to improve the mainresult of [22℄ by showing that already the existene of p-optimal proof systemsfor TAUT and for SAT suÆes to obtain a omplete problem for NP \ o-NP.If in addition the mahines de�ning a promise lass have a ertain ability to3



guess proofs (see the de�nition of NP-assertions in De�niton 14), then it suÆesto assume that the C has a test set with an optimal proof system. Under thementioned lasses this holds for NP \ Sparse, for MA, and for AM.These results strengthen the intuitive onnetion between the notions of opti-mal proof systems and omplete sets. At the same time, they give some evidenethat (p-)optimal proof systems might not exist for the onsidered logial lan-guages sine many-one omplete problems for these lasses have been searhedfor without suess.In [21℄ it was observed that the lass of disjoint NP-pairs has a ompletepair if TAUT has an optimal proof system. A pair (A;B) of NP-languages A;Bbelongs to this lass when A\B = ;. However, in [21℄ a somewhat weak form ofmany-one reduibility is used whih is only onerned with inputs from A [ B.Formally, in [21℄ a pair (A;B) is said to many-one redue to a pair (C;D) iffor some f 2 FP, f(A) � C and f(B) � D. By generalizing our approahto funtion lasses we an use the assumption that TAUT has an optimal proofsystem to onlude that the lass of disjoint NP-pairs has a omplete pair withrespet to the following stronger notion of many-one reduibility: (A;B) stronglymany-one redues to (C;D) if for some f 2 FP, f�1(C) = A and f�1(D) = B.The before-mentioned set of results an be interpreted as the study of ne-essary onditions for the existene of (p-)optimal proof systems. We onsider inSetion 6 also suÆient onditions for the existene of this kind of proof systems.The following suÆient onditions have been proved by Kraj���ek and Pudl�ak.Theorem 6 [18℄If NE = o-NE then optimal proof systems for TAUT exist.If E = NE then p-optimal proof systems for TAUT exist.We improve this result by weakening the onditions that are suÆient forthe existene of optimal and p-optimal proof systems for TAUT. We show thatif the deterministi and nondeterministi double exponential time omplexitylasses oinide (EE = NEE) then p-optimal proof systems for TAUT exist, andthat NEE = o-NEE is suÆient for the existene of optimal proof systems forTAUT. In fat we give a probably weaker suÆient ondition showing that aollapse of the lass of tally sets in nondeterministi double exponential time tothe deteterministi ounterpart suÆes for the existene of optimal proof systemsfor TAUT.By the relationships between optimal proof systems and omplete sets, onewould expet that optimal proof systems for sets like TAUT do not exist. ThesuÆient onditions show however that it would be very hard to prove that opti-mal proof systems do not exist, sine this would imply a separation of omplexitylasses. 4



The rest of this artile is strutured as follows. In the next setion we givesome preliminaries and study some losure properties of the lass of languagesthat have a (p-)optimal proof system. These results are interesting on their ownbut mainly serve as a tehnial tool for the following setions. In Setion 3we provide the setting needed to formalize the informal notion of a promiselass. Further, we present two master theorems that are applied in Setion 4 toobtain the ompleteness onsequenes mentioned above (where we also onsidernonuniform reduibilities). In Setion 5 we briey disuss how these ideas an beadjusted for the ase of promise funtion lasses. As an appliation, we obtainthe already mentioned ompleteness onsequene for the lass of disjoint NP-pairs. Finally, in Setion 6 we onsider suÆient onditions for the existene of(p)-optimal proof systems.2 PreliminariesLet QBF be the set of all valid quanti�ed Boolean formulas(Q1x1) � � � (Qnxn)F (x1; : : : ; xn);where F (x1; : : : ; xn) is a Boolean formula over the variables x1; : : : ; xn and eahQi is either 9 or 8. By TAUTk we denote the set of all QBF formulas with atmost k � 1 quanti�er alternations (9 followed by 8, or 8 followed by 9) startingwith 8. Similarly, SATk denotes the set of all QBF formulas with at most k � 1quanti�er alternations starting with 9. As usual, in the ase of k = 1 we omitthe index and simply write SAT for SAT1 and TAUT for TAUT1.We assume some familiarity with omplexity theory and refer the reader to [2,3℄ for standard notions and for the de�nition of omplexity lasses. A language Amany-one redues to a language B (in symbols: A �pm B) if there is a polynomial-time omputable funtion f (in symbols: f 2 FP) suh that for all strings x,x 2 A if and only if f(x) 2 B.We use Turing mahines as our basi omputational model. In partiular,we onsider loked deterministi and nondeterministi polynomial-time Turingmahines (PTM and NPTM for short). To represent these mahines we use anenoding whih allows us to obtain from the mahine ode N easily a polynomialpN that bounds the running time of the mahine (in Setion 3 we will onsidersome further restritions on the enodings of NPTMs and PTMs). In the sequel,we will not distinguish between a mahine and its ode.We onsider only languages over the alphabet � = f0; 1g (this means thatproblem instanes as, e.g., Boolean formulas have to be suitably enoded). By�� we denote the set of all binary strings, and by ��n the set of strings oflength at most n. Sometimes we identify a string w 2 �� with the positiveinteger that has 1w as binary representation. A set T is alled tally (in symbols:T 2 Tally) if T is a subset of f0n j n � 0g; a set S is alled sparse (in symbols:5



T 2 Sparse) if there is a polynomial p(n) that bounds the ardinality of S \��n.A tupling funtion maps tuples of words to single words. It is injetive and an beomputed and inverted in polynomial time. If not spei�ed otherwise, we assumesome standard tupling funtion denoted by h�; � � � ; �i. We use the speial valueundef. to indiate that a partial funtion is unde�ned on x (learly if g(x) =undef. then also f(g(x)) = undef.).In the rest of this setion we investigate losure properties of the lass of alllanguages whih have a (p-)optimal proof system. Sine, as we show, this lassis losed under �pm and under join, it follows [6℄ that it is a promise lass in thelassial sense of the tree-struture or of the leaf-language approah (in fat, in [6℄it is shown that both approahes are equivalent and that any lass losed under�pm and under join is a promise lass in that sense).All observations made in this setion refer to the notions of optimality and p-optimality interhangeably. We only give the proofs for the p-optimal ase sinethey an easily be adapted to the ase of optimality.Lemma 7 If A has a (p-)optimal proof system and if B �pm A, then B has a(p-)optimal proof system, too.Proof: Let h be a p-optimal proof system for A and let B many-one redue toA via f 2 FP. Then h0 de�ned byh0(hx; wi) = � x h(w) = f(x);undef. otherwiseis ertainly a proof system for B. To show that h0 is p-optimal, let g0 be a proofsystem for B. By setting g(0w) = h(w) and g(1w) = f(g0(w)) we obtain a proofsystem g for A. Sine h is p-optimal, there is a funtion t 2 FP translatingg-proofs to h-proofs implying thath(t(1w)) = g(1w) = f(g0(w)):This implies h0(hg0(w); t(1w)i) = g0(w):Hene, h0 p-simulates g0.The join A�B of two languages is given by 0A[1B. It is a least upper boundfor A and B with respet to the ordering indued by �pm. The diret produt ofA and B is given by A�B = fha; bi j a 2 A, b 2 Bg. Clearly, if a lass is losedunder �pm, then losure under intersetion implies losure under diret produt,as follows from the equality A�B = (A� ��) \ (�� �B). Closure under diretprodut in turn implies losure under join, as A�B �pm A�B for nonempty Aand B. 6



Lemma 8 If A and B have (p-)optimal proof systems, then so have A � B,A� B, and A \ B.Proof: As observed above it suÆes to onsider A \ B. Let h1 and h2 be p-optimal proof systems for A and B, respetively. A p-optimal proof system forA \ B is given by the FP funtionh : w 7! � x if w = hu; vi; and x = h1(u) = h2(v);undef. otherwise:Clearly, h is a proof system for A\B. To show that h is p-optimal, let f be someproof system for A\B. By setting fi(1w) = f(w) and fi(0w) = hi(w) (i = 1; 2),f an be extended to proof systems f1 and f2 for A and B, respetively. Letti 2 FP be a funtion translating fi-proofs to hi-proofs. Then the funtiont(w) = ht1(1w); t2(1w)i translates f -proofs to h-proofs, i.e., h(t(w)) = f(w), asf(w) = fi(1w) = hi(ti(1w)), for i = 1; 2.The proof of the next lemma is straightforward and is therefore omitted.Lemma 9Any set in P has a p-optimal proof system.Any set in NP has an optimal proof system.It is an open question whether sets with a (p-)optimal proof system exist outsideof NP (respetively P).3 Complete sets for promise lassesIn this setion we provide a quite general approah to promise lasses. In the las-sial leaf-language or tree-struture approah [7, 27, 6℄, promises are restrited tobe prediates on omputation trees (respetively leaf strings) of nondeterministipolynomial-time Turing mahines. However it does not seem to be an easy taskto de�ne a natural promise for the �pm-losure of NP\Sparse (in spite of the fatthat results in [6℄ show that it is atually a promise lass, as it is losed under�pm and under join).In order to state our results as general as possible, we allow promises to beformulated in a quite unrestrited way. In this paper, a promise R is desribedby a prediate on the set of all pairs onsisting of an NPTM N and an inputstring x, i.e., R(N; x) means that N obeys promise R on input x. We all N anR-mahine if N obeys R on any input x 2 ��. In the sequel, we will only allowpromises R for whih at least one R-mahine exists. The aeptane riterion is7



also a binary prediate Q on NPTMs and strings. The language aepted by theNPTM N (when applying the aeptane riterion Q) is given byLQ(N) = fx 2 �� j Q(N; x)g:Finally, for a promise prediate R and an aeptane riterion Q, we de�ne thepromise lass CQ;R = fLQ(N) j N is an R-mahinegand all (Q;R) a de�ning pair for CQ;R.De�nition 10 A lass of languages C is alled a promise lass if C = CQ;R forsome promise prediate R and aeptane riterion Q.Notie that a promise lass CQ;R annot be empty as we assume that someR-mahine exists. In order to obtain ompleteness results, this setting is still toounrestrited. In fat, for any nonempty ountable lass L of languages one ande�ne Q and R suh that L = CQ;R. Therefore we often restrit our onsiderationto pairs (Q;R) that ful�ll the following two onditions A1 and A2. Basially, A1demands the existene of a universal NPTM (with respet to Q and R) and A2requires that CQ;R is losed under many-one reduibility (in a onstrutive way).A1: There is an NPTM U , and a tupling funtion h�; �; �i suh that the followingtwo onditions hold for all NPTMs N , all x 2 ��, and all s � pN(jxj).1. Q(N; x)() Q(U; hN; x; 0si).2. R(N; x) =) R(U; hN; x; 0si).A2: There is a binary operation Æ mapping an NPTM N and a polynomial-timetransduer M to an NPTM N ÆM suh that the following three onditionshold for all NPTMs N , all PTMs M , and all x 2 �� (fM denotes thefuntion omputed by M).1. Q(N; fM (x))() Q(N ÆM;x).2. R(N; fM(x)) =) R(N ÆM;x).3. The set fN ÆM 0 jM 0 is a polynomial-time transduer g is reursivelyenumerable.It is easy to verify that the onditions A1 and A2 hold in the leaf-languageas well as in the tree-struture approah.A natural de�ning pair for UP is (Q;R) where R(N; x) holds if N is a NPTMwith at most one aepting path on input x and Q(N; x) is true if N has at leastone aepting path on input x. To show that A1 holds, let U be a nondeterministiuniversal Turing mahine that on input hN; x; 0si simulates s steps of mahine N8



on input x. Then it is lear that for a standard enoding of NPTMs, U works inpolynomial time and ful�lls A1. Further, A2 also holds by de�ning N ÆM to bethe mahine that on input x omputes M(x) and then simulates N on M(x) (ofourse, the attahed polynomial time-bounds have to be adjusted appropriately).Proposition 11 The lass UP has a de�ning pair whih ful�lls A1 and A2.We will see in Setion 4 how other promise lasses like NP \ o-NP, Few ,FewP, BPP , RP , ZPP , AM and MA an be haraterized in a natural wayby de�ning orresponding pairs (Q;R) whih ful�ll A1 and A2.Next we introdue the onept of a test set whih is entral to our approah.The omplexity of a test set serves to some extend as a measure for the omplexityinherent to a de�ning pair.De�nition 12 Let C be a promise lass, and let (Q;R) be a de�ning pair for C.Then a set T � �� is alled a (Q;R)-test set for C if the following two onditionsare ful�lled.� If hN; x; 0si 2 T , then s � pN(jxj) and R(N; x) holds.� For any L 2 C there is an NPTM N that aepts L, i.e., LQ(N) = L,and that passes test T , i.e., there is a polynomial p suh that for all inputsx 2 ��, hN; x; 0p(jxj)i 2 T .Thus, any element hN; x; 0si belonging to a (Q;R)-test set T serves as an assertionthat N behaves well (aording to R) on input x. For example, we an use thegeneri test set T(Q;R) = fhN; x; 0si j R(N; x) and s � pN(jxj)gfor a de�ning pair (Q;R). In the ase of UP , for example, one just has to verifythat there is at most one aepting path; a simple task in o-NP.Proposition 13 UP has a test set in o-NP.Very informally, the intuitive idea behind the notion of a test set T is thatwe an obtain a omplete language for CQ;R, provided that we an enable an R-mahine to deide T (see the proofs of Theorems 16 and 19 for details). In orderto make this intuition preise we need the following notion.De�nition 14 Let A be a lass of languages and (Q;R) be a de�ning pair fora promise lass C. We say that A-assertions are useful for (Q;R), if for anylanguage B 2 A and any NPTM N the following holds: if N obeys R for anyx 2 B then there is a language C 2 C suh thatC \ B = LQ(N) \B:9



Oasionally, when it is lear from the ontext whih de�ning pair (Q;R) weassoiate with a promise lass C then we just say that A-assertions are useful forC; similarly, we sometimes all a (Q;R)-test set simply a test set for C.The next lemma is needed in the proof of the main result of this setion(Theorem 16).Lemma 15 P-assertions are useful for de�ning pair (Q;R) that ful�lls A2.Proof: Let B 2 P and let N be an NPTM suh that R(N; x) holds for allx 2 B. We an assume that B is nonempty (otherwise the statement is true aswe assume that CQ;R is nonempty). Let M be a PTM that omputes the FPfuntion f de�ned as f(x) = x, if x 2 B, and f(x) = y otherwise, where y is a�xed string in B. Sine R(N; f(x)) holds for all x, we onlude by assumptionA2.2 that N 0 = N ÆM is an R-mahine, implying that C = LQ(N 0) 2 CQ;R. Bythe de�nition of f and by A2.1 it follows that for all x 2 B, Q(N; x)() Q(N 0; x).Hene, C \ B = LQ(N) \B.Now we are ready to prove our main result, namely the equivalene 1 () 2of the next theorem. The equivalene 2 () 3 has been observed already in [16℄for C = NP \ o-NP and in [13℄ for C = UP and for C = BPP .Theorem 16 Let C be a promise lass and let (Q;R) be a de�ning pair for Cwhih ful�lls A1 and A2. Then the following onditions are equivalent.1. C has a (Q;R)-test set with a p-optimal proof system.2. C has a many-one omplete set.3. There is a reursive enumeration N1; N2; : : : of R-mahines suh that C =fLQ(Ni) j i � 1g.4. C has a (Q;R)-test set in P.Proof: 1 =) 2. Let T be a (Q;R)-test set for C whih has a p-optimal proofsystem h. Remember that for every �xed NPTM N that passes test T , there isa polynomial p suh that the languageTN = fhN; x; 0p(jxj)i j x 2 ��gis a subset of T . Hene it follows that there is a proof system g for T with theproperty that for all x 2 ��, g(1x) = hN; x; 0p(jxj)i:Sine h is a p-optimal proof system for T , there is a funtion t 2 FP suh thatfor every x 2 ��, h(t(1x)) = hN; x; 0p(jxj)i. Thus, LQ(N) is easily seen to redueto the set A = fhN 0; x; 0s; wi j x 2 LQ(N 0) ^ h(w) = hN 0; x; 0sig10



via the redution fN : x 7! hN; x; 0p(jxj); t(1x)i:Now, let B = fhN 0; x; 0s; wi j h(w) = hN 0; x; 0sig. Notie that the redutionsfN de�ned above map only to elements in B. Therefore, any language C withthe property that A = C \ B is hard for C. We show that suh a languageC exists in the lass C. Let U be a universal NPTM aording to A1 and letU 0 = U Æ M , where M is a transduer omputing the projetion that mapsha; b; ; di to ha; b; i where for the latter enoding the tupling funtion due toA1 is used. Observe that (by A1 and A2) U 0 obeys R for all y 2 B and thatQ(U 0; hN; x; 0s; wi) () Q(N; x). Sine by Lemma 15, P-assertions are usefulfor (Q;R), and sine B 2 P, it follows that there is a language C 2 C with theproperty that C \B = A \ B = A.2 =) 3. Let C be a many-one omplete set for C and let NC be an R-mahinewith C = LQ(NC). Sine C is omplete for C, any language L in C an be deidedby an R-mahine of the form NC ÆM , where M is a polynomial-time transdueromputing the redution from L to C. (Notie that A2.2 implies that NC ÆM isan R-mahine and that A2.1 implies that LQ(NC ÆM) = L). Thus, due to A2,the reursively enumerable setS = fNC ÆM jM is a PTMghas the properties required for ondition 3.3 =) 4. Let M be a Turing mahine that aepts the set S = fNi j i � 1ggiven by the reursive enumeration of 3. It now suÆes to observe that the setT = fhN; x; 0si j pN(jxj) � s and M aepts N in � s steps gis a (Q;R)-test set in P.4 =) 1. This impliation follows immediately from Lemma 9.By ombining Theorem 16 with Proposition 13 we get the following orollary.Corollary 17 If TAUT has a p-optimal proof system then UP has a many-oneomplete set.We notie that if a promise lass ful�lls A1 and A2 and has a omplete setunder polynomial time many-one reduibility, then it also has omplete sets underless omplex many-one redutions (like e.g. logspae-redutions). To see this,onsider a diret proof of impliation 4 =) 2: If T is a test set ful�lling 4, thenlearly the universal mahine given by A1 obeys R on any y 2 T . Hene, asP-assertions are useful for C, there is a set C 2 C suh that C \ T = LQ(U) \ T .Now let L 2 C and let N be an NPTM with LQ(N) = L that passes test T withpolynomial q. Then the mapping x 7! hN; x; 0q(jxj)i redues L to C. Hene, theomplexity of the redution is basially that of omputing the tupling funtion.11



But the latter an be hosen to be very simple: if A1 holds with a universalmahine U and a ertain tupling funtion then we an use a polynomial timemahine M that translates a very simple tuple-representation into this one andobtain a mahine U 0 = U ÆM that (using A2) ful�lls the onditions of A1 withrespet to the simple tuple-representation. In fat, all ompleteness onsequenesin this artile arry over to many-one reduibilities that are simple to omputeas, e.g., logspae-reduibility.Next we derive ompleteness onsequenes from the assumption that thepromise lass under onsideration has a test set with an optimal proof system. Weobtain similar impliations if the promise lass an even use NP-assertions (seeTheorem 19). However, the following equivalene holds without this assumption.Theorem 18 Let C be a promise lass and (Q;R) be a de�ning pair for C. Thenthe following two onditions are equivalent.1. C has a (Q;R)-test set with an optimal proof system.2. C has a (Q;R)-test set in NP.Proof: By Lemma 9, 2 implies 1. For the opposite impliation assume that wehave a (Q;R)-test set T for C and an optimal proof system h for T . LetT 0 = fhN; x; 0s+ti j 9w 2 ��s : h(w) = hN; x; 0ti g :Clearly, T 0 2 NP. To show that T 0 is a (Q;R)-test set for C, we prove thateah mahine N whih passes T also passes T 0. If N passes T , then there issome polynomial p bounding the running time of N and having the propertythat for all x 2 ��, hN; x; 0p(jxj)i 2 T . It is easy to de�ne a proof system g forTN = fhN; x; 0p(jxj)i j x 2 ��g suh that for any x 2 ��, g(1x) = hN; x; 0p(jxj)i:As h simulates g, there is a polynomial q suh that for all x, hN; x; 0p(jxj)i has anh-proof of size q(jxj). Thus for any x, hN; x; 0p(jxj)+q(jxj)i 2 T 0. But this meansthat N passes test T 0.Theorem 19 Let C be a promise lass and let (Q;R) be a de�ning pair for Cwhih ful�lls A1. If NP-assertions are useful for (Q;R), then 1 implies 2.1. C has a (Q;R)-test set with an optimal proof system.2. C has a many-one omplete set.Proof: Let T 0 be a (Q;R)-test set for C whih has an optimal proof system.By Theorem 18, there is a (Q;R)-test set T for C whih is in NP (notie thatT 2 NP holds independently of the spei� tupling funtion used to enode the12



tuples in T , hene we may assume that the tupling funtion due to A1 is used).Consider the set A = fhN; x; 0si 2 T j x 2 LQ(N)g:Notie that A = LQ(U) \ T where U is a universal NPTM given by A1. Notiealso that by A1.2, U obeys R on any y 2 T . As NP-assertions are useful for(Q;R), there is a language C 2 C suh that C \ T = LQ(U) \ T = A. We nowshow that C is omplete for C. Let L be a set in C and let N be an NPTMwith L = LQ(N) whih passes test T with respet to a polynomial p. Then themapping x 7! hN; x; 0p(jxji redues L to C (as well as to A).Notie that onditions 1 and 2 of Theorem 19 are equivalent if we additionallyrequire that (Q;R) ful�lls A2. This follows from the fat stated in Theorem 16that the existene of a omplete language implies the existene of a test set in P.Even if the promise lass under onsideration annot use NP-assertions wean still derive ompleteness onsequenes with respet to nonuniform reduibil-ities. In order to do so we de�ne the onept of a length dependent test set.De�nition 20 A test set T is alled length dependent if hN; x; 0si 2 T implieshN; y; 0si 2 T for all inputs y of length jyj = jxj.It is lear that from any test set T for (Q;R) we an generially obtain alength dependent test setT 0 = fhN; x; 0si j 8y 2 �jxj; hN; y; 0si 2 T(Q;R)gfor (Q;R). Atually, in [22, 19℄ only length dependent test sets were (impliitly)used to derive ompleteness onsequenes. However notie that in order to obtaina length dependent test set an additional 8-quanti�er may be needed. However,if we apply this onstrution to a test set T 2 o-NP, then also T 0 belongs tothis lass.Proposition 21 UP has a length dependent test set in o-NP.A funtion f 2 FP=poly with f(x) 2 B () x 2 A is alled a nonuniformmany-one redution from A to B.Theorem 22 Let C be a promise lass and let (Q;R) be a de�ning pair for Cthat ful�lls A1 and A2. Then 1 implies 2.1. C has a length dependent (Q;R)-test set with an optimal proof system.2. C has a omplete set under nonuniform many-one reduibility.13



Proof: The proof follows the lines of the proof of 1 =) 2 of Theorem 16. Let Tbe a length dependent (Q;R)-test set for C that has an optimal proof system h.Then for every �xed NPTM N that passes test T , there is a polynomial p suhthat the language TN = fhN; 0n; 0p(n)i j n � 0gis a subset of T . Hene, as TN is easy to reognize, it follows that h-proofs forhN; 0n; 0p(n)i are short (i.e., their length is polynomially bounded in n). Thus,LQ(N) is easily seen to redue to the setA = fhN 0; x; 0s; wi j x 2 LQ(N 0) ^ h(w) = hN 0; 0jxj; 0sigvia the redution fN : x 7! hN; x; 0p(jxj); wi;where the h-proof w of hN; 0jxj; 0p(jxj)i is given as advie by fN . Now, let B =fhN 0; x; 0s; wi j h(w) = hN 0; 0jxj; 0sig and follow the rest of the proof of implia-tion 1 =) 2 of Theorem 16 that shows that there is a set C 2 C with C \B = Athat is hard for C (here under nonuniform reduibility).By ombining Theorem 22 with Proposition 21 we get the following orollary.Corollary 23 If TAUT has an optimal proof system then UP has a omplete setunder nonuniform many-one reduibility.4 Appliations to other promise lassesWhereas in the last setion UP served as our standard example for a promiselass, we use in this setion the assumption that ertain languages have (p-)optimal proof systems to derive further ompleteness onsequenes for variousother promise lasses. We start by skething how de�ning pairs (Q;R) (i.e. ma-hine models) for promise lasses like NP \ o-NP, �pk \�pk, k � 2, Few , FewP,and NP \ Sparse an be obtained.A mahine model for NP \ o-NP an be obtained by ombining two NP-mahines N1 and N2 whih aept omplementary languages into a mahine Nthat in the �rst (nondeterministi) step, branhes left to N1 and right to N2. So,for NP \ o-NP the promise R(N; x) states that on input x, either N1 or N2aepts but not both. Q(N; x) holds if N1 has an aepting path on input x.Mahine models for �pk \ �pk for eah k � 2 an be obtained in a similarway by ombining two �pk-mahines whih aept omplementary languages (�pk-mahines may be de�ned syntatially or by the tree-struture of an NPTM).So the promise R(N; x) holds when N branhes in the �rst step to two �pk-omputations, where the left one is aepting if and only if the right one isrejeting. Here Q(N; x) holds if N1 aepts x in a �pk-way.14



The lasses Few and FewP were de�ned in [1℄ and [9℄ as generalizations ofthe lass UP. In the ase of FewP the promise R(N; x) states that on inputx there are at most pN(jxj) aepting paths. The aeptane riterion Q(N; x)states that there is an aepting path of N on input x. In the ase of Few thereis attahed to eah NPTM N a polynomial time mahineMN with the same timebound as N attahed as a shut of lok. Note that by �xing a default mahine,we an onsider to any NPTM an attahed PTM. The promise is the same asfor Few . Q(N; x) holds if MN aepts hx; ii where i is the number of aeptingpaths of N on input x.Notie that in all these ases the de�ning pairs ful�ll A1 and A2. The mostdiÆult ase to verify is probably that the de�ning pair (Q;R) for Few ful�lls A1.However, a universal mahine U is given by a mahine that on input hN; x; 0sisimulates N on x for s steps, where MU is a mahine that on input hhN; x; 0si; iisimulates MN on hx; ii for at most s steps.For the ase of NP\Sparse the situation is not as straightforward. We de�neR(N; x) to be true if N = 0N 0 for some NPTM N 0 with attahed polynomial time-bound pN 0 suh that N 0 aepts at most pN 0(jxj) strings of length jxj. De�neQ(N; x) to be true if N = 0N 0 for some NPTM N 0 that has at least one aeptingpath on input x. Clearly CQ;R is the lass of sparse sets in NP. To obtain auniversal mahine U = 0U 0 we use as tupling funtion h0N 0; x; 0si = 0t(N 0;s;jxj)�jxj1xwhere t : N 3 ! N is some standard tupling funtion with the additional propertythat t(n; s; l) � l; s for all n; s; l � 0 (using the standard pairing funtion p(i; j) =�i+j2 � + j one may de�ne t(n; s; l) = p(p(n; s); l)). Now, on input w, U 0 veri�esthat w = 0m1x and that there are N 0, s suh that m + jxj = t(N 0; s; jxj) ands � pN 0(jxj). If this is not the ase, then U 0 rejets. Otherwise U 0 simulates N 0 onx for at most pN 0(jxj) steps. One an onstrut U 0 to be linearly time-bounded,so let the time bound 2n+ 1 be enoded in its desription. To see that A1 holdsit remains to verify that R(N; x) implies R(U; h0N 0 ; x; 0si), i.e. that U 0 aeptsat most 2l + 1 strings of length l = jh0N 0; x; 0sij = t(N 0; s; jxj) + 1 if N 0 aeptsat most pN 0(jxj) strings of length jxj. Now as t is injetive all strings of length laepted by U 0 are of the form 0t(N 0;s;m)�jx0j1x0 where N 0; s;m are �xed for �xedl, and jx0j = m where x0 is aepted by N 0 in at most pN 0(m) � s steps. So weare �nished by observing that there are at most pN 0(m) � s � l di�erent x0 oflength m that are aepted by N 0.Lemma 24(i) Few, FewP, and NP \ Sparse have test sets in o-NP.(ii) For every k � 1, �pk \ �pk has a test set whih is �pm-reduible to SATk �TAUTk.Proof: All the test sets onsidered here are of the generi formT(Q;R) = fhN; x; 0si j R(N; x) and s � pN(jxj)g:15



For Few and FewP one has to verify on input hN; x; 0si that N has at mostpN(jxj) aepting paths on input x. But this an be easily done in o-NP. ForNP \ Sparse one has to verify on input hN; x; 0si that there are at most pN(jxj)strings y of length jxj suh that N has an aepting path on y. Again, this anbe easily deided in o-NP.In the seond result, for the ase k = 1 observe that for NP \ o-NP theprediate R(N; x) holds if there exists an aepting path � of N on input x, andif there is no pair �1; �2 of aepting paths of N on input x suh that in the �rstnondeterministi step �1 branhes left and �2 branhes right. This shows thatthis test set is reduible to SAT� TAUT. The result for k � 2 is obtained in ananalogous way.We now observe that NP-assertions are useful for NP \ Sparse, and for�pk \�pk, k � 2 (onsidering the mahine models de�ned above). Hene, in orderto get a many-one omplete set for NP \ Sparse, and for �pk \ �pk, it suÆes to�nd a test set with an optimal proof system.Proposition 25 NP-assertions are useful for NP \ Sparse, and for �pk \ �pk,k � 2.Proof: For NP \ Sparse observe that if N obeys the promise R on any x 2 Bfor some set B 2 NP then setting C = LQ(N) \ B yields C 2 NP \ Sparse.Basially the same argument holds for �pk \ �pk. Let N obey the �pk \ �pk-promise on B 2 NP. Then N onsists of two �pk-mahines N1 and N2 that arereahed in the �rst nondeterministi branh. Let Li 2 �pk denote the set aeptedby Ni in a �pk-way (note that LQ(N) = L1). As N obeys the promise on B itfollows that BnL1 = L2\B. Now let C = L1\B (and hene, C\B = LQ(N)\B).Clearly, C 2 �pk, and further also C = L2[B 2 �pk. This shows C 2 �pk \�pk.We an use Theorems 16 and 19 to get the following impliations.Corollary 26� If TAUT has a p-optimal proof system then Few and FewP have many-oneomplete sets.� If TAUT has an optimal proof system then NP \ Sparse has a many-oneomplete set.� If TAUT and SAT have p-optimal proof systems, then NP \ o-NP has amany-one omplete set.� For k � 2, if TAUTk and SATk have optimal proof systems, then �pk \�pkhas a many-one omplete set. 16



Using the above test sets one generially obtains length dependent test setsfor Few and for FewP in o-NP. Also for NP \ o-NP one obtains a lengthdependent test set in �p2. Hene, by applying Theorem 22 we get the followingorollary.Corollary 27� If TAUT has an optimal proof system then Few and FewP have ompletesets under nonuniform many-one reduibility.� If TAUT2 has an optimal proof systems, then NP \ o-NP has a ompleteset under nonuniform many-one reduibility.Test sets for probabilisti lassesWe show now that the probabilisti omplexity lasses BPP , RP , and ZPPhave test sets in �p2 as well as in �p2. We start by desribing de�ning pairs(Q;R) for these promise lasses that satisfy A1 and A2. Reall that for anyNPTM N , pN is the polynomial time bound assoiated with N . Let A(N; l; x)(resp., Rej(N; l; x)) be the set of all paths r 2 f0; 1gl on whih N(x) a-epts (rejets, respetively) after at most l steps. Notie that the two setsA(N; x) = A(N; pN (jxj); x) and Rej(N; x) = Rej(N; pN(jxj); x) form a parti-tion of f0; 1gpN(jxj).� For the ase of BPP , de�ne R(N; x) to be true if N is a NPTM suh thatkA(N; x)k � 2pN (jxj) � 2=3 or kA(N; x)k � 2pN (jxj)=3 and let Q(N; x) betrue if kA(N; x)k > 2pN (jxj)=3.� For the ase of RP , de�ne R(N; x) to be true if N is a NPTM suh thatkA(N; x)k � 2pN (jxj)=2 or kA(N; x)k = 0 and let Q(N; x) be true ifkA(N; x)k > 0.� Sine ZPP = RP \ o-RP , a mahine model for ZPP an be obtained byombining two RP-mahines N1 and N2 whih aept omplementary lan-guages into a mahine N that in the �rst (nondeterministi) step, branhesleft to N1 and right to N2. So, the promise R(N; x) states that on input x,N1 and N2 behave like an RP-mahine and that either N1 or N2 aeptsbut not both. Q(N; x) holds if N1 has an aepting path on input x.Next we reall the de�nitions and basi properties of hashing that we need.Sipser [23℄ used universal hashing, originally invented by Carter and Wegman[10℄, to estimate (probabilistially) the size of a �nite set X of strings.A linear hash funtion h from �m to �k is given by a Boolean (k;m)-matrix(aij) and maps any string x = x1 : : : xm to a string y = y1 : : : yk, where yi is theinner produt ai � x =Pmj=1 aijxj (mod 2) of the i-th row ai and x.17



Let X � �m and let h be a linear hash funtion from �m to �k. Then we saythat h hashes X if for all pairs of di�erent strings x; y 2 X, h(x) 6= h(y). Moregenerally, if H is a family (h1; : : : ; hs) of linear hash funtions from �m to �k,then we say that H hashes X if for every x 2 X there is some i, 1 � i � s, suhthat hi(x) 6= hi(y), for all y 2 X � fxg.Note that the prediate \H hashes X" an be deided in o-NP providedthat membership in X an be tested in P. We denote the set of all familiesH = (h1; : : : ; hk) of k linear hash funtions from �m to �k by H(k;m).As observed by Sipser, the size of a set X � �m an be estimated by hekingfor whih values of k, X is hashable by some hash family H 2 H(k;m).Lemma 28 [23℄ No hash family H 2 H(k;m) an hash a set X � �m of ardi-nality jXj > k2k. Furthermore, if jXj � 2k, then some hash family H 2 H(k;m)hashes X.The next two lemmas make use of Stokmeyer's re�nement of the hashingtehnique [24℄. Their proofs are straightforward (see, e.g., [15℄).Lemma 29 Let X � f0; 1gl and let m = 1+72l and k = 1+m(l�2) be integers.Then the following impliations hold.� If there exists a hash family H 2 H(k; lm) that hashes Xm, then jXj � 2l=3.� If jXj � 2l=4, then some hash family H 2 H(k; lm) hashes Xm.Lemma 30 Let X � f0; 1gl and let m = 1+512l and k = 1+ dm(l+1� log 3)ebe integers. Then the following impliations hold.� If there exists a hash family H 2 H(k; lm) that hashes Xm, then jXj �2l � 3=4.� If jXj � 2l � 2=3, then some hash family H 2 H(k; lm) hashes the set Xm.Proposition 31 BPP , RP, and ZPP have test sets in �p2 as well as in �p2.Proof: For BPP we de�ne the test setB = fhN; x; 0li j l = pN(jxj) and for m = 1 + 72l and k = 1 + m(l � 2)there is a hash family H 2 H(k; lm) that hashes either A(N; l; x) orRej(N; l; x) g .Clearly, B 2 �p2. Further, for any set A 2 BPP there is an NPTM N suh thatfor all inputs x and for l = pN(jxj) it holds thatx 2 A , kA(N; l; x)k � 2l � 3=4;x 62 A , kRej(N; l; x)k � 2l � 3=4:18



Thus by Lemma 29 it follows that N passes test B. On the other hand, italso follows by Lemma 29 that if hN; x; 0li belongs to B then l = pN(jxj) andR(N; x; 0l) holds. This shows that B is a test set for BPP .Next we show that BPP has a test set in �p2. In fat, onsider the setC = fhN; x; 0li j l = pN(jxj) and form = 1+512l and k = 1+dm(l+1�log 3)ethere is no hash family H 2 H(k; lm) that hashes both A(N; l; x) andRej(N; l; x) gwhih belongs to �p2. By Lemma 30 it is easy to see that C is a test set for BPP .Moreover, it is not hard to adapt the above argument to get suitable test sets forRP and for ZPP .As an immediate onsequene of Proposition 31 and of Theorem 16 we obtainthe following orollary.Corollary 32 If SAT2 or TAUT2 have a p-optimal proof system then BPP,RP, and ZPP have a many-one omplete set.It is also not hard to show that MA has test sets �p2 as well as in �p2 andthat AM has test sets �p3 as well as in �p3. Sine these lasses an even useNP-assertions, it follows that MA has a many-one omplete set, if TAUT2 orSAT2 has an optimal proof system, whereas AM has a many-one omplete set,if TAUT3 or SAT3 has an optimal proof system.5 Completeness results for funtion lassesThe results in Setion 4 an be translated in a straightforward way to promisefuntion lasses. We just give a brief sketh. The de�nition of a promise R forfuntion lasses is the same as for languages, whereas the aeptane riterion Qis replaed by a funtion S mapping eah pair (N; x) onsisting of an NPTM Nand a string x to the string S(N; x). The funtion FS(N) : �� ! �� omputedby N (when applying S) is given byFS(N)(x) = S(N; x):R and S together de�ne the funtion lassFS;R = fFS(N) j N is an R-mahineg:Conditions A1 and A2 translate to the orresponding onditions A10 and A20 forfuntion lasses. We just have to replae A1.1 and A2.1 byA10.1: S(N; x) = S(U; hN; x; 0si) andA20.1: S(N; fM(x)) = S(N ÆM;x)19



respetively. We use the following notion of many-one reduibility for funtions:g �pm h if there is a funtion f 2 FP suh that h(f(x)) = g(x) for any xin the domain of g. Notie that this notion is losely related to the notion ofp-simulation (although g and h need not belong to FP).It is also straightforward to translate the de�nition of a test set. The notionof usefulness for a de�ning pair (S;R) for a funtion lass FS;R reads as follows.A-assertions are alled useful for (S;R) if for any language B 2 A and any NPTMN the following holds: if R(N; x) for any x 2 B then there is a funtion f 2 FS;Rsuh that for all x 2 B, f(x) = S(N; x).Theorems 16, 18, and 19 also translate to promise funtion lasses. We �rstgive the translation of the main equivalene of Theorem 16.Theorem 33 Let F be a promise funtion lass and let (S;R) be a de�ning pairfor F whih ful�lls A10 and A20. Then the following onditions are equivalent.1. F has a (S;R)-test set with a p-optimal proof system.2. F has a many-one omplete set.Translating Theorem 19 to the funtional setting yields the following suÆientondition for the existene of many-one omplete funtions.Theorem 34 Let F be a promise funtion lass and let (S;R) be a de�ning pairfor F whih ful�lls A10. If NP-assertions are useful for (S;R), then 1 implies 2:1. F has a (S;R)-test set with an optimal proof system.2. F has a many-one omplete funtion.Razborov observes in [21℄ that the existene of an optimal proof system forTAUT would imply a the existene of a omplete pair for the lass of disjointNP-pairs. We reall that a pair (A;B) of NP-languages belongs to this lasswhen A \ B = ;. The redution onsidered in [21℄ is a weak form of many-onereduibility. Formally, in [21℄ a pair (A;B) is said to many-one redue to a pair(C;D) if for some f 2 FP, f(A) � C and f(B) � D. By applying Theorem 33we an improve the mentioned result showing that under assumption that TAUThas an optimal proof system, the lass of disjoint NP-pairs has a omplete pairwith respet to the following stronger notion of many-one reduibility: (A;B)strongly many-one redues to (C;D) if for some f 2 FP, f�1(C) = A andf�1(D) = B. We assoiate to eah disjoint NP-pair (A;B) a funtion f(A;B) asfollows. For all x 2 ��, f(A;B)(x) = 8<: 0 x 2 A;1 x 2 B;� otherwise:20



In a sense, the lass of disjoint NP-pairs orresponds to the funtion lass of allthese funtions. This lass an be de�ned as a promise lass in the following way.An NPTM N is an R-mahine if in the �rst nondeterministi step it branhes totwo NP-mahines N1 and N2 whih aept disjoint languages. Therefore R(N; x)holds if there is no pair �1; �2 of aepting paths of N on input x suh that in the�rst nondeterministi step �1 branhes left and �2 branhes right. If there is anaepting path branhing left, the value of S(N; x) is 0. Otherwise, S(N; x) = 1if there is an aepting path branhing right, and S(N; x) = � if there isn't anyaepting path. This de�nes the lass FS;R whih has a �pm-omplete funtion ifand only if there is a strongly many-one omplete disjoint NP-pair. It is easyto see that FS;R has a test set in o-NP and that NP-assertions are useful forFS;R. Therefore, Theorem 34 gives us the following onsequene.Corollary 35 If TAUT has an optimal proof system, then there is a pair thatis strongly many-one omplete for the lass of all disjoint NP-pairs.6 SuÆient onditionsIn this setion we investigate onditions whih imply the existene of (p-)optimalproof systems. We �rst make an observation whih allows us to infer the existeneof a p-optimal proof system for a reursively enumerable set L, provided thatthere are omplete funtions for ertain promise funtion lasses. Seondly, wewill see that ollapses of tally sets at the double exponential-time level imply theexistene of (p-)optimal proof systems for TAUTk.For any reursively enumerable set L, the funtion lass PSL = ff 2 FP jf(��) � Lg is the �pm-losure of the lass ff 2 FP j f(��) = Lg that onsistsof all proof systems for L. Clearly, PSL has a �pm-omplete funtion if and onlyif there is a p-optimal proof system for L. Furthermore the lass PSL is easilydesribed as a promise funtion lass by the following de�ning pair (S;R) whihful�lls A10 and A20.1. R(N; x) holds if on input x, N only makes deterministi moves, and if Naepts then the string y written on its tape is in L.2. S(N; x) = y where y is the string produed by N on input x on its leftmostaepting nondeterministi omputation.It is also possible to desribe this lass using the tree struture approah forpromise lasses. Here, the idea is to allow only speial trees (alled ombs in [6℄)whih represent polynomial-time omputable funtions.An (S;R)-test set is given by the setTL = fhN; x; 0si j R(N; x) and s � pN(jxj) g :21



It is easy to see that TL �pm L for L =2 f;;��g via a PTM M whih on inputhN; x; 0si simulates N for at most s steps as follows. If N does only performdeterministi moves, thenM behaves as N and produes N 's output ifN aepts,if N rejets then M outputs a �xed string y 2 L. Otherwise, M outputs a �xedstring y =2 L. Notie that also L �pm TL via f : x 7! hNid; x; 0jxji, where Nid is anNPTM omputing the identity mapping; implying that TL �pm L.Combining these observations with Theorem 33 we obtain the following the-orem.Theorem 36 Let L � ��. Then the following statements are equivalent.1. There is a p-optimal proof system for L.2. Every promise funtion lass F whih has a de�ning pair (S;R) ful�llingA10 and A20, and further possesses an (S;R)-test set whih is �pm-reduibleto L has a �pm-omplete funtion.3. PSL has a �pm-omplete funtion.It would be interesting to know whether a similar theorem holds when onsideringjust language lasses instead of funtion lasses.We now give a suÆient ondition for the existene of a (p-)optimal proofsystem for TAUTk. Observe that PSTAUT has a length dependent test set ino-NP. Hene (using Lemma 9 and Theorem 34 (resp. 33)), there is a (p-)optimalproof system for TAUT provided that any tally set in o-NP is already in NP(P). Together with observations from [5℄ that relate sets in E , NE to tally setsin P, NP this gives a proof of Theorem 6. Atually the idea to this proofof Theorem 6 dates bak to [20℄ where `�nitisti onsisteny statements' roughlyorrespond to elements of a length dependent test set for PSTAUT. We an weakenthe needed assumption if we onsider (intuitively) super-tally sets instead of justtally sets, where we all a set T super-tally (in symbols: T 2 Super-Tally) if T isa subset of f022n j n � 0g.Theorem 37 If any super-tally set in NP is already in P, then TAUT has ap-optimal proof system.Proof: We assume some standard enumeration M1, M2, M3, : : : of (enodingsof) deterministi Turing transduers with binary input alphabet suh that for agiven triple hMi; x; 0ki, up to k steps of the omputation of Mi on input x an beeÆiently simulated. Let i(k) denote the largest exponent i suh that 2i dividesk and onsider the languageT = f 022k j on any input, Mi(k) either stops after at most 22k steps andoutputs some tautology or Mi(k) runs for more than 22k steps g.22



In order to deide whether a given string 0n = 022k belongs to T , it suÆes tosimulate Mi(k) on any input of length at most n+1 for at most n+1 steps. Thisshows that T \ f 022k j k � 0 g 2 NP and thus, by the assumption that anysuper-tally set in NP is already in P, T an be deided in P. We laim that thefollowing transduer omputes a p-optimal proof system h for TAUT.input h0n; wiif 0n 2 T thendetermine k suh that n = 22kif Mi(k) stops on input w in at most n steps thenoutput Mi(k)(w) and halt;(otherwise rejet).Sine, as is not hard to see, h(��) � TAUT and h 2 FP, it only remains to showthat h is p-optimal. Let g be any proof system for TAUT, omputed by somedeterministi Turing transduerMi in time bounded by some polynomial p. Thenany g-proof w an be translated into an h-proof by the mapping w 7! h022k ; wi,where k is the smallest integer kj = (2j + 1)2i, j � 0, suh that p(jwj) � 22kj .Sine 22kj+1 = �22kj� ;where  = 22�2i, it follows that 22k < p(jwj), implying that the translationw 7! h022k ; wi is omputable in polynomial time.It is interesting to note that the above proof still goes through if we de�nea set T to be super-tally if it is a subset of f0k j k � 0g where  � 2 is anarbitrary integer onstant. However, in our proof, we annot allow T to be anysparser. To see why, let us just try to replae the funtion j 7! 22(2j+1)2i by someother funtion f(j) (where f as well as the onstant  below might depend on i).This would guarantee that the new set T is a subset of f0f(j) j j � 0g. On theother hand, a neessary ondition for the proof to work is that for some onstant, f(j + 1) � f(j), implying that f(j) � f(0)j .A similar proof shows that there is an optimal proof system for TAUT, pro-vided that any super-tally set in NP is also in o-NP.Let EE = DTIME(2O(2n)) (f. [12℄), EEE = DTIME(2O(22n )) and let NEE,NEEE be their nondeterministi ounterparts. Using a tehnique in the styleof [5℄ it is easy to see that eah tally language in EE (NEE) translates to a super-tally language in P (respetively NP) and vie versa. Thus a ollapse of tallysets at the EE-level (as, e.g., NEE\Tally � EE or NEE\Tally � o-NEE) orre-sponds to a ollapse for super-tally sets at the P-level (i.e., NP\Super-Tally � Pand NP \ Super-Tally � o-NP, respetively). As a onsequene we an statethe following orollary. 23
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