Complexity Measures in Propositional Resolution An Overview of Some Results of the DFG Project

Florian Wörz

Universität Ulm

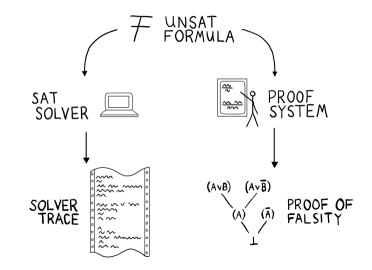
Institute of Theoretical Computer Science Institute of Artificial Intelligence

February 14, 2022

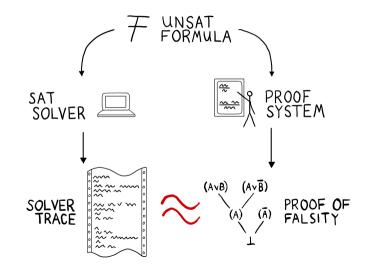
- 1. Some Basics of Proof Complexity
- 2. Resolution of Graph Isomorphism Formulas
- 3. Reversible Pebbling and Resolution Space
- 4. Interesting Open Research Problems

Some Basics of Proof Complexity

Why Study Proof Complexity?



Why Study Proof Complexity?



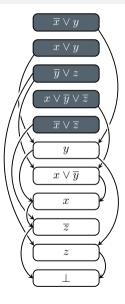
The Proof System Resolution

Resolution Rule:

 $\frac{A \vee x \quad B \vee \overline{x}}{A \vee B}$

Distinction by Cases: [Galesi & Thapen]

$$\frac{A_1 \vee \overline{x_1} \dots A_m \vee \overline{x_m}}{B \vee A_1 \vee \dots \vee A_m} \quad \text{if} \quad (B \vee x_1 \vee \dots \vee x_m) \in F$$



Size

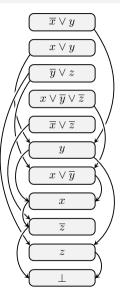
clauses

Width

literals in largest clause

Narrow Width

exclude all axioms



Size

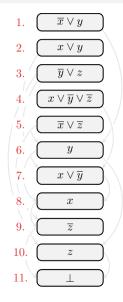
clauses (here: 11)

Width

literals in largest clause

Narrow Width

exclude all axioms



Size

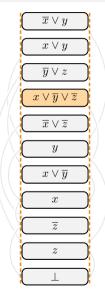
clauses (here: 11)

Width

literals in largest clause (here: 3)

Narrow Width

exclude all axioms



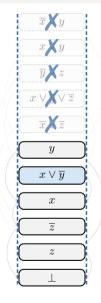
Size

clauses (here: 11)

Width

literals in largest clause (here: 3)

Narrow Width exclude all axioms (here: 2)



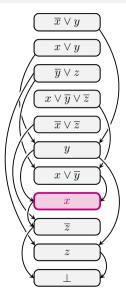
Size

clauses (here: 11)

Width

literals in largest clause (here: 3)

Narrow Width exclude all axioms (here: 2)



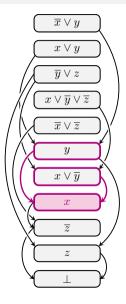
Size

clauses (here: 11)

Width

literals in largest clause (here: 3)

Narrow Width exclude all axioms (here: 2)



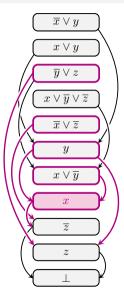
Size # clauses (here: 11)

Width

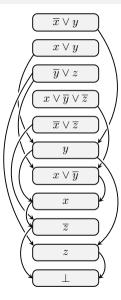
literals in largest clause (here: 3)

Narrow Width exclude all axioms (here: 2)

Clause Space max # clauses in memory (here: 5 at time 8)



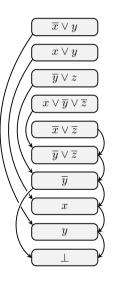
Complexity Measures for Resolution—What we really care about



For each complexity measure \mathscr{C} :

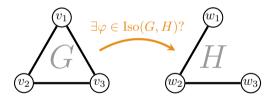
Take minimum over all refutations π

 $\mathscr{C}(F \vdash \bot) := \min_{\pi: F \vdash \bot} \mathscr{C}(\pi)$



Resolution of Graph Isomorphism Formulas

Computer Science Logic 2022, Göttingen



... and encode it as the formula ISO(G, H):

Type 1 clauses: consider all vertices

$$\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$$

$$\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$$

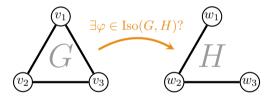
Type 2 clauses: function + injective

$$\forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}})$$

Type 3 clauses: adjacency relation

 $\begin{aligned} \forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \not\in E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}}) \end{aligned}$

Take the Graph Isomorphism Problem...



8 / 30

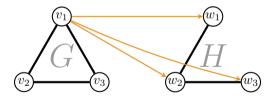
... and encode it as the formula ISO(G, H):

- **Type 1 clauses:** consider all vertices
 - $\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$ $\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$
- **Type 2 clauses:** function + injective

$$\begin{aligned} \forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}}) \end{aligned}$$

Type 3 clauses: adjacency relation

 $\begin{aligned} \forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \not\in E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}}) \end{aligned}$



... and encode it as the formula ISO(G, H):

Type 1 clauses: consider all vertices

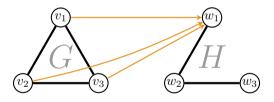
 $orall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$ $orall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$

Type 2 clauses: function + injective

 $\begin{aligned} \forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}}) \end{aligned}$

Type 3 clauses: adjacency relation

 $\begin{aligned} &\forall i < j \text{ and } k \neq \ell \text{ with} \\ &\{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \not\in E_H : (\overline{x_{i,k}} \vee \overline{x_{j,\ell}}) \end{aligned}$



... and encode it as the formula ISO(G, H):

Type 1 clauses: consider all vertices

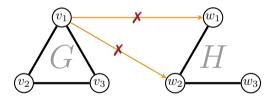
 $\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$ $\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$

Type 2 clauses: function + injective

 $\begin{aligned} \forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}}) \end{aligned}$

Type 3 clauses: adjacency relation

 $\begin{aligned} &\forall i < j \text{ and } k \neq \ell \text{ with} \\ &\{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \not\in E_H : (\overline{x_{i,k}} \vee \overline{x_{j,\ell}}) \end{aligned}$



... and encode it as the formula ISO(G, H):

Type 1 clauses: consider all vertices

$$\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$$

$$\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$$

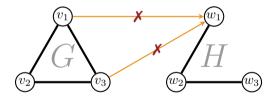
Type 2 clauses: function + injective

$$\forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}})$$

$$\forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}})$$

Type 3 clauses: adjacency relation

 $\begin{aligned} \forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \not\in E_H : (\overline{x_{i,k}} \vee \overline{x_{j,\ell}}) \end{aligned}$



... and encode it as the formula ISO(G, H):

Type 1 clauses: consider all vertices

$$\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$$

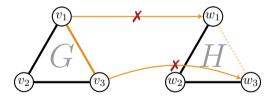
$$\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$$

Type 2 clauses: function + injective

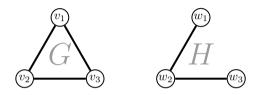
$$\forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}})$$

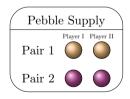
Type 3 clauses: adjacency relation

 $\begin{aligned} \forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \not\in E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}}) \end{aligned}$

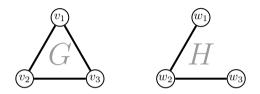


Player I and Player II have k pebble pairs

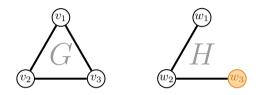


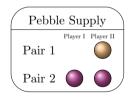


- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph

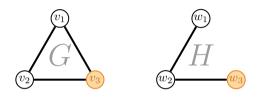


- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph

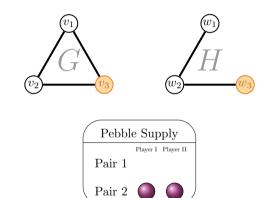




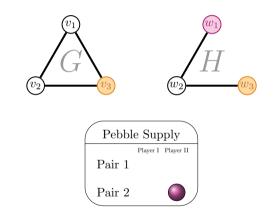
- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.



- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic



- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic



- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic X Player I won!

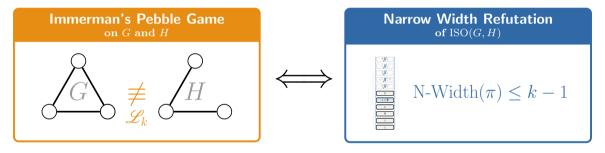
v2 v3	(w2) (W3)
Pebble Supply Player I Player II Pair 1 Pair 2	

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic X Player I won!

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic X Player I won!

v_1	w_1
$\setminus \neq$	
\mathcal{L}_{3} \mathcal{L}_{2}	w_3
	_
pebble pairs	

Main Result: Connection between FO and PC



Implications

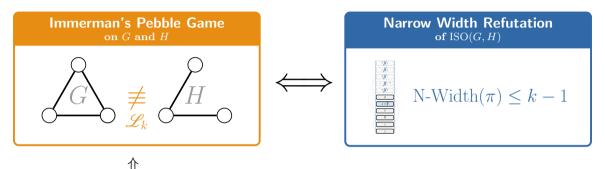
For every pair of graphs (G, H) with n vertices each and for every $k \in \mathbb{N}$:

$$1 \quad G \not\equiv_{\mathscr{L}_k} H \implies \operatorname{Size} \left(\operatorname{ISO}(G, H) \vdash_{\perp} \right) \le n^{\operatorname{O}(k)}$$

 $\begin{array}{c} \textcircled{2} \quad G \equiv_{\mathscr{L}_k} H \implies \begin{cases} \operatorname{Tree-Size} \left(\operatorname{ISO}(G,H) \vdash \bot \right) \geq 2^k \\ \operatorname{CS} \left(\operatorname{ISO}(G,H) \vdash \bot \right) \geq k+1 \end{cases} \end{aligned}$

 $\exists (G,\lambda) \equiv_{\mathscr{L}_k} (H,\mu) \implies \operatorname{Size} \left(\operatorname{ISO}(G,H) \vdash \bot \right) \ge \exp \left(\Omega\left(\frac{k^2}{\operatorname{sum of color class sizes}} \right) \right)$

Proof Idea: Use *k*-witnessing game



k-witnessing game

Spoiler wins on ISO(G, H)

They compete in the ${\pmb k}\text{-witnessing game on the formula }\mathrm{ISO}(G,H)$

- \blacksquare Game state is a partial assignment, initially $\alpha_0=\varepsilon$
- \blacksquare In each round i

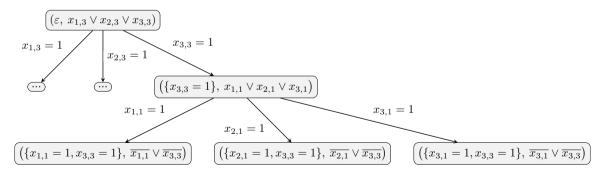
 $\begin{array}{ll} \textbf{Spoiler:} & \textbf{Chooses a subset } \alpha' \subseteq \alpha_{i-1} \textbf{ of size at most } k-1 \\ & \textbf{Chooses a Type 1 clause } C \textbf{ in } \mathrm{ISO}(G,H) \end{array}$

Duplicator: Extends $\alpha_i := \alpha' \cup \{\ell = 1\}$ for some literal $\ell \in C$

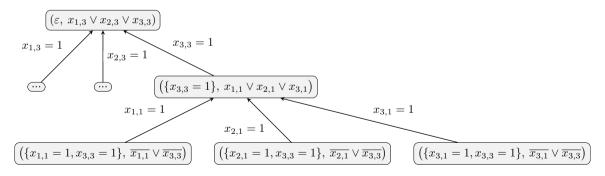
- Game ends when Duplicator cannot extend such that
 - α_i satisfies C and
 - does not falsify any other clause in $\mathrm{ISO}(G,H)$

Proof:
$$G \not\equiv_{\mathscr{L}_k} H \Longrightarrow \operatorname{N-Width} (\operatorname{ISO}(G, H) \vdash \bot) \leq k - 1$$

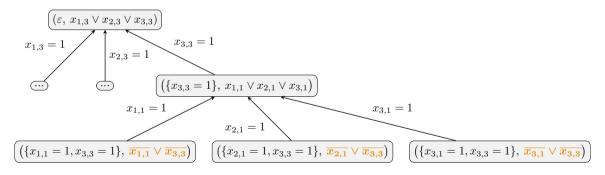
Convert Strategy Graph of Spoiler into Narrow Width Refutation



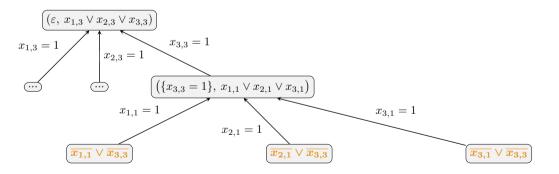
Proof:
$$G \not\equiv_{\mathscr{L}_k} H \Longrightarrow \operatorname{N-Width} (\operatorname{ISO}(G, H) \vdash \bot) \leq k - 1$$



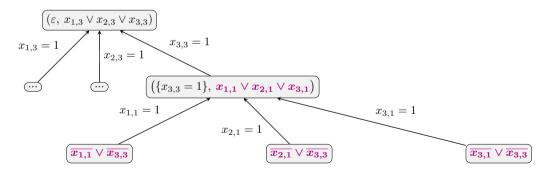
Proof:
$$G \not\equiv_{\mathscr{L}_k} H \Longrightarrow \operatorname{N-Width} (\operatorname{ISO}(G, H) \vdash \bot) \leq k - 1$$



Proof:
$$G \not\equiv_{\mathscr{L}_k} H \Longrightarrow \operatorname{N-Width} (\operatorname{ISO}(G, H) \vdash \bot) \leq k - 1$$



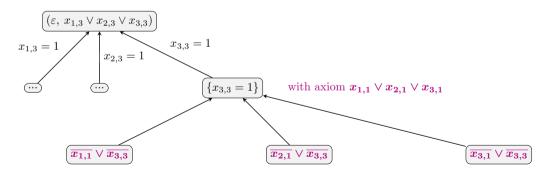
Proof:
$$G \not\equiv_{\mathscr{L}_k} H \Longrightarrow \operatorname{N-Width} (\operatorname{ISO}(G, H) \vdash \bot) \leq k - 1$$

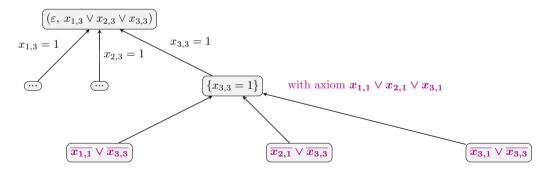


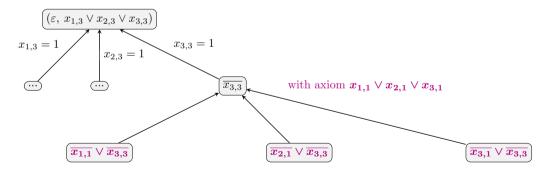
Proof:
$$G \not\equiv_{\mathscr{L}_k} H \Longrightarrow \operatorname{N-Width} (\operatorname{ISO}(G, H) \vdash \bot) \leq k - 1$$

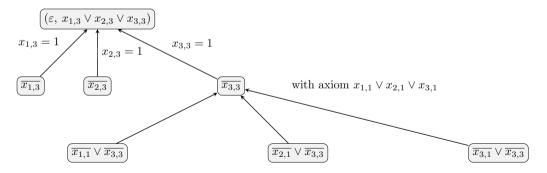


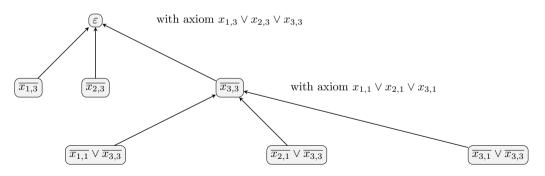
Proof:
$$G \not\equiv_{\mathscr{L}_k} H \Longrightarrow \operatorname{N-Width} (\operatorname{ISO}(G, H) \vdash \bot) \leq k - 1$$

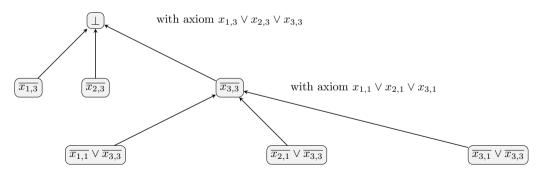


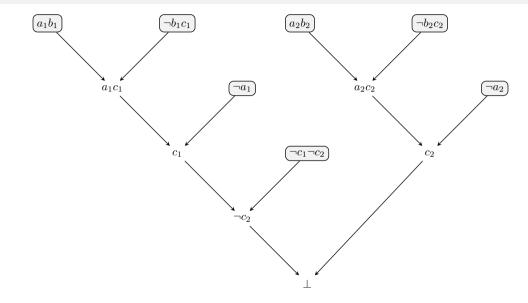


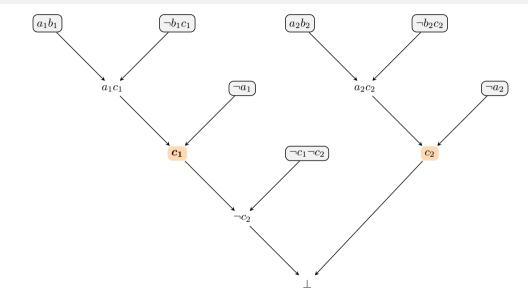


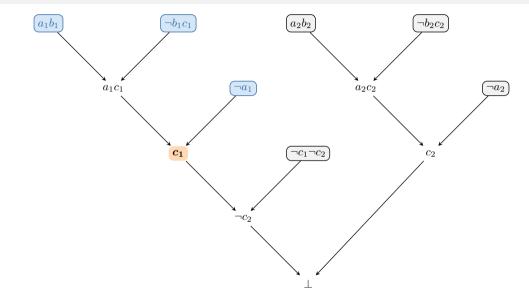


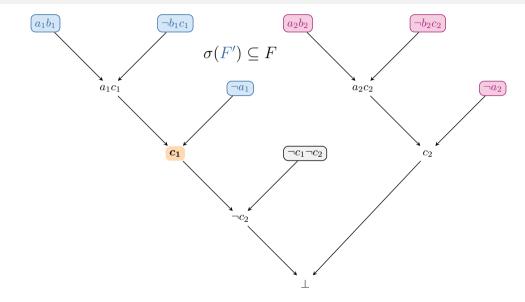


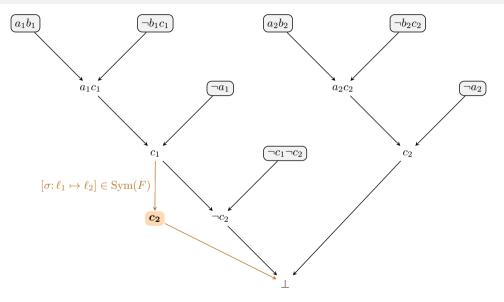


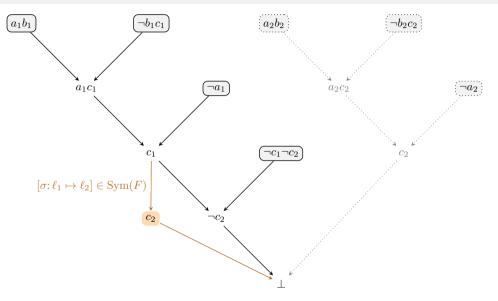


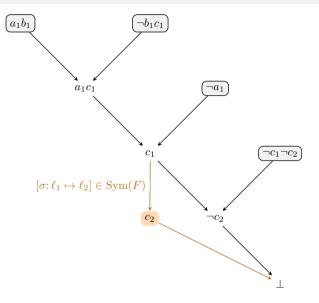












The SRC Proof Systems

Have a derivation $\pi: F' \vdash C$ from a subformula $F' \subseteq F$. To derive $\sigma(C)$ from C in one step we need a renaming σ with

SRC-1 (Global Symmetries)

 $\sigma(F) \subseteq F$

SRC-2 (Local Symmetries) $\sigma(F') \subseteq F$

SRC-3 (Dynamic Symmetries)

also allow symmetries in resolvents

16 / 30

SRC-3

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: $Aut(G) = {id}$

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: $Aut(G) = {id}$

Lemma: Asymmetric graphs \implies Asymmetric ISO-formula

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: $Aut(G) = {id}$

Lemma:Asymmetric graphs \Longrightarrow Asymmetric ISO-formulaLemma:Asymmetric formula \Longrightarrow Res-Size = SRC-1-Size [Szeider]

Asymmetric Graphs With Large Weisfeiler–Leman-Dimension

[Dawar and Khan] showed: There are pairs of non-isomorphic graphs that are

- asymmetric (unlike CFI-graphs)
- have small size O(k)
- \blacksquare with large WL-dim k
- \blacksquare and color classes of size 4

Without looking at ISO-formula:

$$(G, \lambda) \equiv_{\mathscr{L}_k} (H, \mu) \implies \operatorname{Size} \left(\operatorname{ISO}(G, H) \vdash \bot \right) \ge \exp \left(\Omega\left(\frac{k^2}{\mathsf{sum of color class sizes}} \right) \right)$$

Result: An Exponential GI Lower Bound for SRC-1

Our Result:

There is a family of non-isomorphic graph pairs (G_n, H_n) with O(n) vertices each, such that any SRC-1 refutation of $ISO(G_n, H_n)$ requires

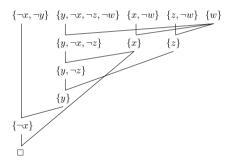
size $\exp(\Omega(n))$.

Reversible Pebbling and Resolution Space

STACS 2020, Montpellier Computational Complexity 30(7), 2021

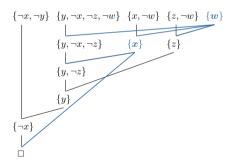
General vs. Tree-like Resolution

General refutation DAG G_{π}



General vs. Tree-like Resolution

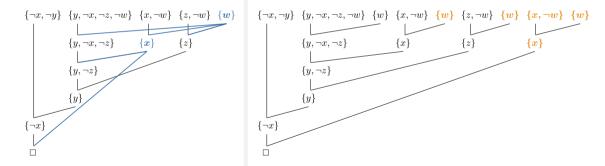
General refutation DAG G_{π}

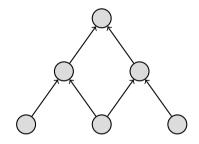


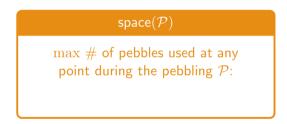
General vs. Tree-like Resolution

General refutation DAG G_{π}

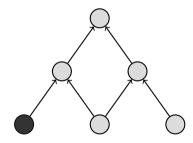
Tree-like refutation DAG G_{π}

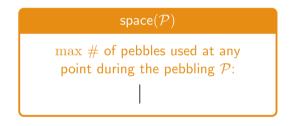






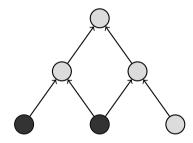
Goal: Get a single black pebble on the sink of the graph.

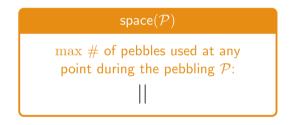




• **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)

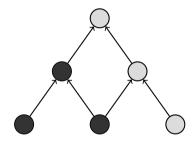
Goal: Get a single black pebble on the sink of the graph.

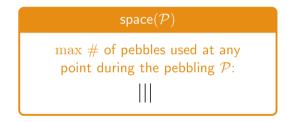




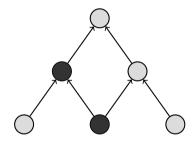
• **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)

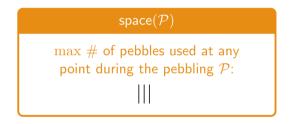
Goal: Get a single black pebble on the sink of the graph.



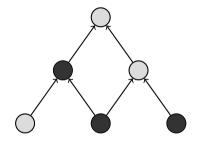


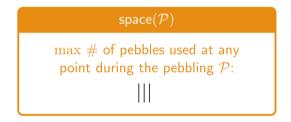
• **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)



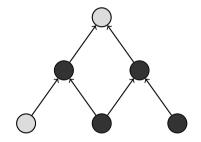


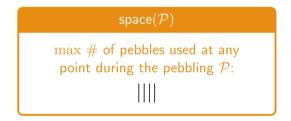
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time



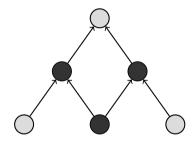


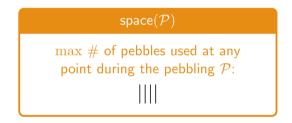
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time



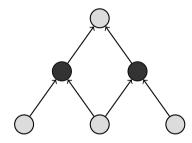


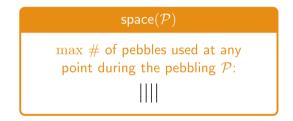
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time



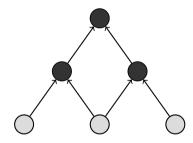


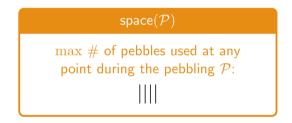
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time



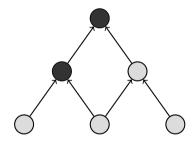


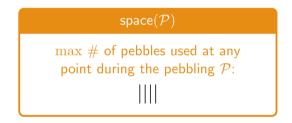
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time



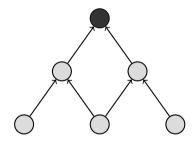


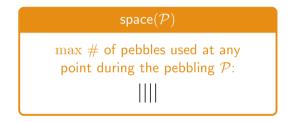
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time





- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time





- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Complexity Measure for the Black Pebble Game

$$\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \left(\underbrace{\max \ \# \text{ of pebbles used at any point in } \mathcal{P}}_{=:\mathsf{space}(\mathcal{P})} \right)$$

Complexity Measure for the Black Pebble Game

$$\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \left(\underbrace{\max \ \# \text{ of pebbles used at any point in } \mathcal{P}}_{=:\mathsf{space}(\mathcal{P})} \right)$$

Why do we care about the pebbling price?

Plethora of connections to resolution, e.g.,

$$\mathrm{CS}(F \vdash \bot) = \min_{\pi: F \vdash \bot} \mathsf{Black}(G_{\pi})$$

[Esteban, Torán '01: Space bounds for res.]

Complexity Measure for the Black Pebble Game

$$\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \left(\underbrace{\max \ \# \text{ of pebbles used at any point in } \mathcal{P}}_{=:\mathsf{space}(\mathcal{P})} \right)$$

Why do we care about the pebbling price?

Plethora of connections to resolution, e.g.,

$$\Rightarrow \operatorname{CS}(F \vdash \bot) = \min_{\pi: F \vdash \bot} \operatorname{Black}(G_{\pi})$$

[Esteban, Torán '01: Space bounds for res.]

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

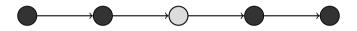
- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble



- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

Different rules:

- Pebble Placement: On empty vertex if all direct predecessors have a pebble
- Pebble Removal: Only if all direct predecessors have a pebble

Complexity measure: Rev(G)

Result 1: New Connection Of Tree-CS and Rev

For formulas stating the rules of the pebbling game:

$$\operatorname{Rev}(G) \leq \operatorname{Tree-CS}\left(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \bot\right) \lesssim \operatorname{Rev}(G).$$

For any UNSAT formula in n variables:

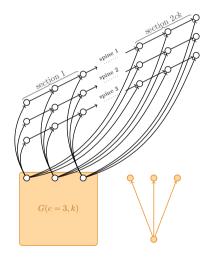
$$\operatorname{Tree-CS}(F \vdash \bot) \lesssim \min_{\pi:F \vdash \bot} \operatorname{Rev}(G_{\pi}) \lesssim \operatorname{Tree-CS}(F \vdash \bot) \cdot \log n.$$

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \bot) = O(\mathsf{Black}(G_n))$
- Tree-CS $(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \bot) = \Omega (\operatorname{Rev}(G_n))$

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \bot) = O(\mathsf{Black}(G_n))$
- Tree-CS (Peb_{G_n} [\oplus_2] $\vdash \perp$) = Ω (Rev(G_n))

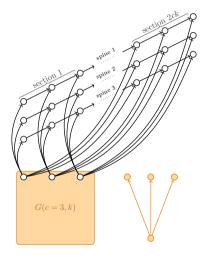


s(n)

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \bot) = O(\overrightarrow{\mathsf{Black}(G_n)})$
- Tree-CS $\left(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \bot \right) = \Omega \left(\operatorname{Rev}(G_n) \right)$

 $s(n)\log n$



s(n)

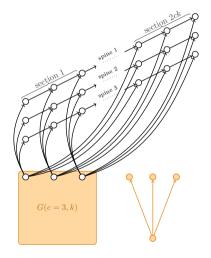
Idea:

• $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \bot) = O(\overrightarrow{\mathsf{Black}(G_n)})$

• Tree-CS (Peb_{Gn}[
$$\oplus_2$$
] $\vdash \bot$) = $\Omega(\underbrace{\text{Rev}(G_n)}_{s(n) \log n})$

Only room for improvement:

best pebbling strategy needs to revisit nodes

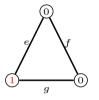


Result 3: Upper Bounds & Optimal Separations

How large can the gap grow?

Razborov's amortized measures $CS^*(F \vdash \bot) := \min_{\pi:F \vdash \bot} \left(CS(\pi) \cdot \log Size(\pi) \right)$

Tree-CS $(F \vdash \bot) \lesssim CS^*(F \vdash \bot)$



- $\begin{array}{l} \mathrm{Ts}:=\\ e+g\equiv 1 \pmod{2}\\ e+f\equiv 0 \pmod{2}\\ f+g\equiv 0 \pmod{2} \end{array}$
- For Tseitin formulas (encoding the *degree sum principle*) over *n* vertices:

Tree-CS(Ts $\vdash \perp$) \lesssim CS(Ts $\vdash \perp$) $\cdot \log n$

• \exists a Tseitin family:

Tree-CS(Ts
$$\vdash \perp$$
) = Ω (CS(Ts $\vdash \perp$) $\cdot \log n$)

Interesting Open Research Problems

Interesting Open Research Problems

- ► Can the bound Tree- $CS(F \vdash \bot) \leq CS^*(F \vdash \bot)$ be brought down to a $\log n$ factor?
- ► Is there a (interactive) game for CS?
- ► Classical complexity: $RCS := \{(F,k) \mid CS(F \vdash \bot) \leq k\} \in coNP-hard, PSPACE.$ Is $RCS \in coNP$? Is $RCS \in PSPACE$ -complete?
- How does one show "true" exponential lower bounds (for a symmetric formula) in the SRC systems?

 \rightarrow Number of Variables for Graph Identification and the Resolution of GI Formulas. J. Torán and F. Wörz. Accepted at CSL 2022.

Evidence for Long-Tails in SLS Algorithms. F. Wörz and J.-H. Lorenz. *ESA 2021*. Best Student Paper Award.

On the Effect of Learned Clauses on Stochastic Local Search. J.-H. Lorenz and F. Wörz. *SAT 2020*.

 \rightarrow Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space.

J. Torán and F. Wörz. Computational Complexity 2021 and STACS 2020.