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Overview

1. Some Basics of Proof Complexity

2. Resolution of Graph Isomorphism Formulas

3. Reversible Pebbling and Resolution Space

4. Interesting Open Research Problems
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Some Basics of Proof Complexity
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Why Study Proof Complexity?
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The Proof System Resolution

Resolution Rule:

A ∨ x B ∨ x
A ∨B

Distinction by Cases: [Galesi & Thapen]

A1 ∨ x1 . . . Am ∨ xm
B ∨A1 ∨ · · · ∨Am

if (B ∨ x1 ∨ · · · ∨ xm) ∈ F

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
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Complexity Measures for Resolution

Size
# clauses

Width
# literals in largest clause

Narrow Width
exclude all axioms

Clause Space
max # clauses in memory
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z

z

⊥
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Complexity Measures for Resolution
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Complexity Measures for Resolution
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Complexity Measures for Resolution
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# clauses (here: 11)
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Narrow Width
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Complexity Measures for Resolution

Size
# clauses (here: 11)

Width
# literals in largest clause (here: 3)

Narrow Width
exclude all axioms (here: 2)

Clause Space
max # clauses in memory (here: 5 at time 8)
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Complexity Measures for Resolution—What we really care about

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

For each complexity measure C :

Take minimum over all
refutations π

C(F `⊥) := min
π:F `⊥

C (π)

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z
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y

⊥
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Resolution of Graph Isomorphism
Formulas

Computer Science Logic 2022, Göttingen

7 / 30



Topic in this Section: Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H
∃ϕ ∈ Iso(G,H)?

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
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Tool From Descriptive Complexity: Immerman’s k-pebble game

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2
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Main Result: Connection between FO and PC

Immerman’s Pebble Game
on G and H

G 6≡
Lk

H
⇐⇒

Narrow Width Refutation
of ISO(G,H)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

N-Width(π) ≤ k − 1
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Implications

For every pair of graphs (G,H) with n vertices each and for every k ∈ N:

1 G 6≡Lk
H =⇒ Size

(
ISO(G,H) `⊥

)
≤ nO(k)

2 G ≡Lk
H =⇒

{
Tree-Size

(
ISO(G,H) `⊥

)
≥ 2k

CS
(
ISO(G,H) `⊥

)
≥ k + 1

3 (G,λ) ≡Lk
(H,µ) =⇒ Size

(
ISO(G,H) `⊥

)
≥ exp

(
Ω
(

k2

sum of color class sizes

))
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Proof Idea: Use k-witnessing game

Immerman’s Pebble Game
on G and H

G 6≡
Lk

H
⇐
⇒

k-witnessing game

Spoiler wins on ISO(G,H)

⇐⇒
Narrow Width Refutation

of ISO(G,H)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

N-Width(π) ≤ k − 1
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Spoiler vs. Duplicator

They compete in the k-witnessing game on the formula ISO(G,H)

Game state is a partial assignment, initially α0 = ε

In each round i

Spoiler: Chooses a subset α′ ⊆ αi−1 of size at most k− 1
Chooses a Type 1 clause C in ISO(G,H)

Duplicator: Extends αi := α′ ∪ {` = 1} for some literal ` ∈ C
Game ends when Duplicator cannot extend such that

— αi satisfies C and
— does not falsify any other clause in ISO(G,H)

13 / 30



Proof: G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

Convert Strategy Graph of Spoiler into Narrow Width Refutation

(α,C) Cα (set of literals falsified by α)

(ε, x1,3 ∨ x2,3 ∨ x3,3)

... ...
(
{x3,3 = 1}, x1,1 ∨ x2,1 ∨ x3,1

)

(
{x1,1 = 1, x3,3 = 1}, x1,1 ∨ x3,3

) (
{x2,1 = 1, x3,3 = 1}, x2,1 ∨ x3,3

) (
{x3,1 = 1, x3,3 = 1}, x3,1 ∨ x3,3

)

x1,3 = 1
x2,3 = 1

x3,3 = 1

x1,1 = 1

x2,1 = 1

x3,1 = 1
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Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

15 / 30



Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

15 / 30



Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

15 / 30



Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

σ(F ′) ⊆ F

15 / 30



Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

c2

[σ: `1 7→ `2] ∈ Sym(F )

15 / 30



Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

c2

[σ: `1 7→ `2] ∈ Sym(F )

15 / 30



Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

¬a2

c2

[σ: `1 7→ `2] ∈ Sym(F )

15 / 30



The SRC Proof Systems

Have a derivation π : F ′ `C from a subformula F ′ ⊆ F .
To derive σ(C) from C in one step we need a renaming σ with

SRC-1 (Global Symmetries)

σ(F ) ⊆ F

SRC-2 (Local Symmetries)

σ(F ′) ⊆ F

SRC-3 (Dynamic Symmetries)

also allow symmetries in resolvents

Resolution

SRC-1

SRC-2

SRC-3

16 / 30



Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}

Lemma: Asymmetric graphs =⇒ Asymmetric ISO-formula

Lemma: Asymmetric formula =⇒ Res-Size = SRC-1-Size [Szeider]
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Asymmetric Graphs With Large Weisfeiler–Leman-Dimension

[Dawar and Khan] showed: There are pairs of non-isomorphic graphs that are

asymmetric (unlike CFI-graphs)

have small size O(k)

with large WL-dim k

and color classes of size 4

Without looking at ISO-formula:

(G,λ)≡Lk
(H,µ) =⇒ Size

(
ISO(G,H) `⊥

)
≥ exp

(
Ω
(

k2

sum of color class sizes

))

18 / 30



Result: An Exponential GI Lower Bound for SRC-1

Our Result:

There is a family of non-isomorphic graph pairs (Gn, Hn)

with O(n) vertices each,

such that any SRC-1 refutation of ISO(Gn, Hn) requires

size exp
(
Ω(n)

)
.

19 / 30



Reversible Pebbling and Resolution Space
STACS 2020, Montpellier

Computational Complexity 30(7), 2021
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General vs. Tree-like Resolution

General refutation DAG Gπ

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}
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{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

Tree-like refutation DAG Gπ

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}
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The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

space(P)

max # of pebbles used at any
point during the pebbling P:

|

• Pebble Placement: On empty vertex if all direct predecessors have a pebble (in
particular: can always pebble sources)

• Pebble Removal: At any time
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Complexity Measure for the Black Pebble Game

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P︸ ︷︷ ︸

=:space(P)

)

Why do we care about the pebbling price?

Plethora of connections to resolution, e. g.,

What about Tree-CS?

CS(F `⊥) = min
π:F `⊥

Black(Gπ)

[Esteban, Torán ’01: Space bounds for res.]

23 / 30



Complexity Measure for the Black Pebble Game

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P︸ ︷︷ ︸

=:space(P)

)

Why do we care about the pebbling price?

Plethora of connections to resolution, e. g.,

What about Tree-CS?

CS(F `⊥) = min
π:F `⊥

Black(Gπ)

[Esteban, Torán ’01: Space bounds for res.]

23 / 30



Complexity Measure for the Black Pebble Game

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P︸ ︷︷ ︸

=:space(P)

)

Why do we care about the pebbling price?

Plethora of connections to resolution, e. g.,
What about Tree-CS?

CS(F `⊥) = min
π:F `⊥

Black(Gπ)

[Esteban, Torán ’01: Space bounds for res.]

23 / 30



The Reversible Pebble Game

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

• Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)
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Result 1: New Connection Of Tree-CS and Rev

For formulas stating the rules of the pebbling game:

Rev(G) ≤ Tree-CS
(
PebG[⊕2] `⊥

)
. Rev(G).

For any UNSAT formula in n variables:

Tree-CS(F `⊥) . min
π:F `⊥

Rev(Gπ)

CS(F `⊥) = minπ:F `⊥ Black(Gπ)

. Tree-CS(F `⊥) · log n.
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Result 2: Separations between Tree-CS and CS

Idea:

• CS(PebGn [⊕2] `⊥) = O
(

s(n)︷ ︸︸ ︷
Black(Gn)

)

• Tree-CS
(
PebGn [⊕2] `⊥

)
= Ω

(
Rev(Gn)︸ ︷︷ ︸
s(n) logn

)

Only room for improvement:
best pebbling strategy needs to revisit nodes G(c = 3, k)

spi
ne

3

spi
ne

2

spi
ne

1

sec
tio

n 1

sec
tio

n 2ck
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Result 3: Upper Bounds & Optimal Separations

How large can the gap grow?

Razborov’s amortized measures

CS∗(F `⊥) := minπ:F `⊥
(
CS(π) · log Size(π)

)

Tree-CS(F `⊥) . CS∗(F `⊥)

1 0

0

g

fe

Ts :=
e+ g ≡ 1 (mod 2)
e+ f ≡ 0 (mod 2)
f + g ≡ 0 (mod 2)

• For Tseitin formulas (encoding the
degree sum principle) over n vertices:

Tree-CS
(
Ts `⊥

)
. CS

(
Ts `⊥

)
· log n

• ∃ a Tseitin family:

Tree-CS
(
Ts `⊥

)
= Ω

(
CS
(
Ts `⊥

)
· log n

)

27 / 30



Interesting Open Research Problems

28 / 30



Interesting Open Research Problems

I Can the bound Tree-CS(F `⊥) . CS∗(F `⊥) be brought down to a
log n factor?

I Is there a (interactive) game for CS?

I Classical complexity:
RCS :=

{
(F, k)

∣∣ CS(F `⊥) ≤ k
}
∈ coNP-hard, PSPACE.

Is RCS ∈ coNP? Is RCS ∈ PSPACE-complete?

I How does one show “true” exponential lower bounds (for a
symmetric formula) in the SRC systems?
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→ Number of Variables for Graph Identification and the Resolution of GI Formulas.
J. Torán and F. Wörz. Accepted at CSL 2022.

Evidence for Long-Tails in SLS Algorithms.
F. Wörz and J.-H. Lorenz. ESA 2021. Best Student Paper Award.

On the Effect of Learned Clauses on Stochastic Local Search.
J.-H. Lorenz and F. Wörz. SAT 2020.

→ Reversible Pebble Games and the Relation Between Tree-Like and General
Resolution Space.
J. Torán and F. Wörz. Computational Complexity 2021 and STACS 2020.
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