THE COMPLEXITY OF ALGORITHMIC PROBLEMS
ON SUCCINCT INSTANCES*

José L. Balcazar, Antoni Lozano, and Jacobo Toran

Dep. Llenguatges i Sistemes Informatics
Univ. Politécnica de Catalunya (ed. FIB)
08028 Barcelona, Spain

balqui@lsi.upc.es, lozano@lsi.upc.es, jacobo@lsi.upc.es

Abstract: Highly regular combinatorial objects can be represented advantageously
by some kind of description shorter than their full standard encoding. For instance,
graphs exhibiting enough regularities can be described using encodings substan-
tially shorter than the full adjacency matrix. A natural scheme for such succinct
representations is by means of boolean circuits computing, as a boolean function,
the values of individual bits of the binary encoding of the object. The complexity
of many algorithmic problems changes drastically when this succinct representa-
tion is used to present the input. Two powerful lemmas quantifying exactly this
increase of complexity are presented. These are applied to show that previous
results in the area can be interpreted as sufficient conditions for completeness in
the logarithmic time and polynomial time counting hierarchies.

1. INTRODUCTION

One of the main goals of complexity theory is the classification of computational
problems in complexity classes according to the amount of resources needed to solve
them. Inputs to the algorithms are usually binary encodings of certain combinatorial
objects, such as graphs. Actually, in order to use efficient combinatorial algorithms to
solve problems by computer, such combinatorial structures must be found or imposed
on the data to the programs.

* This research was partially supported by the ESPRIT-II Basic Research Actions Pro-
gram of the European Community under contract no. 3075 (project ALCOM).

COMPUTER SCIENCE, Edited by R. Baeza-Yates
and U. Manber, Plenum Press, New York, 1992 351

Consider combinatorial objects to be treated by computer programs. The case
may arise that these objects turn out to be highly regular. Representing such regular
objects by means of data structures that take advantage of these regularities is a very
natural idea, since memory space in computers should be employed efficiently and
therefore it is good to encode the objects in a more succinct way.

For instance, data structures for sparse matrices, with a small number of nonzero
entries, have been studied since long time. Actually, such data matrices appear in
many applications of combinatorial optimization problems. Several other possibili-
ties have been proposed to obtain representations of regular graphs smaller than the
adjacency matrix ([6], [28], [29]).

Here we continue a study initiated in [6], where the adjacency matrix of a graph
is represented by a hopefully small boolean circuit which, on input the binary rep-
resentations of ¢ and j, computes the (z,7) entry of the adjacency matrix. We will
study problems not only on graphs, but also on numbers, strings, sets, and boolean
functions. We are interested in using boolean circuits to describe the inputs to algo-
rithms for various decisional problems. On the one hand, since the size of the input
may be much smaller, the complexity of the algorithms must be expected to grow.
On the other hand, since only very regular objects can be described by circuits with
substantial degree of succinctness, one might hope that some trade-off exists, mak-
ing the problem easier for compactly described instances due to the regularity of the
represented object.

In [6] and subsequently in [20] these hopes are destroyed for many graph prob-
lems. Indeed, it is shown in [6] that checking quite simple graph properties, such as
nonemptiness of the set of edges, become NP-hard if the input is given by a circuit.
A sufficient condition for NP-hardness of succinct versions of problems is given; we
will discuss this further later on. Many more complex problems jump to much higher
complexity classes. This work was extended in [20] by proving that sets that are
NP-complete for certain reducibility (known as “projection”) become NEXPTIME-
complete when the input is given by a circuit representation. This last reference states
that similar techniques can be applied to projection-complete sets in other complexity
classes, such as P or NL, and asserts that from such a construction for NL other lower
bounds of [6] can be improved to optimal.

Qur aim in this paper is to show how to distill from the proof of the main result
of [20] some uniform, powerful lemmas, with simpler proofs, which can be used to,
first, obtain uniformly all the results known about the complexity of succinct versions
of particular problems; second, to add many more to the list, and third, to show how
the sufficient condition for NP-hardness of the succinct version of a problem, given
in [6], is essentially a sufficient condition for the hardness of the standard problem
with respect to a much less powerful class. To do this, we will introduce a form of
reducibility more general than that of [20], and will show that their use of Cook’s
formula, restricted to a case of low Kolmogorov complexity, is actually unnecesary
and can be replaced by a simpler encoding characterized also by its low information
contents.

Our main lemma is completely independent of the class on which the compu-
tational problems lie, since its statement regards just decisional problems and their
succinct versions. This presentation is both easier and better, since the independence

352

of complexity classes allows us to carry over the result to classes with surprisingly low
computational power.

Actually, our results can be applied to find complete sets for the lower classes
of the logarithmic time and the polynomial time counting hierarchies, as well as for
arbitrary levels of some subhierarchies. In this way we obtain precise classifications
of the complexity of many problems about finite functions, both under the standard
and under the succinct encoding.

In [20] it is pointed out that a proof similar to the one they give applies to
problems on directed graphs such as accesibility. However, to apply it to undirected
accessibility, or to other problems on undirected graphs such as connectivity, bipartite-
ness, or acyclicity, some difficult results must be used which prove that acceptance
of deterministic logarithmic space machines can be reduced to undirected accessibility
[16], by means of the class SL (symmetric logarithmic space). We give here a different
proof of these results, which we consider very instructive since it pushes further a
technique of [6] which the authors did not expect to work. We apply it also to other
problems, namely planarity, and using results of Reif [21] we settle the particular case
of bounded degree graphs.

This paper includes and extends results announced in [18] and [26], which in turn
were based on parts of the M. Sc. Thesis of the second author and the Ph. D. disser-
tation of the third, both under the advice of the first.

2. COMPLEXITY CLASSES AND REDUCIBILITIES

We consider inputs to decisional problems encoded as words over the two letter al-
phabet I' = {0,1}. In particular the standard encoding of a binary string is itself; the
standard encoding of a positive integer is its binary description, in principle with no
leading zeros (although leading zeros may be accepted for padding purposes); that of
a finite set, its characteristic function, usually as a subset of I'*; that of a directed
graph, its adjacency matrix; and that of a boolean function, its truth table (general-
ized to multiple outputs if necessary). Observe that all those encodings can be seen
simply as binary words.

Regarding undirected graphs, for technical reasons we allow as encoding of an
undirected graph the encoding of any of the directed graphs that can be obtained
from it by directing the edges. Thus, edge (Z,7) is in an undirected graph if and
only if either of the entries (4,7) or (4,7) (or both) are 1 in the adjacency matrix.
The property we need of this representation is that adding an edge can be done by
changing a single bit of the encoding.

Given a binary string ¢, we denote by [z] the integer represented in binary by z;
sometimes we will explicitly prefix @ with a 1 beforehand to avoid problems with
leading zeros. The length (i.e. number of bits) of a binary string = is denoted |z,
and the i-th bit of 2 is denoted @;. The cardinality of a finite set B is denoted || B||.
We identify each decisional problem with the set of encodings of inputs on which the
answer is YES.

We mention in the text several complexity classes, i.e. classes of sets that can be
decided within a given resource bound by a sequential computation model such as,
e.g., multitape Turing machines. Results regarding complexity classes may be found,
among others, in [1] and [7]. These complexity classes are: deterministic logarithmic

353

space, denoted L, nondeterministic logarithmic space, denoted NI, deterministic poly-
nomial time, denoted P, nondeterministic polynomial time, denoted NP, polynomial
space, for which deterministic and nondeterministic classes coincide and therefore is
denoted just PSPACE, deterministic exponential (i.e. O(Z"k) for constant k) time,
denoted EXPTIME, and nondeterministic exponential time, denoted NEXPTIME.
We denote by FP the set of functions computable in polynomial time.

We will work also with some complexity classes of very low computational power,
defined by machines working in logarithmic time. The device for reading the input
usually provided to a standard Turing machine is sequential: in logarithmic time,
only the first O(logn) bits of the input could be read. In order that all bits of the
input be equally relevant, we will use a known variant of Turing machine with direct
access to the bits of the input. The machine will include the following elements:

- an input tape;

- a fixed number of standard work tapes;

- a special tape to point to a bit of the input, which may be subsequently read in:
- a special tape on which the symbol just read from the input appears written;

- a “read” state.

The machine is otherwise standard. It reads its input in the following way: the
machine can write on the pointer tape the number of a position 4 of the input tape;
whenever the “read” state is entered, in one computation step, the machine gets in
the second special tape the contents of the i-th position of the input tape. If the input
has length less than 4, then the machine does not get anything. The previous contents
of the second special tape is overwritten, but the contents of the pointer tape and the
position of its head remain untouched.

Under a linear or larger than linear time bound, these machines can be simulated
by standard Turing machines within roughly the same resource bounds. The interest
of indirect access machines arises when we consider sublinear time bounds. In par-
ticular, we will consider indirect access machines with computation time bounded by

O(logn).

1. Example. Let us show how an indirect access machine working in O(logn) steps
can compute the length of its input; this fact will be used later on. This is done by
using the following binary search technique: first, probe positions 27 of the input tape,
increasingly, until the first empty cell is found; every probe can be done in constant
time since in order to change the contents of the pointer tape from 2° to 2i+1 only
one (or two) bits must change. Once an integer k is found such that 2% < |z| < 2k+1
perform a binary search to find the last input position; again each probe requires only
constant time since at most one bit of the pointer tape has to change. The whole
procedure requires a logarithmic number of steps.

We will denote by LT the class of languages accepted by deterministic indirect
access Turing machines within a computation time bounded by O(log n), and similarly
we denote FLT the class of functions computable by such machines in O(log n) time.

The concept allowing us to compare the difficulty of different problems is re-
ducibility. Intuitively, a problem A is reducible to a problem B if an efficient algorithm
for solving B can be transformed into an efficient algorithm for solving A.

We will use two reducibilities. The first is the standard polynomial time m-
reducibility, defined as follows: problem A is polynomial time m-reducible to problem

354

B, denoted A < B, if and only if there is a polynomial-time computable function
f such that « € A <= f(z) € B for every string z. We will call this simply
m-reducibility, omitting “polynomial time.”

The second reducibility is similar, but under a more strict resource bound: loga-
rithmic time mn-reducibility, which we will abbreviate to LT-reducibility and denote as
<ET. 'We will need such a fine reducibility to work at the level of the logarithmic-time
counting hierarchy. The first approximation is that A <L B if and only if there is
a logarithmic-time computable function f such that z € A <= f(z) € B for ev-
ery z. However, this is inappropriate since in logarithmic time big problem instances
could only be reduced to small problem instances. We avoid these problems by using
a definition of reducibility which translates “locally” parts of problem instances in
logarithmic time.

Thus, our condition on the reduction function f for the definition of LT-
reducibility will be that the following function ¢ be computable in logarithmic time:
for 2 € '™ and © € IN, (z,2) is f(z); (the i-th bit of f(z)) if i < |f(z)|

— 7

and is
undefined otherwise.

Previous work on succinct instances used projection reducibility [20], [18]. This
is a very weak reducibility, a version of the nonuniform projection reducibility of [23],
and is characterized by the fact that each nonconstant bit of the output coincides
with a bit of the input (or its negation), found in a fixed position which depends only
on the given position in the output. We will not use this reducibility here.

Given a reducibility and a complexity class, a problem is hard for the class under
the reducibility if every problem in the class is reducible to it, and is complete for the
class if it is hard for it and also belongs to it.

3. SUCCINCT INSTANCES AND THE CONVERSION LEMMA

This section proposes a different, simpler and more general way of presenting some of
the arguments of [20], so that the results there, previous ones from [6] and [29], and
many others then follow immediately in a unified fashion.

A succinct representation of a binary word z is a boolean circuit that on input
(the binary representation of) i outputs two boolean values, one indicating whether
¢ < |#| and another one indicating, in that case, the i-th bit of z. The same criteria can
be used to define succinct representations of integers, finite sets, graphs, or boolean
functions. For instance, in the case of graphs, a succinct representation is a boolean
circuit which, on input the binary representations of 7 and j, computes the entry (4, 5)
of the adjacency matrix.

The succinct version sA of any decisional problem A is: given a boolean circuit

describing a word z, decide whether z € A.

The succinctly represented problem is at most exponentially more difficult than
the problem on standard encodings. The following observation is proved for graphs
in [6], and can be stated similarly for any binary encoding.

2. Lemma. Let f(n) > logn be a nondecreasing bound, and let 4 be a decisional
problem. Assume that A € DTIME(f(n)). Then, for the succinct version sA of A,
we have s4 € DTIME(f(2™)n?).

35656

The same holds for NTIME, and similarly for DSPACE or NSPACE, in which
case the new space bound is simply f(2"). A later lemma will state similar facts for
complexity classes in the counting hierarchies.

The same reference proves a sufficient condition for NP-hardness of succinct
problems: if certain “critical” graphs exist for a graph property, then testing this
property on succinctly represented graphs is NP-hard. Actually, the form in which
this condition is stated in [6] is too weak for the proof to be correct: the interested
reader can find in [17] counterexamples not only to the proof, but {assuming P # NP)
to the statement itself. The expert in structural complexity notions will enjoy the

" constructions, based on the concept of bi-immunity. The corrected statement of the
sufficient condition for NP-hardness is also given in [17].

We will see in this paper that this kind of sufficient condition, seemingly tailored
to succinet representations, actually can be applied to standard encodings, as soon as
the logarithmic-time complexity classes are available (theorem 11 below). Then, the
results of [6] follow by combining the criticality argument with the precise relationships
between standard and succinct encodings that follow from the next two lemmas.

The following lemma, which we name Conversion Lemma, shows how to obtain
m-reducibilities among succinctly represented problems from LT-reducibilities among
the standard problems. Some ideas of its proof are based on a fragment of the proof
of the main theorem of [20]. The advantages are, first, that a more flexible and useful
form of reducibility among the standard problems is used here (at the price of a
technical complication in the proof), and second, that it is now independent of the
fact that the problems belong to any particular complexity class.

3. Lemma. (Conversion Lemma) If A <LT B then s4 <P sB.

Proof. Let w be an instance of A. Assume as input an instance of sA4, given by a
boolean circuit C,, describing w. Observe that the size of €', is at least log |w|, which
is the number of inputs, and therefore |w| < 2/€=1.

Let f be the reduction function: for all w, w € 4 <= f(w) € B; and let M be
the machine that, on input (w,%), computes the i-th bit of f(w) in logarithmic time.
There is a standard translation of Turing machines into circuits (see [1], section 5.4),
appropriate for Turing machines that read directly their input tapes, yielding a circuit
of size quadratic in the running time of the machine computing the same output. Each
level of the circuit simulates one step of the machine.

Now if the Turing machine has indirect access, the mechanism to supply the input
bits in the standard simulation does not work. Fortunately, by hypothesis we have
now a circuit C,, supplying individual bits of the input w. Assume that the machine
starts by reading in sequentially and storing on worktape the second argument ¢. This
part is simulated by the circuit in the straightforward way since i is read sequentially.
For the remaining part of the computation, where bits of w must be read, we can
insert one copy of the circuit C,, at each level, fed by the bits in the pointer tape
(which are computed by other gates of that level), so that the requested input bit is
available at the output of Cy,. This extended circuit C' (which is now of size at most
cubic on |C,,|) does not need w as input anymore: simply, on input 7, it produces the
i-th bit of f(w).

Therefore, this circuit C' is precisely what we need: a succinet description of
f(w), the image of w under the LT-reduction. Indeed, now C,, is in sA if and only if

356

wisin A, if and only if f(w) is in B, if and only if C' is in sB. It is easy to see that
C'" can be computed in time polynomial in the size of C,. u

In order to prove completeness of a succinctly represented problem s4 in a com-
plexity class, we need a way of translating arbitrary problems in the class into a region
where we can use a hypothesis about A, which is exponentially below. (Actually, we
are addressing now the problem solved in a more complex way in another fragment
of the main proof of [20]).

A possibility could be using tally encodings, which will be of much lower com-
plexity due to the exponential blow-up of the input size; but this requires to check
that all bits are equal, and this cannot be done in logarithmic time. Yet we will encode
problems in a form similar to tally sets, and with similar properties. For a problem
4, define long(4) as follows: z € long(4) if and only if the binary expression of the
length of z is in 14. (The 1 prefixing all words here avoids the technical difficulty of
the leading zeros.) Thus, for each length n, either all the words of that length are in
long(A), if the binary expression of n is in 14, or all the words of that length are out
of long(4), otherwise. Observe that

A€ DTIME(f(2")) <= long(A) € DTIME(f(n))

and similarly for other complexity classes. We prove next that the succinct version of
long(A) jumps up again at least to the difficulty of A.

4. Lemma. For every 4, A <I s(long(A)).

Proof. Since A trivially reduces to 14 and the reducibility is transitive, we exhibit
a reduction from 14 to s(long(A4)). Recall that [z] is the integer denoted by z in
binary notation. Given z starting with 1, construct a circuit C representing the word
0[=], which outputs zero for all inputs up to [z]. The time required to construct
this circuit is easily seen to be polynomial in |z|, and by the definitions we have
z €14 <= 007l €long(A) <= C c s(long(4)). m

Now we can state and easily prove the following result, which will be readily ap-
plied. The proof is simple since the essence of it has been captured by the Conversion
Lemma.

5. Theorem. Let C; and Cj be arbitrary complexity classes such that for every
A € Oy, long(A4) € C,. Then, for every B, if B is hard for Cs under LT-reducibility,
then sB is hard for C; under m-reducibility.

Proof. Assume that B is hard for Cs under LT-reducibility, and let 4 be an arbitrary
set A € C;. The hypothesis imply long(A4) € C, and therefore long(4) <IT B. By
the Conversion Lemma, s(long(4)) <% sB. Since by lemma 4 A <P s(long(4)), by

transitivity, 4 gfl sB and thus sB is m-hard for C;. =

As an example of application, let us prove now that the results fully proved in
[20] can be obtained as immediate corollary: since Hamiltonian path, k-colorability,
and many other NP-complete sets can be proved complete via LT-reductions [7], we
have:

357

6. Corollary. The succinct versions of Hamiltonian path, k-colorability, etc. are m-

complete in NEXPTIME.
Proof. Membership follows from lemma 4, and hardness from theorem 5. "

Subsequent sections will describe further applications of this set of lemmas, cap-
turing in very clear ways the essentials of the optimal results about NP-completeness
from [6] and many other results.

4. THE COUNTING HIERARCHIES

Probably the best known complexity classes are P and NP. Also well-known is the
polynomial-time hierarchy PH [24], a natural generalization of the class NP. Never-
theless there are many natural computational problems whose complexity cannot be
modelized in terms of existential or universal quantifiers; sometimes this complexity
is captured by other complexity classes, more adapted to the idea of counting.

Wagner [29] defines the counting hierarchy C'H in a similar way as the polynomial-
time hierarchy. The counting hierarchy turns out to be a very useful tool to express the
complexity of many natural problems. It contains the polynomial-time hierarchy and
is included in PSPACE. Wagner shows that every level of CH has complete problems
and proves some other properties.

In this section we will define the polynomial-time counting hierarchy CH and
the logarithmic-time counting hierarchy LCH. The classes in these hierarchies are
characterized by polynomially bounded quantification, resp. logarithmically bounded
quantification, over a predicate computed in polynomial, resp. logarithmic time.

The polynomial counting quantifier C is defined in the following way: for a
function f : ™ — IN, f € FP, a polynomial p and a binary predicate P,

Chiyy: Plz,y) <= [{y: lyl < p(lz]) and P(z,y}}|| = f(z).

If K is a language class, for any set 4, 4 € CK if there is a function f in FP, a
polynomial p, and a language B € K such that for any z € I'™

zeEe A — C}J’,(x)y t(z,y) € B

The polynomial counting hierarchy CH is the smallest family of language classes
satisfying:
i/ Pe CH;
ii/ if K € CH then 37K, VP K and C?K belong to CH.

For simplicity, C will denote the class CP, and the context will make clear when
we talk about a quantifier and when about a language class. Also, we will drop the
superscript p from all the quantifiers.

We should point out here the following properties:

358

7. Proposition.

a/ CH C PSPACE

b/ PHC CH

¢/ For every class K in CH, IK UVK C CK C JCK NVYCK.

d/ Every class in CH is closed under m-reducibility.

e/ Every class in CH has complete problems with respect to the m-reducibility.

Similarly, we define now the logarithmic-time counting hierarchy. The logarith-
mic existential, universal, and counting quantifiers are defined in the following way:
for a function f : I'* = IN computable in logarithmic time, a constant ¢ and a binary
predicate P,

3% : P(z,y) <= \/ |yl < c[log|2[] and P(z,y)

Y

vy : P(z,y) < /\ ly| < c[log|z|] and P(z,y)

Clayy: P(z,y) <= |{y:ly| < cflog2]] and P(z,y)}|| 2 f(=)

If K is a language class, for any set 4, A € 3'K if there is a language B € K
and a constant e such that for any = € T~

z €A = chy:{w,y)EB

and analogously for A € V'K. A € C'K if there is a language B € K, a constant ¢
and a function f computable in logarithmic time such that for any z € I'*

z€ A — C}"u)y :(z,y) € B

The logarithmic-time counting hierarchy LCH is the smallest family of language
classes satisfying

i/ LT ¢ LCH;
ii/ if K € LCH then 3'K,V'K and C'K belong to LCH.

In [2], the alternating log-time hierarchy LH is defined using log-time indirect
access Turing machines that alternate between existential and universal states. This
hierarchy coincides with the subfamily of L CH defined using only 3’ and V' quantifiers,
and is known to be proper [22]. Additionally, in [5] it is shown that C'LT is not
included in LH, and in [27] it is proved that the inclusions C'LT < 3'C'LT and
C!LT C VIC'LT are strict.

By analogy with the polynomial-time hierarchy, and following common usage, we
will call B} = 3., Q'LT, the class defined by k — 1 alternations of logarithmi-
cally bounded quantifiers 3 and V, being @' = V' if k is even and 3" if k is odd; also
we will use the notation C{, = C!C!...C!LT for the class defined by k logarithmi-
cally bounded counting quantifiers. We will denote sometimes NLT = F'LT since it
corresponds to nondeterministic logarithmic time.

Several properties and inclusions of CH translate directly to LCH. Let us point
out just three properties.

3568

8. Proposition.

af LCH C L.

b/ For every class K in LCH, 1K UY'K C C'K C FKNY'K.

¢/ If two classes of the LCH coincide, so do their corresponding classes of CH.

The next decision problems are complete in 3'LT and in C'LT respectively.
9. Example. Nonzero string.

Let L; = {w € T : w has at least one 1}.

Ly is 3*LT-complete. Let us prove it.

L; € 3'LT. Consider the language L; accepted by a deterministic indirect access
log-time machine M that on input (z,1), |i| = [log|2|], accepts if and only if the :-th
bit of # is a 1. It is clear that Ly € LT and that for all z € T,

zel \/ 1] < log |z|]{z,2) € Lg

1

Ly is hard for 3'LT with respect to the LT-reducibility. Let L € 3'LT

zeL < Vil < c[log|z[] P(=,1)

1

being P(z,4) a predicate in LT. Consider the function g and a logarithmic-time com-
putable function ¢ computing the bits of g(z) as follows: g(z) will have a “1” in
position 3 if the i-th string of length < c[log |z|] is a witness of z € L, and it will have
a “0” in this position otherwise. For a given z, let n = ¢[log|z|]. Then for |i| < n,

o [1 i P(a,i)
"D("”z)_{o if ~P(z,1)

The function ¢ can be computed in log-time since P(z,7) is a log-time predicate, and
n = c[log |z|| can be calculated by first computing [= |z|, as described in example 1,
then computing the length of [, which is [log |z|], and multiplying by the constant e.
It is clear that z € L < g{z) € L.

10. Example. Majority.

Let Ly = {w € T : w has more 1’s than 0’s}.

Let us prove that Ly is C'LT-complete. Observe that w € L if and only if more
than half of the bits of w are 1.

L, € C'LT. Consider the LT language L; of the previous example. For all
ze ™
z € Ly < ||[{i: 1| £ [log|z|]{z,7} € Lo}|| > [2|J +1

and this bounding function is log-time computable.

360

L, is hard for C!'LT with respect to LT-reducibility. Let L € C/LT
ee L > ||[{i:i < cllog|z[]P(z,i)}]] > f(=)

being P(z,i) a predicate in LT and f a function in FLT. Consider again functions g
and ¢ like in the previous example, the difference lying in that now we have to create
a certain amount of 1’s to change the bound f into one half. Once more, for a given
z, let n = [clog |z|].

if |z| < n and P(z,1)

if |z| < n and = P(=z,7)
ifn<l|i|<n+4 flz) -1
ifn+ flz) -1 < i <2n

‘P(mai) =3

==

By the same arguments as for the reduction to L1, ¢ can be computed in log-time.
Observe that here the valued mapped to by the reduction contains in its second part
n — f(z) + 1 ones, so that g(z) € L, if and only if in the first part there are at least
f(z) ones. This technique can be applied in many other contexts, and transforms
an arbitrary counting quantifier into one whose threshold is exactly 1/2. Thus we
will assume, whenever needed, that our counting quantifiers have threshold 1/2, by
appealing to this construction.

5. SUFFICIENT CONDITIONS FOR HARDNESS

The purpose of this section is to present a general tool for proving LT-hardness results
for some classes of the logarithmic-time counting hierarchy. Essentially, such ideas
appear in [6], where they are presented as sufficient conditions for succinct versions
of problems being NP-hard or T,-hard. As can be seen from our results in this
section, their NP-hardness results can be strengthened substantially with the help of
the Conversion Lemma and the logarithmic-time counting hierarchy: we will show a
similar but more general sufficient condition for problems being NLT-hard, and several
applications; then, in the next section, the Conversion Lemma will apply to show
immediately that the corresponding succinct versions are NP-hard, encompassing all
NP-completeness or co-NP-completeness results of [6] and [29] and many more cases.
More importantly, in this way an explanation is found for the fact that many succinct
problems are NP-complete.

As a general setting, we study the complexity of problems stated on boolean
functions of finite domain, always of the form f : I'* = I'™. From now on we call
these objects “finite functions”. The encoding of such a function f is by 2" blocks
of m bits, starting each one of them by the special separator symbol #, and the i-th
block being the image of the i-th word of I'". In the special case in which m = 1,
i.e. when f is a boolean function, it is not necessary to use the separators and the
i-th bit will represent the image of the i-th word of ', In the case when m > 1 it is
not hard to see that the problem of whether a given input is a correct encoding of a
function is in V'LT.

We will interpret the blocks in the encoding of the function as integers sometimes.
For instance, the “non-zero string” problem of example 9 can be reworded in this
setting as “not identically zero function” from I'" to I for some n. Given a (finite or
infinite) function f and a finite set 4, we denote f|4 the restriction of f to A; this
set A will usually be of the form I'",

361

The next theorems give sufficient conditions for a problem on finite functions to
be hard for NLT = 3'LT and C'LT. These conditions will be given by the existence
of “J-critical” (resp. “C-critical”) functions. We need some definitions.

Let @ be a property on finite functions, and let f and g be two linear-time
computable functions, f, g : I'* — I'*, such that for every n and for every z € T'",
lg(2)| = |f(z)| = m where m is a power of 2 that only depends on n. We will say that
the pair (f,g) is 3-critical for @ if for every n € IN the following conditions hold:

i/ the restriction flr- ¢ @;

ii/ for every nonempty set B C 0I'" %, that is, every nonempty set of words of length
n beginning with 0, the function Ap|r« € @, where

_[f(z) i-¢B
hB(z)——{g(z) ifze B

Most applications will take m = 1. We will identify each property @ with the de-
cisional problem of deciding whether the input has the property . Now the following
powerful theorem yields easily many complete problems for 3'LT.

11. Theorem. Let @ be a property of finite functions. If there exists a J-critical pair
(f,g) of functions for @, then @ is 3'LT-hard for the LT-reducibility.

Proof. We show how to reduce L to Q. Given z, we must indicate a value y such that

z € Ly <= y € Q, and explain how to compute in logarithmic time the function ¢
that finds the bits of y.

We use the following notation. Let n be the minimum integer such that |z| <
271 50 that n < log|z| + 2; it can be computed as in example 1. Let the length
of the values of f and g on inputs of length n be m, a power of 2. Observe that
divisions by m are mere shifts, and thus can be easily computed. The value m itself
is computable by evaluating f on 0™, in time linear in n and thus logarithmic on |z/.

The value y is to be interpreted as a finite function from I'* to I'™, interleaving
values of f and values of g. Its length will be |y| = m2": a total of 2™ blocks of m
bits, each corresponding to a value of f or g.

For the first |z| blocks (less than half the blocks), the corresponding bit of z
determines whether the block comes from f or from g: if the k-th bit of z is 2 = 1,
then y will have a value of g as k-th block; otherwise it will have a value of f. The
remaining blocks are extra values of f, added in order to complete y.

Thus the i-th bit of ¥ is computed by finding out the block r on which it falls,
and its relative position j within the block: those are quotient and remainder of 2
divided by m; then, checking z, to sec if f or g is being used for that block (for the

first |z| blocks omnly), and extracting the j-th bit of the value of f or g corresponding
to the block.

The complete description of ¢ is as follows. Bits of words (and also blocks) are
assumed to be numbered starting from zero to simplify the arithmetics.

362

g(r); ifr=|L]|andj=imodm
and 2 < mlz| and z, =1

f(r); ifr= Lij and j =1 modm
and 2 < mlz| and 2, =0

ele,1) =

f(r); ifr=|i|andj=imodm
and m|z| <i < m2n!

f("')j ifr= LHJ and j =1 modm

™

and m2" ! <1 < m2"

Here f(r) is interpreted as writing r in binary, padding with leading zeros up to length
n if necessary, and applying f, and similarly for g(r). Computing either f or g takes
time linear on |r| < log|z| + 2. Observe that the last line covers exactly those blocks
for which r begins with a 1, i.e. half of them.

Let us see that this is a reduction. If £ € L; then there is at least a 1 in some
position of z, and then the list of the function values will have one value of g for an
argument beginning with 0. By condition ii/ in the definition of criticality, it follows
that the function represented by y belongs to (). Conversely, if ¢ & L;, then y will
be exacily the encoding of fir-, and by condition i/ in the definition of criticality, y
is not in Q. -

12. Remark. The fact that the value m is a power of 2 is not essential, since the fact
that the divisions are shifts may be guaranteed in other ways. For instance, if for all
z the critical pair fulfills |f{z)| = |g(z)| = |z| instead, we would get m = n; in the
reduction we let n be the minimum integer such that |z| < 277! and n is a power of 2.
It can be computed in the following way: first, as in example 1, find the minimum
integer k such that |z| < 2*; then n is the string 10/*/ of a single one followed by
|k| zeros. The bound on n = |r| would be 2log |z| + 2. The proof goes through.

13. Remark. Similarly, the fact that the ratio of actual bits affected by the reduction
is one half, as implied by B C 071, is not crucial either. The reader can check that
we could have taken, for instance, B C 0**/*T'*/*. Of course |¢| must be less than
the size of the part of the output indexed by B; in this case, for instance, taking n so
that 27/® < |z| < 2"/* works. The bound on |7| is still linear on log |z|.

We will use theorem 11 for classifying the next problems. Observe that in order
to show that a problem is 3!LT-hard, we only need to give a pair of J-critical functions
(f.g) for the problem. Similarly, it can be proved that a problem is V'L T-hard by
showing that its complement is 3'L7-hard. The following four problems are V'L T-
complete: we give an J-critical pair for the complement. It is left to the reader to
prove that these problems are in V/LT and that the pairs are actually J-critical for

their complements.
14. Example. Constant function.

Lz = {£:T™ — I'™ such that £ is a constant function }

J-critical functions for the complement: f(z) =0, g(z) = 1.

363

15. Example. Injectiveness.
Ly ={¢:T™ - T'™ such that ¢ is an injective function }

J-critical functions for the complement: f(z) = z, g(z) = 11?|. Here we use the
condition in the definition of J-critical that words of B begin with 0 and remark 12.

16. Example. Increasing function.

Ls = {¢ : T™ + I'" such that ¢ is strictly increasing }
3-critical functions for the complement: f(z) = 2, g(z) = 111

17. Example. Conservation of parity.

Lg = {¢ : T™ > T'™ such that for every z € I'", Ib(z) = Ib(£(2))}

where we denote by Ib(2) the last bit of z. J-critical functions for the complement:
7(2) = (=), 9(z) = 1 - ()

The following examples are taken from [6], where actually only succinct versions
are considered. We will consider standard problems here, and obtain the results of [6]
in the next section as applications of the Conversion Lemma. It should be observed
that the problem “nonemptiness” of [6], under our encoding of undirected graphs, is
exactly the “nonzero string” problem L. In the next examples the functions £ are
identified with the adjacency matrix of a graph on n = 2% vertices; each potential
edge is thus identified by exactly 2k bits, k for each endpoint (padding with leading
zeros if necessary).

18. Example. Triangle.
L; ={¢:T?% — T has a triangle }

J-critical functions:

flz122) = {1 if 27 =n/2=2%"1 ie. 2z isaoneand k — 1 zeros
0 otherwise

representing a “star” graph in which vertex 2! is connected to all other vertices
and no other edge exists, and g(z;22) = 1. A value taken from g for an argument
beginning with 0 corresponds to adding an edge between two vertices different from
(smaller than) 2. Since both are connected to it, a triangle appears. We accept
as a triangle here a trivial one formed by an edge and a self-loop.

19. Example. k-path.
Lg = {¢ : T?* » T has a k-path }

We use remark 13 to assume that B C 0°*/2I'*/2, The function f will represent a
graph with k—1 consecutive edges, with an endpoint at vertex 0 and all other vertices
past n/2. As soon as an edge is added from vertex 0 to any vertex strictly between 0
and n/2, a k-path appears.

The 3-critical functions are: f(z12,) = 1 if 21 = 0 and 2, = n/2, or if z; and
z, are consecutive and strictly between n/2 and n/2 + k — 2, and 0 otherwise; and
g(z122) = 1. Similarly, for the problem k-cycle, it is enough that in the graph defined
by f an edge is added connecting 0 to the last vertex in the path.

364

20. Example. Maximum degree A > k
Ly = {¢ : %% — T with A(¢) > k}

We interpret the degree of £ at z € I'* as the number of ones in the column
{f('2) : 2’ € T*}. The maximum degree of £, A(£), is the maximum of the degrees
of £ at any 2. The correspondence with the graph-theoretic notion is apparent.

J-critical functions: f(z123) =1if and only if z; > n — k+ 1, and g(2) = 1.

Now we present some examples taken from [29], concerning problems on finite
sets of integers. We represent the sets by their characteristic functions as subsets of
['", where n is large enough to write any integer from the set with exactly n bits
(again using leading zeros as padding). In [29], succinct versions were considered,
actually in terms of various compact description languages. Again we will consider
standard problems here, and leave the results on succinct versions to the next section
as applications of the Conversion Lemma. Again the “nonemptiness” problem for sets
is Lo. For those problems involving two sets, we encode both in the same function:
the restriction of the function to 0I'"~! will encode the first and the restriction to
1™ the second. Sometimes single clements appear as data in [29]: we fix their
value to appropriate constants without loss of generality.

21. Example. Critical element.

An element @ is critical for a set if a not being in the set implies that it is
empty [29].

Lijp ={¢:T" — T s.t. 2" is critical }
J-critical functions for the complement: f(z) = 0 and g(z) = 1.

22. Nonempty intersection.

Lyy ={£:T" =T s.t. I2f(02) = f(12) = 1}
F-critical functions: f(0z) =0, f(1z) =1; g(z) = 1.

23. Example. Maximum below a boundary.

Is a the maximum element in the set smaller than b7

Lz ={¢:I'"" — I s.t. 0 is the maximum argument z smaller than or equal to
2" for which £(z) = 1}

F-critical functions for the complement: f(0) = 1, f(2) = 0 for z > 0, g(0) = 0,
g(z) =1 for z > 0.

24. Example. Subset.

Lis ={£:T" — I s.t. V2 f(02) < f(12)}

F-critical functions for the complement: f(z) = 0 and glz) = 1.
25. Example. Equality.

Liy ={£:T" > T s.t. Vzf(0z) = f(12)}

J-critical functions for the complement: f(z) = 0 and g(z) = 1.

365

26. Example. Set connectedness.

The set represented by £ is connected if Vz,y,z with 2 < y < z,

f@) = 1AE(z) = 1= £y) = 1.

Lis = {£:T" T is connected }

J-critical functions for the complement: f(z) = 1 if and only if z; > 2"~!; and
g(z)=1.

We move now to a similar sufficient condition for C!LT completeness, as an-
nounced before. It has a similar structure to that of theorem 11. The analogous
condition is as follows.

Let) be a property on finite functions, and let f and g be two linear-time
computable functions, f, g : T* +» I'", such that for every ¢ € I'", |g(z)| = |f(z)| =m
where m is a power of 2 that depends only on n. We will say that the pair (f,g) is
C-critical for @ if the following condition holds:

For every nonempty set B C T'", the function hg|r» € @ if and only if ||B|| >
271 where as before

() ifegB
hB(m)_{g(m) ifzeB

27. Theorem. Let () be a property of finite functions. If there exists a C-critical pair
(f,g) of functions for @, then @ is C'LT-hard for the LT-reducibility.

Proof. The proof is analogous to that of theorem 11, reducing instead problem L1 to
Q. This function ¢ that computes the bits of the image y is quite similar to that of
theorem 11. Essentially, for a given string z, here we have to produce a list having as
many values of f as ’s in x, and as many values of g as 1’s in . We must be careful
also that in the part that pads up y to complete a finite function we put as many
values of f as values of g. The resulting word y coding the resulting finite function
will have size m2™, where n is the smallest integer such that |z| < 2™ and m = |f(0")],
m a power of 2. Instead of describing the function in detail as we did for theorem 11,
we just give the definition:

glr); ir= I_#J and (i mod m) =j
and ((i < m|z| and z, = 1) or (m|z| <7 < m2" and r odd))
plz,i) =
f(r); ifr= L%J and (¢ mod m) = j
and ((4 < m|z| and z, = 0) or (m|z| <7 < m2" and r even))

For a given @, = has more 1’s than 0’s if and only if ¥ encodes a function with the

values of g arising more frequently than the values of f, which by the condition in
the definition of C-critical function implies that y € Q. m

366

28. Remark, Again there is no mystery about the lower bound 2"~ on [|B]|. By ad-
justing the ratio of f’s and g’s in the section between m|z| and m2", other thresholds
can be used in the same simple manner.

This theorem can be easily applied to a number of problems in the straightforward
way. The reader can probably suggest several natural examples along the lines of the
previously presented ones. In particular, interesting examples are the cardinality
problem and the number of components problem, defined in [29], where it is proved
that in succinct form they are complete for C?P. Here we infer easily from theorem 27
that their standard forms are complete for C'LT.

In the next section we will discuss what happens to the succinct versions of all
the problems studied here: all of them will increase in complexity by exactly one
exponential, and this will follow from the Conversion Lemma.

6. COMPLETE SETS AT HIGHER LEVELS

We give now some more examples of function problems that are complete in some
other levels of LCH, sketching the proof of their completeness. We treat some classes
at what could be called the second level of the hierarchy, and then discuss complete
problems in any of the classes of some subhierarchies of L CH. Relaxing certain bounds,
we will obtain P-complete problems. Finally, we apply the Conversion Lemma to
translate complete sets for LCH into succinct versions that turn out to be complete

for CH.
The Second Level

We understand by “the second level” those classes that can be defined using two
quantifiers. We give some problems whose complexity corresponds to this level.

29. Example. Surjective function.

Lig = {£:T?" — I'?" such that £ is surjective on 07T~}

First we prove that Lys € V'J'LT. For a given w € I'*, |lw| = 2n.22" it has to
be checked that every value of the form 07w appears in the given string and starting
in a correct position. This can be expressed using quantifiers, in the following way:

w € Lig <= w is correct encoding of a function ¢ : I'?" > T'2" and

Vy(!y| = n) : Jw; = #, and Wity - Wigan = 0™y

Let us see that Lig is hard for V!3'LT. Let L ¢ V'I'LT. There is a constant ¢
and a LT-predicate P such that for every z € I'*,

ze Ll < Vey .3, P(z,y,z)

We give a reduction from L to L;g. For a given z, let n be the smallest power of 2
greater than or equal to c[log|z[]. The image g(z) will have size 2n-22", The idea is
that in this image, for every y, we will make the substring 0%y to appear if there is a
z such that P(z,y, z), constructing the substring 12" otherwise. Giving the function
@ bit by bit as we did in the previous examples makes it difficult to understand it

367

therefore we give it in “pieces” of length 2n. Recall from the preliminaries that we
denote by [w] the integer whose binary expansion, padded up to length 2n, is w.

By = |z| =n and P(z,y,z
oy an+1)plen (e + 1w = { B = Zm e R

Observe that again we need the fact that n is a power of 2, since by giving function
i in pieces of length 2n, we are actually hiding a division by 2n. The transformation
from an integer i into the corresponding string is trivial since one just has to add 0’s
" to the left until the string has length 2n.

30. Example. Minimum degree 6>k

Liz = {£ : 7% T with §(¢) > k}

The degree of £ at 2z € T* was defined in the example 20. The minimum degree
of £, &(¢), is the minimum of the degrees of £ at any z. Again there is a correspon-
dence with the graph-theoretic notion. This problem is complete for II,-alternating
logarithmic time. We omit the proof: it is similar to the previous one.

31. Example. Large injective restriction.

Lis = {£ : T2 > ['?" s.t. there is an injective testriction of § of size > 27}

Lig is complete in C'3'LT. The proof follows again guidelines similar to the
previous ones.

Complete Problems for ©}: a Tiling Game

We will consider a finite set of strings T C T2 as the set of tiles of a one-dimensional
domino game. Given a string z € T, a second string y € T' will match with = if the
last s digits of ¢ coincide with the first s digits of y. We will also consider a number
m € IN and two players, Constructeur and Saboteur as in [4], building a tiled row of
dominoes. Given a starting tile, alternately, each of the two players selects a domino
that matches with the right part of the last selected tile, and adds it to the row. The
aim of Constructeur is to build a tiled row of m + 1 tiles, while the aim of Saboteur
is to prevent Constructeur from reaching his aim. We investigate different versions
of this tiling game. Similar tiling games have been independently defined by Gridel
in [9], where they are used as tool to study the complexity of boolean algebras. For
cach odd m we define the following problem:

R(m): Tiling game of length m (m > 1 and odd). Consider a tiling game of 2™ tiles
of length 2mn given one after another in a string and separated by the marker #.
The starting tile is given by the first 2mn digits of the string. If Constructeur starts
the game, can he complete a tiled row of m + 1 tiles?

32. Proposition. R(m) is B!, -complete.

Proof. We prove first that R(m) € ! . Given w € ['*, |w| = 2mn-2™", we can write
the decision problem as a string of m quantifiers followed by a log-time predicate, so
that the meaning of the expression is that Constructeur has a way to select tiles in
which Saboteur either plays unfair (placing tiles that do not match) or cannot prevent
Constructeur from making the tiled row:

368

w € R(m) <= w has the correct encoding and 3i,Viy ... Ji,, :
Wy, =wi, =...=w; =F# and
Win 1« Wiy h2mnWiz 41« - Wip+2mn « o« Wip 41+ - Wi 4 2mn
is a correct row of the domino game, or for some even j

Wi 41 .. Wi; 42mn does not match with w;,_ .. AW e
J i ' s J

To prove that R(m) is hard for %!, (m odd), let L be a language in B! . Fora
certain constant ¢ and a log-time predicate P, and for every z € I

2 L «— oy v, 3y, P(z,u1,...,u,)

Let n be the smallest power of two greater than or equal to c[log [z[]; for any
k < 2", represent by (k), the binary expansion of length n of k. We will reduce L to
R(m). For this we will construct a domino game of 22(m+1)n tiles of size 2(m + 1)n
in such a way that in any row, the first m tiles can always be placed. The tile m + 1,
corresponding to Constructeur, is related to the predicate P and to the tiles placed
before, and if both players have played right, it can only be placed if z € L. This
will be argued after the definition of the function @. Again, for clarification, we will
describe the function in pieces, each piece corresponding to a tile of the domino game
in the reduction. Again [-] represents the standard mapping from strings in I'2(m+1)n
into integers.

oz, w1z ... wmemy] - 2(m + In+1)...e(z,([urus .. MmUmi1] +1)-2(m +1)n) =

[(m)n0m07...07|(0),0m0" ... 0| ifu;j=(0), forje{l...m+1}
(00,0707 .07 |(1)u 0% ... 07] if uj = (1), for j € {2...m +1}
[(1)nu107...07[(2),,u3us0m ... 07 ifuj=2pforje{3...m+1}

[(2)nu1u20m ... 0" |(3), 01 upus 07 . .. 0| fuj=(3),forjc{d4...m+ 1}

f(m = 2)nu1u2 - = .um_20”0”|(m == l)nul i .um,zum_lﬂ“l
ifuj=(m—1), for j € {m,m+ 1}

|(m — B O | R T 0"|(m)num0n ... 0"

if 4ty = (m), and P(z,u1,u; ..)

[(m)n07...0%|(0),0m...0"| otherwise

We will see that Constructeur can build a tiled row of m + 1 tiles if and only
if # € L. Observe that the only tiles that depend in the predicate P have the
form |(m — 1)pus ... %pm—10%|(m), 2,07 .. .0m. In these tiles is encoded the whole

369

history of the game, i.e., the u's will correspond to the quantified variables is the
definition of L. The remaining tiles will always be in our set of dominoes; this
means that the tiled row constructed in the game will always have length at least
m. The string of length n written at the left of every tile guarantees that the
j-th tile in the row encodes an election w;_y for the quantifier j — 1. Tt will be
possible to place the tile m + 1 if and only if there is a choice of u,, such that
Pl 5. vt)» U & & L then Jug 1 Vus...Ju, : P(z,uq,...um). Considering
Saboteur’s selections, Constructeur only needs to select the tiles that codify the
~ values corresponding to the existential quantifiers in the formula. Conversely, if
Vg : Jusg ...V : 2P(z,u1 ... u%n), then Saboteur can select tiles so that the m-

th domino in the row is |(m — 2)nu1 ... Um—20707|(m — 1)nuy ... U —2Um—107] and

for any ., the tile [(m — 1)pu1 ... um—2Um—1 07|(m)ntm0™...0"] is not in our set of
dominoes. It follows that Constructeur cannot finish the row. =

We require the game to have an odd number of moves since we want Constructeur
to start and finish the game. This is why the related problem lies in an odd level of
the logarithmic time hierarchy. Analogous games could be defined for the even levels.

Complete Problems for C}: the Green Tree

Consider a tree whose leaves can be labeled with either a 1 (the leaf is green) or a 0
(the leaf is brown). We will say that an interior node of the tree is green if more than
half of its direct descendants are green. A tree is green if its root is green. We will
restrict ourselves to complete trees having degree 2", n € IN i.e. each interior node
has 2" direct descendants. A complete tree with its leaves labeled, having k levels
and with every node having 2" direct descendants will be represented by a list of 2%
bits, each representing the label of one of the leaves. The problem is as follows:

T(k): Green tree of height k. Given a list of 257 bits, does it encode a green tree of
k levels?
33. Proposition. T(k) is C}, complete.

Proof, We prove that T(k) € C}. Given w € I'*, the length of w can be checked using
standard techniques. Suppose |w| = 2", n € IN.

w e T(k) e Cll(lllt = n) g C’Lg(llg| = TL)"' C'Lk(l‘tk[= TZ.) 5 w(iliz---ik) = 1

To see that T'(k) is hard for C, let L € C!. There is a constant ¢ and a polynomial-
time predicate P such that for every =z € I'",

g BF 2= Oty 1 Gy -0 % ; P(uy...ug)

where without loss of generality we assume all thresholds to be 1/2. We give the

reduction from L to T(k). Let n be the smallest power of 2 greater than or equal to

¢[log|z|]. The image g(z) will have size 2kn and the function ¢ defining its bits is
simply

1 P < ot

(P(:D;(UIUZ-HEIC)} = {0 1 ('H-NLZ TLL)

Unbounded Versions of the Tiling Game and the Green Tree

This subsection is an aside with little relation with the rest of the paper. Observe
that the last two problems studied are “bounded” in the sense that we only allow a

if =P(ujus...ug)

370

tiling game to have a constant number of moves, or a tree to have a constant depth.
What happens if we do not enforce these limitations? We show that in this case the
problems are complete for P.

R': Given a set of tiles of length k, a starting tile ¢; and an ending tile ¢, can
Constructeur finish a tiled row from t; to ¢», with Saboteur trying to prevent him
from reaching his aim, and moving alternatively?

T' = {k#w: k€ N,w € [st. w € T(k)}
34. Proposition. R' and 7" are LT-complete for P.

Proof. We see the proof for T'; the one for R’ is easier.

To see that 7" € P, given k#w, first check |w| = 2*¥” for a certain n € IN. Then
write a string of size 25("~1) with a labeled list of the nodes at distance 1 from the
leaves (encoding them by a 1 if they are green or by a 0 if they are brown), and
iterate k times the process until the root is reached. Since |w| = 2%¥" the process is
polynomial with respect to |w|.

To see that 7" is hard for P, we reduce to T" the problem G described below. @
is a simplified version of the problem “Game” which is shown to be complete in P in
[12]. The completeness of G for the class P can be proved using the characterization
of Pin terms of alternating log-space machines [2].

G: Given a two-player game, encoded by a complete tree with every node having
exactly n direct descendants and with its leaves labeled 0 (losing position for the first
player) or 1 (winning position for the first player), the two players select alternatively
a path going from the standing node to one of its descendants. Does the first player
have a winning strategy that takes him from the root to a leaf labeled 17

To reduce G to T", we use a trick similar to the one used by Gill [8] to show that
NP C PP. Given a complete tree ¢ with k levels and with each node having exactly
n direct descendants (¢ can be encoded with 2*" bits), we can construct a new tree
t', with every node having 2n direct descendants. For [equals 1 to k, connect every
node of level [in ¢, with n new trees of [— 1 levels, being all the new trees green if
[corresponds to a level in which the first player moves, and all ot them brown if I
corresponds to a move of the second player. The resulting tree ', that can be encoded
with 22" bits, is green if an only if in ¢ the first player has a winning strategy. a

Succinct Representations

We have fruitfully discussed completeness for many classes of LCH. Let us consider
now succinct versions of these problems. As before, the succinct version sA of a
problem A on finite functions gets as input a boolean circuit computing a function
from I'* to '™, and consists of solving the standard problem for the finite function
computed by the circuit. ’

Let us first prove a simple extension of lemma 2 to the classes defined by means
of alternating quantifiers.

35. Lemma. If L is a problem in K, K € LCH, then the succinct version of L, sL, is
in K', being K’ the corresponding exponentially larger class in CH.

Proof. Let K € LCH and L € K. By definition, for a certain & € IN, a constant c1,
and a log-time predicate P, and for any z € I'*,

e L < Q;cl’l:l :Ql;lig "'Qiﬂl’.’:k 7 P(E,?:l,ig .?,k)

371

where each ; is an existential, universal, or counting quantifier. Let sL the succinct
version of L, and C, the boolean circuit representation of an instance z. Supose that
O, teceives n bits as input, and produces m bits as output. C. encodes then a string
¢ of m2™ bits, and since m +n < |C,|, we have 2/%=| > |z|. It follows that for some

polynomial p
C. €sL <= Qi1 : Q% - Qhix : P'(®,41,32...4z)

being P’ a polynomial-time predicate (respect to C,) working like P, except that
when P queries a bit in a position i of @, P' queries the bit indirectly from .
using the following process: compute r = ||, the input that produces the part
of z that contains its i-th bit; then feed into the circuit the r-th string of length n
in lexicographical order, evaluate it, and select from the output the bit in position
i mod m. This is the i-th bit of . This simulation process can be done in polynomial
time with respect to C;. Tt follows that sL € K. B

As a consequence of lemma 35 and theorem 5 (essentially, the Conversion
Lemma), the succinct versions of the problems that we have shown to be complete in
different classes of LCH are complete in the corresponding classes of C'H with respect
to the m-reducibility. This includes all the NP-completeness and co-NP-completeness
results of [6] and [29] and most of their other results for other classes. The remaining
ones are settled in the next section.

36. Corollary. The succinct versions of the problems Li...Lis, R(m), and T(k) are
complete in the corresponding classes of CH with respect to the m-reducibility.

7. UNDIRECTED ACCESSIBILITY AND RELATED PROBLEMS

The main result in this section is a construction of a graph associated to a given
quantified boolean formula, which has the following property: for two selected nodes
in the graph, there is a path joining them if and only if the quantified boolean formula
is true. Although the size of the graph is exponential in the formula, we will see that
it can be described by a considerably shorter boolean circuit which can be constructed
from the formula in polynomial time.

We employ this construction to present an ad-hoc proof of the PSPA CE-hardness
of the succinct version of undirected accessibility. From it, combining the Conversion
Lemma with known LT-reducibilities among graph problems, we will obtain further
classifications of succinct versions of graph problems, including planarity, bipartite-
ness, connectivity, acyclicity, Eulerian path, and perfect matchingsin bipartite graphs.
We end the section by discussing the interesting particular case of bounded degree
planarity.

The result regarding undirected accessibility can be inferred from the work of
[16] on symmetric computation, since they prove that this problem is complete for
the class SL of symmetric logarithmic space, and that this class includes L. Therefore,
by the Conversion Lemma, the succinct version is PSPA CE-complete. The interest of
the proof we present here is: first, that it is very intuitive and clear, independent of the
complex simulations of [16]; second, that it is essentially a natural (albeit nontrivial)
extension of a technique of [6] which the authors did not expect to reach any further,
as mentioned in their conclusions; third, that it can be immediately seen to apply to

372

planarity for bounded degree graphs, a case for which we are able to completely settle
the problem.

Before presenting the construction, let us define quantified boolean formulas. A
boolean formula is either a boolean variable, its negation, a boolean constant “true”
or “false,” the conjunction of two boolean formulas, or the disjunction of two boolean
formulas. An assignment of boolean values to the variables safisfies the formula if
and only if once the substitution is made, the formula evaluates to “true.” Quantified
boolean formulas are boolean formulas preceded by a string of quantifiers (prenex
form), each refering to one of the variables of the formula, so that no free variables
remain. The allowed quantifiers are ¥ and 3. Such a formula is evaluated as follows:
Vo F is true if, when substituting “true” and “false” for v, both resulting formulas
are true; and Jv F' is true if, when substituting “true” and “false” for v, at least one
of the resulting formulas is true. Otherwise, the formula evaluates to “false.”

The problem QBF is the following: given a quantified boolean formula, decide
whether it evaluates to “true.” More information about quantified boolean formulas
and the problem QBF can be found in [1], including the following fact.

37. Theorem. QBF is PSPACE-complete.

We present now the construction announced above. We describe it inductively
on the form of the formula, by induction on the number of quantifiers. The nodes
are identified by sequences of binary numbers. Without loss of generality, we assume
that the variables are numbered according to their position in the quantifier string,
the innermost being smallest.

Induction Basis. The formula has no quantifiers. Since no free variables are allowed, it
evaluates either to “true” or to “false.” The associated graph consists of two vertices,
labeled 0 and 1, joined by an edge in case the fromula is true, or disconnected if

the formula is false. Arbitrarily declare source node the node 0 and target node
the node 1.

Induction Step. We have two cases depending on the outermost quantifier. Let F be
the given formula, and assume first that F'is Ju; F'. Construct F, and F} substituting
“false” and “true,” respectively, for v;, and inductively consider the graphs associated
to them, Gy and G;. Re-label all nodes in these graphs by concatenating “00;” and
“110;” respectively to their labels. Create two more vertices with labels i01 and 711.
Declare the first source node and join it to the source nodes of Gy and G;. Declare
the other target node and join it to the target nodes of Gy and . The case of F
being Vuv; F' is similar, but the graphs are connected in series instead of in parallel,
i.e. the new source node is linked to the source of G, the target of Gy is linked to
the source of Gy, and the target of G, is linked to the new target node.

It is easy to see by induction that the source and target nodes of the obtained
graph are connected if and only if the formula evaluates to true. The graph requires
exponential time to be constructed, and is itself of size exponential in the size of the
formula. However, given the formula, it is possible to decide whether an edge exists
between two nodes in time polynomial on the labels of the nodes. Assume that the
formula has n variables. If both labels consist of n numbers then the edge corresponds
to a nonquantified formula, and the labels provide the value of each variable, so that
it only remains to evaluate the formula. This can be done in polynomial time [19].

373

Else, only sources and targets of the same stage or two consecutive stages can be
linked, and this is easy to check by looking at one of the quantifiers in the prefix of
the formula.

This algorithm for checking whether an edge exists can be presented by a boolean
circuit depending only on the formula F, and the circuit can be constructed in poly-
nomial time from F using the techniques of [15] (see also [1], section 5.4). Thus, we
have a circuit Cg which can be constructed in time polynomial in the size of F, which
represents a graph in which a source and a target node are selected, such that F eval-
uates to true if and only if there is a path from the source node to the target node in
the graph. This is a polynomial time m-reducibility from QBF to the succinct version
of undirected graph accessibility, and therefore we obtain the following theorem:

38. Theorem. The succinct version of the graph accessibility problem for undirected
graphs is PSPACE-hard for the m-reducibility.

A similar reduction works for planarity testing:

39. Theorem. The succinct version of the planarity problem for undirected graphs
is PSPACE-hard for the m-reducibility, even when restricted to graphs of bounded
degree.

Proof. Given F, construct a circuit describing a complete graph with five nodes, and
then substitute the previously constructed graph for one of the edges, identifying the
endpoints with the selected source and target nodes. The resulting graph is nonplanar
if and only if there is a path between the source and target nodes, if and only if the
formula evaluates to true. Observe that the degree of the graph is bounded. "

Some more results will be derived from known relationships between graph prob-
lems. In [3] many problems are compared according to projection and constant depth
reducibility. Although their projections are reducibilities different from the ones em-
ployed here, it is easily seen that all the reductions that we need are actually LT-
reductions. We will use also a reduction from [13], where it is stated for logarithmic
space reducibility; from the proofl it is easily seen that it is also a LT-reduction.

40. Theorem. [13] The undirected graph accessibility problem is LT-reducible to the
problem of deciding whether an undirected graph is bipartite.

41. Theorem. [3] Theundirected graph accessibility problem is LT-reducible to the
following problems on undirected graphs: connectivity, having a cycle, having an
Eulerian path, and having a perfect matching (the last, for bipartite graphs).

In fact, that reference shows that all these problems except perfect matching are
equivalent under appropriate reducibilities. From these tworesults and the Conversion
Lemma, for the hardness part, and lemma 2 for the membership part, and using the
facts that acyclicity is in L [10], and connectivity, Eulerian path [3], and bipartiteness
[13] are in NI, we obtain:

42, Theorem. The succinct versions of acyclicity, connectivity, bipartiteness, and
Eulerian path are PSPACE-complete.

For perfect matching we are left with:

374

43. Theorem. The succinct version of perfect matching is PSPA CE-hard.

Since perfect matching and planarity are in P, their succinct versions are in
EXPTIME, and therefore are the only ones left in which the upper and lower bounds
are still far apart: we only know their PSPA CE-hardness. However, we can show that
a combination of known results proves that planarity of succinctly represented graphs

of bounded degree is in PSPACE, and therefore P§PACE-complete by theorem 39.

44, Theorem. Testing planarity of bounded degree graphs is in NI, and therefore its
succinct version is PSPA CF-complete.

Proof. In [21] it is shown that this problem is in the third level of the symmetric
complementation logarithmic space hierarchy, which is included by definition in the
logarithmic space hierarchy. However, Immerman [11] and Szelepcsényi [25] have
shown that NI is closed under complementation, and therefore the logarithmic space
hierarchy coincides with NL. Thus, planarity of bounded degree graphs is in NL. =

8. DISCUSSION

We have considered decisional problems in which the input is represented in a non-
standard form. All combinatorial objects can be naturally encoded as hinary words,
the adjacency matrix of directed graphs being a prime example. Since such encodings
can be viewed as boolean functions, they can be represented by a possibly small
boolean circuit. In case the objects are particularly regular, such a representation is
shorter than the full standard encoding. Following the research initiated in [6], we
have studied how this change in the presentation of the input affects the complexity
of the decisional problems.

It was known that the succinctly represented problem is at most exponentially
harder than the problem on standard encodings. In [6] it was shown that quite simple
succinct graph problems are already NP-hard; in [20] it was shown that NP-complete
standard problems (for projection reducibility) become NEXP TIME-complete for suc-
cinct inputs, and such an exponential blow-up for problems in P was stated.

By introducing logarithmic-time reducibility and two counting hierarchies cor-
responding to logarithmic time and polynomial time, we have been able to find a
generalization that carries over to other, computationally much weaker classes and
yields in a uniform manmner all the known lower bounds and many others.

More precisely, our Conversion Lemma shows that LT-reducibilities among the
standard problems translate into m-reducibilities among succinctly represented prob-
lems, independently of any membership or completeness property of the sets in any
particular complexity class. Together with known upper bounds, we get precise clas-
sifications of problems in LCH and CH.

As can be expected, research relating two subjects sheds light on both. In
this case, not only we have now a better understanding of the phenomenon of suc-
cinct descriptions via boolean circuits, but also we have gained knowledge about
the logarithmic-time counting hierarchy, providing very natural complete problems
and powerful sufficient conditions to find new ones, and giving precise classifications
for problems about finite functions in LOH and in CH for their succinct version.
The logarithmic-time counting hierarchy deserves deeper study, since the union of
its classes is precisely the class T'C\, of problems solved by constant depth threshold

375

circuits, which characterizes certain neural computation patterns and other models

of fast parallel computation; moreover, this hierarchy is the only one where actual
separation results are known between infinitely many classes.

Natural continuations of this work would consist of the study of other languages

for the representation of succinct instances, such as those introduced in [28], [29], and

[14],

where also comparisons between the descriptive power of those languages are

made. Is it possible to characterize the complexity jump derived from the use of these

languages in such an exact way as for the boolean circuit model?

9. REFERENCES

[1]
2]
3]
[4]
[5]
[6]
[7]
(8]
[9]

376

J.L. Balcdzar, J. Diaz, J. Gabarré: Structural Complezity I, EATCS Monographs
on Theoretical Computer Science, vol. 11, Springer-Verlag (1988).

A. Chandra, D. Kozen, L. Stockmeyer: “Alternation”. Journal ACM 28 (1981),
114-133.

A, Chandra, L. Stockmeyer, U. Vishkin: “Constant depth reducibility”. STAM
Journal on Computing 13 (1984), 423-439.

B.S. Chlebus: “Domino-Tiling games”. Journal of Computer and System Sciences
32 (1986), 374-392. '

M. Furst, J.B. Saxe, M. Sipser: “Parity, circuits, and the polynomial-time hier-
archy”. Mathematical Systems Theory 17 (1984), 13-27.

H. Galperin, A. Wigderson: “Succinct representations of graphs”. Information

and Control 56 (1983), 183-198.

M. Garey, D. Johnson: Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman (1978).

J. Gill: “Computational complexity of probabilistic Turing machines”. STAM
Journal on Computing 6 (1977), 675-695.

E. Griddel: “Domino games with an application to the complexity of boolean
algebras with bounded quantifier alternation”. Proc. 5th Symp. Theor. Aspects
of Comp. Sci. LNCS 294, Springer-Verlag (1988), 98-107.

J. Hong: “On some deterministic space complexity problems”. STAM Journal en
Computing 11 (1982), 591-601.

N. Immerman: “Nondeterministic space is closed under complementation”. STAM
Journal on Computing 17 (1988), 935-938.

N. Jones, W. Laaser: “Complete problems for deterministic polynomial time”.
Theoretical Computer Science 3 (1977), 105-117.

N.D. Jones, E. Lien, W.T. Laaser: “New problems complete for nondeterministic
log space”. Mathematical Systems Theory 10 (1976), 1-17.

M. Kowaluk, K. Wagner: “Vector language: simple description of hard instances”.
Proc. Math. Found. of Comp. Sci. LNCS 452, Springer-Verlag (1990), 378-384.

R.E. Ladner: “The circuit value problem is log space complete for P”. SIGACT
News 7 (1975), 18-20.

H.R. Lewis, Ch. Papadimitriou: “Symmetric space-bounded computation”. The-
oretical Computer Science 19 (1982), 161-187.

[17]

18]

[19]

[26]

[27]
28]

[29]

A. Lozano: “NP-hardness on succinct representations of graphs”. Bulletin of the

EATCS 35 (1988), 158-163.

A. Lozano, J.L. Balcazar: “The complexity of graph problems for succinctly rep-
resented graphs”. Proc. Graph-Theoretic Concepts in Comp. Sci. LNCS 411,
Springer-Verlag (1989), 277-285.

N. Lynch: “Logspace recognition and translation of parenthesis languages”. Jour-
nal ACM 24 (1977), 583-590.

C.H. Papadimitriou, M. Yannakakis: “A note on succinct representations of
graphs”. Information and Control 71 (1986), 181-185.

J.H. Reif: “Symmetric complementation”. Journal ACM 31 (1984), 401-421.

M. Sipser: “Borel sets and circuit complexity”. Proc. 15th Symp. Theory of Comp.
{(1983), 61-69.

S. Skyum, L.G. Valiant: “A complexity theory based on boolean algebra”. Journal
ACM 32 (1985), 484-502.

L.J. Stockmeyer: “The polynomial time hierarchy”. Theoretical Computer Science
3 (1977), 1-22.

R. Szelepcsényi: “The method of forced enumeration for nondeterministic au-
tomata”. Acta Informatica 26 (1988), 279-284.

J. Toran: “Succinct representations of counting problems”. 6th Int. Conference
on Applied Algebra, Algebraic Algorithms, and Error Correcting Codes LNCS
357, Springer-Verlag (1988), 415-426.

J. Tordn: “Complexity classes defined by counting quantifiers”. Journal A CM 38,
753-774.

K. Wagner: “The complexity of problems concerning graphs with regularities”.
Proc. Math. Found. of Comp. Sci. LNCS 176, Springer-Verlag (1984), 544-552.

K. Wagner: “The complexity of combinatorial problems with succinct input rep-
resentation”. Acte Informatica 23 (1986), 325-356.

377

