
Hardness Results for Tournament Isomorphism

and Automorphism

Fabian Wagner ∗

Institut für Theoretische Informatik,

Universität Ulm, 89073 Ulm, Germany

fabian.wagner@uni-ulm.de

September 3, 2007

Abstract

A tournament is a graph in which each pair of distinct vertices
is connected by exactly one directed edge. Tournaments are an im-
portant graph class, for which isomorphism testing seems to be easier
to compute than for the isomorphism problem of general graphs. We
show that tournament isomorphism and tournament automorphism is
hard under DLOGTIME uniform AC

0 many-one reductions for the
complexity classes NL, C=L , PL (probabilistic logarithmic space), for
logarithmic space modular counting classes ModkL with odd k ≥ 3
and for DET, the class of problems, NC1 reducible to the determi-
nant. These lower bounds have been proven for graph isomorphism,
see [21].

1 Introduction

The graph isomorphism problem (GI) consists in determining whether there
is a bijection between the vertices of two graphs, preserving the edge-
relations. Until today, it is open whether GI is contained in P or complete
for NP. A proof of the NP-completeness for GI would cause a collapse of the
polynomial time hierarchy to its second level, see [7],[20]. Concerning lower
bounds, DET ≤AC0

m GI [21].
For many graph classes, polynomial time algorithms for isomorphism

testing are known, e.g. for graphs of bounded degree [16], or planar graphs
[13]. Even fast parallel algorithms for isomorphism testing have been de-
veloped, e.g. for planar graphs [18], trees [15], [9] or graphs with bounded
color-class size [17].

∗Supported by DFG grant TO 200/2-1

1

A tournament is a directed graph with exactly one arc between every
pair of distinct vertices. Tournaments comprise a large and important class
of directed graphs and can be found in many applications, see e.g. [12].
The tournament isomorphism problem (TI) is GI restricted to tournaments.
The best known algorithm for TI takes nlog(n) time [6] and for GI takes
exp(

√

cn log(n)) time (Luks, Zemlyachenko, cf. [6]). Arvind et al. [1] re-
duced TI onto Mod2GA which is an intermediate problem between GA and
GI and contains the class of graphs with an even number of automorphisms.
This follows, because the automorphism group of any tournament is of odd
size [14], which in turn implies, that two tournaments are isomorphic, iff
the automorphism group of their disjoint union contains an order two per-
mutation (which must switch both graphs). Thus TI seems to be an easier
problem than GI. Since the relation between GI and TI is not clear, we con-
tribute to analyze the complexity status of tournament isomorphism. We
show that TI and the tournament automorphism problem (TA) are hard
for NC1, L, NL, ModkL with k ≥ 3 odd integer, #L and DET under AC0

many-one reductions. For proving that GI is hard for ModkL , we need a
graph gadget with subgraphs, having orbits of size k to encode an integer in
Zk. Since the order of automorphism groups of tournaments always are odd
[14], we cannot directly encode an integer in Zk with even k ≥ 2. In order
to encode Boolean values, we need another graph gadget. We encode value
0 as the identical mapping and value 1 as the switching of two subgraphs.
which again leads to orbits of even size.

Since TA ≤AC0

m TI (see Corollary 2.1, TA is prefix-TA without prefix)
and the converse direction is unknown, proving DET ≤AC0

m TA is a stronger
result.

Due to space reasons some proofs are missing and would be included in
the final version. We refer to the authors home page for the complete proofs.

The layout of this paper is as follows: In Section 2 we denote complexity
classes and graph isomorphism problems. Section 3 contains hardness results
for TI, that is DET ≤AC0

m TI. In Section 4, we prove these results for TA.

2 Preliminaries

Complexity classes. We assume familiarity with basic notions of com-
plexity theory such as can be found in standard textbooks. NL is the class of
languages accepted by nondeterministic Turing machines using a work tape
bounded by logarithmic space. #L [4] is the class of functions f : Σ∗ → N

that counts the number of accepting paths of a NL machine on a input. The
complexity classes PL (probabilistic logspace, [11] [19]), C=L (exact count-
ing in logspace, [3]), and ModkL (modular counting in log space, k ≥ 2, [8])
can be defined in terms of #L functions:

PL = {A : ∃p ∈ Poly, f ∈#L , ∀x ∈ Σ∗ x ∈ A⇔ f(x) ≥ 2p(|x|)}

2

C=L = {A : ∃p ∈ Poly, f ∈#L , ∀x ∈ Σ∗ x ∈ A⇔ f(x) = 2p(|x|)}

ModkL = {A : ∃f ∈#L , ∀x ∈ Σ∗ x ∈ A⇔ f(x) ≡ 1 mod k}

Modk circuits (k ≥ 2) are circuits with input variables over Zk and
gates computing addition in Zk. The evaluation problem for such circuits
(given fixed values for the inputs, testing if the output is 1) is complete for
ModkL under AC0 many-one reductions.

DET (also denoted NC1 (#L)) is the class of functions NC1 Turing
reducible to the determinant. That is the class of problems, solvable by
NC1 circuits with additional oracle gates for computing the determinant of
an integer matrix.

The known relations among the considered classes are: ModkL ⊆ DET
and NL ⊆ C=L ⊆ PL ⊆ DET. Therefore, the hardness of GI for DET
implies hardness with respect to the other classes. We denote AC0 many-one
reductions by ≤AC0

m and logspace Turing reductions by ≤L
T .

Graph Isomorphism Problems. Let G = (V,E) be a graph with a set of
vertices V = V (G) and edges E = E(G). A directed edge or arc is denoted
(v1, v2) and an undirected edge {v1, v2}. G[X] is a subgraph of G induced
on vertex set X. Let H be a subgraph of G then G\H = G[V (G)\V (H)].
Let E′ ⊆ E(G) then G\E′ = (V (G), E(G)\E′).

For shorter notations we write [k, n] = {k, . . . , n} for integers k < n and
[n] if k = 1. Let ⊕ denote the modulo addition in Zn. The set Sym(V) is
the symmetric group over a set V and Sn = Sym([n]).

An automorphism of graph G is a permutation φ : V (G) 7→ V (G) pre-
serving adjacency: (u, v) ∈ E(G) ⇔ (φ(u), φ(v)) ∈ E(G). The automor-
phisms except the identity are called nontrivial. A rigid graph contains no
nontrivial automorphisms. The graph automorphism problem (GA) decides,
whether a graph is rigid or not. The automorphism group Aut(G) is the set
of automorphisms of G.

An isomorphism between graphs G and H is a bijective mapping of
vertices in G onto vertices in H that preserves adjacency. Both graphs
are isomorphic if such an isomorphism exists. The graph isomorphism
problem (GI) is the problem of deciding, whether two given graphs G,H
are isomorphic, write G ∼= H. Further, define the tuple of graph pairs
PGI = { ((G,H)(I, J)) | G ∼= H ⇔ I 6∼= J } with the promise that exactly
one pair is isomorphic [21].

Let H be a subgraph of G. Define AutG(H) ⊆ Aut(H) as the set of auto-
morphisms, which can be extended to an automorphism in Aut(G). An au-
tomorphism φ ∈ Sym(V) acts cyclically on a vertex set V = {v0, . . . , vn−1},
if there exists a ∈ [0, n−1] such that φ(vi) = vi⊕a for all i ∈ [0, n−1]. We fur-
ther say φ ∈ Sym(V (G)) acts cyclically on subgraphs G[V0], . . . , G[Vk−1], if
there exists a ∈ [0, k−1] such that φ(v) ∈ Vi⊕a for all v ∈ Vi and i ∈ [0, k−1].

3

Let S1, . . . , Sk ⊆ V (G) be a set of distinct vertices of graph G. The set
of automorphisms, mapping for all i ∈ [k] vertices in Si onto vertices in Si

in any order, are called setwise stabilizer of S1, . . . , Sk. G[S1,...,Sk] denotes
graph G with S1, . . . , Sk setwise stabilized in automorphism group of G.

Let k be a fixed integer. A coloring of a graphG is a function f : V (G) 7→
[k]. For any isomorphism between colored graphs, the color relations have
to be preserved. The decision problem is called the isomorphism problem
for colored graphs (color-GI). Observe that color-GI ≤AC0

m GI [14].
Let {x1, . . . , xk}, {y1, . . . , yk} ⊆ V (G) be vertex sets of graph G. The

prefix automorphism problem (prefix-GA) as denoted in [14] is to find an
automorphism φ ∈ Aut(G) such that φ(xi) = yi ∀i ∈ [k]. Observe that
prefix-GA ≤AC0

m GI [21]. If the vertex sets are given as mapping φ with
φ(xi) = yi, i ∈ [k] then (G,φ) is an instance for prefix-GA.

A tournament is a directed graph with one arc between each pair of
distinct vertices. A cyclic tournament T is a tournament on n vertices
x0, . . . , xn−1 such that (xi, xi⊕j) ∈ E(T) for all i ∈ [0, n − 1], j ∈ [1, ⌊n

2 ⌋].
The tournament isomorphism problem (TI) is the same as GI, if the input-
graphs are tournaments. Then we also write color-TI, TA, prefix-TA in-
stead of color-GI, GA, prefix-GA. Arvind et.al. [2] showed that color-TI is
polynomial-time many-one reducible to TI without coloring. By verifying
the proof, we observe that it is an AC0 many-one reduction. Adapting the
proof of prefix-GA ≤AC0

m GI [21], we obtain the following chain of reduc-
tions. Thus we prove lower bounds for prefix-TA.

Corollary 2.1 prefix-TA ≤AC0

m color-TI ≤AC0

m TI.

In some reductions, we construct graph gadgets G(C) for simulating the
evaluation of circuits C. By G(Ci) we denote the simulation of a gate Ci of
circuit C with index i. We also denote this way vertex sets or vertices, e.g.
v(C) ∈ U(C) ⊆ V (G(C)). If the context is clear then (C) will be omitted.

3 Hardness Results for Tournament Isomorphism

In this section we show that TI is hard for some complexity classes under
AC0 many-one reductions.

3.1 Hardness Results of TI for Modular Counting Classes

GI is hard for the logarithmic space modular counting classes ModkL for
all k ≥ 2 [21]. Since the circuit value problem restricted to modulo addition
gates over Zk for k ≥ 2 is complete for ModkL and with Corollary 2.1, we
prove that TI is hard for ModkL with odd k ≥ 3.

With the following graph gadget, we can simulate a modulo addition
circuit gate.

4

Definition 3.1 [21] Fix k ≥ 2.The modulo addition graph gadget Gk is
defined as

V (Gk) = {xa, ya, za, ua,b | a, b ∈ [0, k − 1] },

E(Gk) = { {xa, ua,b}, {yb, ua,b}, {ua,b, za⊕b} | a, b ∈ [0, k − 1] }.

Let U,X, Y,Z ⊆ V be vertex sets containing all the k2 +3k vertices denoted
by indexed lower case letters each. Denote vertex sets X as left input-, Y as
right input- and Z as output-vertices. Figure 1 shows an example for k = 3.

y1

z1

y0x0 x1

z0

x2 y2

u0,1

z2

u1,0 u1,1 u1,2 u2,0u0,2 u2,2u0,0

YX

u2,1

Z

U

Figure 1: Modulo addition graph gadget G3

Lemma 3.2 describes automorphism properties of this graph gadget.

Lemma 3.2 [21] Fix k ≥ 2. Then for any a, b ∈ [0, k − 1] there is a unique
automorphism φab ∈ Aut(Gk) with φab(xi) = xa⊕i and φab(yi) = yb⊕i for
i ∈ [0, k − 1] and with φab(ui) = ua⊕i,b⊕j and φab(zi) = za⊕b⊕i.

With this graph gadget, we construct a graph G(C), simulating a circuit
C of wired modulo addition gadgets.

Definition 3.3 [21] Let C be a circuit of m modulo addition gates
C1, . . . , Cm and k ≥ 2. Define G(C) with

V (G(C)) =
⋃

p∈[m] V (Gk(Cp)),

E(G(C)) =
⋃

p∈[m]E(Gk(Cp)) ∪
⋃

p,q∈[m],p<qEp,q with

Ep,q =

{zi(Cp), xi(Cq)} if Cp and left input of Cq are wired,
{zi(Cp), yi(Cq)} if Cp and right input of Cq are wired,
∅ if Cp, Cq are not wired directly.

Furthermore, color vertices in U(Cj),X(Cj), Y (Cj), Z(Cj) with colors (u, j),
(x, j), (y, j), (z, j) in this order for all j ∈ [m].

The reduction of this decision problem for circuit C to prefix-GA is
as follows: compute a graph G(C) and define prefixes for input- and out-
put values. Thus ModkL ≤AC0

m GI. We will show, how far hardness for
ModkL also holds for TI.

5

Theorem 3.4 ModkL ≤AC0

m TI with k ≥ 3 an odd integer.

The main proof idea is to transform the graph gadgets Gk and the circuit
G(C) (containing graph gadgets Gk as subgraphs) into tournaments. For
this task, we first describe how graphs can be modified without changing
the automorphism group.

Lemma 3.5 Let H be an induced subgraph of a graph G with Aut(G) set-
wise stabilizing vertices in H. Let H ′ be a graph with V (H ′) = V (H) and
let G′ be G after replacing the induced subgraph H by subgraph H ′, set-
wise stabilizing vertices in H ′. If AutG(H) ⊆ Aut(H ′) ⊆ Aut(H) then
Aut(G) = Aut(G′).

Proof . In this prove, we assume familiarity with the prefix-GA problem.
Fix φ ∈ Aut(H ′) ⊆ Aut(H). Construct Gφ = (G \E(H), φ), an instance for
the prefix-GA problem. Observe that φ can be extended to an automorphism
ψ ∈ Aut(G), iff ψ solves prefix-GA with Gφ. Since φ ∈ Aut(H ′) let G′

φ =
(G′ \ E(H ′), φ) be another instance of the prefix-GA problem and then it
follows, that Gφ = G′

φ. Observe that G \E(H) and G′ \E(H ′) are identical
graphs. Thus, by definition φ can be extended to an automorphism in G and
G′. Any ψ ∈ Aut(H) \Aut(H ′) cannot be extended to an automorphism in
Aut(G), because ψ /∈ AutG(H). Thus, Aut(G) = Aut(G′). �

The next lemma shows, how to connect two subgraphs with arcs, such
that each vertex in the first graph is connected to every vertex in the second
graph, without changing the automorphism group.

Lemma 3.6 Let G[X], G[Y] be vertex-disjoint and setwise stabilized sub-
graphs of G. Suppose that in G all the edges with one endpoint in X and
one endpoint in Y point from X to Y . Then G can be transformed with
an AC0 computable function into a graph G′ over the same vertex set such
that Aut(G′

[X,Y]) = Aut(G[X,Y]). If G[X], G[Y] are tournaments then G′ is
a tournament.

Proof . Let X = {x1, . . . , xm}, Y = {y1, . . . , yn} and let EXY be the
set of arcs, pointing from X to Y . Let EY X = { (y, x) | (x, y) /∈ EXY }.
Observe that EXY ∪EY X is a complete bipartite edge set. Then set E(G′) =
E(G[X]) ∪ E(G[Y]) ∪ EXY ∪ EY X . Thus if G[X], G[Y] are tournaments
then G′ as well. Now, fix any φ ∈ Aut(G[X,Y]), e ∈ EXY , e′ /∈ EXY .
We now verify that any isomorphism has to map edges onto edges and
nonedges onto nonedges: e, φ(e) ∈ E(G) and e, φ(e) ∈ EXY ⊆ E(G′

[X,Y])

and e′, φ(e′) /∈ E(G), and e′, φ(e′) ∈ EY X . The other direction is similar.
Thus, Aut(G[X,Y]) = Aut(G′

[X,Y]). �

With Lemmas 3.5 and 3.6, we can now transform graph gadgets into
tournaments and prove that they obey the same automorphism properties

6

as the modulo addition graph gadget. Now we define a tournament with the
same automorphism properties as Gk.

Definition 3.7 Fix k ≥ 3 odd integer. The tournament modulo addition
graph gadget T k is defined by vertex set V (T k) = {xa, ya, za, ua,b | a, b ∈
[0, k−1] }. Let U,X, Y,Z ⊆ V (T k) contain vertices denoted by indexed lower
case letters each. Let Ua = {ua,b | b ∈ [0, k − 1] } for any a ∈ [0, k − 1].
E(T k) unifies

1. { (xa, xa⊕i), (ya, ya⊕i), (za, za⊕i) | a ∈ [0, k − 1], i ∈ [1, ⌊k
2 ⌋] },

2. { (ua,b, ua,b⊕i) | a, b,∈ [0, k − 1], i ∈ [1, ⌊k
2 ⌋] },

3. { (ua,b, ua⊕i,b⊕b′) | a, b, b
′ ∈ [0, k − 1], i ∈ [1, ⌊k

2 ⌋] },

4. { (xa, ua,b), (ui,b, xa) | a, b ∈ [0, k − 1], i ∈ [0, k − 1]\{a} },

5. { (yb, ua,b), (ua,i, yb) | a, b ∈ [0, k − 1], i ∈ [0, k − 1]\{b} },

6. { (ua,b, za⊕b), (zi, ua,b) | a, b ∈ [0, k − 1], i ∈ [0, k − 1]\{a ⊕ b} },

7. { (xa, yb), (xa, zb), (ya, zb) | a, b ∈ [0, k − 1] }.

YX

U

x1 y1

z1

y0

z0

x2 y2

u0,0 u0,1 u0,2 u1,0

x0

u1,2 u2,0 u2,1 u2,2

Z

z2

u1,1

Figure 2: Sketch of tournament modulo addition graph gadget T 3

Remark that V (T k) = V (Gk). In item 1 we define cyclic tournaments
for induced subgraphs on vertex sets X, Y and Z. In item 2 we define cyclic
tournaments T k[Ua] induced on vertices Ua = {ua,b | b ∈ [0, k − 1] } for any
fixed a ∈ [0, k− 1]. In item 3 we describe the connection between subgraphs
T k[Ua], such that automorphisms in Aut(T k) act cyclically on subgraphs
T k[Ua] for all a ∈ [0, k − 1]. Items 4 to 7 describe complete bipartite edge
sets among U,X, Y,Z. Figure 2 shows T 3 and contains edge sets of items 4
to 7 partially.

7

Lemma 3.8 There is an AC0 computable function that transforms Gk with
odd k ≥ 3 into the tournament modulo addition graph gadget T k containing
unique automorphisms as described in Lemma 3.2.

Proof . In Lemma 3.2 the unique automorphisms act cyclically on vertex sets
Gk[X],Gk[Y] and Gk[Z]. First, regard Gk[X]; Aut(Gk[X]) = Sym(Gk[X])
and AutGk(Gk[X]) is generated by permutation (x0 . . . xk−1). Clearly,
Aut(T k[X]) ⊆ Aut(Gk[X]) and because of T k[X] containing cyclic automor-
phisms, AutGk(Gk[X]) ⊆ Aut(T k[X]). Apply Lemma 3.5 and replace Gk[X]
by T k[X] in Gk, without changing the automorphism group. The same holds
for Gk[Y] and Gk[Z]. Second, regard Gk[U]. Aut(Gk[U]) = Sym(Gk[U])
and AutGk(Gk[U]) is generated by φ,ψ, which are defined by the relation:
φ(ui,j) → ui,j⊕1 and ψ(ui,j) → ui⊕1,j for all i, j ∈ [0, k − 1]. It follows
that AutGk(Gk[U]) ⊆ Aut(T k[U]). Apply Lemma 3.5 and replace Gk[U] by
T k[U] in Gk, without changing the automorphism group. Third, the edge
sets of item 4 to item 7 in definition of E(T k) can be described as exchang-
ing undirected edges between stabilized vertex sets X,Y,Z,U by arcs. By
Lemma 3.6, this also keeps the automorphism group unchanged. Thus T k is
the union of all these modifications on Gk which can be computed in AC0 .

�

With Lemma 3.8 we can prove that the replacement of gadgets Gk in
G(C) by tournament gadgets T k does not change the automorphism group
of G(C). With Lemma 3.9, we complete the proof of Theorem 3.4.

Lemma 3.9 Let C be a circuit of modulo addition gates in Zk, with odd k ≥
3 and output value s ∈ [0, k−1]. Construct under AC0 many-one reductions
a tournament T (C) containing nontrivial prefix automorphisms,iff C outputs
s.

Transform G(C) (of Definition 3.3) into a tournament T (C), such that
Aut(G(C)) = Aut(T (C)) and T (C) contains a nontrivial prefix automor-
phism, iff G(C) does. To prove this, we apply Lemmas 3.5 and 3.8.
Proof . Transform G(C) (of Definition 3.3) into a tournament T (C), such
that Aut(G(C)) = Aut(T (C)) and T (C) contains a nontrivial prefix au-
tomorphism, iff G(C) does. First, apply Lemma 3.5 and 3.8. Exchange
the subgraphs Gk(Ci) by tournament gadgets T k(Ci) for all i ∈ [m] un-
der AC0 many-one reductions. Since AutG(C)(G

k(Ci)) ⊆ Aut(T k(Ci)) =

Aut(Gk(Ci)), this does not change the automorphism group of G(C). Sec-
ond, let p, q ∈ [m] with p < q. Let Ep,q be the edge set with one vertex
in Gk(Cp) and the other one in Gk(Cq) and replace them by arcs which
point from vertices in Gk(Cq) to Gk(Cp). Applying Lemma 3.6, we amend
the edge set between subgraphs Gk(Cp) and Gk(Cq) by a complete bipartite
edge set, denoted E′

p,q. Thus, we get T (C) defined as follows:

V (T (C)) =
⋃

p∈[m] V (T k(Cp)) = V (G(C)),

8

E(T (C)) =
⋃

p∈[m]E(T k(Cp)) ∪
⋃

p,q∈[m],p<qE
′
p,q,

E′
p,q = { (v, u) | {u, v} ∈ Ep,q, u ∈ V (Gk(Cp)), v ∈ V (Gk(Cq)) }∪

{ (u, v) | {u, v} /∈ Ep,q, u ∈ V (Gk(Cp)), v ∈ V (Gk(Cq)) }.

Apply the same prefixes and coloring to vertices in T (C) as for G(C),
such that T (C) contains nontrivial automorphisms obeying prefixes, iff G(C)
does. Finally, we examine that this construction can be done in AC0 .
Since V (T k) = V (Gk), we just have to compute E(T k). This provides
local information, since the decision, whether two vertices are connected
by an edge, can be decided by knowing their indices and to which vertex
sets U,X, Y,Z they belong. The same holds for construction of E′

p,q and
adapting the prefixes from G(C) to T (C). �

3.2 Hardness Results of TI for NL, #L , C=L and PL

Now we introduce graph gadgets for simulation of AND- and OR-gates in
circuits. Recall the following lemma.

Lemma 3.10 [21] Given a uniform family of circuits Cn with logarithmic
depth and polynomial size and given n tuples of graphs ((Gi,Hi)(Ii, Ji)) ∈
PGI, then there is an AC0 computable function, constructing a tuple
((G,H)(I, J)) ∈ PGI with the property that G ∼= H, iff Cn outputs 1,
and I ∼= J , iff Cn outputs 0. The i-th input to Cn consists of the bit of the
Boolean value of the statement Gi

∼= Hi.

We transform them into tournament gadgets, to get the same hardness
results for TI which hold for GI. A NC1 circuit can be simulated by a
balanced DLOGTIME uniform family of circuits with fan-out 1, logarithmic
depth, polynomial size and alternating layers of and-gates and or-gates [5].

Definition 3.11 Let ((G∧,H∧)(I∧, J∧)) ∈ PGI be the graph tuple for sim-
ulation of conjunction and ((G∨,H∨)(I∨, J∨)) ∈ PGI of disjunction, con-
taining ((G0,H0)(I0, J0)), ((G1,H1)(I1, J1)) ∈ PGI as in proof of Theorem
4.3 in [21].

The graph tuples for conjunction have the following properties:
G∧

∼= H∧ iff G0
∼= H0 and G1

∼= H1; I∧ ∼= J∧ iff G0 6∼= H0 or G1 6∼= H1 (in
this case I0 ∼= J0 or I1 ∼= J1). Similarly, the graph tuples for disjunction:
exchange ∧ with ∨, also exchange ’and’ with ’or’ and vice versa. For clear
notation, we will apply prefixes e.g. PGI-G∧, PGI-G∨. If the context is
clear, we omit these prefixes. Now we transform PGI-tuples into tuples of
tournaments.

9

G0 G1

H0 G1H1

H0

H1

G0 H0

H1G1

PGI-H∨

G0

PGI-G∨PGI-G∧

PGI-H∧

Figure 3: PGI-Tuple simulating ∧ and ∨ gates [21]

Lemma 3.12 There is an AC0 computable function for translation of graph
gadgets PGI-G∨ and PGI-H∨ into tournament graph gadgets PTI-G∨, PTI-
H∨ (see Definition 3.13) having the same isomorphism properties as in Def-
inition 3.11.

Definition 3.13 A PTI-graph tuple is a tuple of rigid tournaments
((G,H), (I, J)) with G ∼= H, iff I 6∼= J . Let PTI be the set of all such
tuples. Define for conjunction ((G∧,H∧)(I∧, J∧)) ∈ PTI (write e.g. PTI-
G∧) and for disjunction
((G∨,H∨)(I∨, J∨)) ∈ PTI (write e.g. PTI-G∨) as follows:

First, PTI-G∧ contains tournaments G0, G1 and a set of arcs, pointing
from every vertex in G0 to every vertex in G1. Replace G0, G1 in PTI-G∧ by
H0,H1 for obtaining PTI-H∧, by I0, I1 for PTI-I∨ and by J0, J1 for PTI-J∨.

Second, let i ∈ [0, 1] and j ∈ [0, 2]. Let X be a graph as in Figure
4. PTI-G∨ contains subgraphs X,G0, G

′
0, G1, G

′
1,H0 and H1 with G′

0, G
′
1

copies of G0, G1. Let E(PTI-G∨) = E1 ∪ . . . ∪ E4. E1 unifies edges of all
subgraphs. E2 contains edges (xi,0, v) for all v ∈ Gi (call Gi associated to
xi,0), and similar edge sets with xi,1 associated to G′

i and xi,2 to Hi. E3

contains the following arcs: If (x, x′) ∈ E(X) then connect every vertex
of the subgraph associated to x with arcs, pointing to every vertex of the
subgraph associated to x′. E4 contains (u, v) for all u ∈ V (PTI-G∨ \X),
v ∈ V (X), iff (v, u) /∈ E2. Now construct PTI-H∨ with minor changes.
Associate x1,1 with H1 and x1,2 with G′

1. The rest of the construction is the
same. Now replace subgraphs G0, G1,H0,H1 in PTI-G∨ (and PTI-H∨) by
I0, I1, J0, J1 in this order and obtain PTI-I∧ (and PTI-J∧).

Lemma 3.14 There is an AC0 computable function, such that any of the
PGI-tuples simulating and-gates and or-gates can be transformed into PTI-
tuples with the same isomorphism properties.

Proof . First, the construction of PTI-G∧ can be obtained of PGI-G∧, if
coloring and undirected edges with both ends in different subgraphs G0, G1

and H0,H1 are replaced by arcs. The same holds for PTI-H∧, PTI-I∨,
PTI-J∨.

10

x11 x12

x02x01x00

x10

G0 G′

0
H0 G0 G′

0
H0

G1 H1 G1 H1 G′

1G′

1

X PTI-G∨ \X PTI-H∨ \X

Figure 4: Construction of tournaments simulating ∧ and ∨ gates

Second, we transform PGI-G∨ to PTI-G∨. Let i ∈ [0, 1], j ∈ [0, 2]. Any
automorphism φ ∈ Aut(X) acts cyclically on the vertices xi,0, xi,1, xi,2. Ev-
ery vertex in X has one associated subgraph in PTI-G∨ \X via E2. E3

transfers the structure of E(X) onto connection among associated sub-
graphs in E(PTI-G∨ \X). So far, regarding subgraphs as vertices, then
AutPTI-G∨\E4

(X) would equal Aut(X).
Apply E4 to E(PTI-G∨), as in Lemma 3.6 this does not change the

automorphism group. Thus, associated subgraphs to xi,j must be mapped
via φ ∈ Aut(PTI-G∨) onto the associated subgraph of φ(xi,j). The same
holds for X and PTI-H∨. Observe, that this can be done in AC0 . We
now consider the isomorphism properties. Observe, that any isomorphism
φ mapping PTI-G∨ onto PTI-H∨ satisfies:

1. xi,j 7→ xi,j⊕0 if G′
1
∼= H1

∼= G′
1,

2. xi,j 7→ xi,j⊕1 if G′
0
∼= H0

∼= G0 and G1
∼= H1

∼= G1,

3. xi,j 7→ xi,j⊕2 if G0
∼= H0

∼= G′
0 (and G1

∼= G′
1).

Either G′
1
∼= H1 (step 1) or G0

∼= H0 (step 3) or both are isomorphic
(step 2). Thus, this encodes an or-function. We get PTI-I∧ and PTI-J∧,
if we exchange in PTI-G∨ and PTI-H∨ the subgraphs G0, G1,H0,H1 by
I0, I1, J0, J1 in this order. �

With all the graph gadgets (Gk, PGI-G∧, PGI-G∨, . . .) as defined so
far, Torán proved that GI is hard for NL, #L , C=L and PL under AC0

many-one reductions [21]. We prove that the same lower bounds hold for
TI.

Theorem 3.15 Tournament isomorphism is hard for NL, #L , C=L and
PL under AC0 many-one reductions.

Proof . For proving all the hardness bounds, graph gadgets are needed as
described above. Regard Theorems 4.1, 4.4 and Corollaries 4.5, 4.6 in [21]
for details. First, ModkL circuits are needed to compute the result of a
#L function f(x) mod k. These gadgets encode f(x) mod k for a set of r

11

different primes k ∈ { k1, . . . , kr | 3 ≤ k1 < · · · < kr } (in Chinese remainder
representation). The results are inputs to a NC1 -circuit, which compute
bits of f(x). Since tournament modulo addition gadgets for even k are not
defined, the prime 2 cannot be chosen. In every step, the graph gadgets
serve as subgraphs in new PGI-tuples. Applying Lemma 3.9 and 3.14, the
graph gadgets can be transformed into tournaments under AC0 many-one
reductions. �

3.3 Hardness Results of TI for DET

Observe that DET ≤AC0

m GI (Theorem 4.9 in [21]) and that the complex-
ity class DET coincides with NC1 (#L) . We already described, how NC1

-circuits and #L -functions can be reduced to graph gadgets. For imple-
menting oracle questions, with another graph gadget every #L function f
can be transformed in AC0 into a sequence of PGI-tuples, encoding the bits
of f(x). The input x ∈ Σn is also encoded as PGI-tuples. For details see
proof of Lemma 4.7 in [21].

Definition 3.16 [21] The oracle graph gadget Gadk contains subgraphs
Ga,H

h
a , I

i
a, J

i,j
a with h ∈ [1, k − 1], i, j ∈ [0, k − 1], which are copies of

graphs in ((Ga,Ha)(Ia, Ja)) ∈ PGI, encoding bit xa of f(x) mod k. Let
W = {w0, . . . , wk−1}, Z = {z0, . . . , zk−1} ⊆ V (Gadk). Henceforth, for sim-
plifying notations, let W 0 = Ga and W h = Hh

a . We also denote Z[i, j] = J i,j
a

for j 6= i and Z[i, i] = Ii
a for i, j ∈ [0, k − 1]. Let Zi =

⋃

j∈[0,k−1]Z[i, j]. We
now describe the edge set E(Gadk) as the union of the following edge sets

1. E(Ga), E(Hh
a), E(Ii

a), E(J i,j
a),

2. { {u, v} | u = zi, v ∈ Zi or u ∈W i, v = wi },

3. { {u, v} | u ∈ Z[i, j], v ∈W j },

4. { (u, v) | u = wi, v = wi⊕1 or u = zi, v = zi⊕1 }.

This gate has the property, that if Ga
∼= Ha then for c ∈ [0, k − 1], any

automorphism mapping zi to zi⊕c also maps wi onto wi⊕c. But, if Ia ∼= Ja

then any automorphism mapping zi to zi⊕c will fix all vertices wi.
For proving hardness results for GI, the graphs have PGI tuples as sub-

graphs (Lemma 4.8 in [21]). With the assumption, that the subgraphs of
item 1 are PGI tuples and that any automorphism acts cyclically on vertex
sets W and Z, then any automorphism of Gadk acts cyclically on subgraphs
{Z[i, j] | j ∈ [0, k − 1] } for each i ∈ [0, k − 1], and on subgraphs Zi for all
i ∈ [0, k − 1]. Therefore, we can introduce arcs as in item 4, to restrict the
automorphism group of Gadk and for simplifying proofs.

We need all graph gadgets described so far to prove that GI is hard for
DET. We want to show the same result for TI.

12

Theorem 3.17 DET ≤AC0

m TI.

More precisely, we show hardness of TI for NC1(#L) . Oracle questions
will be implemented by using oracle graph gadgets like Gadk. We transform
Gadk into a tournament and consider its automorphism properties.

Definition 3.18 Let k ≥ 3 be an odd integer and i, j ∈ [0, k − 1]. The
oracle tournament gadget TGadk has vertex set V (TGadk) = V (Gadk) and
edge set E(TGadk) as the union of the following edge sets (see also Figure
5)

1 E(Gadk) but write ’(u,v)’ for items 2, 3 in Definition 3.16 of E(Gadk),

2 E(W) ∪ E(Z) = { (wi, wi⊕h), (zi, zi⊕h) | h ∈ [1, ⌊k
2 ⌋] },

3 { (u, v) | u ∈W i, v ∈W j, iff (wi, wj) ∈ E(W) },

4 { (u, v) | u ∈ Zi, v ∈ Zj, iff (zi, zj) ∈ E(Z) },

5 { (u, v) | u ∈ Z[i, j], v ∈ Z[i, j ⊕ h] with h ∈ [1, ⌊k
2 ⌋] },

6 { (u, v) | u ∈ Zi, v = zj with j 6= i },

7 { (u, v) | u ∈W i, v ∈ Zj with j 6= i },

8 { (u, v) | u = wi, v ∈W j with j 6= i }.

Lemma 3.19 If Gadk contains tournaments (PTI-tuples) as subgraphs of
item 1 in Definition 3.16, then Gadk with odd k ≥ 3 can be transformed into
a tournament TGadk under AC0 many-one reductions, without changing
the automorphism group.

Proof . Item 1 in Definition 3.18 of TGadk can be done in AC0 . Since
in Gadk automorphisms are considered, acting cyclically on vertex set W ,
Apply Lemma 3.5 and replace edge set of Gadk[W] by that of a cyclic
tournament as described in item 2 for TGadk. The same is done for vertex
set Z, for both in AC0.

The edge set of item 3 describes, how the subgraphs W i are transformed
into tournaments. Thus, if an automorphism φ maps wi onto wi⊕c with
c ∈ [0, k − 1] then by item 1 the subgraph W i must be maped onto W i⊕c

and thus, φ acting cyclically on vertex set W also acts cyclically on whole
subgraphsW i. Since the formulation ’iff (wi, wj) ∈ E(W)’ is the same as ’iff
j = i⊕ h, h ∈ [1, ⌊k

2 ⌋]’, only local information is needed for adjoining edges,
this can be done in AC0 . The same is done for item 4 with subgraphs Zi

instead of W i and vertex set Z instead of W .
Item 5 describes the edge sets inside of Zi, for now keep i fixed. Any

automorphism φ in Gadk acts cyclically on subgraphs Z[i, 0], . . . , Z[i, k−1].
By item 1 there is an edge-connection between subgraphs Z[i, j] and Wj

and by item 3 there is the connections among all subgraphs in W . This

13

directly leads to conditions for connecting subgraphs in Zi. That is, Z[i, j]
is conntected to Z[i, j⊕ c], iff Wj is connected to Wj⊕c for any c ∈ [0, k− 1].
This can be regarded as a generalization of Lemma 3.5. Now, Zi forms a
tournament if contained subgraphs Z[i, j] (that is Ii

a, J
i,j
a) are tournaments.

Figure 5 shows the current construction up to step 5.

W 0 W 1 W 2

W

H1
a

H2
a

w0 w1 w2

Ga

J02
a

J10
a

I1
a

J12
a

J20
a

J21
a

I2
a

z2z1z0

I0
a

J01
a

Z0 Z1

Z

Z2

Figure 5: Graph gadget TGad3 after performing edge sets of items 1 to 5

Items 6 to 9 follow immediately by Lemma 3.6 since the automorphism
group is not changed. This also can be done in AC0. Regard thereby, that
the layers with vertices Z, V (Zi), V (W i) and W are setwise stabilized.

Finally, with E(TGadk) the graph TGadk is a tournament and has the
desired automorphism properties as oracle graph gadget Gadk. �

Our aim is to construct a graph G∗ with prefixes, which contains non-
trivial prefix automorphisms, iff an NC1 circuit with #L oracle questions
outputs true. The oracle questions thereby must have the same size. This
makes it possible to use exactly one type of oracle graph gadget Gadk (for
exactly one value of k). For more details we refer to [21]. Any subgraph like
Gadk inside of G∗ is setwise stabilized in Aut(G∗). By Lemma 3.5 and 3.19,
transform any subgraph in G∗ isomorphic to Gadk into a tournament TGadk

without changing the automorphism group of G∗. Then apply Lemma 3.6
in order to connect this graph gadget with any other graph gadget. Since
G∗ contains only graph gadgets as described in this chapter and every graph
gadget is setwise stabilized in automorphism group of G∗, replace them all
by tournaments and connect them with each other as described in Lemma
3.6. Thus we can transform G∗ into a tournament T ∗ under AC0 many-one
reductions. It follows that TI is hard for NC1(#L) and thus for DET. Corol-
lary 3.20 follows by the fact that the ModkL hierarchy is logspace Turing
reducible to DET.

Corollary 3.20 ModkL ≤L
T TI for any k ≥ 2.

14

4 Hardness Results for Tournament Automor-

phism

GA is many-one hard for the ModkL hierarchy (Theorem 5.1 [21]). Trans-
form a circuit C into a rigid graph G(C) as in Definition 3.3, having a unique
automorphism satisfying prefixes, iff the output value of the circuit is 1. Take
two copies G1 and G2 of graph G and apply colorings Col(G1), Col(G2) to
the vertices which represent the input and output values of the circuit in
order to encode the prefixes the same way as for prefix-GA. Thus the graph
G1 ∪G2 has a nontrivial automorphism, iff the output of the original circuit
is 1. We show how this result also holds for TA.

Theorem 4.1 ModkL ≤AC0

m TA with k ≥ 3 odd integer.

Proof . First, transform G(C) into a tournament T (C) as described in
proof of Lemma 3.9. Instead of taking two copies we need three copies
T0, T1, T2 of T (C) and apply the colorings Col(G1) to T0 and Col(G2) to T1

and T2. Then include complete bipartite edge sets { (u, v) | u ∈ V (Ti), v ∈
V (Ti⊕1), i ∈ [0, 2] }. Thus T (C) is a tournament and contains two nontrivial
automorphisms (that is mapping T0 onto T1 or T2), iff G(C) contains one
nontrivial automorphism. �

Now we discuss the counterpart of PGI and PTI tuples, in order to prove
lower bounds for TA. Therefore, we define the following graph tuples.

Theorem 4.2 DET ≤AC0

m TA.

Definition 4.3 [21] A PGA-graph tuple is a tuple of rigid graphs
((G,H), (I, J)) with G ∼= H ⇔ I 6∼= J . Let PGA be the set of all such
tuples. The graph tuple (G∧,H∧)(I∧, J∧)) ∈ PGA (write e.g. PGA-G∧) for
simulating conjunction and (G∨,H∨)(I∨, J∨)) ∈ PGA (write e.g. PGA-G∨)
for disjunction is defined as follows:

PGA-G∧ = PGI-G∧, PGA-H∧ = PGI-H∧, the same for PGA-
I∧, PGA-J∧. For PGA-G∨, PGA-H∨ regard Figure 6. PGA-I∧ can be ob-
tained from PGA-G∨ and PGA-J∧ from PGA-H∨ if subgraphs Gi,Hi, Ii, Ji

will be replaced by Ii, Ji, Gi,Hi for i ∈ [0, 1] in this order.

These tuples have the properties, that G∧
∼= H∧ ⇔ G0

∼= H0 ’and’
G1

∼= H1, and G∨
∼= H∨ ⇔ G0

∼= H0 ’or’ (G1
∼= H1 ∧ I0 ∼= J0). Moreover, if

all the subgraphs are rigid then the new graphs forming tuples are rigid as
well. We transform now these PGA-tuples into tuples of tournaments.

Lemma 4.4 There is an AC0 computable function, such that the PGA
graph tuples can be transformed into tournaments, having the same auto-
morphism properties and rigidity properties as in Definition 4.3.

15

PGA-H∧

PGA-G∧

G0 G1

H0 H1 H1

PGA-G∨

G0 H0

G1 H1

G0 H0

G1

PGA-H∨

I0 J0 I0 J0

Figure 6: PGA-tuples simulating ∧ and ∨ functions [21]

Definition 4.5 A PTA-graph tuple is a tuple of rigid tournaments
((G,H), (I, J)) with G ∼= H ⇔ I 6∼= J . Let PTA be the set of all such
tuples.

The graph tuple (G∧,H∧)(I∧, J∧)) ∈ PTA (write e.g. PTA-G∧) for
simulating conjunction and (G∨,H∨)(I∨, J∨)) ∈ PTA (write e.g. PTA-G∨)
for disjunction is defined as follows:

The graph PTA-G∨ contains subgraphs X,G0, G
′
0,H0, A0, A1, A2. Let

subgraphs G′
0, G

′
1, I

′
0 be copies of G0, G1, I0. Let X be defined as shown in

Figure 7. A0 contains subgraphs I0 and G1, with vertices in I0 pointing to
all vertices in G1. A1 is a copy of A0. A2 is constructed like A0, containing
J0 instead of I0 and H1 instead of G1. Let subgraph G0 be associated to x0,0,
G′

0 to x0,1 and H0 to x0,2 and let the Ai be associated to x1,i for i ∈ [0, 2].
Concerning edge sets, the rest of the construction is similar to that of PTI-
G∨.

The subgraph H∨, is constructed like G∨ but with A1 associated to
x1,2 and A2 to x1,1. Obtain I∧ from G∨ and J∧ from H∨, if subgraphs
Gi,Hi, Ii, Ji will be replaced by Ii, Ji, Gi,Hi for i ∈ [0, 1] in this order.

I ′
0

x11 x12

x02x01x00

x10

G0

I0 G1

H0

H1J0

A2A1A0

G′

1

PTA-G∨\XX

G′

0

Figure 7: PTA-tuples simulating ∧ and ∨ functions

Proof . The proof is like that of Lemma 3.14, simulate the alternating layers
of AND’s and OR’s of an NC1 circuit with certain PTA-tuples. The main
difficulty is to preserve the rigidity of the tuple components.

First, the PTA-and-gadgets equal the PTI-and-gadgets. Thus, we can
argue as in proof of Lemma 3.14. With the directed edge set between vertices
of G0 pointing to G1 and Lemma 3.6 it follows, that Aut(PTA-G∧) =
Aut(G0) × Aut(G1). Thus, if both subgraphs are rigid, then PTA-G∧ is

16

rigid. For the other tuple components PTA-H∧, PTA-I∨ and PTA-J∨, the
proof is similar.

Second, the automorphism properties for PTA-or-gadgets are similar to
that for PTI-tuples as in Lemma 3.12. Recall, that any automorphism must
map xi,j onto xi,j⊕k for i ∈ [0, 1], j, k ∈ [0, 2]. PTA-G∨ is rigid, since the
mapping of xi,j onto xi,j⊕1 will map associated subgraphs G′

0 onto H0 and
I ′0 onto J0. Since G0

∼= H0 ⇔ I0 6∼= J0, this mapping is no automorphism of
PTA-G∨. The same holds for mapping xi,j onto xi,j⊕2. The automorphism
properties of PTA-G∨ are the same as that for PTI-G∨. For the other tuple
components PTA-H∨, PTA-I∧ and PTA-J∧, the proof is similar. �

An immediate consequence of this result is, that TA is hard for NC1

under AC0 many-one reductions. By applying Theorem 4.1, it is possible
to prove hardness of TA for complexity class DET. The proof of this result
follows (similar to that in [21]) exactly the same lines as that for Theorem
3.17 taking in consideration that the tournament graph pairs produced in
the reduction from Theorem 3.4 are rigid and that the gadgets in the proof
of Theorem 3.17 also preserve rigidity. Similar to the Corollary 3.20, the
Corollary 4.6 immediately follows:

Corollary 4.6 ModkL ≤L
T TA for any k ≥ 2.

Acknowledgments. I am grateful to my supervisor Jacobo Torán , Se-
bastian Dörn, Thanh Minh Hoang for helpful discussion and the anonymous
referees for helpful comments and suggestions.

References

[1] V. Arvind, R. Beigel, A. Lozano, The Complexity of Modular Graph
Automorphism Symp. on Theoret. Aspects of Computer Sci., 1998, pp.
172-182.

[2] V. Arvind, B. Das, P. Mukhopadhyay, On Isomorphism and Canoniza-
tion of Tournaments and Hypertournaments ISAAC 2006, pp. 449-459.

[3] E. Allender, M. Ogihara, Relationships among PL,#L and the determi-
nant RAIRO Inform. Theor. Appl., 30, 1996, pp. 1-21.

[4] C. Alvarez, B. Jenner, A very hard logspace counting class Theoretical
Computer Science 107, 1993, pp. 3-30.

[5] D.A.M. Barrington, N. Immerman, H. Straubing, On uniformity within
NC1 J. Comput. System Sci. 41, 1990, pp. 274-306.

[6] L. Babai, E. Luks, Canonical labeling of graphs in Proceedings of the
15th Annual ACM Symposium on Theory of Computing, 1983, pp.
171-183.

17

[7] R. Boppana, J. Hastad, S. Zachos, Does co-NP have short interactive
proofs? Inform. Process. Lett. 25, 1987, pp. 27-32.

[8] G. Buntrock, C. Damm, U. Hertrampf, C. Meinel, Structure and im-
portance of logspace-MOD-classes Math. System Theory 25, 1992, pp.
223-237.

[9] S. R. Buss, Alogtime algorithms for tree isomorphism, comparison, and
canonization in Computational Logic and Proof Theory Lecture Notes
in Comput. Sci. 1289, Springer Verlag Berlin 1997, pp. 18-33.

[10] S. A. Cook, A taxonomy of problems with fast parallel algorithms In-
formation and Control 64, 1985, pp. 2-22.

[11] J. Gill, Computational complexity of probabilistic Turing machines
SIAM J. Comput. 6, 1977, pp. 675-695.

[12] J. L. Gross, J. Yellen, Discrete Mathematics and its Applications -
Handbook of Graph Theory CRC Press LLC, 2004.

[13] J.E. Hopcroft, R.E. Tarjan, A V 2 algorithm for determining isomor-
phism of planar graphs 1971, pp. 32-34.

[14] J. Köbler, U. Schöning, J. Torán , The Graph Isomorphism Problem -
Its Structural Complexity Prog. Theor. Comp.Sci., Birkhaeuser, Boston,
MA, 1993.

[15] S. Lindell, A logspace algorithm for tree canonization in Proceedings of
the 24th Annual ACM Symposium on Theory of Computing, 1992, pp.
400-404.

[16] E. Luks, Isomorphism of bounded valence can be tested in polynomial
time J. Comput. System Sci. 25, 1982, pp. 42-65.

[17] E. Luks, Parallel algorithms for perumtation groups and graph isomor-
phism in Proc of the 27th IEEE Symp. on Found. of Comp. Sci. 1986,
pp. 292-302.

[18] G.L. Miller, J.H. Reif, Parallel tree contraction Part 2: further appli-
cations SIAM Journal on Computing 20(6), 1991, pp. 1128-1147.

[19] W. Ruzzo, J. Simon, M. Tompa, Space bounded hierarchies and proba-
bilistic computations J. Comput. System Sci. 28, 1984, pp. 216-230.

[20] U. Schöning: Graph isomorphism is in the low hierarchy J. Comput.
System Sci. 37, 1988, pp. 312-323.

[21] J. Torán , On the Hardness of Graph Isomorphism SIAM J. Comput.
Vol. 33, No. 5, 2004, pp. 1093-1108.

18

