
Restricted Space Algorithms for Isomorphism on Bounded

Treewidth Graphs∗

Bireswar Das
Inst. of Mathematical Sciences

Chennai

bireswar@imsc.res.in

Jacobo Torán
Inst. für Theoretische Informatik

Universität Ulm

jacobo.toran@uni-ulm.de

Fabian Wagner†

Inst. für Theoretische Informatik

Universität Ulm

fabian.wagner@uni-ulm.de

March 29, 2010

Abstract

The Graph Isomorphism problem restricted to graphs of bounded treewidth or bounded
tree distance width are known to be solvable in polynomial time [2],[19]. We give restricted
space algorithms for these problems proving the following results:

• Isomorphism for bounded tree distance width graphs is in L and thus complete for
the class. We also show that for this kind of graphs a canon can be computed within
logspace.

• For bounded treewidth graphs, when both input graphs are given together with a tree
decomposition, the problem of whether there is an isomorphism which respects the
decompositions (i.e. when only isomorphisms are considered, mapping bags in one de-
composition blockwise onto bags in the other decomposition) is in L.

• For bounded treewidth graphs, when one of the input graphs is given with a tree de-
composition the isomorphism problem is in LogCFL.

• As a corollary the isomorphism problem for bounded treewidth graphs is in LogCFL.
This improves the known TC1 upper bound for the problem given by Grohe and Ver-
bitsky [8].

Topics: Complexity, Algorithms, Graph Isomorphism Problem, Treewidth, LogCFL.

1 Introduction

The Graph Isomorphism problem consists in deciding whether two given graphs are isomorphic, or
in other words, whether there exists a bijection between the vertices of both graphs preserving the
edge relation. Graph Isomorphism is a well studied problem in NP because of its many applications
and also because it is one of the few natural problems in this class not known to be solvable in
polynomial time nor known to be NP-complete. Although for the case of general graphs no efficient
algorithm for the problem is known, the situation is much better when certain parameters in the
input graphs are bounded by a constant. For example the isomorphism problem for graphs of
bounded degree [13], bounded genus [15], bounded color classes [14], or bounded treewidth [2] is

∗A preliminary version of this paper has appeared at the conference STACS 2010
†Supported by DFG grant TO 200/2-2.

1

known to be in P. Recently some of these upper bounds have been improved with the development
of space efficient techniques, most notably Reingold’s deterministic logarithmic space algorithm
for connectivity in undirected graphs [16]. In some cases logarithmic space algorithms have been
obtained. For example graph isomorphism for trees [12], planar graphs [5] or k-trees [10] is known
to be in the class L. In other cases the problem has been classified in some other small complexity
classes below P. The isomorphism problem for graphs of bounded treewidth is known to be in
TC1 [8] and the problem restricted to graph with bounded color classes is known to be in the #L
hierarchy [1].

In this paper we address the question of whether the isomorphism problem restricted to graphs
of bounded treewidth and bounded tree distance width can be solved in logarithmic space. Intu-
itively speaking, the treewidth of a graph measures how much it differs from a tree. This concept
has been used very successfully in algorithmics and fixed-parameter tractability (see e.g. [3, 4]).
For many complex problems, efficient algorithms have been found for the cases when the input
structures have bounded treewidth. As mentioned above Bodlaender showed in [2] that Graph Iso-
morphism can be solved in polynomial time when restricted to graphs of bounded treewidth. More
recently Grohe and Verbitsky [8] improved this upper bound showing that the isomorphism prob-
lem for this kind of graphs can be solved by a uniform family of threshold circuits of logarithmic
depth and polynomial size and lies therefore in the class TC1.

In this paper we improve this result, showing that the isomorphism problem for bounded
treewidth graphs lies in LogCFL, the class of problems logarithmic space reducible to a context
free language. LogCFL can be alternatively characterized as the class of problems computable
by a uniform family of polynomial size and logarithmic depth circuits with bounded AND and
unbounded OR gates, and is therefore a subclass of TC1. LogCFL is also the best known upper
bound for computing a tree decomposition of a graph of bounded treewidth [18, 7], which is one
bottleneck in our isomorphism algorithm. We prove that if tree decompositions of both graphs are
given as part of the input, the question of whether there is an isomorphism respecting the vertex
partition defined by the decompositions can be solved in logarithmic space. Our proof techniques
are based on methods from recent isomorphism results [5, 6] and are very different from those
in [8].

The notion of tree distance width, a stronger version of the treewidth concept, was introduced
in [19]. There it is shown that for graphs with bounded tree distance width the isomorphism
problem is fixed parameter tractable, something that is not known to hold for the more general
class of bounded treewidth graphs. We prove that for graphs of bounded tree distance width it
is possible to obtain a tree distance decomposition within logspace. Using this result we show
that graph isomorphism for bounded tree distance width graphs can also be solved in logarithmic
space. Since it is known that the question is also hard for the class L under AC0 reductions [9],
this exactly characterizes the complexity of the problem. We show that in fact a canon for graphs
of bounded tree distance width, i.e. a fixed representative of the isomorphism equivalence class,
can be computed in logspace.

2 Preliminaries

We introduce the complexity classes used in this paper. L is the class of decision prob-
lems computable by deterministic logarithmic space Turing machines. LogCFL consists of
all decision problems that can be Turing reduced in logarithmic space to a context free
language. There are several alternative more intuitive characterizations of LogCFL. Prob-
lems in this class can be computed by uniform families of polynomial size and logarith-
mic depth circuits over bounded fan-in AND gates and unbounded fan-in OR gates. We
will also use the characterization of LogCFL as the class of decisional problems computable
by non-deterministic auxiliary pushdown machines (NAuxPDA). These are Turing machines
with a logarithmic space work tape, an additional pushdown and a polynomial time bound
[17]. The class TC1 contains the problems computable by uniform families of polynomial size
and logarithmic depth threshold circuits. The known relationships among these classes are:

2

L ⊆ LogCFL ⊆ TC1.

In this paper we consider undirected simple graphs with no self loops. For a graph G = (V, E)
and two vertices u, v ∈ V , dG(u, v) denotes the distance between u and v in G (number of edges in
the shortest path between u and v in G). For a set S ⊆ V , and a vertex u ∈ V , dG(S, u) denotes
minv∈SdG(v, u). Γ(S) denotes the set of neighbors of S in G.

In a connected graph G, a separating set is a set of vertices such that deleting the vertices in S
(and the edges connected to them) produces more than one connected component.

For G = (V, E) and two disjoint subsets U, W of v we use the following notion for an induced
bipartite subgraph BG[U, W] of G on vertex set U ∪W with edge set {{u, w} ∈ E | u ∈ U, w ∈W}.
Let G[U] be the induced subgraph of G on vertex set U .

Definition 2.1 A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I}, T = (I, F)),
where {Xi | i ∈ I} is a collection of subsets of v called bags, and T is a tree with node set I and
edge set F , satisfying the following properties:

i)
⋃

i∈I Xi = V

ii) for each {u, v} ∈ E, there is an i ∈ I with u, v ∈ Xi and

iii) for each v ∈ V , the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition of G, ({Xi | i ∈ I}, T = (I, F)) is defined as
max{|Xi| | i ∈ I} − 1. The treewidth of a graph G is the minimum width over all possible tree
decompositions of G.

Definition 2.2 A tree distance decomposition of a graph G = (V, E) is a triple ({Xi | i ∈ I}, T =
(I, F), r), where {Xi | i ∈ I} is a collection of subsets of v called bags, Xr = S a set of vertices
and T is a tree with node set I, edge set F and root r, satisfying the following properties:

i)
⋃

i∈I Xi = V and for all i 6= j, Xi ∩Xj = ∅

ii) for each v ∈ V , if v ∈ Xi then dG(Xr, v) = dT (r, i) and

iii) for each {u, v} ∈ E(G), there are i, j ∈ I with u ∈ Xi, v ∈ Xj and i = j or {i, j} ∈ F (for
every edge in G its two endpoints belong to the same or to adjacent bags in T).

Let D = ({Xi | i ∈ I}, T = (I, F), r) be a tree distance decomposition of G. Xr is the root bag
of D. The width of D is the maximum number of elements of a bag Xi. The tree distance width
of a graph G is the minimum width over all possible tree distance decompositions of G.

The tree distance decomposition D is called minimal if for each i ∈ I, the set of vertices in
the bags with labels in the subtree rooted at i in T induce a connected subgraph in G. In [19]
it is shown that for every root set S ⊆ V there is a unique minimal tree distance decomposition
of G with root set S. The width of such a decomposition is minimal among the tree distance
decompositions of G with root set S.

An isomorphism from G onto H respects their tree decompositions D, D′ if vertices in a bag
of D in G are mapped blockwise onto vertices in a bag of D′ in H . Not every isomorphism has
this property. In the case of tree distance decompositions the situation is different. Suppose that
D is a minimal tree distance decomposition of G with root bag Xr and let ϕ be an isomorphism
between G and H mapping the vertex set Xr in G blockwise to a set X ′

r′ in H . Since there is only
one minimal tree distance decomposition D′ of H with root bag X ′

r′ , ϕ respects the minimal tree
distance decompositions of G and H with respect to the root bags Xr and X ′

r′ .
Sym(V) is the symmetric group on a set V . For two permutations σ, φ, the notation σφ(X)

means that the permutations are applied to X from right to left, this is σ(φ(X)).

3

3 Graphs of bounded tree distance width

3.1 Tree distance decomposition in L

We describe an algorithm that on input a graph G and a subset S ⊂ V produces the minimal
tree distance decomposition D = ({Xi | i ∈ I}, T = (I, F), r) of G with root set Xr = S. The
algorithm works within space c · k log n for some constant c, where k is the width of the minimal
tree distance decomposition of G with root set S. The output of the algorithm is a sequence of
strings of the form (bag label, bag depth, vi1 , vi2 , . . . , vil

), indicating the number of the bag, the
distance of its elements to S and the list of the elements in the bag.

The algorithm basically performs a depth first traversal of the tree T in the decomposition
while constructing it. Starting at S the algorithm uses three functions for traversing T . These
functions perform queries to a logspace subroutine computing reachability [16].

Parent(Xi): On input the elements of a bag Xi the function returns the elements of the parent
bag in T . These are the vertices v ∈ V with the following two properties: v ∈ Γ(Xi) \Xi and v is
reachable from S in G \Xi. For a vertex v these two properties can be tested in space O(log n)
by an algorithm with input G, S and Xi. In order to find all the vertices in the parent set, the
algorithm searches through all the vertices in v.

First Child(Xi): This function returns the elements of the first child of i in T . This is the
child with the vertex vj ∈ V with the smallest index j. vj satisfies that vj ∈ Γ(Xi) \Xi and that
vj is not reachable from S in G \Xi. It can be found cycling in order through the vertices of G
until the first one satisfying the properties is found. The other elements w ∈ Xi must satisfy the
same two properties as vj and additionally, they must be in the same connected component in
G \Xi where vj is contained. In case Xi does not have any children, the function outputs some
special symbol.

Next Sibling(Xi): This function first computes Xp := Parent(Xi) and then searches for the
child of P in T next to Xi. Let vi be the vertex with the smallest label in Xi. This is done similarly
as the computation of First Child. The next sibling is the bag containing the unique vertex vj with
the following properties: vj is the vertex with the smallest label in this bag, label(vj) > label(vi)
and there is no other bag which has a vertex with a label between vi and vj . The vertex vj is
not reachable from S in G \Xp. The other elements in the bag are the vertices satisfying these
properties and which are in the same connected component of G \Xp where vj is contained.

With these three functions the algorithm performs a depth-first traversal of T . It only needs
to remember the initial bag X0 = S which is part of the input, and the elements of the current
bag. On a bag Xi it searches for its first child. If it does not exist then it searches for the next
sibling. When there are no further siblings the next move goes up in the tree T . The algorithm
finishes when it returns to S. It also keeps two counters in order to be able to output the number
and depth of the bags. The three mentioned functions only need to keep at most two bags (Xi

and its father) in memory and work in logarithmic space. On input a graph G with n vertices
and a root set S, the space used by the algorithm is therfore bounded by c · k log n, for a constant
c, and k being the minimum width of a tree distance decomposition of G with root set S. When
considering how the three functions are defined it is clear that the algorithm constructs a tree
distance decomposition with root set S. Also they make sure that for each i the subgraph induced
by the vertices of the bags in the subtree rooted at i is connected thus producing a minimal
decomposition. As observed in [19], this is the unique minimal tree distance decomposition of G
with root set S.

3.2 Isomorphism Algorithm for Bounded Tree Distance Width Graphs

For our isomorphism algorithm we use a structure called the augmented tree which is based on
the underlying tree of a minimal tree distance decomposition. This augmented tree, apart from
the bags, contains information about the separating sets which separate bags.

4

Definition 3.1 Let G be a graph with a minimal tree distance decomposition D = ({Xi | i ∈
I}, T = (I, F), r). The augmented tree T(G,D) = (I(G,D), F(G,D), r) corresponding to G and D is
a tree defined as follows:

• The set of nodes of T(G,D) is I(G,D) which contains two kinds of nodes, namely I(G,D) = I∪J .
Those in I form the set of bag nodes in D, and those in j the separating set nodes. For each
bag node a ∈ I and each child b of a in T we consider the set Xa ∩Γ(Xb), i.e. the minimum
separating set in Xa which separates Xb from the root bag Xr in G. Let Msa

1
, . . . , Msa

l(a)
be

the set of all minimum separating sets in Xa, free of duplicates. There are nodes for these
sets sa

1 , . . . , s
a
l(a), the separating set nodes. We define J =

⋃
a∈I{s

a
1 , . . . , s

a
l(a)}. The node

r ∈ I is the root in T(G,D).

• The set of edges F(G,D) contains edges between bag nodes a ∈ I and the separating set nodes
sa
1 , . . . , s

a
l(a) ∈ J (edges between bag nodes and their children in the augmented tree). It also

contains edges between nodes b ∈ I and sa
j if a is the parent node of b in I and Msa

j
is the

minimum separating set in Xa which separates Xb from Xr (edges between bag nodes and
their parents).

To simplify notation, we will say for example that s1, . . . , sl are the children of a bag node a
if the context is clear. To each separating set node si, we will address the set of vertices by Xsi

.
The odd levels of the augmented tree correspond to bag nodes and the even levels correspond to
separating set nodes.

Observe that for each node in the augmented tree, we associate a bag to a bag node and a
minimum separating set to a separating set node. Hence, every vertex v in the original graph
occurs in at least one associated component and it might occur in more than one, e.g. if v is
contained in a bag and in a minimum separating set.

Let T(G,D) be an augmented tree of some minimal tree distance decomposition D of a graph G.
Let a be a node of T(G,D). The subtree of T(G,D) rooted at a is denoted by Ta. Note that
T(G,D) = Tr where Xr is the bag corresponding to the root of the tree distance decomposition D.
We define size(Ta) as sum of the sizes of the components (bags and separating sets) associated to
the nodes of Ta. We also define graph(Ta) as the induced graph in G of the vertices associated to
nodes in Ta.

When given a tree distance decomposition, the augmented tree can be computed in logspace.
Using the result in Section 3.1 we immediately get:

Lemma 3.2 There is a function f and an algorithm that on input of a graph G with n vertices
and of tree distance width k, computes an augmented tree for G in space O(f(k) log n).

Isomorphism Order of Augmented Trees. We describe an isomorphism order procedure for
comparing two augmented trees S(G,D) and T(H,D′) corresponding to the graphs G and H and
their minimal tree distance decompositions D and D′. This isomorphism order is an extension of
the one for trees given by Lindell [12]. The trees S(G,D) and T(H,D′) are rooted at bag nodes r
and r′. The rooted trees are denoted then Sr and Tr′ as shown in Figure 1. We will show that
two graphs of bounded tree distance width are isomorphic if and only if for some root nodes r
and r′ the augmented trees corresponding to the minimal tree distance decompositions have the
same isomorphism order.

The isomorphism order is defined recursively based on the two order procedures <T and ≺T.
The first one <T will be used for comparing augmented subtrees rooted at bag nodes, while ≺T

compares augmented subtrees rooted at separating set nodes.
We introduce some notation needed for the definition of the isomorphism order. For sets of

structures {A1, . . . , Ak} and {B1, . . . , Bk} and a total order < between such structures the notation
(A1, . . . , Ak) < (B1, . . . , Bk) represents that the structures are ordered within the tuples according
to ≤ and that for some i ∈ {1, . . . , k} : Ai < Bi and for all j ∈ {1, . . . , i− 1} : Aj = Bj .

The isomorphism order procedure compares first the sets of vertices Xr and X ′

r′ where r and r′

are the root nodes in the decompositions D and D′. For this we consider pairs of permutations

5

......

...

......

...

Sr Tr′

a1,1 a2,1 a′
1,1 a′

1,k1
a′

2,1

Sa1,1
Sa2,1

Sa2,k2

Sal,kl
Ta′

1,1
Ta′

1,k1

Ta′
2,1

Ta′
2,k2

Ta′
l,kl

a1,k1
a2,k2

al,kl

Sa1,k1

a′
2,k2

a′
l,kl

r r′

s1 s2 sl t1 t2 tl

Figure 1: The augmented trees Sr and Tr′ rooted at bag nodes r and r′. Node r has separating
set nodes s1, . . . , sl as children. The children of s1 are again bag nodes a1,1, . . . , a1,k1 . Sai,j

is the
subtree rooted at ai,j . Bag nodes and separating set nodes alternate in the tree.

(σ, σ′) ∈ Sym(Xr) × Sym(X ′

r′). The notation σ(G[Xr]) and σ′(H [X ′

r′]) describes a fixed label-
ing of the vertices of the corresponding induced subgraphs, given by the permutations. We say
σ(G[Xr]) < σ′(H [X ′

r′]) if |Xr| < |X ′

r′ | or if the adjacency matrix of the induced subgraph G[Xr]
with its vertices ordered according to σ is lexicographically smaller than that of the induced
subgraph H [X ′

r′] ordered according to σ′.
Furthermore, we need a function posr : Xr 7→ {1, . . . , |Xr|} which gives labels to vertices

according to their order in V . For example if Xr = {v1, v5, v7} then posr(v1) = 1, posr(v5) = 2
and posr(v7) = 3. Accordindly, we define pos′r′ : X ′

r′ 7→ {1, . . . , |X ′

r′ |}.
Recall that for a graph G = (V, E) and two disjoint vertex sets U, W ⊆ V , BG[U, W] denotes

the bipartite graph with vertices U ∪ W and edge set {{u, w} ∈ E(G) | u ∈ U, w ∈ W}. For
σ ∈ Sym(U) and φ ∈ Sym(W), σφ(BG[U, W]) describes the adjacency matrix of BG[U, W] with
the vertices in U ordered according to σ and those in W ordered according to φ.

For two permutations (σ, σ′) ∈ Sym(Xr)× Sym(Xr′) we define now the order Sσ
r <T T σ′

r′ .

Definition 3.3 For two augmented trees rooted at bag nodes r and r′ we will say Sr <T Tr′ if
there exists a permutation σ ∈ Sym(Xr) such that for all σ′ ∈ Sym(Xr′): Sσ

r <T T σ′

r′ .

We say, Sσ
r <T T σ′

r′ is true if one of the following holds:

1) σ(G[Xr]) < σ′(H [X ′

r′]) or

2) σ(G[Xr]) = σ′(H [X ′

r′]) but size(Sr) < size(Tr′) or

3) σ(G[Xr]) = σ′(H [X ′

r′]) and size(Sr) = size(Tr′) but #r < #r′ where #r and #r′ is the
number of children of r and r′, respectively, or

4) σ(G[Xr]) = σ′(H [X ′

r′]) and size(Sr) = size(Tr′) and #r = #r′ = l but (Sσ
s1

, . . . , Sσ
sl

) ≺T

(T σ′

t1
, . . . , T σ′

tl
). The order ≺T for subtrees rooted at separating set nodes is defined as in the

following way, Sσ
si
≺T T σ′

tj
if:

i) σ(Xsi
) < σ′(X ′

tj
), i.e. (posrσ(vi1), . . . , posrσ(vi|Xsi

|
)) < (pos′r′σ′(v′j1), . . . , pos′r′σ′(v′j|X′

tj
|
)),

for Xsi
= {vi1 , . . . , vi|Xsi

|
}, X ′

tj
= {v′j1 , . . . , v

′

j|X′
tj

|
}, or

ii) σ(Xsi
) = σ′(X ′

tj
) but ki < k′

j, where ki and k′

j are the number of children of si and tj,
respectively, or

iii) σ(Xsi
) = σ′(X ′

tj
), ki = k′

j = m but (BG[Xsi
, Xai,1]

σ, . . . , BG[Xsi
, Xai,m

]σ) <

(BH [X ′

tj
, X ′

a′
j,1

]σ
′

, . . . , BH [X ′

tj
, X ′

a′
j,m

]σ
′

) where BG[Xsi
, Xai,i′

]σ < BH [X ′

tj
, X ′

a′
j,j′

]σ
′

if

there exists φ ∈ Sym(Xai,i′
) such that for all φ′ ∈ Sym(X ′

a′
j,j′

), σφ(BG[Xsi
, Xai,i′

]) <

6

σ′φ′(BH [X ′

tj
, X ′

a′
j,j′

]) via lexicographical comparison of the adjacency matrices of both

induced bipartite subgraphs where all vertices are ordered according to σ, φ and σ′, φ′

respectively, or

iv) σ(Xsi
) = σ′(X ′

tj
), ki = k′

j = m,

(BG[Xsi
, Xai,1]

σ, . . . , BG[Xsi
, Xai,m

]σ) = (BH [X ′

tj
, X ′

a′
j,1

]σ
′

, . . . , BH [X ′

tj
, X ′

a′
j,m

]σ
′

), but

there exists q ∈ {1, . . . , m} such that for every p ∈ {1, . . . , q − 1}:
[∀φp ∈ Sym(Xai,p

) ∃φ′

p ∈ Sym(X ′

a′
j,p

)

with σφp(BG[Xsi
, Xai,p

]) = σ′φ′

p(BH [X ′

tj
, X ′

a′
j,p

]) and S
φp
ai,p =T T

φ′
p

a′
j,p

]

and [∃φq ∈ Sym(Xai,q
), ∀φ′

q ∈ Sym(X ′

a′
j,q

)

if σφq(BG[Xsi
, Xai,q

] = σ′φ′

q(BH [X ′

tj
, X ′

a′
j,q

]) then S
φq

ai,q <T T
φ′

q

a′
j,q

].

We say that two augmented trees Sr and Tr′ are equal according to the isomorphism order,
denoted Sr =T Tr′ , if neither Sr <T Tr′ nor Tr′ <T Sr holds.

Correctness of the isomorphism order. It is not hard to see that the defined isomorphism
order defines a total order on augmented trees. We show now that it is a good tool for testing
graph isomorphism since two graph are isomorphic if and only if for some choice of the root bags,
the augmented trees associated with the corresponding minimal tree distance decompositions have
the same order under =T.

Theorem 3.4 Let G = (V1, E1) and H = (V2, E2) be two graphs and Xr ⊆ V1 and X ′

r′ ⊆ V2 root
bags producing minimal tree distance decompositions of the graphs G and H with augmented trees
Sr and Tr′ respectively.

There is an isomorphism between G and H mapping setwise Xr to X ′

r′ if and only if for some

permutations σ, σ′ ∈ Sym(Xr)× Sym(X ′

r′), Sσ
r =T T σ′

r′ .

Proof: From left to right, let G and H be isomorphic graphs with an isomorphism Π mapping
Xr to X ′

r′ . Let us denote by π the restriction from Π to the domain Xr and let σ ∈ Sym(Xr) be
a permutation minimizing σ(G[Xr]). Define σ′ = πσπ−1. σ′ is a permutation in Sym(X ′

r′) and
σ(G[Xr]) = σ′(H [X ′

r′]). Since G and H are isomorphic with an isomorphism mapping Xr to X ′

r′

and since the minimal tree distance decomposition is unique, the augmented trees of G and H
with respect to the root bags Xr and X ′

r′ are also isomorphic and we have σ(G[Xr]) = σ′(H [X ′

r′]),
size(Sr) = size(Tr′) and #r = #r′ = l for some l. The isomorphism also implies (Sσ

s1
, . . . , Sσ

sl
) =T

(T σ′

t1
, . . . , T σ′

tl
) (where the equality refers here to the order ≺T defined between subtrees rooted

at separating set nodes) and for all i ∈ {1, . . . , l}, σ(Xsi
) = σ′(X ′

ti
), the number of children of

Ssi
, ki, coincide with that of Tti

, and for all j ∈ {1, . . . , ki}, BG[Xsi
, Xai,j

]σ = BH [X ′

ti
, X ′

a′
i,j

]σ
′

and the subtree Sai,j
is isomorphic to Ta′

i,j
via an isomorphism ϕi,j mapping Xai,j

to X ′

a′
i,j

.

For any permutation φi,j ∈ Sym(Xai,j
) consider φ′

i,j = ϕi,jφi,jϕ
−1
i,j . φ′

i,j ∈ Sym(X ′

a′
i,j

) and

φ′

i,j(H [X ′

a′
i,j

]) = φi,j(G[Xai,j
]) which implies S

φi,j

ai,j =T T
φ′

i,j

a′
i,j

. Since this is true for every i and j,

by the definition of the isomorphism order we have Sσ
r =T T σ′

r′ .

The direction from right to left is proven by induction on the number of levels with bag nodes
in the augmented tree. The base case is when there is only one bag node in each of the augmented
trees, i.e. all vertices in G and H are associated to the single bags Xr and X ′

r′ respectively.
By hypothesis there exists a pair of permutations (σ, σ′) ∈ Sym(Xr) × Sym(X ′

r′) with Sσ
r =

T σ′

r′ . This means σ(G[Xr]) = σ′(H [X ′

r′]) and since G = G[Xr] and H = H [X ′

r′], both graphs are
isomorphic, with isomorphism σ′−1σ.

For the induction step, since Sσ
r =T T σ′

r′ , it holds σ(G[Xr]) = σ′(H [X ′

r′]), size(Sr) = size(Tr′)

and #r = #r′ = l for some l. Moreover (Sσ
s1

, . . . , Sσ
sl

) =T (T σ′

t1
, . . . , T σ′

tl
). This means that for

7

all i ∈ {1, . . . , l}, σ(Xsi
) = σ′(X ′

ti
), the number of children of Ssi

, ki, coincide with that of Tti
,

and for all j ∈ {1, . . . , ki}, BG[Xsi
, Xai,j

]σ = BH [X ′

ti
, X ′

a′
i,j

]σ
′

. Let φj be any permutation in

Sym(Xai,j
) and let φ′

j ∈ Sym(X ′

ai,j
) satisfying σφj(BG[Xsi

, Xai,j
]) = σ′φj(BH [X ′

ti
, X ′

a′
i,j

]). Such

a permutation φ′

j always exists since BG[Xsi
, Xai,j

]σ = BH [X ′

ti
, X ′

a′
i,j

]σ
′

. For all j ∈ {1, . . . , ki},

we have S
φj

ai,j =T T
φ′

j

a′
i,j

and by induction hypothesis for all j ∈ {1, . . . , ki}, graph(Sai,j
) is isomorphic

to graph(Ta′
i,j

) with an isomorphism that maps Xai,j
to X ′

a′
i,j

. Observe that since the nodes ai,j

are bag nodes, for j 6= j′ the graph vertices associated to Sai,j
are disjoint from those associated

to Sai,j′
. All these isomorphisms between subgraphs of G and H are consistent eachother and also

with σ′−1σ and can therefore be extended to an isomorphism between G and H mapping Xr to
X ′

r′ via σσ′−1. �

Corollary 3.5 Two graphs G and H are isomorphic if and only if there is a pair of root sets
producing minimal tree distance decompositions of the graphs with augmented trees Sr and Tr′

with Sr =T Tr′.

We describe now an algorithm for computing the isomorphism order. After this, we analyze
the complexity of the algorithm showing that if the tree distance width is constant then the
isomorphism order of the corresponding augmented trees can be computed in logarithmic space.

Isomorphism of two subtrees rooted at bag nodes r and r′. We are interested in finding
the mappings σ and σ′ which lead to the minimum isomorphism order of the trees Sr and Tr′ .
For this we define a set of permutation pairs Θ(r,r′) ⊆ Sym(Xr) × Sym(X ′

r′) related to the pair
of nodes (r, r′). The order procedure cycles through all permutation pairs contained in Θ(r,r′).
Initially Θ(r,r′) = Sym(Xr) × Sym(X ′

r′). We will see, if r and r′ are not the root of the overall
tree, the set Θ(r,r′) may be restricted to a subset. The algorithm sets up a table for Θr,r′ which
contains at most (k!)2 entries. The algorithm records for each entry (σ, σ′) ∈ Θr,r′ the result of

the comparison of Sσ
r with T σ′

r′ .
In Step 1, we have constant size components associated to the bag nodes. We simply compare

the adjacency matrices of G[Xr] and H [X ′

r′] bitwise, where the elements are arranged in rows and
columns in increasing order according to the permutations σ and σ′.

The Steps 2 and 3 can be done in logspace by comparing the tree size and the number of
children of r and r′. In Step 4 the subtrees rooted at separating set nodes are compared. This
requires similar arguments as in [12]. We run through the children of r and r′ in a fixed order
using the functions FirstChild and Next Sibling. First, we find the minimum subtrees Ssi

and Ttj

according to ≺T. If they are ≺T-equal then we compute the number of ≺T-equal siblings for si and
tj , by running through all children of Sr and Tr′ . If the numbers are equal, then we proceed with
the minimum subtrees larger than Ssi

and Ttj
according to ≺T. If they are not equal, then we

know that Sσ
r <T T σ′

r′ (or T σ′

r′ <T Sσ
r). If all the tests are equal then we know that Sσ

r =T T σ′

r′ and

proceed with the next entry in Θr,r′. In Θr,r′ , the permutation σ is the smallest if Sσ
r ≤T T σ′

r′ for
all σ′.

In the next paragraph we consider one such comparison of two subtrees rooted at two separating
set nodes.

Isomorphism of two subtrees rooted at separating set nodes si and tj. In Step 4i),
we compare si with tj only if the vertices of Xsi

can be mapped onto X ′

tj
blockwise. In order

to compute the relation ≺T, we have to decide whether σ(Xsi
) < σ′(X ′

tj
) for pairs Xsi

) and
X ′

tj
). We explain the definition of the ordering σ(Xsi

) < σ′(X ′

tj
) here in more detail with an

example. Let Xr = {v1, v3, v5, v7} and σ ∈ Sym(Xr) the permutation (v3, v5, v7, v1) (written in
cyclic notation). For Xsi

= {v3, v7} ⊆ Xr, σ(Xsi
) is defined as σ(Xsi

) = {posrσ(v3), posrσ(v7)} =
{1, 3}. Analogously, let X ′

r′ = {v′6, v
′

7, v
′

8, v
′

9} and Xtj
= {v′6, v

′

7} ⊆ X ′

r′ and σ′ ∈ Sym(X ′

r′) be
the identity permutation. σ′(X ′

tj
) = {posr′σ′(v′6), posr′σ′(v′7)} = {1, 2}. Since (1, 2) < (1, 3)

8

(lexicographical comparisson of the sets with the entries arranged in increasing order) we have
σ(X ′

tj
) < σ(Xsi

).

In Step 4ii), we compare ki with kj , the number of children of si and of tj. To compute ki,
we can use the functions FirstChild(si) and count how often NextSibling returns a further child of
si and increment this number once at the end.

In Step 4iii), assume ki = kj = m. We consider the induced bipartite subgraphs
BG[Xsi

, Xai,1], . . . , BG[Xsi
, Xai,m

] and BH [X ′

tj
, X ′

a′
j,1

], . . . , BH [X ′

tj
, X ′

a′
j,m

]. Intuitively, we parti-

tion the children of si and tj into classes where the bipartite subgraphs are isomorphic. Again we
use similar arguments as in [12]. We run through the children of si and tj in a fixed order, using the
functions FirstChild and Next Sibling. We find the bipartite subgraph, say BG[Xsi

, Xai,1]
σ which is

the smallest, i.e. for which there exists a mapping φ ∈ Sym(Xai,1) such that for all j′ ∈ {1, . . . , m}
and φ′ ∈ Sym(X ′

a′
j,j′

) it holds σφ(BG[Xsi
, Xai,1]) ≤ σ′φ′(BH [X ′

tj
, X ′

a′
j,j′

]). Via cross comparisons,

the algorithm runs through all bipartite subgraphs (of si with all siblings of ai,1) in increasing
order (and also through all bipartite subgraphs of tj and all its children aj,j′).

This is done as follows: When comparing BG[Xsi
, Xai,1] and BH [X ′

tj
, X ′

a′
j,j′

] for some j′, the

algorithm records all that mappings φ and φ′, where σφ(BG[Xsi
, Xai,1]) and σ′φ′(BH [X ′

tj
, X ′

a′
j,j′

])

become minimal. This builds the set Θai,1,a′
j,j′

. If the set is empty, then both bipartite subgraphs

are not isomorphic and we proceed with the next pair of bipartite subgraphs in the cross comparison
procedure. Thereby, the algorithm compares the number of bipartite subgraphs which are found
to be isomorphic to the current one. For example, if BG[Xsi

, Xai,1] has less isomorphic siblings
than the isomorphic bipartite subgraph BH [X ′

tj
, X ′

a′
j,j′

], then we return Ssi
≺T Ttj

. If the numbers

are equal then we invoce Step 4iv) for all these isomorphic siblings. After this, we proceed with
the next class of isomorphic bipartite subgraphs larger than BG[Xsi

, Xai,1]
σ.

In Step 4iv), we start with two isomorphic bipartite subgraphs BG[Xsi
, Xai,1] and

BH [X ′

tj
, X ′

a′
j,j′

]. For both of them, we consider all the siblings which have an isomorphic bi-

partite subgraph. Thereby, we traverse the children of node si in a fixed order. Namely, we
can reach all these siblings of ai,1 with the function NextSibling. Again, this is done via cross
comparisons. Consider one such pair, say ai,1 and a′

j,j′ . We recompute the set Θai,1,a′
j,j′

and go

into recursion at the corresponding subtrees Sai,1 and Ta′
j,j′

with the set Θai,1,a′
j,j′

. We compute

the number of siblings of ai,1 which are equal up to Step 4iv) and if this number is equal to the
number of siblings of a′

j,j′ then we proceed with the next test. We run through all the siblings
and we do this test for all classes of isomorphic bipartite subgraphs and return Ssi

=T Ttj
.

Complexity of the isomorphism order algorithm We show that the isomorphism order
between two augmented trees of bounded tree distance width graphs can be computed in logspace.

Steps 1, 2 and 3 of the isomorphism order can be done in logspace, as we compute the size of
subgraphs, the number of children and check the correctness of a partial isomorphism. Because we
have a tree distance decomposition where bags have constant size, the whole graph is partitioned
into separating sets of constant size. Hence, for a partial isomorphism from bag Xr onto bag X ′

r′

we store the current mappings σ and σ′ with O(1) bits on the work-tape. We also store Θ(r,r′) in
O(1) bits. Thereby, we rename the vertices according to the lexicographical order of their labels
from the input. The mapping from Xr onto X ′

r′ is given by σσ′−1. Whether this is a partial
isomorphism which fits to the partial isomorphism of the parents of Xr and X ′

r′ (if we are in
recursion, having a look at the work-tape contents stored one level up in recursion) can be checked
with constant effort.

For this task, in Step 4 we have counters on the work-tape. For the partitioning in Step 4i, we
need O(1) bits on the work-tape, because there are at most O(1) different separating sets only.
For the partitioning in Step 4ii, we need O(log k) bits when considering nodes like si with ≥ k
children. We can recompute these numbers and do not keep them after the comparison. For the
partitioning in Step 4iii, we need O(1) bits, because the bipartite graphs (like e.g. B[si, ai,i′])
are of constant size and therefore there are at most O(1) different bipartite graphs only. For

9

the partitioning in Step 4iv, we need O(log k) bits when considering an isomorphism class with
members, say like ai,i′ , of size |Sai,i′

| = n/k. Note, there are ≤ k such members in that class.
In order to have only a logarithmic number of recursive calls there is one special situation in

which we have to diverge from the isomorphism order procedure.

Definition 3.6 In an augmented tree of size n, a large child of a node is a subtree rooted at a
child, which is of size ≥ n/2.

It is important for the logspace bound not to store bits on the work-tape before going into
recursion on such a large child. Each node can have only one large child. Say s1 and t1 are
large children of r and r′, respectively (accordingly, we can have a and a′ as large children of s1

and t1). Before doing any computation we directly go into recursion. When returning from the
recursion we return a constant size table Θ0 of all the partial isomorphisms from Xs1 onto X ′

t1

which correspond to the minimal isomorphism order. If the table is not empty then we recompute
Θ(r,r′) and update it, i.e. Θ(r,r′) ← Θ(r,r′) ∩ Θ0. If there is no partial isomorphism from Xs1

onto X ′

t1
then there is no isomorphism from Xa onto X ′

a′ and we return one further level up in
recursion.

We summarize, when going into recursion at bag nodes we only store O(1) bits, i.e. the current
mapping σ (or a table of mappings of the large child) of the bag node r. This order also gives an
order on the children of r. Note, r can have only O(1) children because the children correspond
to minimum separating sets, i.e. different subgraphs of Xr and there are only O(1) possibilities
for this.

When going into recursion at a separating set node s1, there can be many children. Let
|Ts1 | = n. To partition these children into isomorphism classes we keep counters on the work-
tape. First, we distinguish them by the fixed order of the parent bag node, we can recompute
this primary order. Second, we distinguish them by the size of their subtrees. Hence, in one
isomorphism class are only children of equal size. Therefore we keep counters on the work-tape to
distinguish the children in the current isomorphism class. With cross comparisons, as done in [12],
we can compute and check the number of isomorphic children in each class. For these counters
we need O(log kj) bits if the j-th isomorphism class has kj members. Since in an isomorphism
class the members have equal size, the subtrees have size ≤ N/kj . where N be the size of the
augmented tree. We conclude that we get the same recurrence for the space S(N) as Lindell:

S(N) ≤ max
j
S

(
N

kj

)
+ O(log kj),

where kj ≥ 2 for all j. Thus S(N) = O(log N). Note that the number n of vertices of G is
in general smaller than N , because the vertices of the separating sets (of a separating set node)
occur also in the bag associated to the parent node in the augmented tree. Since there are only a
constant number of children for a bag node, the size of the augmented tree is polynomial in the
size of the associated graph. This proves the theorem.

Theorem 3.7 The isomorphism problem for graphs of bounded tree distance width is in L.

Canonization of bounded tree distance width graphs. We use the isomorphism order
algorithm as a sub-routine for the canonization of the augmented tree T . We traverse T while
computing the tree isomorphism order as in Lindell [12] to output the canon of each of the nodes
along with delimiters. That is, we output a ‘[’ while going down a subtree, and ‘]’ while going up
a subtree.

We need to choose a bag node as root for the tree. Since there is no distinguished bag, we
simply cycle through all of them in logspace, determining the set which, when chosen as the
root, leads to the lexicographically minimum canon of the augmented tree S. We describe the
canonization procedure for a fixed root r.

The canonization procedure has two steps. In the first step we compute what we call a canonical
list for Sr. Assume, that we can pre-compute a table where we have for each graph of size ≤ k

10

its canon. We can use this for example, if the isomorphism order algorithm reaches a leaf in the
augmented tree. This canon is given by arranging the edges of the graphs in a unique order. In
the second step we compute the final canon from the canonical list.

For the canon of a subtree rooted at a bag node r, we compute the minimal mapping σ for r,
invoking the isomorphism order algorithm. The canon begins with σ. According to the order of σ
we order the children and output their canons in increasing isomorphism order.

For the canon of a subtree rooted at a separating set node s1, we invoke the isomorphism order
algorithm to arrange the children of s1. This is done via cross comparisons of the subtrees rooted
at these children. The canon begins with σ|s1 (i.e. the order of σ restricted to the vertices of s1),
followed by the canons of the subtrees in increasing isomorphism order.

We give an example: Consider the canonical list l(S, r) of edges for the tree Sr of Figure 1.
Let σi,j be the minimum mapping of the subtree rooted at bag node ai,j .

l(S, r) = [(σ) l(Ss1 , s1) . . . l(Ssl
, sl)], where

l(Ss1 , s1) = [(σ|s1) l(σ1,1, a1,1) . . . l(σ1,k1 , a1,k1)]

...

l(Ssl
, sl) = [(σ|sl

) l(σl,kl
, al,kl

)]

Canon for the original graph of bounded tree distance width. This list is now almost
the canon, except that the names of the nodes are still the ones they have in G. Clearly, a canon
must be independent of the original names of the nodes. The final canon for Sr can be obtained
by a logspace transducer which relabels the vertices in the order of their first occurrence in this
canonical list and outputs the list using these new labels.

To get the canon for G, we remove the delimiters ‘[’ and ‘]’ in the canon for Sr and order the
edges of G in lexicographical order using the new labels. This is sufficient, because we describe
here a bijective function f which transforms an automorphism φ of Sr into an automorphism f(φ)
for G with Xr fixed. This proves the theorem.

Theorem 3.8 A graph of bounded tree distance width can be canonized in logspace.

4 Graphs of bounded treewidth

In this section we consider several isomorphism problems for graphs of bounded treewidth. We
are interested in isomorphisms respecting the decompositions (i.e. vertices are mapped blockwise
from a bag to another bag). We show first that if the tree decomposition of both input graphs is
part of the input then the decomposition respecting isomorphism problem can be decided in L.
We then show that if a tree decomposition of only one of the two given graphs is part of the input,
then the isomorphism problem is in LogCFL. It follows that the isomorphism problem for graphs
of bounded treewidth is also in LogCFL.

Assume first the decompositions of both input graphs are given. In order to prove that this
problem is in L, we show that given tree decompositions together with designated bags as roots
for G and H the question of whether there is an isomorphism between the graphs mapping root
to root and respecting the decompositions can be reduced to the isomorphism problem for graphs
of bounded tree distance width. We argued in the previous section that this problem belongs to
L.

Theorem 4.1 The isomorphism problem for bounded treewidth graphs with given tree decom-
positions reduces to isomorphism for bounded tree distance width graphs under AC0 many-one
reductions.

Proof: Let (G, D, r), (H, D′, r′) be two graphs together with tree decompositions D and D′ of

width k with root bags Xr and X ′

r′ . We describe a function which transforms (G, D, r) into (Ĝ, S)

11

(v, j) (u′, j)

(u, i)(v, i)Xi

Xi ∩Xj

Xju′

v

u
X ′

i

X ′
j

wi

Figure 2: The figure shows the situation where Xi and Xj are copied. For the vertices u, u′, v and
wi the new edges from Step 2 and Step 3 are drawn.

where Ĝ is a graph of bounded tree distance width k and S is a root set for a minimum tree
distance decomposition of width k of Ĝ. This function also transforms (H, D′, r′) into (Ĥ, S′).

We will show that this happens in such a way that (Ĝ, S) is isomorphic to (Ĥ, S′) if and only if
there is an isomorphism between G and H respecting the decompositions D and D′ and mapping
the vertices in the root bag r to vertices in the root bag r′.

Let D = ({Xi | i ∈ I}, T = (I, F), r) be the given tree decomposition of G. W.l.o.g. we can

suppose that every bag in D includes at least two vertices. We define S := Xr. Ĝ is defined as
follows:

1. For each bag Xi in D and each vertex v in Xi, we define the vertex (v, i) in V (Ĝ). If u, v ∈ Xi

and there is an edge {u, v} ∈ E(G) then we define the edge {(u, i), (v, i)} ∈ E(Ĝ).

2. For all {i, j} ∈ F , u ∈ Xi and v ∈ Xj with u 6= v, we define an edge between (u, i) and (v, j).

3. For all i, we define a vertex wi ∈ V (Ĝ) which is connected to (v, i), for all v ∈ Xi.

From H , the graph Ĥ is defined in the same way. We consider the minimal tree distance
decomposition D̂ of Ĝ with root set S. For each bag Xi in D, in Step 1 the vertices of this bag
are copied in Ĝ. By considering these bags as a tree distance decomposition of Ĝ, the distance
from the root set S to such a bag is equal to the distance of r to i in T . This is, because if (i, j)

is an edge in T then for every vertex (u, i) in Ĝ there is an edge to at least one vertex (v, j). Ii

also holds that the minimal tree distance decomposition of Ĝ with root S has width k.
If G is isomorphic to H with an isomorphism respecting the decompositions and mapping the

vertices from the root bag Xr of G to the root bag of H , then clearly Ĝ is isomorphic to Ĥ . For
the other direction, observe that the edges connecting the vertices inside each bag are kept by
Step 1 in the definition of Ĝ and Ĥ. By Step 3, we guarantee, that in an isomorphism between Ĝ
and Ĥ the vertices in one bag are all mapped blockwise to vertices in some bag, i.e. they are not
split and mapped onto vertices of two or more bags. In Step 2, we distinguish between vertices
in Xi ∩Xj and the other vertices. That is, for an edge (i, j) ∈ T , every vertex (u, i) is connected
to every vertex (v, j) except to (u, j) (in case u belongs to Xi ∩Xj in D). Since all the copies of

vertex u (all the vertices (u, i) for some i in Ĝ) belong to a connected subtree, this implies that in

a possible isomorphism between Ĝ and Ĥ all copies of vertex u in Ĝ have to be mapped blockwise
to copies of the same vertex in Ĥ .

It follows that there is an isomorphism between Ĝ and Ĥ if and only if there is an isomorphism
between G and H which respects the bags in the decompositions D and D′ together with r and r′,
accordingly. �

From Theorem 4.1 we get the following corollary.

Corollary 4.2 For every k ≥ 1 there is a logarithmic space algorithm that, on input a pair of
graphs together with a tree decompositions of width k for each of them, decides whether there is
an isomorphism between the graphs, respecting the decompositions.

Proof: The result follows from the previous reduction and Theorem 4.1. Thereby we fix a root
in D and run through all possibilities for bags as roots in D′. As there are only polynomially
many bags in D′ this can be done by a logspace machine. �

12

In the previous reduction, we have transformed a graph G given together with a tree decom-
position D of width k and with root bag r into a new graph Ĝ and a root set S such that the
minimal tree distance decomposition of Ĝ has width k. As done in Section 3 we can compute
within logspace an augmented tree for Ĝ. Moreover we can use the defined total isomorphism
order on augmented trees to compare in this way graphs of bounded treewidth given together
with tree decompositions.

Corollary 4.3 For any k > 1 there is a total order <T defined on the set of tuples (G, D, r) where
G is a graph of treewidth k, and D a treewidth decomposition of G with root set r. <T can be
computed in logarithmic space and (G, D, r) =T (H, D′, r′) if and only if there is an isomorphism
between G and H respecting the decompositions and mapping the root set r to r′.

This result will be used in the next section for computing an isomorphism when just one of
the decompositions is given.

4.1 A LogCFL algorithm for isomorphism

We consider now the more difficult situation in which only one of the input graphs is given together
with a tree decomposition.

Theorem 4.4 Isomorphism testing for two graphs of bounded treewidth, when a tree decomposi-
tion for one of them is given, can be done in LogCFL.

Proof: We describe an algorithm which runs on a non-deterministic auxiliary pushdown automa-
ton (NAuxPDA). Besides a read-only input tape and a finite control, this machine has access to
a stack of polynomial size and a O(log n) space bounded work-tape. On the input tape we have
two graphs G, H of treewidth k and a tree decomposition D = ({Xi | i ∈ I}, T = (I, F), r) for G.
For j ∈ I we define Gj to be the subgraph of G induced on the vertex set {v | v ∈ Xi, i ∈ I
and i = j or i a descendant of j in T }. That is, Gj contains the vertices which are separated by
the bag Xj from Xr and those in Xj . We define Dj = ({Xi, |, i ∈ Ij}, Tj = (Ij , Fj), j) as the tree
decomposition of Gj corresponding to Tj , the subtree of T rooted at j. We also consider a way to
order the children of a node in the tree decomposition:

Definition 4.5 Given a graph G together with a tree decomposition D, let 1, . . . , l be the children
of a node r in the decomposition tree T . We define the lexicographical subgraph order, as the order
among the subgraphs G1, . . . , Gl which is given by: Gi < Gj iff there is a vertex w ∈ V (Gi) \Xr

which has a smaller label than every vertex in V (Gj) \Xr.

The algorithm non-deterministically guesses two main structures. On the one hand it guesses
a tree decomposition of width k for H . This is done in a similar way as in the LogCFL algorithm
from Wanke [18] for testing that a graph has bounded treewidth. We briefly sketch this method
which is the basis of our algorithm. Second, we guess an isomorphism φ from G to H by extending
partial mappings from bag to bag.

Algorithm for tree decomposition testing For completeness we include here a sketch of
Wanke’s algorithm [18] for testing whether a graph has treewidth k. On input a graph G the
algorithm guesses non-deterministically the bags in the decomposition using the pushdown to test
that these bags fulfill the properties of a tree decomposition and that every edge in G is included in
some bag. If the guessed bags determine a tree decomposition of width k the algorithms accepts.

Let G be the connected input graph. P and Q denote vertex sets of size ≤ k+1 in G which are
additionally separating sets and play the role of bags in the tree decomposition. For a separating
set P in G and a vertex v /∈ P , let ΦG(P, v) be the split component of P in G containing v.
For technical reasons initially we extend G defining an extra vertex v0 and connecting it to an
arbitrary vertex u such that {u} is not an articulation point in G. We will assume that v0 has a
label with smaller number than all the original vertices in G. We also consider arbitrarily some

13

other vertex w 6= u in G. The algorithm is started with the initial bag P = {v0, u} and the initial
vertex w, representant of the unique split component of P . Then it guesses non-deterministically
a new bag Q in the decomposition and goes in recursion with each of the split components defined
by Q. This is done with the procedure Decompose(G, v0, P, v) where G is the original graph, v0

the extra vertex, P the actual separating set (bag) and v a representant of a split component of
P . The initial call is Decompose(G, v0, {v0, u}, w) where u and w are chosen arbitrarily being u a
non articulation point in G and w 6= u.

P and the sequence of bags Q defined in an accepting non-deterministic computation define a
tree decomposition of G (once the vertex v0 is deleted from them).

Algorithm 1 Tree decomposition testing DECOMPOSE(G, v0, P, v)

Input: graph G, vertex v0, separating set P with |P | ≤ k + 1, vertex v in a split component of P
Output: accept iff the graph induced by P ∪ ΦG(P, v) has a tree decomposition of width k

1: non-deterministically choose Q of size ≤ k + 1 in ΦG(P, v) ∪ P .
2: if Q ⊆ P or P ⊆ Q or

∃{u1, u2} ∈ E(G) : u1 ∈ ΦG(P, v) ∧ u2 /∈ ΦG(P, v) ∪Q)
then halt and reject.

3: for all w having smallest number in a split component of Q except v0

4: go into recursion with (G, v0, Q, w).
5: end for
6: if the stack is not empty then go one level up in recursion
7: halt and accept.

In every iteration the algorithm chooses Q a neighbor bag of P in a tree decomposition of G.
In Line 2 it is required that Q is not contained in P nor P in Q and Q must separate its split
components in the subgraph ΦG(P, v) from the vertices in P \Q. This requirement guarantees that
the new bag fulfills condition iii) in the definition of tree decomposition. In Line 3 the algorithm
goes into recursion at each split component of Q, except the one which contains v0. The algorithm
recursively chooses separating sets this way from the root through the whole graph.

Algorithm for isomorphism testing We modify the algorithm of Wanke in a way that we can
test isomorphism in parallel. Namely, our algorithm simulates Wanke’s algorithm as a subroutine.
In the description of the new algorithm we concentrate on the isomorphism testing part and hide
the details of how to choose the bags. For simplicity the sentence “guess a bag Xj in H according
to Wanke’s algorithm” means that we simulate the guessing steps from Wanke, checking at the
same time that the constructed structure is in fact a tree decomposition. Note, if the bags were
not chosen appropriately, then the algorithm would halt and reject.

The algorithm starts guessing a root bag X ′

r′ of size ≤ k+1 for a decomposition of H . With X ′

r′

as root bag it guesses step by step the tree decomposition D′ of H which corresponds to D and
its root r. It also constructs a mapping φ describing a partial isomorphism from the vertices of G
onto the vertices of H . At the beginning, φ is the empty mapping and the algorithm guesses an
extension of φ from Xr onto X ′

r′ that is stored on the top of the stack. In general when dealing
with a bag set Xa in D, the algorithm cycles through all possible subsets S of Xa and considers the
children i of a in D with Xa∩Xi = S. The corresponding subgraphs Gi of G are then partitioned in
isomorphism classes respecting the decomposition Di given in the input. This is done considering
the total isomorphism order of (Gi, Di, Xi) as defined in Corollary 4.3. The algorithm compares
the children of a with intersection set S with guessed children of a′ (with intersection set φ(S))
testing that for each isomorphism class there is the same number of isomorphic subtrees of a′ in H .
For this the algorithm uses the lexicographical subgraph order (Definition 4.5) to go through the
isomorphic siblings from left to right, just keeping a pointer to the current child on the work tape,
so that no child is counted twice. For two such children, say s1 of a and t1 of a′, the algorithm
checks then recursively that (G1, D1) is isomorphic to the corresponding subgraph of t1 in H , by

14

an extension of φ. Inside an isomorphism class the subgraphs have the same intersection with Xa

and are isomorphic to each other. Because of this, they are interchangeable and could be mapped
to subgraphs is the corresponding isomorphism class from X ′

a′ in any order. The isomorphism
computed by the algorithm maps these subgraphs to subgraphs in the isomorphism class from X ′

a′

in lexicographical subgraph order.
When the algorithm goes into recursion, it pushes on the stack O(log n) bits for a description of

Xa and X ′

a′ as well as a description of the partial mapping φ from Xa onto X ′

a′ and the description
of S.

In general, not all the information about φ is kept on the stack. We only have the partial
isomorphism φ : {v | v ∈ Xr ∪ · · · ∪Xa} → {v | v ∈ X ′

r′ ∪ · · · ∪ X ′

a′}, where r, . . . , a (r′, . . . , a′,
respectively) is a simple path in T from the root to the node at the current level of recursion.
After the algorithm runs through all children of some node (going through all its subsets S) it goes
one level up in recursion and recomputes all the other information which is given implicitly by the
subtrees from which it returned. Suppose the control of the algorithm returned to the bag Xa,
from a child Xi with Xa ∩Xi = S after checking that the partial isomorphism can be extended
to map Xi to X ′

i′ . It then has to do the following:

• Copy in the work tape, from the top of stack, the partial isomorphism φ of the bags Xa

onto X ′

a′

• Compute the lexicographical next isomorphic sibling of Xi with intersection set S and guess
the lexicographical next isomorphic sibling of X ′

i′ with intersection set φ(S). Check that the
guessed sibling satisfies the decomposition properties that the isomorphism can be extended
to include the new subgraphs.

• If there is no such sibling then look for the next isomorphism class (Corollary 4.3) of a
subtree with intersection S and look for the lexicographical first child of Xa inside this class.

• If there is no higher isomorphism class of subtrees with intersection S then go to the next
subset S′ ⊆ Xa.

• If there is no further subset S′ then the algorithm has visited all children of Xa and it is
ready to further return one level up in the recursion.

Algorithm 2 summarizes the above considerations. In Line 1, it guesses an extension of the
partial isomorphism φ to include a mapping from Xa onto X ′

a′ . We the partial isomorphism of
their parent bags can be found on the top of the stack.

In Line 3 the algorithm cycles through all the subsets of Xa. E2 = {Tl1+1, . . . , Tl2} and
so on. The partition in Line 4 can be obtained in logspace by testing decomposition respecting
isomorphism of the tree structures. Two subtrees rooted at Xi and Xj are in the same isomorphism
class if and only if (Gi, Di, S) =T (Gj , Dj , S).

In Lines 7 to 10, the algorithm guesses the bag X ′

i′ in H which corresponds to Xi and tests
recursively whether the corresponding subgraphs Gi and Hi′ are isomorphic with an extension of
the partial isomorphism φ. Observe that the algorithm cannot guess the same bag X ′

i′ in H for
two different bags Xi and Xj in G. This is because if the corresponding subgraphs Gi and Gj

are isomorphic the bags in H are chosen in increasing lexicographical order (Line 7) and must be
different. On the other hand if Gi and Gj are not isomorphic then the subgraph of H defined
by X ′

i′ cannot be isomorphic to both of them.
In Line 8, the algorithm checks whether X ′

i′ fulfills the properties of a correct tree-
decomposition as in Wanke’s algorithm (i.e. X ′

i′ must be a separating set which separates its
split components from the vertices in X ′

a′ \X ′

i′).

To show that the algorithm correctly computes an isomorphism, we make the following ob-
servation. A bag Xa and a subset S ⊆ Xa constitute a separating set defining the connected
subgraphs G1, . . . , Gl. These subgraphs do not contain the root Xr and V (Gi)∩ V (Gj) = S since
we have a tree decomposition D. The algorithm guesses and keeps from the partial isomorphism

15

Algorithm 2 Treewidth Isomorphism with one tree decomposition TWI(G, H, D, Xa, X ′

a′)

Input: Graphs G, H , tree decomposition D for G, bags Xa in G and X ′

a′ in H .
Top of Stack: Partial isomorphism φ mapping the vertices in the parent bag of Xa onto

the vertices in the parent bag of X ′

a′ .
Output: Accept, iff Ga is isomorphic to Ha by an extension of φ.

1: Guess an extension of φ to a partial isomorphism from Xa onto X ′

a′

2: if φ cannot be extended to a partial isomorphism which maps Xa onto X ′

a′ then reject
3: for each subset S ⊆ Xa do
4: Let 1, . . . , l be the children of a in T with Xa ∩ Xi = S. Partition the subgraphs corre-

sponding to the subtrees of T rooted at 1, . . . , l into (decomposition respecting) isomorphism
classes E1, . . . , Ep

5: for each class Ej from j = 1 to p do
6: for each subtree Ti ∈ Ej (in lexicographical subgraph order) do
7: guess a bag X ′

i′ in H in increasing lexicographical subgraph order of Hi′

8: if X ′

i′ is not a correct child bag of X ′

a′ (see Wanke’s algorithm) then reject.
9: Invoke TWI(Gi, Hi′ , Di, Xi, X

′

i′) recursively and push Xa, X ′

a′ and the partial isomor-
phism φ on the stack

10: After recursion pop these informations from the stack
11: end for
12: end for
13: end for
14: if the stack is not empty then go one level up in recursion
15: accept and halt

φ exactly those parts which correspond to the path from the roots Xr and X ′

r′ to the current
bags Xa and X ′

a′ . Once it verified a partial isomorphism from one child component (e.g. Gi)
of Xa onto a child component (e.g. Hi′) of X ′

a′ , for the other child components it suffices to know
the partial mapping of φ from Xa onto X ′

a′ .
Observe that for each v in G in a computation path from the algorithm there can only be a

value for φ(v), since in the decomposition all the appearances of vertex v belong to neighboring
bags. Clearly, if G and H are isomorphic then the algorithm can guess the decomposition of H
which fits to D, and the extensions of φ correctly. In this case the NAuxPDA has some accepting
computation. On the other hand, if the input graphs are non-isomorphic then in every non-
deterministic computation either the guessed tree decomposition of H does not fulfill the conditions
of a tree decomposition (and would be detected) or the partial isomorphism φ cannot be extended
at some point. �

Wanke’s algorithm decides in LogCFL whether the treewidth of a graph is at most k by guessing
all possible tree decompositions. Using a result from [7] it follows that there is also a (functional)
LogCFL algorithm that on input a bounded treewidth graph computes a particular tree decom-
position for it. Since LogCFL is closed under composition, from this result and Theorem 4.4 we
get:

Corollary 4.6 The isomorphism problem for bounded treewidth graphs is in LogCFL.

5 Conclusions and open problems

We have shown that the isomorphism problem for graphs of bounded treewidth is in the class
LogCFL and that for the more restricted case of bounded tree distance width graphs the problem is
complete for L. Moreover for this second class of graph we also give a canonizing logspace algorithm.
By using standard techniques in the area it can be shown that the same upper bounds apply for
other problems related to isomorphism on these graph classes. For example the problem of deciding

16

whether a given graph has a non trivial automorphism or the functional versions of automorphism
and isomorphism can be done within the same complexity classes. The main question remaining is
whether the LogCFL upper bound for isomorphism of bounded treewidth graphs can be improved.
No LogCFL-hardness result for the isomorphism problem is known, so maybe the result can be
improved. We believe that proving a logspace upper bound for the isomorphism problem of
bounded treewidth graphs would require to compute tree decompositions within logarithmic space,
which is a long standing open question. Another interesting open question is whether bounded
treewidth graphs can be canonized in LogCFL.

References

[1] V. Arvind, P. Kurur and T.C. Vijayaraghavan, Bounded color multiplicity graph isomorphism
is in the #L hierarchy, in Proc.20th IEEE CCC (2005) 13–27.

[2] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial
k-trees, J. Algorithms 11 (1990), 631–643.

[3] H.L. Bodlaender, A partial k-arboreum of graphs with bounded treewidth, Theoretical Computer

Science 209 (1998), 1–45.

[4] H.L. Bodlaender and A. Koster, Combinatorial optimization of graphs of bounded treewidth,
The Computer Journal (2007), 631–643.

[5] S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf and F. Wagner, Planar graph isomorphism
is in Logspace, In Proc. 24th IEEE CCC (2009), 203–214.

[6] S. Datta, P. Nimbhorkar, T. Thierauf and F. Wagner, Isomorphism of K3,3-free and K5-free
graphs is in Logspace, To appear in Proc. 29th FSTTCS (2009).

[7] G. Gottlob, N. Leone and F. Scarcello, Computing LOGCFL certificates, In Theoretical Com-

puter Science 270 (2002), 761–777.

[8] M. Grohe and O. Verbitsky, Testing graph isomorphism in parallel by playing a game, In Proc.

33rd ICALP (2006), 3–14.

[9] B. Jenner, J. Köbler, P. McKenzie and J. Torán, Completeness results for Graph Isomorphism,
Journal of Computer and System Sciences 66 (2003) 549–566.

[10] J. Köbler and S. Kuhnert, The isomorphism problem of k-trees is complete for Logspace, In Proc.

34th MFCS (2009), 537–448.

[11] J. Köbler, U. Schöning and J. Torán, The Graph Isomorphism problem, Birkhäuser (1993).

[12] S. Lindell, A Logspace algorithm for tree canonization, In Proc. 24th ACM STOC (1992), 400–404.

[13] E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of

Computer and System Sciences 25 (1982), 42–65.

[14] E. Luks, Parallel algorithms for permutation groups and graph isomorphism. In Proc. 27th IEEE

FOCS (1986), 292–302.

[15] G. Miller, Isomorphism testing for graphs of bounded genus, In Proc.12th ACM STOC, (1980),
225–235.

[16] O. Reingold, Undirected connectivity in logspace In Journ. of ACM, 55 (4) (2008).

[17] I. Sudborrough, Time and tape bounded auxiliary pushdown automata. Mathematical Foundations

of Computer Science (1977), 493–503.

[18] E. Wanke, Bounded tree-width and LOGCFL Journal of Algorithms 16 (1994), 470–491.

[19] K. Yamazaki, H.L. Bodlaender, B. de Fluiter and D.M. Thilikos, Isomorphism for Graphs
of Bounded Distance Width, Algorithmica 24 (1999), 105–127.

17

