
On the Effect of Learned Clauses
on Stochastic Local Search

Jan-Hendrik Lorenz Florian Wörz

July 8th, 2020

Slide 1



Motivation

SLS =̂ Search
CDCL =̂ Intelligent Search

Rough idea: Use preprocessing in SLS to find a logically equivalent formula.

Suspicion: Runtime of SLS on these instances can vary dramatically.

AIM: Find (efficently computable) log. equiv. formula which is beneficial to the runtime.
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probSAT [BS12]
Sketch of the Algorithm

Operates on complete assignments,

starts with a complete initial assignment α,

tries to find a solution by repeatedly flipping variables.

Input: Formula F, maxFlips, function f
α := complete assignment for F
for i = 1 to maxFlips do

if α satisfies F then return “satisfiable”
Choose a falsified clause C = (u1 ∨ u2 ∨ · · · ∨ u`)
Choose j ∈ {1, . . . , `} with probability according to f
Flip the chosen variable uj and update α
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probSAT
Successes

probSAT-based solvers performed excellently on random instances:

probSAT won the random track of the SAT competition 2013,

dimetheus [BM16] in 2014 and 2016,

YalSAT [Bie17] won in 2017.

Only recently, in 2018, other types of solvers significantly exceeded probSAT based
algorithms.→ Reason for choosing probSAT in this study.
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Backbone, General and Deceptive Model

First idea:

Use a formula F as a base.

Add a set of clauses S = {C1, . . . , Ct} to F to obtain a new formula G := F ∪ S.

Definition ([Kil+05])

The backbone B(F) are the literals appearing in all satisfying assignments of F.

Deceptive model: (x ∨ y ∨ z) where x, y, z ∈ B(F)

General model: (x ∨ y ∨ z) where x ∈ B(F) and y, z ∈ Var(F)
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Effect of the Models

20 40 60 80 100 120 140 160 180 200

104

105

106

107

Number of added clauses

Fl
ip

s
Deceptive model

20 40 60 80 100 120 140 160 180 200

105

106

Number of added clauses

General model

Definition
We call clauses that have a high number of correct literals w. r. t. a fixed solution
high-quality clauses.
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General and Deceptive Model Are Not Realistic

Evident: It is crucial which clauses are added.

Problem: Neither the deceptive nor the general model can be applied to real instances (we
would need to know the solution space / calculating Backbones is not efficient).

Idea: Compare models based on resolution and CDCL.

Definition
Let F be a formula and let B, C ∈ F be clauses such that there is a resolvent R.
We call R level 1 resolvent.
Let D or E (or both) be level 1 resolvents and S be their resolvent.
Then we call S a level 2 resolvent.
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F1, F2, FC

Let F be a 3-CNF formula with m clauses. We obtain new and log. equiv. formulas:

F1 Randomly select ≤ m/10 level 1 resolvents of width ≤ 4 and add them to F.

F2 Randomly select ≤ m/10 level 2 resolvents of width ≤ 4 and add them to F.

FC Randomly select ≤ m/10 clauses of width ≤ 4 from Glucose (with a time
limit of 300 seconds) and add them to F.
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Tests on Uniform Random Instances: Setting and Results

Observe behavior of probSAT over 1000 runs per instance on instance types F1, F2, FC.

Testbed of uniformly generated 3-CNF instances with

5000 – 11 600 variables and

ratio of 4.267.

Results:

Type F1 most challenging for probSAT (even harder than original formula).

Type F2 better (t-test: p < 0.01).

Type FC most efficient (t-test: p < 0.05)→ will investigate this further.
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Hidden Solution Instances: Definition

Randomly generated instances with hidden solution [BC18]:

Given a solution α.

Randomly generate a clause with 3 literals.

Depending on the number i of satisfied literals under α add the clause with
probability pi.

Repeat until enough clauses are added.

The Quality of Learned Clauses Slide 10



Quality of Clauses

SAT competition 2018 incorporated 3 types of models with hidden solutions
(only differing in the parameters).

Measure quality w. r. t. to the hidden solution:

On all 3 models, level 2 clauses have a higher quality than level 1 claues.

On 2 of 3 domains, CDCL clauses have a higher quality than level 2 clauses.
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Can this method help to improve probSAT?

The hardness of an instance is impacted by the added clauses.

CDCL seems to produce high-quality clauses.

Going forward, we only use clauses generated by Glucose.

Which clauses should be added? (We focus on the width)

How many clauses should be added? (In % of the original number of clauses)
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Training Data

All satisfiable, random instances from the SAT-Competition 2014 to 2017.

In total: 377 instances.

120 instances with a hidden solution.

149 uniform 3, 5, and 7-SAT instances of medium size.

108 uniform 3, 5, and 7-SAT instances of huge size.
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Setup

The experiments were performed on a heterogeneous cluster.

Thus, seconds are inappropriate to measure the runtime.

Instead, flips were used.

Timeouts: 3-SAT: 109 flips, 5-SAT: 5 · 108 flips, 7-SAT: 2.5 · 108 flips.

1000 runs per instance.

Performance measure: number of timeouts.

Training Experiments Slide 14



Optimal combinations for uniform, medium size instances

Width Number (in %)

3-SAT ≤ 4 unlimited
5-SAT ≤ 8 5%
7-SAT ≤ 9 1%
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Uniform Instances: 3-SAT
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Uniform Instances: 5 and 7-SAT
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Figure: 7-SAT instances
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Hidden Solution and Huge Instances

Hidden Solution: Similar results, adding new clauses is generally beneficial.

Huge instances: Few clauses are generated; yielding no significant improvement.
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GapSAT
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Evaluation

Random instances of the SAT competition 2018

Used solvers: probSAT, Sparrow2Riss [BM18], GapSAT

Timeout: 5000 seconds

Performance measure: par2

par2(x) =

{
x, x < 5000
10000, else
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Results

# solved score

probSAT 133 1 234 986.01
Sparrow2Riss 189 672 335.89
GapSAT 223 347 156.40
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Domain Results

hidden medium huge

probSAT 872 938.74 137 396.83 224 650.43
Sparrow2Riss 8 589.12 171 492.91 492 253.86
GapSAT 851.36 127 982.19 218 322.85
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Summary and Outlook

The presented technique significantly improves probSAT.

Parameter tuning of probSAT could further improve the results.

A clause selection heuristic would be useful.

The supplementary material is available online1.

1https://zenodo.org/record/3776052
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