
Graph Isomorphism for K3,3-free and K5-free graphs

is in Log-space

Samir Datta1 Prajakta Nimbhorkar2

Thomas Thierauf3 Fabian Wagner4∗

1 Chennai Mathematical Institute
sdatta@cmi.ac.in

2 The Institute of Mathematical Sciences
prajakta@imsc.res.in

3 Fak. Elektronik und Informatik, HTW Aalen
4 Institut für Theoretische Informatik,

Universität Ulm, 89073 Ulm
{thomas.thierauf,fabian.wagner}@uni-ulm.de

December 22, 2009

Abstract

Graph isomorphism is an important and widely studied computational problem, with
a yet unsettled complexity. However, the exact complexity is known for isomorphism of
various classes of graphs. Recently [DLN+09] proved that planar isomorphism is complete
for log-space. We extend this result of [DLN+09] further to the classes of graphs which
exclude K3,3 or K5 as a minor, and give a log-space algorithm.

Our algorithm for K3,3 minor-free graphs proceeds by decomposition into triconnected
components, which are known to be either planar or K5 components [Vaz89]. This gives
a triconnected component tree similar to that for planar graphs. An extension of the
log-space algorithm of [DLN+09] can then be used to decide the isomorphism problem.

For K5 minor-free graphs, we consider 3-connected components. These are either
planar or isomorphic to the four-rung mobius ladder on 8 vertices or, with a further de-
composition, one obtains planar 4-connected components [Khu88]. We give an algorithm
to get a unique decomposition of K5 minor-free graphs into bi-, tri- and 4-connected com-
ponents, and construct trees, accordingly. Since the algorithm of [DLN+09] does not deal
with four-connected component trees, it needs to be modified in a quite non-trivial way.

∗Supported by DFG grants TO 200/2-2.

1 Introduction

The graph isomorphism problem GI consists of deciding whether there is a bijection between
the vertices of two graphs, which preserves the adjacencies among vertices. It is an important
problem with a yet unknown complexity.

The problem is clearly in NP and is also in SPP [AK06]. It is unlikely to be NP-hard,
because otherwise the polynomial time hierarchy collapses to the second level [BHZ87, Sch88].
As far as lower bounds are concerned, GI is hard for DET [Tor04], which is the class of problems
NC1-reducible to the determinant [Coo85].

While this enormous gap has motivated a study of isomorphism in general graphs, it has
also induced research in isomorphism restricted to special cases of graphs where this gap can
be reduced. Tournaments are an example of directed graphs where the DET lower bound is
preserved [Wag07], while there is a quasi-polynomial time upper bound [BL83].

The complexity of isomorphism is settled for trees [Lin92, MJT98], partial 2-
trees [ADK08], and for planar graphs [DLN+09]. We extend the result of [DLN+09] to
isomorphism of K3,3 and K5 minor-free graphs. The previously known upper bound for these
graph classes is P due to [Pon91]. Both of these graph classes include planar graphs, and
hence are considerably larger than the class of planar graphs.

We consider undirected graphs without parallel edges and loops, also known as simple
graphs. For directed graphs or graphs with loops and parallel edges, there are log-space
many-one reductions to simple undirected graphs (cf. [KST93]). Our log-space algorithm
relies on the following properties of K3,3 and K5 minor-free graphs:

• The 3-connected components of K3,3 minor-free graphs are either planar graphs or
complete graphs on 5 vertices i.e. K5’s [Vaz89].

• The 3-connected components of K5 minor-free graphs are either planar or V8’s (where
V8 is a four-rung mobius ladder on 8 vertices) or the following holds. The 4-connected
components of the remaining non-planar 3-connected components are planar [Khu88].

Planar 3-connected components have two embeddings on the sphere (cf. [Whi33]). The
embedding is given roughly as follows: For each vertex, its neighbours are ordered by a cyclic
permutation. The second embedding for the 3-connected component is obtained by the mirror
image, (i.e. consider the reverse permutations for all vertices). Allender and Mahajan [AM00]
showed that an embedding of a planar graph can be computed in log-space. These facts are
used in [TW08] and [DLN08] to show that the canonization of 3-connected planar graphs
is in L. If one edge is fixed, then there are at most four possibilities (i.e. two embeddings
and two orientations of the starting edge) to traverse a triconnected component in log-space.
Such a traversal gives a unique order of the vertices. For a cycle we have two possibilities to
canonize, i.e. traverse the cycle from the fixed edge in both directions.

There is a related result where reachability in K3,3 and K5 minor-free graphs are reduced
to reachability in planar graphs under log-space many-one reductions [TW09]. The basic idea
is that the non-planar components are transformed into new planar components, carefully
copying subgraphs in a recursive manner, such that the graph remains polynomial in size of
the input graph. This technique is designed to keep the reachability conditions unchanged
but it is not applicable for isomorphism testing.

We give a log-space algorithm to get these decompositions in a canonical way. From these
decompositions, we construct the biconnected and triconnected component trees for K3,3

1

minor-free graphs, and extend the log-space algorithm of [DLN+09] to detect an isomorphism
between two given K3,3 minor-free graphs. The isomorphism of K5 minor-free graphs is more
complex, as in addition to biconnected and triconnected component trees, it also has four-
connected component trees. This needs considerable modifications and new ideas. We also
give log-space algorithms for canonization of these graphs.

The rest of the paper is organized as follows: Section 2 gives the necessary definitions
and background. Section 3 gives the decomposition of K3,3 and K5 minor-free graphs and
proves the uniqueness of such decompositions. In Section 4 we give a log-space algorithm for
isomorphism and canonization of K3,3 and K5 minor-free graphs.

2 Definitions and Notations

We consider undirected and loop-free graphs G = (V,E) with vertices V and edges E. For U ⊆
V let G \ U be the induced subgraph of G on V \ U .

A connected graph G is called k-connected if one has to remove ≥ k vertices to dis-
connect G. In a k-connected graph G there are k vertex-disjoint paths between any pair
of vertices in G. A 1-connected graph is simply called connected and a 2-connected graph
biconnected .

In a k-connected graph G, a set S ⊆ V with |S| = k is called a k-separating set , if G\S is
disconnected. The vertices of a k-separating set are called articulation point (or cut vertex)
for k = 1, separating pair for k = 2, and separating triple for k = 3.

Let S be a separating set in G, let C be a connected component in G \ S, and S′ ⊆ S be
those vertices from S connected to V (C) in G. A split component of S in G is the induced
subgraph of G on vertices V (C) where we add the vertices of S′ and edges connecting C
with S′, and virtual edges between all pairs of S′. More formally, the edges of the split
component are

E(C) ∪ {{u, v} | u ∈ V (C), v ∈ S′ } ∪ { {u, v} | u, v ∈ S′ }.

The last set of edges might not have been edges in G and are called virtual edges.

Definition 2.1 The biconnected component tree. We define nodes for the biconnected
components and articulation points. There is an edge between a biconnected component node
and an articulation point node if the articulation point is contained in the corresponding com-
ponent. The resulting graph is a tree, the biconnected component tree T B(G) (see Figure 1).

Next we consider biconnected graphs and their decomposition into 3-connected compo-
nents along separating pairs. If a separating pair {a, b} is connected by only two vertex-disjoint
paths, then a and b lie on a cycle. As we will see below, it is not necessary to decompose cycles
any further. Instead, we maintain them as a special component. Therefore we decompose a
biconnected graph only along separating pairs which are connected by at least three disjoint
paths.

Definition 2.2 A separating pair {a, b} is called 3-connected if there are three vertex-disjoint
paths between a and b in G.

The decomposition is described next.

2

v2

v3

v5 v6

v7
v8

w3 w4

w5 w6

w2

w1
v1

v4

u2

a

v2

v3

v5 v6

v7

v8

w3 w4

w5 w6

w2

w1

v1

v4a

a

u5

u3

u1

u4

G

B1 B2

u5

u3

u1

u2

u4

a

T B(G)

Figure 1: Decomposition of a K5-free graph G into biconnected components B1 and B2 and
the corresponding biconnected component tree T B(G).

Definition 2.3 Two vertices u, v belong to a 3-connected component or a cycle component if
there is no 3-connected separating pair which separates u from v. The components formed are
the induced subgraphs of G, where we introduce in addition a special edge, called virtual edge,
which connects the 3-connected separating pair u, v. Furthermore we add a 3-bond component
for {u, v}. A 3-bond is a pair of vertices connected by 3 edges. A triconnected component is
a 3-connected component, a cycle component or a 3-bond component. Accordingly, a graph is
triconnected if it is either 3-connected, a cycle or a 3-bond.

Based on the triconnected components, we define the triconnected component tree.

Definition 2.4 The triconnected component tree. Define nodes for the triconnected
components and 3-connected separating pairs for a biconnected graph G. There is an edge
between a triconnected component node and a separating pair node if the separating pair is
contained in the corresponding component. The resulting graph is a tree, the triconnected
component tree T T(G) (see Figure 2).

For a component tree T , the size of an individual component node C of T is the number
of nodes in C. The vertices of the separating sets are counted in in every component where
they occur. The size of the tree T , denoted by |T |, is the sum of the sizes of its component
nodes. The size of T is at least as large as the number of vertices in graph(T), the graph
corresponding to the component tree T . Let TC be T when rooted at node C. A child of C
is called a large child if |TC | > |T |/2. #C denotes the number of children of C.

A graph H is a minor of a graph G if and only if H can be obtained from G by a finite
sequence of edge-removal and edge-contraction operations. A K3,3-free graph (K5-free graph)
is an undirected graph which does not contain a K3,3 (or K5) as a minor.

For two isomorphic graphs we write G ∼= H. A canon for G is a sorted list of edges with
renamed vertices f(G), such that for all graphs G,H we have G ∼= H ⇔ f(G) = f(H). We
also use canon with respect to some fixed starting edge. A code of G is the lexicographically
sorted list of edges when given an arbitrary labeling of vertices.

By L we denote the languages computable by a log-space bounded Turing machine.

3

w3 w4

w5 w6

w2

w1
v1 v2

v3

v5 v6

v7
v8

v4

a v4

v1w1

v1v4

w1 v1

v3

v5
v6

v7

v8

v4

v2

V8

w3 w4

w5 w6

w2

w1

v1

T T(B2)

G2

v1w1

w2

w2

w3w4

w3

w4

B2

a

Figure 2: Decomposition of the biconnected component B2 and the corresponding tricon-
nected component tree T T(B2). There are leaf separating pairs connected to the triconnected
component G2. Virtual edges are indicated with dashed lines.

3 Decomposition of K3,3-free and K5-free graphs

3.1 Decomposition of K3,3-free graphs

We consider the decomposition of biconnected K3,3-free graphs into triconnected components.
Tutte [Tut66] proved that the decomposition is unique.

Lemma 3.1 [Tut66] The decomposition of biconnected K3,3-free graphs into triconnected
components is unique, i.e. independent of the order in which the separating pairs are removed.

Moreover, Asano [Asa85] proved that the decomposition has the following form.

Lemma 3.2 [Asa85] Each triconnected component of a K3,3-free graph is either planar or
exactly the graph K5.

Miller and Ramachandran [MR87] showed that the triconnected component tree of a K3,3-
free graph can be computed in NC2. Thierauf and Wagner [TW09] describe a construction
that works in log-space. They showed, that it suffices to compute the triconnected components
and recognize the K5-components by running through all 5-sets and checking for each pair
whether it is an edge or a 3-connected separating pair.

In the following lemma we extend Lemma 3.1 from biconnected K3,3-free graphs to bicon-
nected graphs and show that the decomposition can still be computed in logspace.

Lemma 3.3 In a simple undirected biconnected graph G, the removal of 3-connected separat-
ing pairs gives a unique decomposition, irrespective of the order in which they are removed.
This decomposition can be computed in log-space.

Proof. Let G be a biconnected graph and let s1 = {u1, v1} and s2 = {u2, v2} be 3-connected
separating pairs in G. It suffices to show that the decomposition of G after the removal of s1

and s2 does not depend on the order of their removal.

Claim 3.4 s2 is a 3-connected separating pair in a split component of s1 and vice versa.

4

Proof. Observe first that u2 and v2 must be in one split component of s1 because the removal
of s2 can cut off at most 2 of the 3 vertex disjoint paths between u2 and v2.

Consider three paths between u2 and v2 which are pairwise vertex-disjoint except for their
endpoints. If a path contains at most one of u1 or v1, then the path remains intact in a split
component of s1, because in the split components we have copies of u1 and v1.

If a path contains both of u1 and v1, then the part between u1 and v1 is split off. However,
since we introduce a virtual edge {u1, v1}, we still have a path between u2 and v2 disjoint
from the other two paths in one split component of s1. This proves the claim. �

Two vertices end up in different split components only if they are separated by a 3-
connected separating pair. Hence, removing split components from s1 before or after remov-
ing those from s2 has no effect on the resulting components. This shows that 3-connected
separating pairs uniquely partition the graph into triconnected components. Thus they can
be removed in parallel.

It remains to argue that the decomposition can be computed in log-space.

Claim 3.5 In a biconnected graph G, 3-connected separating pairs can be detected in log-
space.

Proof. Separating pairs of G can easily be computed in log-space: find all pairs of vertices
such that their removal from G disconnects the graph. This can be done with queries to
reachability which is in L [Rei05]. Among those separating pairs we identify the 3-connected
ones as follows. A separating pair {u, v} in G is not 3-connected if either

• there are exactly two split components of {u, v} (without attaching virtual edges) and
both are not biconnected, or

• there is an edge {u, v} and one such split component which is not biconnected.

To see this note that a split component which is not biconnected has an articulation point a.
All paths from u to v through this split component must go through a. Hence there are no
two vertex disjoint paths from u to v.

To check the above conditions we have to find articulation points in split components of
{u, v} This can be done in log-space with queries to reachability. This proves the claim.

�

With the 3-connected separating pairs in hand the decomposition of a biconnected graph
into its triconnected components can be done in logspace with appropriate reachability tests.
This finishes the proof of the lemma. �

Corollary 3.6 For a biconnected K3,3-free graph, the triconnected planar components and
K5-components can be computed in log-space.

3.2 Decomposition of K5-free graphs

We decompose the given K5-free graph into 3-connected and 4-connected components. It
follows from a theorem of Wagner [Wag37] that besides planar components we obtain the
following non-planar components that way:

5

• the four-rung Mobius ladder, also called V8 (see Figure 3), a 3-connected graph on 8
vertices, which is non-planar because it contains a K3,3.

• The remaining 3-connected non-planar components are further decomposed into 4-
connected components which are all planar.

Figure 3: The four-rung Mobius ladder, also called V8.

Khuller [Khu88] described a decomposition of K5-free graphs with a clique-sum operation.
If two graphs G1 and G2 each contain cliques of equal size, the clique-sum of G1 and G2 is
a graph G formed from their disjoint union by identifying pairs of vertices in these two
cliques to form a single shared clique, and then possibly deleting some of the clique edges. A
k-clique-sum is a clique-sum in which both cliques have at most k vertices.

If G can be constructed by repeatedly taking k-clique-sums starting from graphs isomor-
phic to members of some graph class G, then we say G ∈ 〈G〉k. The class of K5-free graphs
can be decomposed as follows.

Theorem 3.7 [Wag37] Let C be the class of all planar graphs together with the four-rung
Mobius ladder V8. Then 〈C〉3 is the class of all graphs with no K5-minor.

We make the following observations.

• If we build the 3-clique-sum of two planar graphs, then the three vertices of the joint
clique are a separating triple in the resulting graph. Hence, the 4-connected components
of a graph which is built as the 3-clique-sum of planar graphs must all be planar.

• The V8 is non-planar and 3-connected and cannot be part of a 3-clique sum, because it
does not contain a triangle as subgraph.

By Theorem 3.7 and these observations we have the following situation.

Corollary 3.8 (cf. [Khu88]) A non-planar 3-connected component of a K5-free undirected
graph is either the V8 or its 4-connected components are all planar.

Similar to the decomposition algorithm of Vazirani [Vaz89], we decompose the K5-free
graph into triconnected components. That is, we first decompose it into biconnected compo-
nents and then the biconnected components further into triconnected components.

Let G 6= V8 be a non-planar 3-connected graph. Thierauf and Wagner [TW09] further
decomposed such components into 4-connected components. But the decomposition there
is not unique up to isomorphism. We describe here a different way of decomposition. The
main difference is that we just decompose G at those separating triples which cause the non-
planarity: consider a separating triple τ such that G\τ splits into ≥ 3 connected components.

6

Collapse these connected components into single vertices, and it is easy to see that G has a
K3,3 as minor.

Definition 3.9 Let τ be a separating triple of a component G′ of graph G. Then τ is called
3-divisive if in G \ τ the component G′ is split into ≥ 3 connected components.

Consider a K3,3 and let τ be the three vertices of one side, and σ be the vertices of the
other side. Then τ and σ are 3-divisive separating triples. If we remove σ then the remaining
graph K3,3 \ σ consists of three single vertices, namely τ . Each of the split components of σ
is a K4 which consists of the vertices of σ and one vertex of τ each. Hence, τ is not a
separating triple anymore in any of the split components of σ. We show next that the K3,3

is an exception: if G is a K5-free 3-connected graph different from K3,3, and τ and σ are
two 3-divisive separating triples, then τ is still a 3-divisive separating triple in some split
component of σ.

Definition 3.10 Let G be an undirected K5-free 3-connected graph. Two 3-divisive separating
triples τ 6= σ are conflicting if one of them, say τ , is no 3-divisive separating triple in in some
split component of σ.

Lemma 3.11 Let G be an undirected and 3-connected graph. There is a conflicting pair of
3-divisive separating triples in G if and only if G is the K3,3.

Proof. Let τ = {v1, v2, v3} and σ = {v′1, v
′
2, v

′
3} be two 3-divisive separating triples in G.

The proof is based on the following claims.

Claim 3.12 If all vertices of σ \ τ are contained in one split component of τ and vice versa
(i.e. all vertices of τ \ σ are contained in one split component of σ) then τ and σ are not
conflicting.

This claim is clearly true because by the assumption, σ will be in one split component
of τ , and conversely τ will be in one split component of σ. See also Figure 4 and Figure 5 (a).
G1, G2, G3 indicate split components of τ and G′

1, G
′
2, G

′
3 of σ. The split components Gi are

obtained by attaching a copy of τ where each pair of vertices of τ is connected by a virtual
edge. The resulting component is 3-connected.

The next claim shows that we can weaken the assumption in Claim 3.12.

Claim 3.13 If all vertices of σ \ τ are contained in one split component of τ (or vice versa)
then τ and σ are not conflicting.

Proof. If all vertices of σ are contained in split component G1 of τ , then there is another
split component of τ , say G2, that does not contain any vertices of σ \ τ . Therefore G2 is
contained in one split component of σ. In particular, τ must be in one split component of σ.
Now the claim follows from Claim 3.12. �

From the proof of Claim 3.13 we deduce:

Claim 3.14 If there is a split component of τ that contains no vertices of σ\τ (or vice versa)
then τ and σ are not conflicting.

7

(c) (d)

τ

σ

(a)

G′
2G′

3

(b)

ττ

G′
1

G2

G3

G1

σ

τ

G′
1

G2

G3

G1

σσ

P

G2

G′
2

G′
1

Figure 4: (a) Two 3-divisive separating triples σ (indicated with white color) and τ (in-
dicated with black color) which have one vertex in common, and their split components
G′

1, G
′
2, G

′
3 and G1, G2, G3, respectively.

(b) The split component of σ where G′
2 and G′

3 are replaced by virtual edges (indicated with
dashed lines).
(c) The situation is shown where σ and τ seem to be conflicting. But this situation cannot
occur since there is a path P which proves that σ is no separating triple.
(d) In a K3,3, the triples σ and τ are conflicting.

(c)

G2

(a)

v1

v2

v3

G3

v′
1

v′
2

v′
3v3

v′
2

v′
3

(b)

v1

v2

v1 = v′
1

v′
1

v′
2

v′
3

u

v3

G3

G′
3

G′
2

G′
1

v2

τ σ

G1

Figure 5: (a) The 3-divisive separating triples τ, σ are shown schematically, as well as the
split components Gi of τ and the G′

i of σ, indicated by dashed and solid shapes.
(b) Separating triples τ, σ share the vertex v1 = v′1 and are pairwise connected.
(c) The split component G1 of τ collapsed to one vertex u, except vertex v′1.

The assumption of Claim 3.14 is fullfilled in the following cases:

• τ or σ has ≥ 4 split components,

• there is a split component of σ that contains ≥ 2 vertices of τ (or vice versa), or

• τ ∩ σ 6= ∅.

The first two items are obvious. For the last item note that if τ and σ have a vertex in
common, then the ≤ 2 vertices of σ \ τ cannot be in all split components of τ , for an example
see Figure 5(b).

Hence the only case that remains where τ and σ might be conflicting is when τ and σ are
disjoint, τ has precisely 3 split components and each component contains a vertex of σ, and
vice versa. Let us consider this case.

8

If all the split components of τ and σ are K4’s then G must be a K3,3 and τ and σ are
conflicting. Hence we consider the case that there is a split component that is not a K4, say
component G1 of τ . Component G1 has ≥ 5 vertices: the 3 vertices of τ , a vertex of σ, say v′1,
and at least one more vertex, say u, because G1 is not a K4. W.l.o.g. we can assume, that all
the remaining vertices are collapsed to u. Also see Figure 5(c). Because G1 is 3-connected,
there are paths from u to the vertices of τ that do not go through v′1. Therefore u and the
vertices of τ will be in one split component of σ in G. By Claim 3.13, τ and σ are not
conflicting. This finishes the proof of Lemma 3.11 �

The four-connected component tree. If we fix one 3-divisive separating triple as root
then we get a uniqe decomposition for G up to isomorphism, even if G is the K3,3. Hence, a
log-space transducer cycles then through all possible triples τ of G and counts the number of
split components in G \ τ . If this number is ≥ 3 then τ is a 3-divisive separating triple.

We decompose the given graph G at 3-divisive separating triples and obtain split compo-
nents which are free of 3-divisives separating triples. We denote such components as four-
connected.

Two vertices u, v belong to a four-connected component if for all 3-divisive separating
triples τ the following is true:

• at least one of u, v belongs to τ or

• there is a path from u to v in G \ τ .

Note, a four-connected component is planar and 3-connected. We define a graph on these
components and 3-divisive separating triples.

We define nodes for the four-connected components and 3-divisive separating triples. A
four-connected component node is connected to a 3-divisive separating triple node τ if the
vertices of τ are also contained in the corresponding four-connected component. The resulting
graph is a tree, the four-connected component tree T F(G). For an example see Figure 6. A
special property of the node τ is that it is incident to ≥ 3 four-connected component nodes.
There is a 3-bond connected to τ2, because the edge {w2, w3} is present in T2.

w4w3w2

w6

w3w2

w2 w3 w4

w5

w3w2

w1 v1

w5 w6

w4

F2

F3

F4

τ2

w1 v1

w2 w4w3 F1

G2

T F(G2)

Figure 6: The decomposition of G2 into four-connected components F1, . . . , F4 is shown,
together with the four-connected component tree T F(G2). The edges with both ends in the 3-
divisive separating triple τ2 = {w2, w3, w4} are virtual edges indicated by dashed lines. There
is a 3-bond connected to τ2, because the edge {w2, w3} is present in G2.

9

A unique decomposition of G into four-connected components can be computed in log-
space, because every computation step can be queried to the reachability problem in undi-
rected graphs which is in log-space [Rei05].

Theorem 3.15 A unique decomposition of a 3-connected non-planar K5-free graph (not the
V8) into four-connected components can be computed in log-space.

The triconnected component tree of K5-free graphs Datta et. al. [DLN+09] gave a
unique decomposition of planar graphs into biconnected and these further into triconnected
components witch can be computed in log-space. Thierauf and Wagner proved that such
decompositions can also be computed for K5-free graphs in log-space.

Lemma 3.16 [TW09] The triconnected component tree for a K5-free biconnected graph can
be computed in log-space.

For technical reasons we make the following changes to this tree structure. Let B be a
biconnected K5-free graph with G0 a triconnected non-planar component node in T T(B). In
T T(B) there is a separating pair node s for each edge which is part of a 3-divisive separating
triple in G. In T T(B) the node s is connected to the node G. We call s a leaf separating
pair of T T(B) if it is connected to only one component node. With Theorem 3.15 we get the
following.

Claim 3.17 The set of leaf separating pairs can be computed in log-space.

4 Canonization of K3,3-free and K5-free graphs

We describe the isomorphism order and canonization of K3,3-free and K5-free graphs.

4.1 Isomorphism order and canonization of K3,3-free graphs

A K3,3 free graph can be decomposed into triconnected components which are planar and
K5-components, see Section 3.1. We extend the algorithm of [DLN+09] to K3,3-free graphs.
We show how to compare and canonize K5-components.

Isomorphism order for K5-components We consider a K5 as a component for which
we have a node in the triconnected component tree. There are 5! ways of labeling the vertices
of a K5, but the first two vertices will always be the vertices from the parent separating pair.
There remain 2 · 3! = 12 ways of labelling the vertices. For example, one possibility to label
the vertices a, b, c, d, e of a K5 is by 1, 2, 3, 4, 5, respectively. The canonical description of
the graph with this labeling is defined as (1, 2)(1, 3), (1, 4), (1, 5), (2, 1), (2, 3), . . . , (5, 4). The
canonical descriptions of all these labelings are candidates for the canon of a K5. To keep
notation short, we say code instead of candidate for a canon.

For each code, the isomorphism order algorithm starts with comparing two codes edge-by-
edge. Thereby, it goes into recursion at child separating pairs and compares their subtrees.
If the subtrees are not isomorphic, the larger code is eliminated. The comparison and the
elimination of codes is done similarly as for the planar triconnected components in Datta

10

et.al. [DLN+09]. The comparison takes O(1) space on the work-tape to keep counters for the
not eliminated codes.

The orientation that a K5 component gives to its parent separating pair {a, b} is defined
as (a, b) (resp. (b, a)) if the majority of the minimum codes start with (a, b) (resp. (b, a)). If
there is no majority for either direction, then G0 does not give an orientation to the parent.
In particular, if there exists a majority, then all minimum codes start with one of (a, b) or
(b, a): if there is an automorphism which swaps a and b, then there are an equal number
of minimum codes for (a, b) and (b, a), and hence there is no majority. If there is no such
automorphism, then there can be no minimum codes starting with (a, b) and (b, a).

Comparison of triconnected component trees While comparing two triconnected com-
ponent trees S{a,b} and T{a′,b′} rooted at separating pairs {a, b} and {a′, b′}, we make cross-
comparisons between equal sized subtrees rooted at their children Gi and Hj, respectively.
These children are triconnected components. We start canonizing them in all possible ways.
The number of possible codes depend on the type of the component. For example, for cycles
we have two and for 3-connected planar components we have four codes.

Let C and C ′ be two codes to be compared. The base case is that Gi and Hj are leaf nodes
and contain no further virtual edges. In this case we use the lexicographic order between C
and C ′. If Gi and Hj contain further virtual edges then these edges are specially treated in
the bitwise comparison of C and C ′ the same way as we did for the comparison of triconnected
components.

1. If a virtual edge is traversed in the construction of one of the codes C or C ′ but not in
the other, then we define the one without the virtual edge to be the smaller code.

2. If C and C ′ encounter virtual edges {u, v} and {u′, v′} corresponding to a child of Gi

and Hj, respectively, we need to recursively compare the subtrees rooted at {u, v} and
{u′, v′}. If we find in the recursion that one of the subtrees is smaller than the other,
then the code with the smaller subtree is defined to be the smaller code.

3. If we find that the subtrees rooted at {u, v} and {u′, v′} are equal then we look at the
orientations given to {u, v} and {u′, v′} by their children. This orientation, called the
reference orientation, is defined below. If one of the codes traverses the virtual edge in
the direction of its reference orientation but the other one not, then the one with the
same direction is defined to be the smaller code.

We eliminate the codes which were found to be the larger codes in at least one of the
comparisons. In the end, the codes that are not eliminated are the minimum codes. If we
have the same minimum code for both, Gi and Hj, then we define SGi

=T THj
.

Finally, we define the orientation given to the parent separating pair of Gi and Hj as the
direction in which the minimum code traverses this edge. If the minimum codes are obtained
for both choices of directions of the edge, we say that SGi

and THj
are symmetric about their

parent separating pair , and thus do not give an orientation.

Observe, that we do not need to compare the sizes and the degree of the root nodes of SGi

and THj
in an intermediate step, as it is done when the root is a separating pair. That is,

because the degree of the root node Gi is encoded as the number of virtual edges in Gi. The
size of SGi

is checked by the length of the minimal codes for Gi and when we compare the
sizes of the children of the root node Gi with those of Hj.

11

Comparison of biconnected component trees When comparing two biconnected com-
ponents B and B′, we compute their triconnected component trees and compare them. One
important task is to find a small set of root separating pairs. In the case of planar 3-
connected components a intricate case analysis is given. To extend the description from
Datta et.al. [DLN+09], it suffices to consider the case when the parent articulation point
of B, say a, is located in the center C of the triconnected component tree T T(B).

• a is associated with C and C is a K5: Since a is fixed there remain 4! codes. We
construct these codes until a virtual edge is encountered in at least one of the codes.
We choose the separating pairs corresponding to the first virtual edges encountered in
these codes as the roots of T T(B). Because there are 4 edges incident to a and 6 edges
not incident to a, we get at most 6 choices for the root of T T(B).

Canonization of K3,3-free graphs We extend the canonization procedure as described for
planar graphs, for the details we refer to [DLN+09]. For a K5-node G0 and a parent separating
pair {a, b} we define the canon l(G0, a, b) exactly as if G0 is a 3-connected component. That
is, (a, b) followed by the canon of G0 and then the canons for the child separating pairs of G0

in the order in which the child separating pairs appear in the canon of G0.
Consider now the canonization procedure for the whole K3,3-free graph, say G. A log-

space transducer renames then the vertices according to their first occurrence in this list
l(G, a0) (for some root articulation point a0), to get the final tree-canon for the biconnected
component tree. This canon depends upon the choice for the root a0. Further log-space
transducers cycle through all the articulation points as roots to find the minimum canon
among them, then rename the vertices according to their first occurrence in the canon and
finally, remove the virtual edges and delimiters to obtain a canon for G. We get

Theorem 4.1 A K3,3-free graph can be canonized in log-space.

4.2 Isomorphism order of K5-free graphs

4.2.1 Isomorphism order of K5-free 3-connected graphs

The isomorphism order of two triconnected component trees S{a,b} and T{a′,b′} rooted at
separating pairs s = {a, b} and t = {a′, b′} is defined the same way as for planar graphs
in [DLN+09]. We use the triconnected component tree from Lemma 3.16 with the addition
of leaf separating pairs and define S{a,b} <T T{a′,b′} if:

1. |S{a,b}| < |T{a′,b′}| or

2. |S{a,b}| = |T{a′,b′}| but #s < #t or

3. |S{a,b}| = |T{a′,b′}|, #s = #t = k, but (SG1
, . . . , SGk

) <T (TH1
, . . . , THk

) lexicographi-
cally, where we assume that SG1

≤T . . . ≤T SGk
and TH1

≤T . . . ≤T THk
are the ordered

subtrees of S{a,b} and T{a′,b′}, respectively. For the isomorphism order between the
subtrees SGi

and THi
we compare the types of the nodes first and then we compare

lexicographically the codes of Gi and Hi and recursively the subtrees rooted at the
children of Gi and Hi. Note, that these children are again separating pair nodes.

12

4. |S{a,b}| = |T{a′,b′}|, #s = #t = k, (SG1
≤T . . . ≤T SGk

) =T (TH1
≤T . . . ≤T THk

),
but (O1, . . . , Op) < (O′

1, . . . , O
′
p) lexicographically, where Oj and O′

j are the orientation

counters of the jth isomorphism classes Ij and I ′j of all the SGi
’s and the THi

’s.

For the notion of orientation counters see [DLN+09]. If two subtrees are isomorphic then
an isomorphism enforces the root {a, b} to be swapped. Hence, we count how the isomorphic
subtrees are connected to {a, b}

We say that two triconnected component trees Se and Te′ are equal according to the
isomorphism order , denoted by Se =T Te′ , if neither Se <T Te′ nor Te′ <T Se holds.

There is one difference in step 3 which we describe now in more detail. When comparing
nodes of the tree we first distinguish between the new types of nodes. We define planar
triconnected components <T V8-components <T non-planar 3-connected components.

For the isomorphism order of subtrees rooted at planar triconnected components we refer
to [DLN+09]. In the following we refine the isomorphism order for the new types of non-planar
components.

Isomorphism order of subtrees rooted at V8-components: Consider the subtree SGi

rooted at a V8-component node Gi. The isomorphism order algorithm makes comparisons
with THj

rooted at Hj, accordingly.
To canonize Gi with the parent separating pair {a, b}, we could proceed as in the case of

a K5 on Page 10: there are 2 · 6! way of labelling the vertices of Gi when one of (a, b) or (b, a)
is fixed. Because this is a constant, we can try all of them. We obtain the codes by arranging
the edges in lexicographical order, according to the new vertex names. The minimum code
gives the isomorphism order. If the minimum code occurs in Gi and Hj then they are found
to be equal. In the rest of this subsection we take a closer look and show that we can do even
better: we need to check ≤ 4 possibilities.

To rename the vertices, we use a Hamiltonian cycle in Gi starting at the parent separat-
ing pair {a, b} of Gi. We rename the vertices in the order of their first occurrence on the
Hamiltonian cycle. The code then starts with one of (a, b) or (b, a). It is defined as the list
of all edges of Gi in lexicographical order with the new names.

The V8 has 5 undirected Hamiltonian cycles (each corresponding to two directed Hamil-
tonian cycles). Consider the V8 in Figure 7. Let E′ = {{v1, v5}, {v2, v6}, {v3, v7}, {v4, v8}}.
The edges in E′ are contained in two simple cycles of length 4, whereas all the other edges
are in only 1 such cycle.

• There is one Hamiltonian cycle which contains no edge from E′:

C0 = (v1, v2, v3, v4, v5, v6, v7, v8).

• There are 4 Hamiltonian cycles which have two edges from E′:

C2[{v2, v6}, {v3, v7}] = (v1, v2, v6, v5, v4, v3, v7, v8),

C2[{v3, v7}, {v4, v8}] = (v1, v2, v3, v7, v6, v5, v4, v8),

C2[{v4, v8}, {v5, v1}] = (v1, v2, v3, v4, v8, v7, v6, v5),

C2[{v1, v5}, {v2, v6}] = (v1, v5, v4, v3, v2, v6, v7, v8).

• There are no further Hamiltonian cycles.

13

v1

v2

v3

v4

v5

v6

v7

v8

v1

(b)(a)

v2

v6

v5

v8

v4

v7 v3

Figure 7: (a) A V8 component where solid edges indicate the Hamiltonian cycle C0.
(b) A V8 component where solid edges indicate the Hamiltonian cycle C2[{v1, v5}, {v4, v8}].

We distinguish the situation whether {a, b} ∈ E′ or not.

• Case {a, b} 6∈ E′: We use cycle C0 to define the codes. We get two codes, one for
each direction of {a, b} we start with. For example, let {a, b} = {v1, v2} and consider
direction (v1, v2).

Then the new names for the vertices are

vertex v1 v2 v3 v4 v5 v6 v7 v8

new name 1 2 3 4 5 6 7 8

Then, Code(Gi, (v1, v2)) is the enumeration of all edges in lexicographic order:

({1, 2}, {1, 5}, {1, 8}, {2, 3}, {2, 6}, {3, 4}, {3, 7}, {4, 5}, {4, 8}, {5, 6}, {6, 7}, {7, 8}).

• Case {a, b} ∈ E′: Observe that each edge of E′ occurs in exactly 2 of the 4 Hamiltonian
cycles. Since we have two directions for each cycle, we get 4 codes. The direction of
{a, b} together with the subsequent edge determines exactly one Hamiltonian cycle. For
example, let {a, b} = {v1, v5} and consider the direction (v1, v5). Now we have two
choices to proceed. If we choose (v5, v6) this determines the cycle C2[{v4, v8}, {v5, v1}]
and we get the following new names for the vertices:

vertex v1 v5 v6 v7 v8 v4 v3 v2

new name 1 2 3 4 5 6 7 8

Then Code(Gi, (v1, v5)) is:

({1, 2}, {1, 5}, {1, 8}, {2, 3}, {2, 6}, {3, 4}, {3, 8}, {4, 5}, {4, 7}, {5, 6}, {6, 7}, {7, 8}).

4.2.2 Isomorphism order of the 3-connected non-planar components

Let SGi
and THj

be two triconnected component trees rooted at 3-connected non-planar
component nodes Gi and Hj which are different to the V8. Let s = {a, b} and t = {a′, b′} be
the parent separating pairs of Gi and Hj, respectively.

We define the orientation which is given to the parent separating pairs s and t. Then
we describe the comparison algorithm of Gi with Hj. We partition Gi and Hj into
their four-connected components and consider their four-connected component trees T F(Gi)
and T F(Hj).

14

Overview of the steps in the isomorphism order. The isomorphism order of two four-
connected component trees Sτ and Tτ ′ rooted at 3-divisive separating triples τ and τ ′ where
given an order order(τ) ∈ Sym(τ) and order(τ ′) ∈ Sym(τ ′) is defined Sτ ≤F Tτ ′ if:

1. |Sτ | < |Tτ ′ | or

2. |Sτ | = |Tτ ′ | but #τ < #τ ′ or

3. |Sτ | = |Tτ ′ |, #τ = #τ ′ = k, but (SF1
, . . . , SFk

) <F (TF ′

1
, . . . , TF ′

k
) lexicographically,

where we assume that SF1
≤F . . . ≤T SFk

and TF ′

1
≤T . . . ≤T TF ′

k
are the ordered subtrees

of Sτ and Tτ ′ , respectively. For the isomorphism order between the subtrees SFi
and TF ′

i

we compare lexicographically the codes of Fi and F ′
i and recursively the subtrees rooted

at the children of Fi and F ′
i . Note, that these children are again separating triple nodes.

4. |Sτ | = |Tτ ′ |, #τ = #τ ′ = k, (SF1
≤F . . . ≤F SFk

) =F (TF ′

1
≤F . . . ≤F TF ′

k
), but the

following holds.

For all i, the return value from the recursion of SFi
with TF ′

i
is an orientation graph

Xi and X ′
i with V (Xi) = τ and V (X ′

i) = τ ′ and colored edges, respectively. We
compute a reference orientation graph X and X ′ from all the Xi and X ′

i. We compare
lexicographically whether X with order(τ) < X ′ with order(τ ′). We describe the notion
of (reference) orientation graph and order(τ) below in more detail.

We say that two four-connected component trees Sτ and Tτ ′ are equal according to the
isomorphism order , denoted by Sτ =F Tτ ′ , if neither Sτ <F Tτ ′ nor Tτ ′ <F Sτ holds.

Orientation given to the parent separating pair by a non-planar component with

3-divisive separating triples Given two non-planar 3-connected components Gi and Hj,
we decompose them into T F(Gi) and T F(Hj). There is a set of candidates for root separating
triples such that we obtain the minimum codes when the trees are rooted at them. For the
isomorphism order procedure, we give distinct colors to the parent separating pair and the
parent articulation point in the trees. We also have colors for the child separating pairs and
child articulation points, according to their isomorphism order. We recompute these colors
by interrupting the current isomorphism order procedure and going into recursion at the
corresponding subtrees.

Finally, we consider the first occurrence of the parent separating pair in all the minimum
codes. If the first occurrence is (a, b) in this direction in all the codes, then Gi gives this
direction to the parent. If both (a, b) and (b, a) occur first in different minimum codes, then
there is no orientation given to the parent.

Isomorphism order of four-connected component trees We describe the differences
to the isomorphism order algorithm for triconnected component trees in Section 4.2.1 (see
also [DLN+09]). Figure 8 shows two trees to be compared.

• Instead of separating pairs we have 3-divisive separating triples. Therefore, we have to
generalize the notion of orientations.

Remark 4.2 In the isomorphism order algorithm for two triconnected component trees,
an orientation of a separating pair {a, b} is computed, c.f. [DLN+09]. The orientation

15

. . .

Tτ ′ τ ′

F ′
1 F ′

k
. . .

τSτ

F1 Fk

. . .

.

.

.

. . .

τ1 τlkτl1 τ ′
1 τ ′

l1
τ ′
lk

SlkS1 T1 Tlk

TF ′

1
TF ′

k
SFk

SF1

Figure 8: The four-connected component trees.

is one of (a, b) or (b, a) or no orientation is given from a child component, also called the
symmetric case. An orientation can be seen as an automorphism from T{a,b} onto the
tree-canon of T{a,b}, keeping the pair {a, b} blockwise fixed. Observe, the three mentioned
possibilities describe a set of partial automorphisms restricted to the pair {a, b} in T{a,b}.
Each partial automorphism can be extended to an automorphism φ which brings T{a,b}

to its tree-canon. We say, φ computes a canonical form for T{a,b}. Let A be this set,
it forms a coset, i.e. a group where each element is multiplied with a permutation. We
give examples, where we use the cycle notation for permutations.
(a, b)-orientation: A = {id}, the coset is 〈id〉 ◦ id,
reverse orientation: A = {(a, b)}, the coset is 〈id〉 ◦ (a, b),
symmetric case: A = {id, (a, b)}, the coset is Sym({a, b}) ◦ id.

For a four-connected component tree Sτ with τ = {a, b, c}, we describe now the analogon
of orientations: Accordingly, we have a set of partial automorphisms, each mapping
{a, b, c} onto {a, b, c} which can be extended to an automorphism which computes a
canonical form for Sτ . Let A be this set, it forms a coset. The analogon of the symmetric
case is more subtile here. We give some examples:
A = {(a, b, c)}, the coset is 〈id〉 ◦ (a, b, c).
A = {id, (a, b, c), (a, c, b)}, the coset is 〈(a, b, c)〉 ◦ id.
A = {id, (a, b)}, the coset is Sym({a, b}) ◦ id where c is pointwise fixed.
A = {(a, b), (a, b, c)}, the coset is the group Sym({b, c}) ◦ (a, b).
The analogon to the symmetric case here is considering all the cosets, where A has more
than one element.

• Instead of 3-connected planar components we have four-connected planar components
in Sτ and Tτ ′ . We can canonize these components with the canonization algorithm for
3-connected planar components from [DLN08].

Isomorphism order of two subtrees rooted at four-connected component nodes.

We consider the isomorphism order of two subtrees SFi
and TF ′

j
rooted at four-connected

component nodes Fi and F ′
j , respectively. To canonize a four-connected component Fi, we use

the log-space algorithm from [DLN08]. Besides Fi, the algorithm gets as input a starting edge

16

and a combinatorial embedding ρ of Fi. Let τ = {a, b, c} be the parent 3-divisive separating
triple of Fi. There are three choices of selecting a starting edge, namely {a, b}, {b, c}, or {a, c}.
Then there are two choices for the direction of each edge. Further, a 3-connected planar
graph has two planar combinatorial embeddings [Whi33]. Hence, there are 12 possible ways
to canonize Fi.

We start the canonization of Gi and Hj in all the possible ways and compare these codes
bit-by-bit. Let C and C ′ be two codes to be compared. The base case is that Fi and F ′

j are
leaf nodes and therefore contain no further virtual edges. In this case we use the lexicographic
order between C and C ′.

Assume now, Gi and Hj contain further virtual edges. The vertices of the virtual edge
belong to a child separating triple. These edges are specially treated in the bitwise comparison
of C and C ′:

1. If a virtual edge is traversed in the construction of one of the codes C or C ′ but not in
the other, then we define the one without the virtual edge to be the smaller code.

2. If C and C ′ encounter the virtual edges {u, v} and {u′, v′} then we do the following. We
consider only the child separating triples which do not have virtual edges considered
earlier in the codes C and C ′. We order the child separating triples according to the
positions of all their virtual edges in the codes. We call this order the position-order.
W.l.o.g. let τi0 (in C) and τ ′

j0
(in C ′) be the separating triples which come first in this

position-order.

For τi0 and τ ′
j0

, we will define below the reference orientation graphs X and X ′ with
V (X) = τi0 and V (X ′) = τ ′

j0
, respectively. For all pairs in τi0 = {u, v,w} and τ ′

j0
=

{u′, v′, w′} we have virtual edges in C and C ′. Consider the order of these virtual edges
order(τi0) and order(τ ′

j0
) in the codes C and C ′, respectively. We compare X and X ′

with respect to these orders. This is described below in more detail. If we find an
inequality, say X < X ′ with respect to the vertex ordering, then C is defined to be the
smaller code. Equivalently, if X ′ < X with respect to the vertex ordering, then C ′ is
the smaller code. Proceed with the next separating triples in the position-order until
we ran through all of them.

We eliminate the codes which were found to be the larger codes in at least one of the
comparisons. In the end, the codes that are not eliminated are the minimum codes. If we
have the same minimum code for both Fi and F ′

j then we define SFi
=F TF ′

j
. The construction

of the codes also defines an isomorphism between the subgraphs described by SFi
and TF ′

j
, i.e.

graph(SFi
) ∼= graph(TF ′

j
). For a single four-connected component this follows from [DLN08].

If the trees contain several components, then our definition of SFi
=F TF ′

j
guarantees that we

can combine the isomorphisms of the components to an isomorphism between graph(SFi
) and

graph(TF ′

j
).

Finally, we define the orientation given to the parent separating triple of Fi and F ′
j as

follows.

• We compute an orientation graph Xi with V (Xi) = τ .

• For each pair in τ when taken as starting edge for the canonization of SFi
which leads

to a minimum code (among all the codes for these edges) we have a directed edge in
E(Xi) with color (1).

17

• Also for the r-th minimum codes we have a directed edge in E(Xi) with color (r), for
all 1 ≤ r ≤ 6. Here, 6 is the number of directed edges in τ .

For example, the reference orientation can define a complete ordering on the vertices of τ
if Xi is a single colored complete graph. And there is a partial order if exactly one directed
edge in E(Xi) has a second color. If {(u, v), (v,w), (w, u)} have color (1) and the other edges
have color (2) then there is no ordering of the vertices, we rather have a cyclic rotation of the
vertices of τ , i.e. a subgroup of Sym(τ).

We define a new graph Xi with V (Xi) = τ and X ′
j with V (X ′

j) = τ ′. For each of the
remaining minimum codes we have a unique starting edge and this edge is also contained as
a directed edge in Xi or X ′

j , respectively.
Every subtree rooted at a four-connected component node gives an orientation graph to

the parent separating triple. If the orientation is consistent, then we define Sτ =F Tτ ′ and we
will show that the corresponding graphs are isomorphic in this case.

Isomorphism order of two subtrees rooted at separating triple nodes. We assume
that the subtrees SF1

, . . . , SFk
and TF ′

1
, . . . , TF ′

k
of the roots τ and τ ′ are partitioned into

isomorphism classes. The isomorphism order involves the comparison of the orientations
given by the corresponding isomorphism classes defined as follows:

We first order the subtrees, say SF1
≤F · · · ≤F SFk

and TF ′

1
≤F · · · ≤F TF ′

k
, and verify

that SFi
=F TF ′

i
for all i. If we find an inequality then the one with the smallest index i

defines the order between Sτ and Tτ ′ . Now assume that SFi
=F TF ′

i
for all i. Inductively, the

corresponding split components are isomorphic, i.e. graph(SFi
) ∼= graph(TF ′

i
) for all i.

The next comparison concerns the orientation of τ and τ ′. We already explained above
the orientation given by each of the SFi

’s to τ . We define a reference orientation for the root
nodes τ and τ ′ which is given by their children. This is done as follows, it is encoded in a
graph. We partition (SF1

, . . . , SFk
) into classes of isomorphic subtrees, say I1 <F . . . <F Ip for

some p ≤ k, and similarly we partition (TF ′

1
, . . . , TF ′

k
) into I ′1 <F . . . <F I ′p. It follows that Ij

and I ′j contain the same number of subtrees for every j.

• Consider the orientation given to τ by an isomorphism class Ij: For each child Fi

which belongs to Ij we compute an orientation graph Xi with vertices V (Xi) = τ . The
orientation graph is defined as above but with the following changes. Instead of colors
(1), . . . , (6) we have the colors (j, 1), . . . , (j, 6) for the edges.

• The reference orientation given to τ is defined as follows. We define the orientation
graph X with vertices V (X) = τ and edges E(X) =

⋃
1≤i≤k E(Xi) the disjoint union of

the edges of the orientation graphs from all children of τ . Thus, X has multiple edges.
We call X the reference orientation graph for τ .

Comparison of two orientation graphs. If τ is the root of a four-connected component
tree then the isomorphism order algorithm computes X and X ′ and compares them for iso-
morphism. Assume now τ and τ ′ have isomorphic subtrees and have parent nodes F and F ′.
In this situation we return from recursion with =F and give the orientation graphs X and X ′

to the parent.
We went into recursion because the virtual edges of τ and τ ′ appeared in the same positions

in the codes of the parent. In these codes, we have a complete order on the vertices of τ and

18

τ ′. Let V (X) = {u, v,w} and let order(τ) = u < v < w be an order of τ . We compute a list
of counters for (X, order(τ)) as follows.

• We order the edges of X according to the order of their vertices, lexicographically. That
is, (u, v) < (u,w) < (v, u) < (v,w) < (w, u) < (w, v).

• Among directed edges with the same ends, we order them according to their color. That
is, an edge with color (i1, i2) comes before an edge with color (j1, j2) if (i1, i2) < (j1, j2)
lexicographically.

• We define a counter for the number of edges with the same ends and the same color.
For the edge (u, v) we have the counters c(u,v),1, . . . , c(u,v),6p. Note, we have at most 6p
colors because there are 6 colors for edges from orientation graphs of one isomorphism
class and there are p isomorphism classes.

• We order the counters according to the order of the edges. That is, we have a list of
counters L(X, order(τ)) = (c(u,v),1, c(u,v),2, . . . , c(u,v),6p, . . . , c(w,v),1, . . . , c(w,v),6p).

Note, among isomorphic graphs, there must be edges having the same color up to a
permutation of them. Counting the colored edges allows to combine the orientations of all
isomorphic subtrees. Keep into account that, when a orientation graph Xi for τ has two
equal colored edges, then there is an automorphism that maps the one edge to the other
same colored edge in τ . Furthermore, the permutation of one edge completely fixes the whole
automorphism of τ . Hence, also when counting the edges from different orientation graphs
X1 and X2, if w.l.o.g. there are the edges (u, v) with colors 1 and 2 then the mapping of (u, v)
to other edges completely fixes the whole automorphism among τ and whether X1 and X2

are swapped. With an inductive argument, this can be generalized to the whole orientation
graph X.

Let X ′ be the corresponding reference orientation graph for τ ′. We define the isomor-
phism order (X, order(τ)) < (X ′, order(τ ′)) exactly when L(X, order(τ)) < L(X ′, order(τ ′))
lexicographically.

The preceding discussion leads to the following theorem which states that two trees are
=F-equal, precisely when the underlying graphs are isomorphic.

Theorem 4.3 The 3-connected non-planar graphs G and H which contained 3-divisive sep-
arating triples are isomorphic if and only if there is a choice of separating triples τ, τ ′ in G
and H such that Sτ =F Tτ ′ when rooted at τ and τ ′, respectively.

Proof. Assume that Sτ =F Tτ . The argument is an induction on the depth of the trees that
follows the inductive definition of the isomorphism order. The induction goes from depth d
to d + 2. If the grandchildren of separating triples, say τ and τ ′, are =F-equal up to step 4,
then we compare the children of s and t. If they are equal then we can extend the =F-equality
to the separating triples τ and τ ′.

When considering subtrees rooted at separating triple nodes, then the comparison de-
scribes an order on the subtrees which correspond to split components of the separating
triples. The order describes an isomorphism among the split components.

When considering subtrees rooted at four-connected component nodes, say Fi and F ′
j , then

the comparison states equality if the components have the same canon, i.e. are isomorphic.

19

Let τ0 and τ ′
0 be children of Fi and F ′

j . Let Sτ0 and Tτ ′

0
be the corresponding subtrees.

By the induction hypothesis we know that graph(Sτ0) is isomorphic to graph(Tτ ′

0
). For each

such isomorphism consider the mapping φ of τ0 onto τ ′
0. The isomorphism group of X and

X ′ exactly covers all these mappings. If we can find a code for Fi and one for F ′
j such

that virtual edges of τ0 and τ ′
0 appear in the same places in the canons (in such a way that

φ describes the mapping which brings the order of edges from τ0 into the order of edges
from τ ′

0), then φ can be extended to a mapping of Fi onto F ′
j . The =F-equality between

child separating triples (together with their subtrees) inductively describes an isomorphism
between the corresponding subgraphs.

Hence, the isomorphism between the children at any level can be extended to an isomor-
phism between the corresponding subgraphs in G and H and therefore to G and H itself.

The reverse direction holds obviously as well. Namely, if G and H are isomorphic and
there is an isomorphism that maps the separating triples τ of G to the separating triple τ ′

of H, then the triconnected component trees Sτ of G and Tτ of H rooted respectively at the
triples will clearly be equal. Hence, such an isomorphism maps separating triples of G onto
separating triples of H. This isomorphism describes a permutation on the split components
of separating triples, which means we have a permutation on four-connected components, the
children of the separating triples. By induction hypothesis, the children (at depth d+2) of two
such four-connected components are isomorphic and equal according to =F. More formally,
one can argue inductively on the depth of Sτ and Tτ ′ . �

4.3 Complexity of the isomorphism order algorithm

Let Sa be a biconnected component tree at an articulation point a. Let B be a biconnected
component in Sa. Let SB be the subtree of Sa with root B. Let T T(B) be the triconnected
component tree of B. Let a0 be an articulation point in B. Then a0 has a copy in at least
one triconnected component in T T(B). Actually, all the components which contain a copy
of a form a subtree of T T(B). The copy of a which belongs to the node of T T(B) which is
closest to the root is called the reference copy of a.

The following size definitions cover exactly those subtrees which are traversed by the
isomorphism order algorithm.

Definition 4.4 ([DLN+09]) Let B be a biconnected component node in a biconnected compo-
nent tree S, and let T T(B) be the triconnected component tree of B. The size of B is |T T(B)|,
the sum of the sizes of the components corresponding to the nodes in T T(B). The size of an
articulation point node in S is defined as 1. Note that the articulation points may be counted
several times, namely in every component they occur. The size of S, denoted by |S|, is the
sum of the sizes of its components.

In a triconnected component tree, the algorithm goes into recursion at a biconnected
subtree only when the uniquely defined reference copy of a child articulation point is reached.

Definition 4.5 ([DLN+09]) Let B be a biconnected component and T T(B) its triconnected
component tree. Let C be a node in T T(B), i.e. a triconnected component node or a separating
pair node. The tree SC rooted at C consists of the subtree of T T(B) rooted at C (with respect
to the root of T T(B)) and of the subtrees Sa for all articulation points a that have a reference
copy in the subtree of T T(B) rooted at C, except those Sa that are a large child of SB. The
size of SC , also denoted by |SC | is the sum of the sizes of its components.

20

Limiting the number of choices for the root of a triconnected component tree.

We extend the algorithm of Datta et.al. [DLN+09] where they showed for given planar graphs
that the number of possible choices for the root of a triconnected component tree can be
bounded by a sufficiently small number of separating pair nodes.

Let G be a K5-free graph. The isomorphism order algorithm explores the biconnected
component trees and the triconnected component trees of the components of G. There are
usually several candidates for the root of these trees. In order to maintain the log-space
bound, we cannot afford to cycle through all of them in case we have to go into recursion on
more than one subtree. We describe how the algorithm chooses a small set of root candidates
if necessary.

An easy case is when G has no articulation points, i.e. G is 2-connected. Then the
isomorphism order algorithm runs through all possibilities of separating pairs {a, b} as root
and explores S{a,b}, the triconnected component tree rooted at {a, b}. If there is no separating
pair in G, then G is even triconnected. If G is additionally planar then we are done because
isomorphism testing is in log-space [DLN08]. If G is not planar, it can be the V8 or the
K3,3. Then the graph is of constant size and isomorphism testing requires constant effort.
Otherwise G contains 3-divisive separating triples. The isomorphism order algorithm runs
through all possibilities of separating triples τ as roots and explores Sτ , the four-connected
component tree rooted at τ .

The more interesting case is when G has articulation points. Then the isomorphism order
algorithm runs through all articulation points as roots. Let Sa be a biconnected component
tree of G rooted at articulation point a. Let B be a biconnected component which is a child
of a in Sa. If B contains no separating pairs, i.e. B is triconnected, then we handle B as
described above in the case when G was triconnected. So assume that B contains separating
pairs and let T T(B) be the triconnected component tree of B. Also see Figure 9.

To determine roots, we consider the center C of T T(B). If C is a separating pair node
or triconnected planar component node, then we can find roots in log-space due to Datta
et.al. [DLN+09]. If C is the V8 or the K3,3, then we can run through all edges as roots
for T T(B), because there are only constantly many.

The interesting case is when C is non-planar and contains 3-divisive separating triples.
Then we consider T F(C), the four-connected component tree of C. and invoke the compu-
tation of the parent separating triples for the center node which is described below. This
algorithm either directly returns a small set of separating pairs as root candidates for T T(B),
or a small set of root separating triples in T F(C), say k triples. Each of the three edges
which are part of a 3-divisive separating triple, has a separating pair node adjacent to C. We
root T T(B) at all these separating pairs. Hence, we get ≤ 3k root separating pairs, which
will be good enough.

Limiting the number of choices for the root of a four-connected component tree.

Let G be a K5-free graph, B a biconnected component of G with parent articulation points a,
and G0 be a triconnected component in B. We describe how to determine a small number of
separating triples as root candidates for G0. We may assume that G0 is non-planar, otherwise
isomorphism testing is log-space.

We cannot take all the separating triples as possible roots, because then we would need
O(log n) bits on the work-tape to remember the current root. If we do this recursively we

21

a

u5

u3

u1

u2

u4
τ1 = {u1, u2, a}

u1
u2

a
u1

u2
a

u1
u2

a

u3 u4 u5

T T(B1)

G1 = B1

T F(G1)

Figure 9: The biconnected component B1 contains no separating pairs and is therefore triv-
ially triconnected such that the corresponding triconnected component tree T T(B1) contains
only one node, i.e. G1 = B1. G1 is further decomposed into four-connected components as
illustrated by the four-connected component tree T F(G1).

end up in a polynomial amount of space on the work-tape.
If G0 is the K3,3, then we have exactly two choices of selecting a root separating triple in

the decomposition of G0. Figure 9 shows an example. Because these two separating triples
are conflicting, we obtain two trees which contain one separating triple node each.

It remains the case that G0 is non-planar and contains 3-divisive separating triples. We
distinguish the cases whether there is a parent separating pair for G0 in B or not. If G0

has a parent separating pair we show that we can determine ≤ 4 separating triples as root
candidates for T F(G0). The case that G0 has no parent separating pair can occur in two
situations as explained in Section 4.3:

• There is no separating pair in B. Then G0 is the single triconnected component in B
and G0 contains 3-divisive separating triples.

• There are separating pairs in B and G0 is the center of the triconnected component
tree T T(B) which contains 3-divisive separating triples.

In the latter situation the goal is to compute a small set of separating pairs as root candi-
dates for T T(B). Because then the overall isomorphism algorithm will return again later to
component G0, but then with a parent separating pair for G0, and hence we are in the first
case when we really compare G0. As already explained above, the small set of separating
pairs maybe obtained from a small set of separating triples determined in G0.

G0 has a parent separating pair. Let {a, b} be the parent separating pair of G0. We
consider the four-connected component tree T F(G0). The nodes of T F(G0) which contain
the edge {a, b} form a subtree of T F(G0). Of these, the node that is closest to the unique
center C0 of T F(G0) is associated with {a, b}.

If the center C0 of T F(G0) is a separating triple, choose this triple as root. Otherwise, the
center is a 4-connected planar component.

1. If {a, b} 6∈ C0, then choose the separating triple nearest to C0 which is on the unique
path between C0 and the 4-connected component associated with {a, b}.

22

2. If {a, b} ∈ C0, then canonize C0 with {a, b} as the starting edge. This gives four possible
ways of canonization. In the smallest code among these, choose the separating triple
in C0 which gets the lexicographically smallest label. Thus, we have at most four choices
for the root.

G0 has no parent separating pair. We start by defining colors for child articulation
points which occur in the component B and for the adjacent separating pairs of G0 in T T(B).

• Let a be the the parent articulation point and a1, . . . , al be the articulation points which
are associated with G0 in T T(B). Let aj be the root node of the biconnected subtree Saj

of Sa.

We partition the subtrees Sa1
, . . . , Sal

into classes E1, . . . , Ep of equal size subtrees (i.e.
size according to Definition 4.4). Let kj be the number of subtrees in Ej . Let the order
of the size classes be such that k1 ≤ k2 ≤ · · · ≤ kp. All articulation points with their
subtrees in size class Ej are colored with color j.

• Let s1, . . . , sm be the separating pairs which are connected to G0 in T T(B). Let Ssj
be

the subtree of T T(B) rooted at sj . We partition the subtrees Ss1
, . . . , Ssm into classes

Ê1, . . . , Êp̂ of equal size subtrees (i.e. size according to Definition 4.5). Let k̂j be the

number of subtrees in Êj. Let the order of the size classes be such that k̂1 ≤ k̂2 ≤ · · · ≤

k̂p̂. All virtual edges of separating pairs with their subtrees in size class Êj are colored
with color j.

B

s1

Ss1

a

a1
... al+1

...

a

Ra

T B(G)

al

sm τ
Ssm

G0

T T(B)
C0

T F(G0)

Figure 10: (a) The decomposition of a graph G into biconnected and triconnected compo-
nents. In T B(G) we have a biconnected component B with its parent articulation point a. B
is decomposed into its triconnected component tree T T(B). G0 is a triconnected component
in T T(B), where a1, . . . , al are child articulation points associated to G0 and s1, . . . , sm are
adjacent separating pairs of G0 in T T(B). B may have further child articulation points which
are not associated to G0 (here al+1). (b) The decomposition of G0 into its four-connected com-
ponent tree T F(G0). The parent articulation point is contained in G0 and hence in T F(G0).
The situation is shown where a occurs not in the center C0 of the tree.

To limit the number of potential root nodes for T F(G0), we distinguish several cases below.
The center C0 will play an important role thereby. In some of the cases we will show that
the number of automorphisms of C0 is small. This already suffices for our purpose: in this

23

case, for every edge as starting edge, we canonize the component C0 separately and construct
a set of the separating triples A that lead to the minimum code. Although there can be
polynomially many possible candidates for the canon, the minimum ones are bounded by
the number of automorphisms of C0, which is small. We take the separating triples as root
candidates for T F(G0) which come first in the position order encountered in each of these
minimum codes. Hence the number of roots is bounded by the number of automorphisms
of C0.

Consider the case where the parent articulation point a is not associated with C0. We
find the path from the node to which a is associated to C0 in T F(G0) and find the separating
triple closest to C0 on this path. This serves as the unique choice for the root of T F(G0), see
Figure 10.

For the following cases, we assume that the parent articulation point a is associated
with C0. We proceed with the case analysis according to the number l ≥ 0 of child
articulation points and the number m ≥ 0 of separating pairs adjacent to G0 in T F(G0).

Case I: l ≤ 1.

1. m = 0. If l = 0 then G0 is a leaf node in T T(B) and also in T F(G0). We color the
parent articulation point a with a distinct color. In this case, we can cycle through all
separating triples as root for T F(G0). We can do this because, there is no recursion
on biconnected or triconnected subtrees which bounds the number of root separating
triples.

If l = 1 then we process the corresponding child articulation point a priori and store
the result. We color the parent and the unique child with distinct colors and proceed
with G0 as in the case of a leaf node.

2. m ≥ 1. That is, we have separating pairs although we have no parent separating pair.
In this case we return the separating pairs which are the roots of the subtrees in Ê1 as
root candidates for T T(B).

Case II: l ≥ 2. We distinguish the following sub-cases.

1. k̂1 < k1. We return the separating pairs which are the roots of the subtrees in Ê1 as
root candidates for T T(B).

2. k1 ≤ k̂1. We consider the following sub-cases.

(a) Some articulation point aj in E1 is not associated with C0. Let aj be
associated with a four-connected component D 6= C0. Find the path from D to C0

in T F(G0) and select the separating triple node closest to C0 on this path. Thus aj

uniquely defines a separating triple. In the worst case, this may happen for every
aj in E1. Therefore, we get up to k1 separating triples as candidates for the root.

(b) All articulation points in E1 are associated with C0.

• k1 ≥ 2. Every automorphism of C0 fixes the parent articulation point a and
setwise fixes the k1 articulation points in E1. By Lemma 4.6 below, there are
at most 4k2 automorphisms of C0.

24

• k1 = k2 = 1. Every automorphism of C0 fixes the parent articulation point a
and the two articulation points in E1 and E2. By Corollary 4.7 below, C0 has
at most one non-trivial automorphism in this case.

• k1 = 1 and 1 < k2 < k̂1. By an analogous argument as in the case where
k1 ≥ 2, C0 has at most 4k2 automorphisms.

• k1 = 1 and k̂1 ≤ k2 and 1 < k2. We distinguish two sub-cases.

– Some separating pair sj in Ê1 is not associated with C0. Choose
the separating triple nearest to C0 which is on the unique path between C0

and the 4-connected component associated with sj. Hence, we get up to

k̂1 separating triples as candidates for the root.

– All separating pairs in Ê1 are associated with C0. Every automor-
phism of C0 fixes the parent articulation point a and setwise fixes the 2k̂1

separating pairs in Ê1. By Lemma 4.6 below, there are at most 4 · 2k2

automorphisms C0.

We observe that the size of the root set A is ≤ 8k1 if k1 > 1 and ≤ min{8k2, 8k̂1} if k1 = 1.
Since the subtrees in Ei (and Êi) have size ≤ n/ki (and ≤ n/k̂i respectively), we have that
|A| ≤ 8|E|, where E is the class of equal sized biconnected subtrees which have maximum size
and |E| > 1. The following lemma bounds the number of automorphisms for the center C.

Lemma 4.6 ([DLN+09]) Let G be a 3-connected planar graph with colors on its vertices such
that one vertex a is colored distinctly, and let k ≥ 2 be the size of the smallest color class
apart from the one which contains a. G has ≤ 4k automorphisms.

Corollary 4.7 ([DLN+09]) Let G be a 3-connected planar graph with at least 3 colored ver-
tices, each having a distinct color. Then G has at most one non-trivial automorphism.

Note that Lemma 4.6 holds for all 3-connected planar graphs, except for some special
cases which are of constant size. For these special cases, we do not have to limit the number
of possible minimum codes.

The preceding discussion implies that if two biconnected component trees are equal for the
isomorphism order for some choice of the root, then the corresponding graphs are isomorphic.
The reverse direction clearly holds as well.

Theorem 4.8 Given two biconnected graphs B and B′ and their triconnected component
trees S and T , then B ∼= B′ if and only if there is a choice of separating pairs {a, b}, {a′, b′}
in B and B′ such that S{a,b} =T T{a′,b′}.

Proof. We refer to Theorem 4.3 for the correctness of isomorphism order of four-connected
component trees, and assume the correctness of the isomorphism order of four-connected
component trees.

We prove the right to left implication first. Assume S{a,b} =T T{a′,b′}. Then an inductive
argument on the depth of the trees that follows the definition of the isomorphism order
implies that B and B′ are isomorphic. If the grandchildren of {a, b} and {a′, b′}, are equal
up to step 4 of the isomorphism order, then the corresponding subgraphs are isomorphic by
induction hypothesis. We compare the children of {a, b} and {a′, b′}. If they are equal then
we can extend the =T-equality to the separating pairs s and t.

25

When subtrees are rooted at separating pair nodes, the comparison describes an order
on the subtrees which correspond to split components of the separating pairs. The order
describes an isomorphism among the split components.

When subtrees are rooted at triconnected component nodes, say G0 and Hj, the com-
parison states equality if the components are isomorphic. If G0 and Hj are 3-connected
non-planar components, then their isomorphism is checked from the isomorphism order of
their four-connected component trees. This algorithm not only gives an isomorphism be-
tween G0 and Hj, but also checks whether the children of G0 and Hj mapped to each other
are indeed isomorphic, and also ensures that parents of G0 and Hj are mapped to each other.

Hence, the isomorphism between the children of {a, b} and {a′, b′} can be extended to an
isomorphism between B and B′.

The reverse direction holds obviously as well. Namely, if B and B′ are isomorphic and
there is an isomorphism that maps the separating pair {a, b} of B to the separating pair {a′, b′}
of B′, then the triconnected component trees S{a,b} and T{a′,b′} rooted respectively at {a, b}
and {a′, b′} are clearly equal. Hence, such an isomorphism maps separating pairs of B onto
separating pairs of B′. This isomorphism describes a permutation on the split components
of separating pairs, which means we have a permutation on triconnected components, the
children of the separating pairs. By induction hypothesis, the children (at depth d + 2) of
two such triconnected components are isomorphic and equal according to =T. More formally,
one can argue inductively on the depth of S{a,b} and T{a′,b′}. �

Limiting the number of recursive calls for articulation points and separating pairs.

When we compare triconnected component trees T T(B) and T T(B′), then we might find
several copies of articulation points a and a′. That is, a may occur in several components in
T T(B) if a is part of a separating pair. We want to go into recursion on a to the subtree Sa

only once.
We have the same situation for articulation points and separating pairs in four-connected

component trees T F(G0) and T F(Hj) of two triconnected components G0 and Hj. The sep-
arating pairs are adjacent to G0 and Hj. The articulation points are adjacent to the bicon-
nected components B and B′, where G0 and Hj are nodes in the trees T T(B) and T T(B′),
respectively.

Datta et.al.[DLN+09] defined a reference copy of a which is a unique copy in T F(G0).
More precisely, a is contained in the node A in T F(G0) which is closest to the root in this
tree. This always is a triconnected component node or the root node itself. Their algorithm
goes only into recursion at Sa when it reaches a in this node A. We go into recursion at the
first edge where a or {a, b} occurs, when we examine A. This copy of a is the reference copy.

We will go into recursion either directly when we reach T F(G0) in the case that Sa or S{a,b}

is a large child of G0, or at the reference copy in T F(G0). The first case will be described in
detail below on page 29. Note, the reference copy of a or {a, b} depends on the chosen root
of T F(G0).

The following lemma is adapted from [DLN+09]. It is generalized from triconnected to
four-connected component trees and also from articulation points to the recomputation of the
reference copies of separating pairs when returning from recursion.

26

Lemma 4.9 The reference copy of an articulation point a or a separating pair {a, b}
in T F(G0) and a′ or {a′, b′} in T F(Hj) for the comparison of four-connected component
trees T F(G0) with T F(Hj) can be found in log-space.

Proof. The proof is similar to the proof of the corresponding lemma in [DLN+09]. We
distinguish three cases for a and {a, b} in T F(G0). Assume, that we have the same situation
for a′ and {a′, b′} in T T(B′). If not, then we found an inequality. We define now a unique
component A, where a or {a, b} is contained. We distinguish the following cases. Let P be
one of a or {a, b} and P ′ one of a′ or {a′, b′}.

• P occurs in the root separating triples of T F(G0). That is, P occurs already at the
beginning of the comparisons for T F(G0). Then we define A as the root separating
triple.

• P occurs in separating triples other than the root of T F(G0). Then P occurs in all
the component nodes, which contain such a separating triple. These nodes form a
connected subtree of T F(G0). Hence, one of these component nodes is the closest to the
root of T F(G0). This component is always a four-connected component node. Let A be
this component. Note, that the comparison first compares P with P ′ before comparing
the biconnected, triconnected or four-connected subtrees, so we reach these copies first
in the comparison.

• P does not occur in a separating triple. Then, P occurs in only one four-connected
component node in T F(G0). Let A be this component.

In all except the first case, we find P in a four-connected component node A first. Let P ′

be found first in component node A′, accordingly. Assume, we start the comparison of A
and A′. More precisely, we start to compare the codes C of A and C ′ of A′ bit for bit. We
go into recursion if and only if we reach the first edge in the codes which contain P and P ′.
Note, if P is an articulation point a, then C can contain more than one edge with endpoint a.
On all the other edges in C and C ′ we do not go again into recursion. It is easy to see, that
we can recompute the first occurrence of P in A and of P ′ in A′. �

Comparing two subtrees rooted at several component nodes.

Separating triples or four-connected components. We go into recursion at separating
triples and four-connected components in T F(Gi) and T F(Hj). When we reach a reference
copy of an articulation point or a separating pair in both trees, then we interrupt the compari-
son of Gi with Hj and go into recursion as described before, i.e. we compare the corresponding
nodes, the children of B and B′ or the children of Gi and Hj, respectively. When we return
from recursion, we proceed with the comparison of T F(Gi) and T F(Hj).

In this part we concentrate on the comparison of T F(Gi) and T F(Hj). We give an overview
of what is stored on the work-tape when we go into recursion at separating triples and four-
connected components. Basically, the comparison is similar to that for biconnected and
triconnected component trees in [DLN+09].

• For a root separating triple node, we store at most O(log k) bits on the work-tape, when
we have k candidates as root separating triples for T F(Gi). Hence, whenever we make

27

recomputations in T F(Gi), we have to find the following in advance. First, recompute
the root separating pair node, then we can determine the parent separating pair node.
Then we can recompute the root separating triple node. For this, we compute T F(Gi) in
log-space and with the rules described above, we find the candidate edges in log-space.
With the bits on the work-tape, we know which of these candidate edges is the current
root separating triple. We proceed as in the case of non-root separating triple nodes
described next.

• For a non-root separating triple node and four-connected component nodes, we store
the following. For separating triple nodes, we have some information of the orientation
graphs on the work-tape. More precisely, for the i-th isomorphism class we compute
the number of edges with color i. For these counters we need O(log k) bits if k is the
number of subtrees in this isomorphism class.

For four-connected component nodes we cannot afford to store the entire work-tape
content when we go into recursion at a child separating triple node τ . It suffices to
store the information of

– the codes which are not eliminated,

– the codes which encounter a virtual edge of τ for the first time

– the direction in which the virtual edge of τ is encountered.

This takes altogether O(1) space.

When we return from recursion we do the following. First, recompute the root sep-
arating pair node, then we can determine the parent separating pair node. Then we
can recompute the root separating triple node of the triconnected component where
we are. With this, we can determine the triconnected node which is the parent. With
the information on the work-tape, we can proceed with the computations. That is,
for separating triple nodes we proceed with the next comparison of children and for
four-connected component nodes, we look at the work-tape which the active codes are
and proceed with the next edges in the bit-by-bit comparisons of the codes.

V8 component nodes. The tasks are similar to that for triconnected planar components.
We compare the codes of the V8 nodes and when we reach child articulation points associated
to these V8-components, then we go into recursion.

When we return from recursion we recompute the root for the triconnected component
tree. Then, we can determine the parent of the V8 and obtain this way the starting edge
of the codes which we compare bit-by bit. There are O(1) many codes, so we can store in
constant size which are the current codes. We proceed at the first occurrence of an edge with
the child articulation point node where we went into recursion. Hence, we need O(1) bits on
the work-tape.

Planar component nodes, separating pair nodes or articulation point nodes. The
tasks for these types of nodes remain unchanged to the situation where we consider planar
graphs. Therefore, we refer to the complexity analysis part in [DLN+09].

28

Large children.

We deviate from the algorithm described so far in the case that the recursion would lead to
a large child. We already defined the size of trees Sa, SB and SGi

with an articulation point
a, a biconnected component B or a triconnected non-planar component Gi (which is not the
V8) as root. A large child of such a tree of size N is a child of size ≥ N/2.

In the case of planar graphs, Datta et.al. [DLN+09] considered for T T(B) the nodes for a
triconnected component A and a separating pair {u, v}. They defined the subtrees SA and
S{u, v} rooted at A and {u, v} respectively in a careful way.

For SA they consider S{u, v} as a subtree if {u, v} is a child separating pair of A For
articulation points, there are some special properties. Let C be one of A or {u, v}. Let a0 be
a child articulation point of B. Some copies of a0 may occur in several components of T T(B).
Assume, a0 is associated to C in T T(B). Then, Sa0

is considered to be a subtree of SC . But
there is one exception where we go into recursion at Sa0

even before. a0 is not considered as
a subtree of SC if a0 is a large child of B. Then we go into recursion for Sa0

a priori, even
before we compute the triconnected component tree for B. In this case the comparison result
(with some large child Sa′ of B′) is already stored on the work-tape and we do not visit Sa a
second time. Consequently, we consider Sa as a subtree only at the place where we go into
recursion to Sa. Recall, this is not a static property, as e.g. the position of the reference copy
depends on the chosen root of the tree, and we try several possibilities for the root.

We extend this now to K5-free graphs and the three types of tree decompositions. For
triconnected component trees, the situation is the same as described so far. For the four-
connected component tree T F(Gi), we define SFi

and Sτ as the subtrees of T F(Gi) when rooted
at the four-connected component node Fi and at the separating triple node τ , respectively.
Let C be a node in T F(Gi). If there is a reference copy of an articulation point a0 or of a
separating pair {u, v} contained in C, then Sa0

and S{u,v} are considered to be subtrees of
SC . There are exceptions if the following situations occur.

• Sa0
is not a subtree of SC if a0 is a large child of B. Then Sa0

is treated a priori before
computing the triconnected component tree of B.

• Sa0
is not a subtree of SC if a0 is a large child of Gi. Then Sa0

is treated a priori before
computing the four-connected component tree of Gi.

• S{u,v} is not a subtree of SC if {u, v} is a large child of Gi. Then S{u,v} is treated a
priori before computing the four-connected component tree of Gi.

Following the same arguments, we consider Sa0
and S{u,v} as a subtree only at the place

where we go into recursion. Figure 11 shows an example. Also, this is not a static property.
The position of the reference copy or whether a subtree is a large child, depends for example
on the chosen roots of the triconnected and four-connected component trees.

We extend now Definition 4.5 to four-connected component trees.

Definition 4.10 Let B be a biconnected component and T T(B) its triconnected component
tree. Let Gi be a non-planar 3-connected component node in T T(B) with 3-divisive separating
triples. Let T F(Gi) be the four-connected component of Gi. Let C be a node in T F(Gi), i.e. a
four-connected component node or a separating triple node. The tree SC rooted at C consists
of the subtree of T F(Gi) rooted at C (with respect to the root of T F(Gi)) and of

29

a0

B

u v

Fj

{u, v}a0 τ0

T F(Gi)

Gi

{u, v}a0

T T(B)

Sτ0

a s τ

Sa0
S{u,v}

a0

T B(G)

τ0

Figure 11: The figure shows a series of decompositions upto four-connected components.
The situation is shown where a0 is a child articulation point of B and which has reference
copies in Gi and Fj . From left to right, if it is a large child of B, Gi or Fj then it is treated at
the corresponding position as large child a priori. Here, a0 is no large child of B but a large
child of Gi. The situation is similar for the separating pair {u, v}, which is a child of Gi and
has a reference copy in Fj . Here, {u, v} is a large child of Gi. The dashed lines summarize all
possible connections for subtrees Sa0

and S{u,v}. The algorithm selects only one connection
for each subtree.

• the subtrees Sa for all articulation points a that have a reference copy in the subtree
of T F(Gi) rooted at C, except those Sa that are a large child of B in SB or a large child
of Gi in SGi

.

• the subtrees S{u,v} for all separating pairs {u, v} that have a reference copy in the subtree
of T F(Gi) rooted at C, except those S{u,v} that are a large child of Gi in SGi

.

The size of SC is the sum of the sizes of its components.

Whenever the algorithm reaches a node for a,{u, v},B or C as above, it first checks whether
the corresponding tree Sa,Su,v,SB, or SC has a large child and treats it a priori. The result is
stored with O(1) bits. In the case of triconnected components, we also store the orientation.
We distinguish large children as follows.

• Large children with respect to the biconnected component tree. These are children of
node a in Sa or B in SB. These children are biconnected component nodes or articulation
point nodes. When comparing SB with SB′ , then we go for large children into recursion
before computing the trees T T(B) and T T(B′).

• Large children with respect to the triconnected component tree. These are children of
node C in SC . These children are separating pair nodes, triconnected component nodes
or reference copies of articulation point nodes in C.

• Large children with respect to the four-connected component tree. These are children
of node C in SC . These children are separating triple nodes, four-connected component
nodes or reference copies of separating pair nodes or articulation point nodes in C.

30

Analysis of space requirement.

We analyze the comparison algorithm when it compares subtrees rooted at separating triples,
subtrees rooted at separating pairs and subtrees rooted at articulation points. For the analysis,
the recursion goes here from depth d to d + 2 of the trees. Observe, that large children are
handled a priori at any level of the trees. We set up the following recursion equation for the
space requirement of our algorithm.

S(N) = max
j

S

(
N

kj

)
+ O(log kj),

where kj ≥ 2 (for all j) is the number of subtrees of the same size. Hence, S(N) = O(log N).
For the explanation of the recursion equation it is helpful to imagine that we have three

work-tapes. We use the first work-tape when we go into recursion at articulation point nodes,
we use the second work-tape when we go into recursion at separating pair nodes and we use
the third work-tape when we go into recursion at separating triple nodes. The total space
needed is the sum of the space of the three work-tapes.

• At an articulation point node, the value kj is the number of elements in the j-th size
class among the children B1, . . . , Bk of the articulation point node. We store O(log kj)
bits and recursively consider subtrees of size ≤ N/kj .

• At a separating pair node the value kj is the number of elements in the j-th isomorphism
class among the children G1, . . . , Gk of the separating pair node. We store O(log kj)
bits and recursively consider subtrees of size ≤ N/kj .

• At a separating triple node the value kj is the number of elements in the j-th iso-
morphism class among the children F1, . . . , Fk of the separating triple node. We
store O(log kj) bits and recursively consider subtrees of size ≤ N/kj .

This finishes the complexity analysis. We get the following theorem.

Theorem 4.11 The isomorphism order between two K5-free graphs can be computed in log-
space.

4.4 The canon of K5-free graphs.

Using this algorithm for isomorphism order, we show that the canon of a planar graph can
be output in log-space. The canonization of K5-free graphs proceeds exactly as in the case of
planar graphs. We extend the canonization procedure for the non-planar components.

The canon for a V8-component We already described, how to compute a canon for a
single V8-component. It consists of a list of all directed edges in the V8. For a V8-component
node G0 and a parent separating pair {a, b} we define the canon l(G0, a, b) exactly as if G0

is a 3-connected component. That is, (a, b) followed by the canon of G0 and then the canons
for the child separating pairs of G0 in that order in which the child separating pairs appear
in the canon of G0.

31

The canon for a four-connected component tree Let Gi be a 3-connected K5-free
component with 3-divisive separating triples. We describe now the canon of T F(Gi).

A log-space procedure traverses the four-connected component tree and makes oracle
queries to the isomorphism order algorithm and outputs a canonical list of edges, along with
delimiters to separate the lists for siblings.

For an example, consider the canonical list l(S, τ) of edges for the tree Sτ of Figure 8. Let
τ = {a, b, c}. Let l(Fi, a, b, c) be the canonical list of edges of the four-connected component Fi

and a given order on the vertices of τ (i.e. the canonical list of Fi with τ the parent separating
triple). Since Fi is planar and at least 3-connected, we invoke the algorithm of [DLN08] for
canonization. Let τ1, . . . , τl1 be the order of the separating triples as they occur in the canon of
Fi. We also write for short l′(Sτi

, τi) which is one of l(Sτi
, ϕ(τi)) where ϕ(τi) is a permutation

of separating triple τi. Then we get the following canonical list for Sτ .

l(S, a, b, c) = [(a, b, c) l(SF1
, a, b, c) . . . l(SFk

, a, b, c)], where

l(SF1
, a, b, c) = [l(F1, a, b, c) l′(Sτ1 , τ1) . . . l′(Sτl1

, τl1)]

...

l(SFk
, a, b, c) = [l(Fk, a, b, c) l′(Sτlk

, τlk)]

In the case the triconnected non-planar component is a K3,3, say Gi, then for the code of
l(Gi, a, b) (if a, b is a parent separating pair) we have to fix one separating triple. To select the
canonical smaller separating triple, we query the isomorphism order algorithm. We have a
similar situation if the K3,3 forms a biconnected component, say Bi, for the canon of l(Bi, a)
(if a is a parent articulation point). The canonical smaller separating triple is those which
contains a.

A log-space transducer renames then the vertices according to their first occurrence in
this list, to get the canon for the four-connected component tree. This canon depends upon
the choice of the root of the four-connected component tree. Further log-space transducers
cycle through all the articulation points as roots to find the minimum canon among them,
then rename the vertices according to their first occurrence in the canon and finally, remove
the virtual edges and delimiters to obtain a canon for the planar graph.

For the planar 3-connected components and for the canonization of biconnected compo-
nents we use the algorithm from Datta et.al. [DLN+09]. We get

Theorem 4.12 A K5-free graph can be canonized in log-space.

5 Acknowledgement

We thank V. Arvind, Bireswar Das, Raghav Kulkarni, Nutan Limaye, Meena Mahajan and
Jacobo Torán for helpful discussions.

References

[ADK08] V. Arvind, Bireswar Das, and Johannes Köbler. A logspace algorithm for partial 2-tree
canonization. In Computer Science Symposium in Russia (CSR), pages 40–51, 2008.

[AK06] V. Arvind and Piyush P. Kurur. Graph isomorphism is in spp. Information and Compu-
tation, 204(5):835–852, 2006.

32

[AM00] Eric Allender and Meena Mahajan. The complexity of planarity testing. In Proceedings of
the 17th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages
87–98, 2000.

[Asa85] Tetsuo Asano. An approach to the subgraph homeomorphism problem. Theoretical Com-
puter Science, 38, 1985.

[BHZ87] R. B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs? Inf.
Process. Lett., 25(2):127–132, 1987.

[BL83] László Babai and Eugene M. Luks. Canonical labeling of graphs. In STOC ’83: Proceedings
of the fifteenth annual ACM symposium on Theory of computing, pages 171–183, 1983.

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and
Control, 64(1-3):2–22, 1985.

[DLN08] Samir Datta, Nutan Limaye, and Prajakta Nimbhorkar. 3-connected planar graph isomor-
phism is in log-space. In Proceedings of the 28th annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 153–162, 2008.

[DLN+09] Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wag-
ner. Planar graph isomorphism is in log-space. Technical Report TR09-052, Electronic
Colloquium on Computational Complexity (ECCC), 2009.

[Khu88] Samir Khuller. Parallel algorithms for K5-minor free graphs. Technical Report TR88-909,
Cornell University, Computer Science Department, 1988.

[KST93] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism Problem.
Birkhäuser, 1993.

[Lin92] Steven Lindell. A logspace algorithm for tree canonization (extended abstract). In Proceed-
ings of the 24th annual ACM Symposium on Theory of Computing (STOC), pages 400–404,
1992.

[MJT98] Pierre McKenzie, Birgit Jenner, and Jacobo Torán. A note on the hardness of tree isomor-
phism. In Proceedings of the 13th Annual IEEE Conference on Computational Complexity
(CCC). IEEE Computer Society, 1998.

[MR87] Gary L. Miller and V. Ramachandran. A new graphy triconnectivity algorithm and its
parallelization. In ACM, editor, Proceedings of the nineteenth annual ACM Symposium on
Theory of Computing, New York City, May 25–27, 1987, pages 335–344, 1987.

[Pon91] Ilia N. Ponomarenko. The isomorphism problem for classes of graphs closed under contrac-
tion. Journal of Mathematical Sciences (JSM, formerly Journal of Soviet Mathematics),
55, 1991.

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In Proc. 37th annual ACM Sym-
posium on Theory of Computing (STOC), pages 376–385, 2005.

[Sch88] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal on Computing and
System Sciences, 37(3):312–323, 1988.

[Tor04] Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal on Computing,
33(5):1093–1108, 2004.

[Tut66] William T. Tutte. Connectivity in graphs. University of Toronto Press, 1966.

[TW08] Thomas Thierauf and Fabian Wagner. The isomorphism problem for planar 3-connected
graphs is in unambiguous logspace. In 25th International Symposium on Theoretical Aspects
of Computer Science (STACS), pages 633–644, 2008.

33

[TW09] Thomas Thierauf and Fabian Wagner. Reachability in K3,3-free graphs and K5-free graphs
is in unambiguous log-space. In 17th International Symposium, Fundamentals of Compu-
tation Theory (FCT), pages 323–334, 2009.

[Vaz89] Vijay V Vazirani. NC algorithms for computing the number of perfect matchings in k3,3-free
graphs and related problems. Information and Computation, 80, 1989.

[Wag37] Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. In Mathematical Annalen,
volume 114, 1937.

[Wag07] Fabian Wagner. Hardness results for tournament isomorphism and automorphism. In 32nd
International Symposium on Mathematical Foundations of Computer Science (MFCS),
pages 572–583, 2007.

[Whi33] Hassler Whitney. A set of topological invariants for graphs. American Journal of Mathe-
matics, 55:235–321, 1933.

34

