A Note on the Hardness of Tree Isomorphism

Birgit Jenner Pierre McKenzie * Jacobo Toran
Tiibingen and Ulm Montréal and Tiibingen Ulm

December 5, 1997

Abstract

In this note we prove that the tree isomorphism problem, when trees are en-
coded as strings, is NC!'-hard under DLOGTIME-reductions. NC!-completeness
thus follows from Buss’s recent NC! upper bound. By contrast, we prove that
testing isomorphism of two trees encoded as pointer lists is L-complete.

1 Introduction

GI, the graph isomorphism problem, is one of the most intensively studied prob-
lems in Theoretical Computer Science. Historically, the main source of interest in
GI has been the evidence that GI is probably neither in P nor NP-complete, but
other sources of interest include the sophistication of the tools developed to attack
the problem (for example [2, 17]), and the connexions between GI and structural
complexity (see [14]).

Understandably, many GI restrictions have been considered. For example, P
upper bounds are known in the cases of planar graphs [12] or graphs of bounded
valence [17]. However, none of these GI restrictions are known to be complete for a
natural complexity class, and it seemed that the problem lacks the structure needed
for a hardness result.

In the special case of trees, a linear sequential time algorithm for the problem was
already known in 1974 to Aho, Hopcroft and Ullman [1]. In 1991, an NC algorithm
was developed by Miller and Reif [18]. One year later, Lindell [15] obtained an
L upper bound. Finally, in 1997, a subtle algorithm able to test two trees for
isomorphism in NC! was devised by Buss [7].

Buss in [7] asks whether tree isomorphism is NC!-hard. Here we answer this ques-
tion affirmatively showing the hardness of the problem under DLOGTIME many-one
reducibility. Hence tree isomorphism is NC'-complete. Trees thus provide the first
class of graphs for which the isomorphism problem captures a natural complexity

*Corresponding author: Pierre McKenzie, Wilhelm-Schickard-Institut fiir Informatik, Univer-
sitdt Tibingen, Sand 13, D-72076 Tiibingen, Germany. Phone: +49 (7071) 29 74284. Fax: +49
(7071) 29 5061. Email: mckenzie@informatik.uni-tuebingen.de

class. Moreover, so far, the problem of evaluating a Boolean formula [6] and the
problem of multiplying permutations on five points [3] (and some of their varia-
tions) were the only two NC'-complete problems known. Tree isomorphism is a
third such problem.

As noted by Buss, choosing a graph representation is critical when working at
the level of NC'. Buss uses Miller and Reif’s string representation for trees on the
grounds that, when the pointer representation is used, the “deterministic transitive
closure problem can be reduced to the descendant predicate, and the former is known
to be complete for logspace” [7, Section 2].

We prove here that the tree isomorphism problem is L-hard under many-one
NC'-reducibility when the pointer representation is used. Hence, tree isomorphism
in the pointer representation is L-complete by Lindell [15] or by Buss [7]. Tree
isomorphism thus captures in this way another very natural complexity class.

2 Preliminaries

We assume familiarity with basic notions of complexity theory such as can be found
in the stardard books in the area. In particular, we simply recall that

AC' c TCYC NC!' C L,

where L is the set of languages accepted by deterministic Turing machines using
logarithmic space, NC! is the class of languages recognized by DLOGTIME-uniform
families of logarithmic depth, polynomial size, Boolean circuits of bounded fan-in
over the basis {A,V, -}, and AC? (resp. TC?) is the set of languages recognized by
DLOGTIME-uniform families of constant depth, polynomial size, Boolean circuits
of unbounded fan-in over the basis {A,V, =} (resp. over the basis consisting solely
of the MAJORITY function).

For simplicity, we will often not distinguish between a class of Boolean func-
tions like NC! and the corresponding class of functions from {0,1}* to the natural
numbers, sometimes called FNC'.

2.1 Reducibilities

We use the following reducibilities:
e DLOGTIME reducibility (<PT)

We use this reducibility for the NC!-completeness results. Following [6, 8] we
say that for languages A, B C ¥*, a function f many-one reducing A to B is a
DLOGTIME reduction if (1) f increases the length of strings only polynomially
(If(z)| < p(jz]) for a polynomial p), and (2) some DLOGTIME Turing machine can
decide given an input of (¢4,), whether the ith symbol of f(z) is c. We write
A<PLET B if there exists a DLOGTIME reduction reducing A to B. (Recall that it
is customary in the case of Turing machines operating in sublinear time, to access

the input via a special input index tape, for more details on DLOGTIME Turing
machines see for example [4].)

e NC! many-one reducibility (<NC")

We use this reducibility for the L-completeness and all other results. Here the many-
one reduction f is required to be computable in FNC'.

2.2 Trees and representations

All trees discussed in this paper are rooted (hence implicitly directed) and unordered
(i.e. the ordering of the descendants of a node does not matter). In some of our
constructions we use colored trees. A tree with n nodes is said to be colored if
each node in the tree is labelled with a positive integer no greater than n. An
isomorphism between two colored trees T7 and 715 is a bijection between their node
sets which maps the root of T7 to the root of Ty, preserves the colors, and preserves
the edges. Two colored trees are isomorphic, denoted 17 ~ T5, iff an isomorphism
exists between them. These notions apply mutatis mutandis to non-colored trees.
The main computational problem of interest in this paper is:

[Colored] Tree Isomorphism ([C]TI)

Given: Two [colored] trees T and T5.
Problem: Determine whether 77 ~ T5 .

We consider two different representations for encoding trees: the string repre-
sentation and the pointer representation. As we will see, in the small complexity
classes we are dealing with, the representation used might change the complexity of
the problem.

In the string representation [18], trees are represented over an alphabet contain-
ing opening and closing parentheses. A string representation of a tree T is defined
recursively in the following way: The tree with a single node is represented by

the string “()”, and if T is a tree consisting of a root and subtrees Ty,..., T} (in
any order), with string representations aq,...,ax, a representation of 7' is given
by “(ai,...,a)”. Observe that a tree might have different string representations,

depending on the order of the descendants of any of its nodes. Colored trees can be
encoded in the same way using colored parentheses. Let C be the set of colors. An
opening parenthesis in a colored tree is represented by “(” followed by log(|C|) bits
encoding the color. Note that we only need to color the opening parentheses.

The pointer representation is a more standard way to encode graphs. In this case
we consider the trees given by a list of pairs of nodes representing directed edges.
As in the previous case, if we deal with colored trees, with the representation of a
node we include log(|C]) bits to encode its color.

For many tree problems in NC! and L, completeness results seem to depend on
the representation used. For example, the reachability problem on forests, which

is L-complete in the pointer representation [10], can be solved in NC! (and even
TC?) in the string representation. Analogously, the Boolean formula value problem,
which is complete for NC! in the string representation [7], becomes L-complete when
described using trees given in the pointer representation [5]. In fact, changing from
pointer to string representation is FL-complete [13].

Another important observation is that it is possible to test within the classes
NC! and L whether a given input is a correct encoding of a tree in the string
representation, and respectively, in the pointer form.

3 Tree Isomorphism for Trees Given by Strings

We show first that deciding whether two trees given in string representation are
isomorphic is NC'-complete. We first consider colored trees for which the hardness
proof is simpler.

Lemma 3.1 In the string representation, CTI is NC'-hard under <PLT.

Proof. Following Barrington, Immerman and Straubing [4, Lemma 6.2], it suf-
fices to reduce the problem of evaluating a balanced DLOGTIME-uniform family
of Boolean expressions made up of alternating layers of ANDs and ORs, to CTL
The core of the reduction is the simple construction from [16, 9] described in [14]
(page 45), for the purpose of simulating ANDs and ORs using graph isomorphism
questions. We adapt this construction as follows. Consider four colored trees Gy,
G, Hi, and Hy. Then the colored trees

Il m

Tree Gz Tree H,
have the property that G, ~ H, iff [(G ~ , and the colored trees
'3 ®
Tree G Tree H,

have the property that G\ ~ Hy iff [(G1 ~ G2) V (H; ~ Hy)]. Observe that the
OR-construction doubles the size of the initial trees for G; ~ G and Hy ~ Hs, that
is, from 4 trees each having the same size, s, the OR-construction would produce 2
trees each having size 4s + 7.

Now pick two single-node trees 17 and T5 and assign them different colors. Start-
ing from the CTI instance (77, T}) to represent a TRUE input and the CTI instance
(T1,T5) to represent a FALSE input, it is trivial to construct, from a depth-d Boolean
expression f with no negation gates, two colored trees G and H having O(4%) nodes
(this is a rough upper bound) and verifying the property that G ~ H iff f evaluates
to TRUE.

To see that this yields a DLOGTIME reduction, note it is possible to add a few
dummy nodes in order to modify the constructs above in such a way that, if Gy,
Gy, H; and Gy are full binary (colored) trees, then so are GA, Hpn, Gy and Hy,
and moreover, the color occurrences in these respective constructs are the same.
Because the Boolean expression is balanced, its depth is O(logn). And because
the expression is built from alternating levels of ANDs and ORs, the argument is
completed as in the proof of [4, Lemma 6.2]. |

Remark. The complete simulation used in the proof of Lemma 3.1 in fact requires
only two distinct colors. A similar construction could be devised in the absence of
colors as well.

Lemma 3.2 In the string representation, CTI <PLT TI.

Proof. The obvious idea is to simulate the colors by attaching color-dependent
gadgets at each node. Suppose that the trees in the CTI instance have n nodes.
Then it suffices to attach at each c-colored node, 1 < ¢ < n, a new node which is
root to a height-one subtree having n + ¢ leaves. In detail, at the string encoding
level, the color binary number ¢ occurring after the opening bracket which specifies
the occurrence of the c-colored node is simply replaced with the encoding of the c¢-
color gadget. To ensure DLOGTIME-computability, the color gadgets are modified
to contain an identical number of nodes: it is easy to implement the idea with n
non-isomorphic gadgets each having 2n 4+ 1 nodes. [|

Theorem 3.3 In the string representation, CTI and TI are NC"'-complete under
<DLT

Proof. CTI is NC'-hard (Lemma 3.1) and CTI <PXT TT (Lemma 3.2). Buss
[7] shows in a delicate argument that TI € NC!. (Buss in fact points out that his
NC! algorithm applies directly, as well, to the case of labelled trees.) Hence CTT is
NC!-complete.

Since <PPT is in general not transitive, NC'-hardness of TI needs to be argued
by combining the reductions of Lemma 3.1 and Lemma 3.2, or by adapting the proof
of Lemma 3.1 to the case of trees without colors. Hence TI is NC!-complete. [|

4 Tree Isomorphism for Trees Given by Pointers

Recall Lemma 3.2, which states that in the string representation, colored tree iso-
morphism reduces to tree isomorphism by the introduction of appropriate gadgets for
the colors. These gadgets are clearly NC'-computable in the pointer representation,
proving the following;:

Lemma 4.1 In the pointer representation, CTI S%Cl TIL [|

Theorem 4.2 In the pointer representation, TI is L-complete under many-one
NC"-reducibility.

Proof. The containment follows from Lindell [15], who shows that a canonical
form ¢(T') of a (rooted) tree T' can be computed in logspace. Hence, for two given
trees, we determine isomorphism by computing and comparing their canonical forms
symbol by symbol. (Alternatively, the string representation of the trees could be
computed in L, and then Buss’s NC! algorithm could be used.)

We prove hardness of T1T by reducing the L-complete problem ORD [11] to Col-
ored Tree Isomorphism, and appealing to Lemma, 4.1:

Order between Vertices (ORD)

Given: A digraph G = (V, E) that is a line, and two nodes v;,v; € V.
Problem: Decide whether v; < v; in the total order induced on V.

Let a line graph G = (V = {v1,...,v,}, E) and two designated nodes v; and
v; € V be given. We assume without loss of generality that v, is the outdegree zero
node and that v;, v; and v, are three different nodes. We first determine whether
v; < vj in the order induced by E with the help of oracle queries to CTL Later we
will show that the oracle queries can be merged to yield a many-one reduction.

We consider the instances (1”,T} ;) of the CTI problem. Here T" is the colored
tree that results from G by coloring the node v; with color 1, v; with color 2, v,
with color 3, and the rest of the nodes with color 0.

For 1 < k <1 < n, the colored tree T} ; is defined as (V. {(vy, vm41)|1 < m < n}),
with the nodes v, v; and v, colored with colors 1,2 and 3 respectively, and the rest
of the nodes colored by 0.

It is not hard to see that v; < v; in the order induced on V' by G if and only if
3k, with 1 < k <1 < n such that 7" ~ T} ;. This therefore describes a disjunctive
reduction to CTI. In order to transform it into a many-one reduction, we use the
OR-operator from Lemma 3.1 to combine all the O(n?) many queries to CTI into a
single one. The OR-operator has to be applied carefully since it doubles the size of
the trees involved every time it is used, and we are considering the disjunction of a
polynomial number of trees. However, the operator can be applied in a divide and
conquer manner and the resulting pair of trees has size polynomial in n (see [14]

page 50 for the details). Putting the two parts of the reduction together we have
that ORD is NC! many-one reducible to CTI. [|

Remark. The reduction used in Theorem 4.2 can be made much finer than g}jlcl,
but obtaining the tightest possible reduction is not the focus of this note.

5 Concluding remarks

Complementing the harder results of Buss and Lindell, we have shown that tree
isomorphism, depending on the tree representation, captures two robust complexity
classes, namely NC! and L. These are the first hardness results for a natural re-
striction of the graph isomorphism problem, for which so far no hardness result was
known. A modest L-hardness result for GI is implied by our L-hardness result for
the tree case. An interesting open question is whether the isomorphism problem for
general graphs is also hard for NL or even for P.

The level of sophistication of Buss’s NC! algorithm for TI [7] is comparable to
that of his simplified NC'! algorithm for the Boolean expression value problem FVP
[6]. Are these two upper bounds independent? In other words, is there a reduction
from TI to FVP or vice versa which is simpler than either of Buss’s two upper
bounds?

It is interesting to consider FVP §Tl\;cl TI. Proving that FVP Schl TI has re-
quired three ingredients: (1) the NC! upper bound for FVP, (2) the characterization
of NC! in terms of balanced Boolean expressions, and (3) our simple Lemma 3.1.
Lemma 3.1 directly constructs trees from Boolean formulas, but the ensuing direct
reduction is from Balanced-FVP to TI. How can Lemma 3.1 be strengthened?

The bottleneck to a strengthening of Lemma 3.1 is the handling of a Boolean
OR. Lemma 3.1 can only handle balanced Boolean expressions because the trees G\
and Hy depicted in its proof each require a copy of G1, G2, Hy, and Hy. Hence an
open question is whether Lemma 3.1 can be proved using simpler constructs G\ and
H,, still simulating the Boolean OR, but only adding a small number additional
nodes. If so, the NC! upper bound for FVP is redundant, i.e., the NC' upper bound
for FVP follows from the NC! upper bound for TI.

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman. The design and analysis of computer
algorithms, Addison-Wesley, 1974.

[2] L. Babai. Moderately exponential bounds for graph isomorphism. In Fundamentals of
Computation Theory 81, Lecture Notes in Computer Science #117, Springer-Verlag,
pp- 34 50, 1981.

[3] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC'. .J. Comput. System Sci., 38:150-164, 1987.

[4]

D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within AC?.
Journal of Computer and System Sciences, 41:274 306, 1990.

M. Beaudry and P. McKenzie. Circuits, matrices and nonassociative computation.
Journal of Computer and System Sciences, 50(3):441-455, 1995.

S. R. Buss. The Boolean formula value problem is in ALOGTIME. In 19th Annual
ACM Symposium on Theory of Computing, 123 131, 1987.

S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization. In
Computational Logic and Proof Theory, 5th Kurt Gédel Colloguium’97, Lecture Notes
in Computer Science #1289, Springer-Verlag, 1997, pp. 18-33.

S. R. Buss and S. A. Cook and A. Gupta and V. Ramachandran, An optimal parallel
algorithm for formula evaluation, SIAM Journal on Computing, 21:4, pp. 755-780,
1992.

R. Chang and J. Kadin, On computing Boolean connectives of characteristic functions.
Math. Systems Theory 28, 173-198, 1995.

S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space.
Journal of Algorithms, 8:385 394, 1987.

K. Etessami. Counting quantifiers, successor relations, and logarithmic space. In Proc.
of the 10th Structure in Complexity Theory Conf., pages 2-11. IEEE, 1995.

J. E. Hopcroft and R. E. Tarjan. A V2 algorithm for determining isomorphism of planar
graphs. Information Processing Letters, 32 34, 1971.

B. Jenner. Between NC' and NC?: Classification of Problems by Logspace Resources.
Manuskript of Habilitation thesis, 1997.

J. Kébler, U. Schoning, and J. Toran. The Graph Isomorphism Problem Its Structural
Complezity. Progress in Theoretical Computer Science. Birkhiuser, Boston, 1993.

S. Lindell. A logspace algorithm for tree canonization. In Proc. of the 24th STOC,
400-404. ACM, 1992.

A. Lozano and J. Tordn. On the nonuniform complexity of the Graph Isomorphism
problem. Complezity Theory: Current Research, pp. 245 273, 1993. Edited by
K. Ambos-Spies, S. Homer, and U. Schoning. Also in Proceedings of the 7Tth Struc-
ture in Complezity Theory Conference, pp. 118-129, June 1992.

E. Luks. Isomorphism of bounded valence can be tested in polynomial time. Journal
of Computer and System Sciences, 25:42 65, 1982.

G.L. Miller and J.H. Reif. Parallel tree contraction part 2: Further applications, SIAM
Journal on Computing, 20:1128 1147, 1991.

