Evidence for Long-Tails in SLS Algorithms

Florian Wörz Jan-Hendrik Lorenz

European Symposium on Algorithms (ESA) September 6th, 2021

Motivation and Aim of This Talk

- SLS = successful paradigm for solving SAT
- Recent development [LW20]:
 - GAPSAT solves not the original instance, but a modified, yet logically equivalent one
 - Empirically shown: on average, this improves the performance of state-of-the-art SLS solvers

Caveat: Only shallow understanding of how runtimes are affected

AIM: Model this modification process and conduct an empirical analysis of the hardness of logically equivalent formulas

- A lognormal distribution perfectly characterizes the hardness
 The hardness is long-tailed
- Restarts are useful for long-tailed algorithms

Statistical Hardness Distribution with ALFA

• Model the addition of a set of logically equivalent clauses *L* to a formula *F* and the subsequent solving of the amended formula $F^{(1)} := F \cup L$ by an SLS solver

Algorithm: Adjusted logical formula algorithm (ALFA)

Input: Boolean formula F, **Promise:** $F \in SAT$

Generate **randomly** a set *L* of clauses such that $F \models L$ Call SLS($F \cup L$) for some SLS solver SLS

Use width-4-bounded resolution to generate L

 $\begin{array}{c|c} \text{ solve 100 times with each solver } S \\ F^{(1)} & \text{flips}_{S}(F^{(1)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(1)}, s_{100}) \\ \vdots \\ F^{(5000)} \end{array}$

 $\begin{array}{c|c} & \text{solve 100 times with each solver } S \\ \hline F^{(1)} & \text{flips}_{S}(F^{(1)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(1)}, s_{100}) \\ F^{(2)} & \text{flips}_{S}(F^{(2)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(2)}, s_{100}) \\ \vdots \\ F^{(5000)} \end{array}$

 $\begin{array}{c|c} \text{solve 100 times with each solver } S \\ \hline \\ F^{(1)} & \text{flips}_{S}(F^{(1)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(1)}, s_{100}) \\ F^{(2)} & \text{flips}_{S}(F^{(2)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(2)}, s_{100}) \\ \vdots \\ F^{(5000)} & \text{flips}_{S}(F^{(5000)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(5000)}, s_{100}) \end{array}$

 $\begin{array}{c|c} \text{solve 100 times with each solver } S \\ F^{(1)} & \text{flips}_{S}(F^{(1)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(1)}, s_{100}) \\ F^{(2)} & \text{flips}_{S}(F^{(2)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(2)}, s_{100}) \\ \vdots \\ F^{(5000)} & \text{flips}_{S}(F^{(5000)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(5000)}, s_{100}) \end{array}$

 $\begin{array}{c|c} \text{solve 100 times with each solver } S \\ F^{(1)} & \text{flips}_{S}(F^{(1)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(1)}, s_{100}) \\ F^{(2)} & \text{flips}_{S}(F^{(2)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(2)}, s_{100}) \\ \vdots \\ F^{(5000)} & \text{flips}_{S}(F^{(5000)}, s_{1}), & \dots, & \text{flips}_{S}(F^{(5000)}, s_{100}) \end{array}$

$$F = \begin{cases} solve 100 \text{ times with each solver } S \\ F^{(1)} & flips_{S}(F^{(1)}, s_{1}), & \dots, & flips_{S}(F^{(1)}, s_{100}) \\ flips_{S}(F^{(2)}, s_{1}), & \dots, & flips_{S}(F^{(2)}, s_{100}) \\ \vdots \\ F^{(5000)} & flips_{S}(F^{(5000)}, s_{1}), & \dots, & flips_{S}(F^{(5000)}, s_{100}) \\ flips_{S}(F^{(5000)}, s_{10}) \\ flips_{S}(F^{(5000)}, s_{10})$$

Given such a sample (x_1, \ldots, x_{5000}) , we will plot the empirical distribution function

$$\hat{F}_{5000}(t) := \frac{1}{5000} \sum_{i=1}^{5000} \mathbb{1}_{\{x_i \leq t\}}, \quad t \in \mathbb{R}.$$

Instance Types:

- Hidden Solution (with different parameters)
- Oniform Random
- Factoring
- Coloring

Instance Types:

- Hidden Solution (with different parameters)
- Oniform Random
- Factoring
- Coloring

Used Solvers:

- Schöning's Random Walk Algorithm SRWA [Sch02] all instance types
- **PROBSAT solver family**¹ [BS12] -55 hidden solution instances with $n \in \{50, 100, 150, 200, 300, 800\}$
- **Solution** YalSAT² [Bie14] -10 hidden solution instances with n = 300

¹One of these solvers won the random track of the SAT competition 2013 ²Won the random track of the SAT competition 2017

Instance Types:

- Hidden Solution (with different parameters)
- Oniform Random
- Factoring
- Coloring

Used Solvers:

- Schöning's Random Walk Algorithm SRWA [Sch02] all instance types
- **PROBSAT solver family**¹ [BS12] -55 hidden solution instances with $n \in \{50, 100, 150, 200, 300, 800\}$
- **Solution** YalSAT² [Bie14] -10 hidden solution instances with n = 300

Total CPU time: 80 years

¹One of these solvers won the random track of the SAT competition 2013 ²Won the random track of the SAT competition 2017

Experimental Results and Statistical Evaluation (1/3)

Instance A (Factoring solved with SRWA)

Instance B (Hidden Solution solved with PROBSAT)

Experimental Results and Statistical Evaluation (1/3)

Instance A (Factoring solved with SRWA)

Instance B (Hidden Solution solved with PROBSAT)

Experimental Results and Statistical Evaluation (1/3)

Instance A (Factoring solved with SRWA)

Instance B (Hidden Solution solved with PROBSAT)

Experimental Results and Statistical Evaluation (2/3)

Résumé: LogN seems to be well suited

 \rightarrow Concretize this through χ^2 goodness-of-fit test (and additional bootstrap test)

Experimental Results and Statistical Evaluation (3/3)

Table 1: Statistical goodness-of-fit results for ALFA+SRWA									
	hidden different chances uniform factoring coloring total								
rejected	0	2	1	2	0	5			
# of instances	20	120	25	33	32	230			

Experimental Results and Statistical Evaluation (3/3)

Table 1: Statistical goodness-of-fit results for ALFA+SRWA									
	hidden different chances uniform factoring coloring total								
rejected	0	2	1	2	0	5			
# of instances	20	120	25	33	32	230			

Table 2: Goodness-of-fit results for ALFA+PROBSAT

number of variables	50	100	150	200	300	800	total
rejected	2	2	1	0	2	0	7
# of instances	10	10	10	10	10	5	55

Experimental Results and Statistical Evaluation (3/3)

Table 1: Statistical goodness-of-fit results for ALFA+SRWA									
	hidden different chances uniform factoring coloring total								
rejected	0	2	1	2	0	5			
# of instances	20	120	25	33	32	230			

Table 2: Goodness-of-fit results for ALFA+PROBSAT

number of variables	50	100	150	200	300	800	total
rejected	2	2	1	0	2	0	7
# of instances	10	10	10	10	10	5	55

Table 3: Goodness-of-fit results for ALFA+YALSAT

	χ^2	Ĵ
rejected	2	0
# of instances	10	10

Conjecture (Strong Conjecture)

The runtime of ALFA with SLS \in {SRWA, PROBSAT, YALSAT} follows a lognormal distribution.

Conjecture (Strong Conjecture)

The runtime of ALFA with SLS \in {SRWA, PROBSAT, YALSAT} follows a lognormal distribution.

Definition ([FKZ11])

A positive, real-valued random variable X is long-tailed, if and only if

$$\forall x \in \mathbb{R}^+ : \Pr\left[X > x\right] > 0 \quad \text{and} \quad \forall y \in \mathbb{R}^+ : \lim_{x \to \infty} \frac{\Pr\left[X > x + y\right]}{\Pr\left[X > x\right]} = 1.$$

Conjecture (Weak Conjecture)

The runtime of ALFA with SLS \in {SRWA, PROBSAT, YALSAT} follows a long-tailed distribution.

Restarts Are Useful For Long-Tailed Distributions

Definition

Restarts are *useful* if there is a t > 0 such that

 $\mathbf{E}[X_t] < \mathbf{E}[X].$

A condition for the usefulness of restart was proven in [Lor18]:

Theorem ([Lor18])

Strong Conjecture (runtimes are lognormally distributed) \implies Restarts are useful

Our paper extends this result and mathematically proves that restarts are useful even if only the Weak Conjecture holds (i. e., restarts are useful for long-tailed distributions).

Theorem

Consider a positive, long-tailed random variable *X* with continuous pdf *f*, cdf *F*, and hazard rate function $r(t) := \frac{f(t)}{1 - F(t)}$.

Also assume that

- either $E[X] = \infty$ holds;
- or the limits $\lim_{t\to\infty} r(t)$ and $\lim_{t\to\infty} t^2 \cdot f(t)$ both exist.

In both cases, restarts are useful for X.

The conditions of this theorem are not restrictive since all naturally occurring long-tail distributions satisfy these conditions (see [NWZ20]).

Conjecture (Corollary of the Weak Conjecture)

Restarts are useful for ALFA with SLS \in {SRWA, PROBSAT, YALSAT}.

Summary and Outlook

Have provided compelling evidence that the runtime of Alfa follows a long-tailed or lognormal distribution.

According to [SMP11]: super-linear speedups by parallelization \implies usefulness of restarts

Question 1: Can super-linear speedups be obtained by parallelizing Alfa-type algorithms?

Question 2: Can some of the Conjectures be theoretically proven?

Question 3: What can be said about CDCL solvers?

