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Abstract. In a bounded valence graph every vertex has O(1) neigh-
bours. Testing isomorphism of bounded valence graphs is known to be
in P [15], something that is not clear to hold for graph isomorphism in
general. We show that testing isomorphism for undirected, directed and
colored graphs of valence 2 is logspace complete. We also prove the fol-
lowing: If a special version of bounded valence GI is hard for ModkL then
it is also hard for #L. All results are proved with respect to DLOGTIME
uniform AC0 many-one reductions.

1 Introduction

The graph isomorphism problem (GI) is to decide whether there is a bijection
between the vertices of two graphs, preserving the edge relations. Whether GI is
in P is a big open question. The NP-completeness for GI would cause a collapse
of the polynomial time hierarchy to its second level, see [5],[20].

For some graph classes, efficient algorithms for testing isomorphism are known,
e.g. for planar graphs [11] [18], planar three-connected graphs [21], trees [14] [7],
graphs of bounded eigenvalue multiplicity [3], graphs with bounded color-class
size [16] or trivalent graphs [15].

With respect to lower bounds, GI is hard for DET under AC0 many-one
reductions [22]. The same lower bounds hold for isomorphism testing of tourna-
ment graphs [23].

It is open whether GI restricted to bounded valence graphs is as hard as
general GI [17], [10]. Tutte proved that the automorphism group of a trivalent
graph which stabilizes some edge e is a 2-group (cf. [10]). Luks gives for bounded
valence GI a polynomial time algorithm [15].

The motivation for studying the complexity status of bounded valence GI is
that there is a huge gap between the best known upper and lower bounds. We
prove that isomorphism for undirected, directed and colored valence-2 graphs is
complete for logspace. A special version of prefix-GA is introduced. We say that
the prefix-GA problem has the fixed vertex property if automorphisms of the
given graph, which satisfy the prefixes, are required to map at least one vertex
to itself. We also prove the following: If bounded valence prefix-GA with fixed
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vertex property is hard for ModkL then it is also hard for #L. In this case,
bounded valence-GI would be hard for #L.

2 Preliminaries

We assume familiarity with basic notions of complexity and graph theory such
as can be found in standard textbooks.

Complexity classes. NL is nondeterministic logspace, #L is defined [2] as the
class of functions f : Σ∗ → N that counts the number of accepting paths of a
NL machine on a input. Based on #L functions the following classes are defined:

PL = {A : ∃p ∈ Poly, f ∈ #L, ∀x ∈ Σ∗ x ∈ A⇔ f(x) ≥ 2p(|x|)} [9] [19]
C=L = {A : ∃p ∈ Poly, f ∈ #L, ∀x ∈ Σ∗ x ∈ A⇔ f(x) = 2p(|x|)} [1]
ModkL = {A : ∃f ∈ #L, ∀x ∈ Σ∗ x ∈ A⇔ f(x) ≡ 1 mod k} [6]

Modk circuits (k ≥ 2) are circuits with input variables over Zk and gates
computing addition in Zk. The evaluation problem for such circuits (given fixed
values for the inputs, testing if the output is 1) is complete for ModkL under
AC0 many-one reductions. We prove our hardness results for the DLOGTIME
uniform AC0 many-one reducibility (in short AC0 reducibility). A set A is AC0

reducible to another set B if there is a family of circuits {Cn|n ∈ N} where each
circuit Cn contains only AND, OR and NOT gates, has size n{O(1)} and depth
O(1), and for each x of length n x ∈ A ⇔ Cn(x) ∈ B.

Graph Isomorphism Problems. Let G = (V,E) be a graph with a set of vertices
V = V (G) and edges E = E(G). Let G[X ] be a subgraph of G induced on vertex
set X . Let H be a subgraph of G then G\H = G[V (G)\V (H)].

For shorter notations we write [k, n] = {k, . . . , n} for integers k < n and [n] if
k = 1. The set Sym(V ) is the symmetric group over a set V and Sn = Sym([n]).

An automorphism of graph G is a permutation φ : V (G) 7→ V (G) preserv-
ing adjacency: (u, v) ∈ E(G) ⇔ (φ(u), φ(v)) ∈ E(G). A rigid graph contains
no nontrivial automorphisms. The graph automorphism problem (GA) decides,
whether a graph is rigid or not. The automorphism group Aut(G) is the set of
automorphisms of G. The prefix automorphism problem (prefix-GA) as denoted
in [13] is given x1, . . . , xk, y1, . . . , yk ∈ V (G), find an automorphism φ ∈ Aut(G)
such that φ(xi) = yi ∀i ∈ [k].

An isomorphism between graphs G and H is a bijective mapping of vertices
in G onto vertices in H that preserves adjacency. If G and H are isomorphic, we
write G ∼= H . The graph isomorphism problem (GI) is defined as

GI = { (G,H) | G ∼= H }.

Let k be a fixed integer. A coloring of a graph G is a function f : V (G) 7→ [k].
For any isomorphism between colored graphs, the color relations have to be
preserved. The decision problem is called the isomorphism problem for colored
graphs (color-GI).



The degree or valence of a vertex v in a graph G is the number of edges
incident to v. The valence of a graph is the maximum valence of its vertices. The
valence-k graph isomorphism problem is the same as GI with the input-graphs
restricted to valence-k graphs.

3 Complexity of Bounded Valence Graph Isomorphism

In this section we discuss upper and lower bounds for valence-k GI for different
values of k.

3.1 Valence-2 Graph Isomorphism

We discuss the complexity of valence-2 GI and prove that Valence-2 GI of di-
rected, undirected and colored graphs is complete for logspace.

Theorem 1. Valence-2 GI is complete for L under AC0 many-one reductions.

Proof . For hardness we reduce the logspace complete problem ORD to valence-2
GI. Etessami proved that this problem is L-complete via quantifier-free projec-
tions. Recall the following definition.

Order between Vertices (ORD) [8], [12]
Given: A digraph G = (V,E) with |V | = n that is a line and two designated
nodes vi, vj ∈ V (G).
Problem: Decide whether vi < vj in the total order induced on V (G).

For the reduction we construct two graphs X,Y such that X ∼= Y if and only
if vi < vj in the order induced by G.

– Construct two new graphs X and Y , also see Figure 1.
– X is the undirected version of G (replace arcs by undirected edges) but with

the following change: {vj , vj+1} /∈ E(X).
– Y is the undirected version of G but with the following changes: {vi, vi+1},

{vj , vj+1} /∈ E(Y ), but {vj , 1} ∈ E(Y ).
– If i < j then Y = Y1 is isomorphic to X . But if j < i then Y = Y2 contains

a cycle and is not isomorphic to X .

This reduction is an AC0 many-one reduction. Since ORD is L-complete
via quantifier-free projections, valence-2 GI is hard for L under AC0 many-one
reductions.

For completeness we give a logspace Turing machine which descides isomor-
phism between valence-2 graphs. Let G,H be two valence-2 graphs. The machine
works as follows:

– Count and compare the number of isolated vertices in G and H .
– For each value k ∈ [n] compare the number of paths of length k in G and H .
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Fig. 1. Graph gadgets for simulation of ORD.

– For each value k ∈ [n] compare the number of cycles of length k in G and H .
Observe that the length of paths and cycles can be computed in logspace.

– Space requirements: We need counters for the variable k and to compare the
number of counted isomorphic components.

– As we run through all isolated vertices, paths and cycles we do not have to
remember explicitely which components have been visited yet. Instead, we
run through all vertices sorted by their labels, call this vertex actual. Thereby,
we just consider the components where the actual vertex has the minimum
label. Observe, that testing the minimum property for each component can
be done in logspace. Thus, we reach every component and consider it exactly
once.

�

3.2 Coloring and Bounded Valence

For general graphs there is no difference between the complexity of GI and the
complexity of color-GI. That is, instead of coloring a vertex v, a special tree is
connected to v. This tree has the property that different colors correspond to
nonisomorphic trees (cf. [13]). In this section we will prove that this also holds
for bounded valence GI.

First we consider the complexity of colored and directed valence-2 graphs.
The situation here is different since the standard techniques can not be adapted
for valence less than three. With minor changes to the standard techniques we
also prove that valence-k color-GI is reducible to valence-k GI for k ≥ 3 under
AC0 many-one reductions.



Theorem 2. Valence-2 color-GI is complete for L.

Proof . Hardness for L follows since valence-2 GI without coloring is hard for L.
For completeness we give a logspace Turing machine which descides isomor-

phism between colored valence-2 graphs. Let G,H be two such graphs.

– For each color c count and compare the number of isolated vertices with
color c in G and H .

– For each value k ∈ [n] compare the number of paths of length k with the
same sequence of colors in G and H . The length of the paths can be tested
in logspace. Let P1, P2 be two paths of length k. Find one end v in P1 and
both ends w,w′ in P2. Start with v and test whether color(v) = color(w). If
it is so then compare the color of the neighbours at distance i for all i ∈ [n]
until we reach the other end of the paths. If we distinguished the paths then
do the same with vertices v and w′, that is we run through the reverse of
P2. If we cannot distinguish the sequences of colors in one of both tests then
both colored paths are isomorphic.

– For each value k ∈ [n] compare the number of cycles of length k with the
same sequence of colors in G and H . The length of the cycles can be tested in
logspace. Let C1, C2 be two cycles of length k. Start with the actual vertex
v in C1 and let v′, v′′ ∈ Γ (v) with v′ the neighbour with minimum label.
For each vertex w in C2 and each neighbour w′, w′′ ∈ Γ (w) do the follow-
ing. Start with v, v′, . . . , v′′, v and w,w′, . . . , w′′, w and pairwise compare the
colors of the corresponding vertices v with w and v′ with w′ and so on. If
we distinguish the sequence of colors then do the same with v, v′, . . . , v′′, v
and w,w′′, . . . , w′, w. If we cannot distinguish them then both cycles are
isomorphic.

– Space requirements and the technique to traverse the components in both
graphs are similar as in proof of Theorem 1.

�

One consequence of Theorem 2 is that considering directed graphs keeps the
complexity of valence-2 GI unchanged.

Corollary 1. Valence-2 GI ≤AC0

m Valence-2 directed GI ≤AC0

m Valence-2 color-
GI.

Proof . First, Valence-2 GI ≤AC0

m valence-2 directed GI. Let {u, v} be a undi-
rected edge. Replace it and insert a vertex w in between and arcs (u,w), (v, w).

Second, valence-2 directed GI ≤AC0

m Valence-2 color-GI. Let (u, v) be a directed
edge. Replace it by a path of length three, that is {u,w1},{w1, w2},{w2, v}. Ap-
ply special colors c1 to w1 and c2 to w2. �

We have shown that the following problems are complete for L under AC0

many-one recudibility: Valence-2 undirected GI, valence-2 directed GI, valence-
2 color GI. Concerning graphs of higher valence, standard techniques as in [13]

suffice to proof valence-k directed GI ≡AC0

m valence-k undirected GI for k ≥ 3.
Now, we discuss coloring for graphs of higher valence.



Lemma 1. Valence-k color-GI ≤AC0

m Valence-k GI for all k ≥ 3.

Proof . The proof idea as in [13] would increase the valence of vertices from k to
k+1. Let G be a valence-k graph for some k ≥ 3. We construct now a valence-k
graph H as follows. Replace each edge by a path of length three. Let vertex
v ∈ V (G) be labeled with color ci ∈ {c1, . . . , ck}. Connect each vertex v′ ∈ Γ (v)
in H with a path u1, . . . , u2n+3 such that uj is at distance j to v′ and connect to
un+2 another path of length i (cf. [13]). Observe, that the neighbours of vertex
v are of degree two and thus, we can connect them with copies of the new graph
gadget. Thus, H is also of valence k. �

Let {x1, . . . , xk}, {y1, . . . , yk} ⊆ V (G) be vertex sets of graph G. Let φ be a
mapping with φ(xi) = yi, i ∈ [k] such that (G,φ) is an instance for prefix-GA.

Adapting the proof of prefix-GA ≤AC0

m GI [13], we obtain the following chain of
reductions.

Corollary 2. For k ≥ 2 valence-k prefix-GA ≤AC0

m valence-k color-GI ≤AC0

m

valence-k GI.

3.3 Valence-k Graph Isomorphism

GI is known to be hard for ModkL under AC0 many-one reductions, for all k ≥ 2
[22]. In this proof, the valence of the graphs are bounded by k + 1.

An NC1 circuit can be simulated by a balanced DLOGTIME uniform fam-
ily of circuits with fan-out 1, logarithmic depth, polynomial size and alternating
layers of and-gates and or-gates [4]. For simulation of NC1 circuits graph gadgets
were used as shown in proof of Lemma 3.1 in [12] for simulation of AND- and
OR-gates in circuits. These graph gadgets have designated root vertices and are
recursively connected again to root vertices of another graph gadgets. Before we
present the main result of this section we define a special version of the prefix-
GA problem.

Prefix-GA Problem with fixed vertex property:
Given: G = (V,E) a connected graph and let U ⊆ V and φ : U 7→ U be a
mapping which fixes at least one vertex.
Problem: Can φ be extended to an automorphism of G?

Since this version of prefix-GA is a special case of prefix-GA it also reduces to
GI, even if we consider bounded valence graphs, then it also reduces to bounded
valence GI. Let C be a Modk circuit with input values x. In Theorem 3.3 in [22]
the author proved that there is an AC0 computable function which computes
for circuit C a valence-k+ 1 graph G(C) and prefixes φ such that (G(C), φ) can
be extended to an automorphism iff C outputs 1. Observe that this graph is
connected and can be modified such that φ contains fixed vertices. For example,
transform C into a circuit C′ that adds 0 to the output value. Then some of
the input vertices according to the new output-gate are fixed in φ and are of



valence at most k. Thus, (G(C′), φ′) is in Prefix-GA with fixed vertex property
iff C (and C′) outputs 1. But, the valence of G(C′) depends on k.

If there would be a different construction such that (H(C′), ψ′) with the
same properties as (G(C′), φ′) but with valence of H(C′) bounded by a constant
c ≥ 3, then valence-c GI would be hard for ModkL. Then the following theorem
says that valence-c GI would also be hard for #L.

Theorem 3. If there exists a constant c ≥ 3 such that for every k ∈ N every
instance of the Modk circuit value problem can be AC0 reduced to an instance
of valence-c Prefix-GA with the fixed vertex property, which is of size polynomial
in the circuit size (and independent of k) then valence-c GI is hard for NL, #L,
C=L and PL under AC0 many-one reductions.

Proof . We give a sketch of the important proof steps. Observe that G′(C′) is
a connected valence-k + 1 graph. Take two copies of this graph, say G1, G2 and
apply prefixes as coloring to these graphs as in [22] and obtain H1, H2. Observe
that by Lemma 1 coloring vertices does not change the valence of the graph.
Because of fixed vertex property of φ there is at least one designated vertex v
in H1 and H2 which has its own unique color in both graphs and is of valence
k. Such graph pairs H1, H2 can be connected as input to the graph gadgets,
encoding an NC1 circuit in a similar way as in Theorem 4.4 in [22]. In this
theorem different graph tuples are needed simulating AND and OR-functions.
We can replace these graph gadgets by those in proof of Lemma 3.1 in [12] in
order to keep the degrees of vertices bounded by a constant. �

3.4 Extensions

In Theorem 1 we proved that the logspace-complete problem ORD is AC0 many-
one reducible to valence-2 GI. We can adapt the proof to obtain the following
result. Let circle-GI be graph isomorphism where the input graphs are given as
a set of circles.

Theorem 4. Circle-GI is logspace-complete under AC0 many-one reductions.

Proof . We reduce from ORD, which is logspace-complete via first-order projec-
tions [8]. Recall the definition in proof of Theorem 1. That is given a graph that
is a directed line of size n and two designated vertices vi, vj . For the reduction
we construct two graphs X,Y such that X ∼= Y if and only if vi < vj in the
order induced by G.

– X is an undirected cycle of size n.

– Y is the undirected version of G but with the following changes: {vi, vi+1},
{vj , vj+1} /∈ E(Y ), but {v1, vj}, {vj+1, vi}, {vi+1, vn} ∈ E(Y ).

– If i < j then Y consists of one circle of size n and is isomorphic to X . But
if j < i then Y consists of three circles and is not isomorphic to X .



This reduction is an AC0 many-one reduction. Since ORD is L-complete
via quantifier-free projections, circle-GI is hard for L under AC0 many-one re-
ductions. Completeness follows since circle-GI is a special case of the logspace-
complete problem valence-2 GI. �

We observe that this result also generalizes to line-GI.

4 Hardness Results for valence-k Graph Automorphism

The decision problem valence-2 GA is trivial since it consists of isolated vertices,
paths and cycles. Each path and cycle has nontrivial automorphisms. The only
graph without nontrivial automorphisms consists of one isolated vertex. The
situation is different for valence-k GA for k ≥ 3. In this section we discuss
hardness results for this problem.

GA is many-one hard for the ModkL hierarchy (Theorem 5.1 [22]). In this
proof the same circuit graph G(C) is used as in Theorem 3.3 [22]. In detail,
prefixes were defined, that is two subsets of vertices in G(C). Take two copies
G1 and G2 of graph G(C) and apply colorings Col(G1), Col(G2) to the vertices
which represent the input and output values of the circuit in order to encode
these prefixes. Thus the graph G1 ∪ G2 has a nontrivial automorphism, iff the
output of the original circuit is 1.

Since the proof uses similar graphs as for proving GI is hard for ModkL, the
valence of the graphs is bounded the same way. Since coloring does not change
the valence of the graphs G1, G2 we obtain the following corollary.

Corollary 3. Valence-k+1 GA is hard for ModkL, k ≥ 2, under AC0 many-one
reductions.

An important property of G(C) is that this graph is rigid and coloring does
not change rigidity. We will formulate Theorem 3 for bounded valence GA. In the
following Theorem, by GA with the fixed vertex property we mean GA restricted
to graphs wich contain fixed vertices in their automorphism group.

Theorem 5. If there exists a constant c ≥ 3 such that for every k ∈ N every
instance of the Modk circuit value problem can be AC0 reduced to an instance of
valence-c GA with the fixed vertex property, which is of size polynomial in the
circuit size (and independent of k) then valence-c GA is hard for NL, #L, C=L
and PL under AC0 many-one reductions.

Proof . We give a sketch of the important proof steps. Basically, we construct
similar graphs as in Theorem 3. The graphs encoding a circuit with modulo
addition gates can be connected as input to the graph gadgets, encoding an
NC1 circuit in a similar way as in Theorem 4.4 in [22]. In this theorem graph
tuples are needed simulating AND and OR-functions but the vertices in the
construction have no bounded degree. We can replace the graphs simulating an
AND by those in proof of Lemma 3.1 in [12] in order to keep the degrees of



vertices bounded by a constant. For a rigid graph gadget simulating an OR-
function, we need a different construction, see figure 2. The graph gadget G2 is
the same as defined in Definition 3.1 in [22]. G2 simulates a parity gate, that
is an automorphism which maps xi onto xi⊕a and yi onto yi⊕b then maps zi

onto zi⊕a⊕b for all i, a, b ∈ {0, 1}. Observe, that this graph gadget preserves the
rigidity conditions as desired.

y0 y1

z0 z1

⊕

I0

H0G0

G1 J0 H1

x0 x1 y0 y1

z0 z1

⊕

G∨ g∨

I0

H0G0

G1 J0 H1

H∨ h∨

G2 G2

i0 g1 j0 h1 i0 g1 j0 h1

x0 x1

Fig. 2. Rigid graph gadgets for simulation of an OR-function.
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