
Complexity Measures in Propositional Resolution
An Overview of Some Results of the DFG Project

Florian Wörz

Universität Ulm

Institute of Theoretical Computer Science
Institute of Artificial Intelligence

February 14, 2022

Overview

1. Some Basics of Proof Complexity

2. Resolution of Graph Isomorphism Formulas

3. Reversible Pebbling and Resolution Space

4. Interesting Open Research Problems

1 / 30

Some Basics of Proof Complexity

2 / 30

Why Study Proof Complexity?

3 / 30

Why Study Proof Complexity?

3 / 30

The Proof System Resolution

Resolution Rule:

A ∨ x B ∨ x
A ∨B

Distinction by Cases: [Galesi & Thapen]

A1 ∨ x1 . . . Am ∨ xm
B ∨A1 ∨ · · · ∨Am

if (B ∨ x1 ∨ · · · ∨ xm) ∈ F

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
4 / 30

Complexity Measures for Resolution

Size
clauses

Width
literals in largest clause

Narrow Width
exclude all axioms

Clause Space
max # clauses in memory

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
5 / 30

Complexity Measures for Resolution

Size
clauses (here: 11)

Width
literals in largest clause

Narrow Width
exclude all axioms

Clause Space
max # clauses in memory

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

5 / 30

Complexity Measures for Resolution

Size
clauses (here: 11)

Width
literals in largest clause (here: 3)

Narrow Width
exclude all axioms

Clause Space
max # clauses in memory

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
5 / 30

Complexity Measures for Resolution

Size
clauses (here: 11)

Width
literals in largest clause (here: 3)

Narrow Width
exclude all axioms (here: 2)

Clause Space
max # clauses in memory

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

5 / 30

Complexity Measures for Resolution

Size
clauses (here: 11)

Width
literals in largest clause (here: 3)

Narrow Width
exclude all axioms (here: 2)

Clause Space
max # clauses in memory

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
5 / 30

Complexity Measures for Resolution

Size
clauses (here: 11)

Width
literals in largest clause (here: 3)

Narrow Width
exclude all axioms (here: 2)

Clause Space
max # clauses in memory

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
5 / 30

Complexity Measures for Resolution

Size
clauses (here: 11)

Width
literals in largest clause (here: 3)

Narrow Width
exclude all axioms (here: 2)

Clause Space
max # clauses in memory (here: 5 at time 8)

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
5 / 30

Complexity Measures for Resolution—What we really care about

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

For each complexity measure C :

Take minimum over all
refutations π

C(F `⊥) := min
π:F `⊥

C (π)

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y ∨ z

y

x

y

⊥

6 / 30

Resolution of Graph Isomorphism
Formulas

Computer Science Logic 2022, Göttingen

7 / 30

Topic in this Section: Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H
∃ϕ ∈ Iso(G,H)?

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)

8 / 30

Topic in this Section: Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H
∃ϕ ∈ Iso(G,H)?

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
8 / 30

Topic in this Section: Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
8 / 30

Topic in this Section: Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
8 / 30

Topic in this Section: Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

7

7

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
8 / 30

Topic in this Section: Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

7

7

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
8 / 30

Topic in this Section: Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

7

7

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
8 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

9 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

9 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

9 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

9 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

9 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

9 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic 7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

9 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic 7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply

Pair 1

Pair 2

9 / 30

Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic 7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply

Pair 1

Pair 2

6≡
L2

pebble pairs

9 / 30

Main Result: Connection between FO and PC

Immerman’s Pebble Game
on G and H

G 6≡
Lk

H
⇐⇒

Narrow Width Refutation
of ISO(G,H)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

N-Width(π) ≤ k − 1

10 / 30

Implications

For every pair of graphs (G,H) with n vertices each and for every k ∈ N:

1 G 6≡Lk
H =⇒ Size

(
ISO(G,H) `⊥

)
≤ nO(k)

2 G ≡Lk
H =⇒

{
Tree-Size

(
ISO(G,H) `⊥

)
≥ 2k

CS
(
ISO(G,H) `⊥

)
≥ k + 1

3 (G,λ) ≡Lk
(H,µ) =⇒ Size

(
ISO(G,H) `⊥

)
≥ exp

(
Ω
(

k2

sum of color class sizes

))

11 / 30

Proof Idea: Use k-witnessing game

Immerman’s Pebble Game
on G and H

G 6≡
Lk

H
⇐
⇒

k-witnessing game

Spoiler wins on ISO(G,H)

⇐⇒
Narrow Width Refutation

of ISO(G,H)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

N-Width(π) ≤ k − 1

12 / 30

Spoiler vs. Duplicator

They compete in the k-witnessing game on the formula ISO(G,H)

Game state is a partial assignment, initially α0 = ε

In each round i

Spoiler: Chooses a subset α′ ⊆ αi−1 of size at most k− 1
Chooses a Type 1 clause C in ISO(G,H)

Duplicator: Extends αi := α′ ∪ {` = 1} for some literal ` ∈ C
Game ends when Duplicator cannot extend such that

— αi satisfies C and
— does not falsify any other clause in ISO(G,H)

13 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation

(α,C) Cα (set of literals falsified by α)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ...
(
{x3,3 = 1}, x1,1 ∨ x2,1 ∨ x3,1

)

(
{x1,1 = 1, x3,3 = 1}, x1,1 ∨ x3,3

) (
{x2,1 = 1, x3,3 = 1}, x2,1 ∨ x3,3

) (
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

x1,3 = 1
x2,3 = 1

x3,3 = 1

x1,1 = 1

x2,1 = 1

x3,1 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation

(α,C) Cα (set of literals falsified by α)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ...
(
{x3,3 = 1}, x1,1 ∨ x2,1 ∨ x3,1

)

(
{x1,1 = 1, x3,3 = 1}, x1,1 ∨ x3,3

) (
{x2,1 = 1, x3,3 = 1}, x2,1 ∨ x3,3

) (
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

x1,3 = 1
x2,3 = 1

x3,3 = 1

x1,1 = 1

x2,1 = 1

x3,1 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation

(α,C) Cα (set of literals falsified by α)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ...
(
{x3,3 = 1}, x1,1 ∨ x2,1 ∨ x3,1

)

(
{x1,1 = 1, x3,3 = 1}, x1,1 ∨ x3,3

) (
{x2,1 = 1, x3,3 = 1}, x2,1 ∨ x3,3

) (
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

x1,3 = 1
x2,3 = 1

x3,3 = 1

x1,1 = 1

x2,1 = 1

x3,1 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation

(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ...
(
{x3,3 = 1}, x1,1 ∨ x2,1 ∨ x3,1

)

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

x1,3 = 1
x2,3 = 1

x3,3 = 1

x1,1 = 1

x2,1 = 1

x3,1 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation

(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ...
(
{x3,3 = 1}, x1,1 ∨ x2,1 ∨ x3,1

)

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

x1,3 = 1
x2,3 = 1

x3,3 = 1

x1,1 = 1

x2,1 = 1

x3,1 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation

(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ...
(
{x3,3 = 1}, x1,1 ∨ x2,1 ∨ x3,1

)

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

x1,3 = 1
x2,3 = 1

x3,3 = 1

x1,1 = 1

x2,1 = 1

x3,1 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation

(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ... {x3,3 = 1} with axiom x1,1 ∨ x2,1 ∨ x3,1

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

x1,3 = 1
x2,3 = 1

x3,3 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation:
(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ... {x3,3 = 1} with axiom x1,1 ∨ x2,1 ∨ x3,1

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

x1,3 = 1
x2,3 = 1

x3,3 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation:
(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ... x3,3 with axiom x1,1 ∨ x2,1 ∨ x3,1

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

x1,3 = 1
x2,3 = 1

x3,3 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation:
(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

x1,3 x2,3 x3,3 with axiom x1,1 ∨ x2,1 ∨ x3,1

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

x1,3 = 1
x2,3 = 1

x3,3 = 1

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation:
(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

ε with axiom x1,3 ∨ x2,3 ∨ x3,3

x1,3 x2,3 x3,3 with axiom x1,1 ∨ x2,1 ∨ x3,1

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

14 / 30

Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation:
(α,C) Cα (set of literals falsified by α)

(
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

⊥ with axiom x1,3 ∨ x2,3 ∨ x3,3

x1,3 x2,3 x3,3 with axiom x1,1 ∨ x2,1 ∨ x3,1

x1,1 ∨ x3,3 x2,1 ∨ x3,3 x3,1 ∨ x3,3

14 / 30

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

15 / 30

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

15 / 30

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

15 / 30

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

σ(F ′) ⊆ F

15 / 30

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

c2

[σ: `1 7→ `2] ∈ Sym(F)

15 / 30

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

c2

[σ: `1 7→ `2] ∈ Sym(F)

15 / 30

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

¬a2

c2

[σ: `1 7→ `2] ∈ Sym(F)

15 / 30

The SRC Proof Systems

Have a derivation π : F ′ `C from a subformula F ′ ⊆ F .
To derive σ(C) from C in one step we need a renaming σ with

SRC-1 (Global Symmetries)

σ(F) ⊆ F

SRC-2 (Local Symmetries)

σ(F ′) ⊆ F

SRC-3 (Dynamic Symmetries)

also allow symmetries in resolvents

Resolution

SRC-1

SRC-2

SRC-3

16 / 30

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}

Lemma: Asymmetric graphs =⇒ Asymmetric ISO-formula

Lemma: Asymmetric formula =⇒ Res-Size = SRC-1-Size [Szeider]

17 / 30

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}

Lemma: Asymmetric graphs =⇒ Asymmetric ISO-formula

Lemma: Asymmetric formula =⇒ Res-Size = SRC-1-Size [Szeider]

17 / 30

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}

Lemma: Asymmetric graphs =⇒ Asymmetric ISO-formula

Lemma: Asymmetric formula =⇒ Res-Size = SRC-1-Size [Szeider]

17 / 30

Asymmetric Graphs With Large Weisfeiler–Leman-Dimension

[Dawar and Khan] showed: There are pairs of non-isomorphic graphs that are

asymmetric (unlike CFI-graphs)

have small size O(k)

with large WL-dim k

and color classes of size 4

Without looking at ISO-formula:

(G,λ)≡Lk
(H,µ) =⇒ Size

(
ISO(G,H) `⊥

)
≥ exp

(
Ω
(

k2

sum of color class sizes

))

18 / 30

Result: An Exponential GI Lower Bound for SRC-1

Our Result:

There is a family of non-isomorphic graph pairs (Gn, Hn)

with O(n) vertices each,

such that any SRC-1 refutation of ISO(Gn, Hn) requires

size exp
(
Ω(n)

)
.

19 / 30

Reversible Pebbling and Resolution Space
STACS 2020, Montpellier

Computational Complexity 30(7), 2021

20 / 30

General vs. Tree-like Resolution

General refutation DAG Gπ

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

21 / 30

General vs. Tree-like Resolution

General refutation DAG Gπ

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

21 / 30

General vs. Tree-like Resolution

General refutation DAG Gπ

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

Tree-like refutation DAG Gπ

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

21 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

|

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

|

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

|||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

|||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

|||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

||||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

||||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

||||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

||||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

||||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

||||

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time

22 / 30

Complexity Measure for the Black Pebble Game

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P︸ ︷︷ ︸

=:space(P)

)

Why do we care about the pebbling price?

Plethora of connections to resolution, e. g.,

What about Tree-CS?

CS(F `⊥) = min
π:F `⊥

Black(Gπ)

[Esteban, Torán ’01: Space bounds for res.]

23 / 30

Complexity Measure for the Black Pebble Game

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P︸ ︷︷ ︸

=:space(P)

)

Why do we care about the pebbling price?

Plethora of connections to resolution, e. g.,

What about Tree-CS?

CS(F `⊥) = min
π:F `⊥

Black(Gπ)

[Esteban, Torán ’01: Space bounds for res.]

23 / 30

Complexity Measure for the Black Pebble Game

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P︸ ︷︷ ︸

=:space(P)

)

Why do we care about the pebbling price?

Plethora of connections to resolution, e. g.,
What about Tree-CS?

CS(F `⊥) = min
π:F `⊥

Black(Gπ)

[Esteban, Torán ’01: Space bounds for res.]

23 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

24 / 30

Result 1: New Connection Of Tree-CS and Rev

For formulas stating the rules of the pebbling game:

Rev(G) ≤ Tree-CS
(
PebG[⊕2] `⊥

)
. Rev(G).

For any UNSAT formula in n variables:

Tree-CS(F `⊥) . min
π:F `⊥

Rev(Gπ)

CS(F `⊥) = minπ:F `⊥ Black(Gπ)

. Tree-CS(F `⊥) · log n.

25 / 30

Result 2: Separations between Tree-CS and CS

Idea:

• CS(PebGn [⊕2] `⊥) = O
(

s(n)︷ ︸︸ ︷
Black(Gn)

)

• Tree-CS
(
PebGn [⊕2] `⊥

)
= Ω

(
Rev(Gn)︸ ︷︷ ︸
s(n) logn

)

Only room for improvement:
best pebbling strategy needs to revisit nodes G(c = 3, k)

spi
ne

3

spi
ne

2

spi
ne

1

sec
tio

n 1

sec
tio

n 2ck

26 / 30

Result 2: Separations between Tree-CS and CS

Idea:

• CS(PebGn [⊕2] `⊥) = O
(

s(n)︷ ︸︸ ︷
Black(Gn)

)

• Tree-CS
(
PebGn [⊕2] `⊥

)
= Ω

(
Rev(Gn)︸ ︷︷ ︸
s(n) logn

)

Only room for improvement:
best pebbling strategy needs to revisit nodes

G(c = 3, k)

spi
ne

3

spi
ne

2

spi
ne

1

sec
tio

n 1

sec
tio

n 2ck

26 / 30

Result 2: Separations between Tree-CS and CS

Idea:

• CS(PebGn [⊕2] `⊥) = O
(

s(n)︷ ︸︸ ︷
Black(Gn)

)

• Tree-CS
(
PebGn [⊕2] `⊥

)
= Ω

(
Rev(Gn)︸ ︷︷ ︸
s(n) logn

)

Only room for improvement:
best pebbling strategy needs to revisit nodes

G(c = 3, k)

spi
ne

3

spi
ne

2

spi
ne

1

sec
tio

n 1

sec
tio

n 2ck

26 / 30

Result 2: Separations between Tree-CS and CS

Idea:

• CS(PebGn [⊕2] `⊥) = O
(

s(n)︷ ︸︸ ︷
Black(Gn)

)

• Tree-CS
(
PebGn [⊕2] `⊥

)
= Ω

(
Rev(Gn)︸ ︷︷ ︸
s(n) logn

)

Only room for improvement:
best pebbling strategy needs to revisit nodes G(c = 3, k)

spi
ne

3

spi
ne

2

spi
ne

1

sec
tio

n 1

sec
tio

n 2ck

26 / 30

Result 3: Upper Bounds & Optimal Separations

How large can the gap grow?

Razborov’s amortized measures

CS∗(F `⊥) := minπ:F `⊥
(
CS(π) · log Size(π)

)

Tree-CS(F `⊥) . CS∗(F `⊥)

1 0

0

g

fe

Ts :=
e+ g ≡ 1 (mod 2)
e+ f ≡ 0 (mod 2)
f + g ≡ 0 (mod 2)

• For Tseitin formulas (encoding the
degree sum principle) over n vertices:

Tree-CS
(
Ts `⊥

)
. CS

(
Ts `⊥

)
· log n

• ∃ a Tseitin family:

Tree-CS
(
Ts `⊥

)
= Ω

(
CS
(
Ts `⊥

)
· log n

)

27 / 30

Interesting Open Research Problems

28 / 30

Interesting Open Research Problems

I Can the bound Tree-CS(F `⊥) . CS∗(F `⊥) be brought down to a
log n factor?

I Is there a (interactive) game for CS?

I Classical complexity:
RCS :=

{
(F, k)

∣∣ CS(F `⊥) ≤ k
}
∈ coNP-hard, PSPACE.

Is RCS ∈ coNP? Is RCS ∈ PSPACE-complete?

I How does one show “true” exponential lower bounds (for a
symmetric formula) in the SRC systems?

29 / 30

List of publications

→ Number of Variables for Graph Identification and the Resolution of GI Formulas.
J. Torán and F. Wörz. Accepted at CSL 2022.

Evidence for Long-Tails in SLS Algorithms.
F. Wörz and J.-H. Lorenz. ESA 2021. Best Student Paper Award.

On the Effect of Learned Clauses on Stochastic Local Search.
J.-H. Lorenz and F. Wörz. SAT 2020.

→ Reversible Pebble Games and the Relation Between Tree-Like and General
Resolution Space.
J. Torán and F. Wörz. Computational Complexity 2021 and STACS 2020.

30 / 30

	Some Basics of Proof Complexity
	Resolution of Graph Isomorphism Formulas
	Reversible Pebbling and Resolution Space
	Interesting Open Research Problems

