
A Note on the Hardness of Tree IsomorphismBirgit JennerT�ubingen and Ulm Pierre McKenzie �Montr�eal and T�ubingen Jacobo Tor�anUlmDecember 5, 1997AbstractIn this note we prove that the tree isomorphism problem, when trees are en-coded as strings, is NC1-hard under DLOGTIME-reductions. NC1-completenessthus follows from Buss's recent NC1 upper bound. By contrast, we prove thattesting isomorphism of two trees encoded as pointer lists is L-complete.1 IntroductionGI, the graph isomorphism problem, is one of the most intensively studied prob-lems in Theoretical Computer Science. Historically, the main source of interest inGI has been the evidence that GI is probably neither in P nor NP-complete, butother sources of interest include the sophistication of the tools developed to attackthe problem (for example [2, 17]), and the connexions between GI and structuralcomplexity (see [14]).Understandably, many GI restrictions have been considered. For example, Pupper bounds are known in the cases of planar graphs [12] or graphs of boundedvalence [17]. However, none of these GI restrictions are known to be complete for anatural complexity class, and it seemed that the problem lacks the structure neededfor a hardness result.In the special case of trees, a linear sequential time algorithm for the problem wasalready known in 1974 to Aho, Hopcroft and Ullman [1]. In 1991, an NC algorithmwas developed by Miller and Reif [18]. One year later, Lindell [15] obtained anL upper bound. Finally, in 1997, a subtle algorithm able to test two trees forisomorphism in NC1 was devised by Buss [7].Buss in [7] asks whether tree isomorphism is NC1-hard. Here we answer this ques-tion a�rmatively showing the hardness of the problem under DLOGTIMEmany-onereducibility. Hence tree isomorphism is NC1-complete. Trees thus provide the �rstclass of graphs for which the isomorphism problem captures a natural complexity�Corresponding author: Pierre McKenzie, Wilhelm-Schickard-Institut f�ur Informatik, Univer-sit�at T�ubingen, Sand 13, D{72076 T�ubingen, Germany. Phone: +49 (7071) 29 74284. Fax: +49(7071) 29 5061. Email: mckenzie@informatik.uni-tuebingen.de1



class. Moreover, so far, the problem of evaluating a Boolean formula [6] and theproblem of multiplying permutations on �ve points [3] (and some of their varia-tions) were the only two NC1-complete problems known. Tree isomorphism is athird such problem.As noted by Buss, choosing a graph representation is critical when working atthe level of NC1. Buss uses Miller and Reif's string representation for trees on thegrounds that, when the pointer representation is used, the \deterministic transitiveclosure problem can be reduced to the descendant predicate, and the former is knownto be complete for logspace" [7, Section 2].We prove here that the tree isomorphism problem is L-hard under many-oneNC1-reducibility when the pointer representation is used. Hence, tree isomorphismin the pointer representation is L-complete by Lindell [15] or by Buss [7]. Treeisomorphism thus captures in this way another very natural complexity class.2 PreliminariesWe assume familiarity with basic notions of complexity theory such as can be foundin the stardard books in the area. In particular, we simply recall thatAC0 � TC0 � NC1 � L;where L is the set of languages accepted by deterministic Turing machines usinglogarithmic space, NC1 is the class of languages recognized by DLOGTIME-uniformfamilies of logarithmic depth, polynomial size, Boolean circuits of bounded fan-inover the basis f^;_;:g, and AC0 (resp. TC0) is the set of languages recognized byDLOGTIME-uniform families of constant depth, polynomial size, Boolean circuitsof unbounded fan-in over the basis f^;_;:g (resp. over the basis consisting solelyof the MAJORITY function).For simplicity, we will often not distinguish between a class of Boolean func-tions like NC1 and the corresponding class of functions from f0; 1g� to the naturalnumbers, sometimes called FNC1.2.1 ReducibilitiesWe use the following reducibilities:� DLOGTIME reducibility (�DLT )We use this reducibility for the NC1-completeness results. Following [6, 8] wesay that for languages A;B � ��, a function f many-one reducing A to B is aDLOGTIME reduction if (1) f increases the length of strings only polynomially(jf(x)j � p(jxj) for a polynomial p), and (2) some DLOGTIME Turing machine candecide given an input of (c; i; x), whether the ith symbol of f(x) is c. We writeA�DLTB, if there exists a DLOGTIME reduction reducing A to B. (Recall that itis customary in the case of Turing machines operating in sublinear time, to access2



the input via a special input index tape, for more details on DLOGTIME Turingmachines see for example [4].)� NC1 many-one reducibility (�NC1m )We use this reducibility for the L-completeness and all other results. Here the many-one reduction f is required to be computable in FNC1.2.2 Trees and representationsAll trees discussed in this paper are rooted (hence implicitly directed) and unordered(i.e. the ordering of the descendants of a node does not matter). In some of ourconstructions we use colored trees. A tree with n nodes is said to be colored ifeach node in the tree is labelled with a positive integer no greater than n. Anisomorphism between two colored trees T1 and T2 is a bijection between their nodesets which maps the root of T1 to the root of T2, preserves the colors, and preservesthe edges. Two colored trees are isomorphic, denoted T1 ' T2, i� an isomorphismexists between them. These notions apply mutatis mutandis to non-colored trees.The main computational problem of interest in this paper is:[Colored] Tree Isomorphism ([C]TI)Given: Two [colored] trees T1 and T2.Problem: Determine whether T1 ' T2 .We consider two di�erent representations for encoding trees: the string repre-sentation and the pointer representation. As we will see, in the small complexityclasses we are dealing with, the representation used might change the complexity ofthe problem.In the string representation [18], trees are represented over an alphabet contain-ing opening and closing parentheses. A string representation of a tree T is de�nedrecursively in the following way: The tree with a single node is represented bythe string \()", and if T is a tree consisting of a root and subtrees T1; : : : ; Tk (inany order), with string representations �1; : : : ; �k, a representation of T is givenby \(�1; : : : ; �k)". Observe that a tree might have di�erent string representations,depending on the order of the descendants of any of its nodes. Colored trees can beencoded in the same way using colored parentheses. Let C be the set of colors. Anopening parenthesis in a colored tree is represented by \(" followed by log(jCj) bitsencoding the color. Note that we only need to color the opening parentheses.The pointer representation is a more standard way to encode graphs. In this casewe consider the trees given by a list of pairs of nodes representing directed edges.As in the previous case, if we deal with colored trees, with the representation of anode we include log(jCj) bits to encode its color.For many tree problems in NC1 and L, completeness results seem to depend onthe representation used. For example, the reachability problem on forests, which3



is L-complete in the pointer representation [10], can be solved in NC1 (and evenTC0) in the string representation. Analogously, the Boolean formula value problem,which is complete for NC1 in the string representation [7], becomes L-complete whendescribed using trees given in the pointer representation [5]. In fact, changing frompointer to string representation is FL-complete [13].Another important observation is that it is possible to test within the classesNC1 and L whether a given input is a correct encoding of a tree in the stringrepresentation, and respectively, in the pointer form.3 Tree Isomorphism for Trees Given by StringsWe show �rst that deciding whether two trees given in string representation areisomorphic is NC1-complete. We �rst consider colored trees for which the hardnessproof is simpler.Lemma 3.1 In the string representation, CTI is NC1-hard under �DLT .Proof. Following Barrington, Immerman and Straubing [4, Lemma 6.2], it suf-�ces to reduce the problem of evaluating a balanced DLOGTIME-uniform familyof Boolean expressions made up of alternating layers of ANDs and ORs, to CTI.The core of the reduction is the simple construction from [16, 9] described in [14](page 45), for the purpose of simulating ANDs and ORs using graph isomorphismquestions. We adapt this construction as follows. Consider four colored trees G1,G2, H1, and H2. Then the colored trees
H2Tree G^ Tree H^G1 G2 H1have the property that G^ ' H^ i� [(G1 ' G2)^ (H1 ' H2)], and the colored trees

Tree H_G1 G2 H1 H2G1 G2H1H2Tree G_ 4



have the property that G_ ' H_ i� [(G1 ' G2) _ (H1 ' H2)]. Observe that theOR-construction doubles the size of the initial trees for G1 ' G2 and H1 ' H2, thatis, from 4 trees each having the same size, s, the OR-construction would produce 2trees each having size 4s+ 7.Now pick two single-node trees T1 and T2 and assign them di�erent colors. Start-ing from the CTI instance (T1; T1) to represent a TRUE input and the CTI instance(T1; T2) to represent a FALSE input, it is trivial to construct, from a depth-d Booleanexpression f with no negation gates, two colored trees G and H having O(4d) nodes(this is a rough upper bound) and verifying the property that G ' H i� f evaluatesto TRUE.To see that this yields a DLOGTIME reduction, note it is possible to add a fewdummy nodes in order to modify the constructs above in such a way that, if G1,G2, H1 and G2 are full binary (colored) trees, then so are G^, H^, G_ and H_,and moreover, the color occurrences in these respective constructs are the same.Because the Boolean expression is balanced, its depth is O(log n). And becausethe expression is built from alternating levels of ANDs and ORs, the argument iscompleted as in the proof of [4, Lemma 6.2].Remark. The complete simulation used in the proof of Lemma 3.1 in fact requiresonly two distinct colors. A similar construction could be devised in the absence ofcolors as well.Lemma 3.2 In the string representation, CTI �DLT TI.Proof. The obvious idea is to simulate the colors by attaching color-dependentgadgets at each node. Suppose that the trees in the CTI instance have n nodes.Then it su�ces to attach at each c-colored node, 1 � c � n, a new node which isroot to a height-one subtree having n + c leaves. In detail, at the string encodinglevel, the color binary number c occurring after the opening bracket which speci�esthe occurrence of the c-colored node is simply replaced with the encoding of the c-color gadget. To ensure DLOGTIME-computability, the color gadgets are modi�edto contain an identical number of nodes: it is easy to implement the idea with nnon-isomorphic gadgets each having 2n+ 1 nodes.Theorem 3.3 In the string representation, CTI and TI are NC1-complete under�DLT .Proof. CTI is NC1-hard (Lemma 3.1) and CTI �DLT TI (Lemma 3.2). Buss[7] shows in a delicate argument that TI 2 NC1. (Buss in fact points out that hisNC1 algorithm applies directly, as well, to the case of labelled trees.) Hence CTI isNC1-complete.Since �DLT is in general not transitive, NC1-hardness of TI needs to be arguedby combining the reductions of Lemma 3.1 and Lemma 3.2, or by adapting the proofof Lemma 3.1 to the case of trees without colors. Hence TI is NC1-complete.5



4 Tree Isomorphism for Trees Given by PointersRecall Lemma 3.2, which states that in the string representation, colored tree iso-morphism reduces to tree isomorphism by the introduction of appropriate gadgets forthe colors. These gadgets are clearly NC1-computable in the pointer representation,proving the following:Lemma 4.1 In the pointer representation, CTI �NC1m TI.Theorem 4.2 In the pointer representation, TI is L-complete under many-oneNC1-reducibility.Proof. The containment follows from Lindell [15], who shows that a canonicalform c(T ) of a (rooted) tree T can be computed in logspace. Hence, for two giventrees, we determine isomorphism by computing and comparing their canonical formssymbol by symbol. (Alternatively, the string representation of the trees could becomputed in L, and then Buss's NC1 algorithm could be used.)We prove hardness of TI by reducing the L-complete problem ORD [11] to Col-ored Tree Isomorphism, and appealing to Lemma 4.1:Order between Vertices (ORD)Given: A digraph G = (V;E) that is a line, and two nodes vi; vj 2 V .Problem: Decide whether vi < vj in the total order induced on V .Let a line graph G = (V = fv1; : : : ; vng; E) and two designated nodes vi andvj 2 V be given. We assume without loss of generality that vn is the outdegree zeronode and that vi, vj and vn are three di�erent nodes. We �rst determine whethervi < vj in the order induced by E with the help of oracle queries to CTI. Later wewill show that the oracle queries can be merged to yield a many-one reduction.We consider the instances (T 0; Tk;l) of the CTI problem. Here T 0 is the coloredtree that results from G by coloring the node vi with color 1, vj with color 2, vnwith color 3, and the rest of the nodes with color 0.For 1 � k < l < n, the colored tree Tk;l is de�ned as (V; f(vm; vm+1)j1 � m < ng),with the nodes vk, vl and vn colored with colors 1,2 and 3 respectively, and the restof the nodes colored by 0.It is not hard to see that vi < vj in the order induced on V by G if and only if9k; l with 1 � k < l < n such that T 0 ' Tk;l. This therefore describes a disjunctivereduction to CTI. In order to transform it into a many-one reduction, we use theOR-operator from Lemma 3.1 to combine all the O(n2) many queries to CTI into asingle one. The OR-operator has to be applied carefully since it doubles the size ofthe trees involved every time it is used, and we are considering the disjunction of apolynomial number of trees. However, the operator can be applied in a divide andconquer manner and the resulting pair of trees has size polynomial in n (see [14]6



page 50 for the details). Putting the two parts of the reduction together we havethat ORD is NC1 many-one reducible to CTI.Remark. The reduction used in Theorem 4.2 can be made much �ner than �NC1m ,but obtaining the tightest possible reduction is not the focus of this note.5 Concluding remarksComplementing the harder results of Buss and Lindell, we have shown that treeisomorphism, depending on the tree representation, captures two robust complexityclasses, namely NC1 and L. These are the �rst hardness results for a natural re-striction of the graph isomorphism problem, for which so far no hardness result wasknown. A modest L-hardness result for GI is implied by our L-hardness result forthe tree case. An interesting open question is whether the isomorphism problem forgeneral graphs is also hard for NL or even for P.The level of sophistication of Buss's NC1 algorithm for TI [7] is comparable tothat of his simpli�ed NC1 algorithm for the Boolean expression value problem FVP[6]. Are these two upper bounds independent? In other words, is there a reductionfrom TI to FVP or vice versa which is simpler than either of Buss's two upperbounds?It is interesting to consider FVP �NC1m TI. Proving that FVP �NC1m TI has re-quired three ingredients: (1) the NC1 upper bound for FVP, (2) the characterizationof NC1 in terms of balanced Boolean expressions, and (3) our simple Lemma 3.1.Lemma 3.1 directly constructs trees from Boolean formulas, but the ensuing directreduction is from Balanced-FVP to TI. How can Lemma 3.1 be strengthened?The bottleneck to a strengthening of Lemma 3.1 is the handling of a BooleanOR. Lemma 3.1 can only handle balanced Boolean expressions because the trees G_and H_ depicted in its proof each require a copy of G1, G2, H1, and H2. Hence anopen question is whether Lemma 3.1 can be proved using simpler constructs G_ andH_, still simulating the Boolean OR, but only adding a small number additionalnodes. If so, the NC1 upper bound for FVP is redundant, i.e., the NC1 upper boundfor FVP follows from the NC1 upper bound for TI.References[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman. The design and analysis of computeralgorithms, Addison-Wesley, 1974.[2] L. Babai. Moderately exponential bounds for graph isomorphism. In Fundamentals ofComputation Theory 81, Lecture Notes in Computer Science #117, Springer-Verlag,pp. 34{50, 1981.[3] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognizeexactly those languages in NC1. J. Comput. System Sci., 38:150{164, 1987.7



[4] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.Journal of Computer and System Sciences, 41:274{306, 1990.[5] M. Beaudry and P. McKenzie. Circuits, matrices and nonassociative computation.Journal of Computer and System Sciences, 50(3):441{455, 1995.[6] S. R. Buss. The Boolean formula value problem is in ALOGTIME. In 19th AnnualACM Symposium on Theory of Computing, 123{131, 1987.[7] S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization. InComputational Logic and Proof Theory, 5th Kurt G�odel Colloquium'97, Lecture Notesin Computer Science #1289, Springer-Verlag, 1997, pp. 18-33.[8] S. R. Buss and S. A. Cook and A. Gupta and V. Ramachandran, An optimal parallelalgorithm for formula evaluation, SIAM Journal on Computing, 21:4, pp. 755-780,1992.[9] R. Chang and J. Kadin, On computing Boolean connectives of characteristic functions.Math. Systems Theory 28, 173{198, 1995.[10] S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space.Journal of Algorithms, 8:385{394, 1987.[11] K. Etessami. Counting quanti�ers, successor relations, and logarithmic space. In Proc.of the 10th Structure in Complexity Theory Conf., pages 2{11. IEEE, 1995.[12] J. E. Hopcroft and R. E. Tarjan. A V 2 algorithm for determining isomorphism of planargraphs. Information Processing Letters, 32{34, 1971.[13] B. Jenner. Between NC 1 and NC 2: Classi�cation of Problems by Logspace Resources.Manuskript of Habilitation thesis, 1997.[14] J. K�obler, U. Sch�oning, and J. Tor�an. The Graph Isomorphism Problem | Its StructuralComplexity. Progress in Theoretical Computer Science. Birkh�auser, Boston, 1993.[15] S. Lindell. A logspace algorithm for tree canonization. In Proc. of the 24th STOC,400{404. ACM, 1992.[16] A. Lozano and J. Tor�an. On the nonuniform complexity of the Graph Isomorphismproblem. Complexity Theory: Current Research, pp. 245{273, 1993. Edited byK. Ambos-Spies, S. Homer, and U. Sch�oning. Also in Proceedings of the 7th Struc-ture in Complexity Theory Conference, pp. 118{129, June 1992.[17] E. Luks. Isomorphism of bounded valence can be tested in polynomial time. Journalof Computer and System Sciences, 25:42{65, 1982.[18] G.L. Miller and J.H. Reif. Parallel tree contraction part 2: Further applications, SIAMJournal on Computing, 20:1128{1147, 1991.
8


