On the Effect of Learned Clauses on Stochastic Local Search

Jan-Hendrik Lorenz Florian Wörz

July 8th, 2020

 $\begin{array}{l} \text{SLS} \widehat{=} \text{ Search} \\ \text{CDCL} \widehat{=} \text{ Intelligent Search} \end{array}$

Rough idea: Use preprocessing in SLS to find a logically equivalent formula.

Suspicion: Runtime of SLS on these instances can vary dramatically.

AIM: Find (efficently computable) log. equiv. formula which is beneficial to the runtime.

- Operates on complete assignments,
- starts with a complete initial assignment α ,
- tries to find a solution by repeatedly flipping variables.

```
Input: Formula F, maxFlips, function f\alpha := complete assignment for Ffor i = 1 to maxFlips doif \alpha satisfies F then return "satisfiable"Choose a falsified clause C = (u_1 \lor u_2 \lor \cdots \lor u_\ell)Choose j \in \{1, \dots, \ell\} with probability according to fFlip the chosen variable u_j and update \alpha
```

- PROBSAT-based solvers performed excellently on random instances:
 - PROBSAT won the random track of the SAT competition 2013,
 - DIMETHEUS [BM16] in 2014 and 2016,
 - YALSAT [Bie17] won in 2017.
- Only recently, in 2018, other types of solvers significantly exceeded рвовSAT based algorithms. → Reason for choosing рвовSAT in this study.

First idea:

- Use a formula *F* as a base.
- Add a set of clauses $S = \{C_1, \ldots, C_t\}$ to F to obtain a new formula $G := F \cup S$.

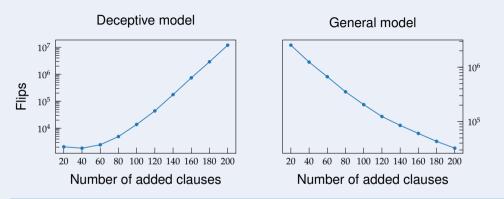
Definition ([Kil+05])

The **backbone** $\mathcal{B}(F)$ are the literals appearing in all satisfying assignments of *F*.

Deceptive model: $(x \lor \overline{y} \lor \overline{z})$ where $x, y, z \in \mathcal{B}(F)$

General model: $(x \lor y \lor z)$ where $x \in \mathcal{B}(F)$ and $y, z \in Var(F)$

Effect of the Models



Definition

We call clauses that have a high number of correct literals w.r.t. a fixed solution **high-quality clauses**.

Evident: It is crucial which clauses are added.

Problem: Neither the deceptive nor the general model can be applied to real instances (we would need to know the solution space / calculating Backbones is not efficient).

Idea: Compare models based on resolution and CDCL.

Definition

- Let *F* be a formula and let *B*, *C* ∈ *F* be clauses such that there is a resolvent *R*.
 We call *R* level 1 resolvent.
- Let *D* or *E* (or both) be level 1 resolvents and *S* be their resolvent. Then we call *S* a **level 2 resolvent**.

Let F be a 3-CNF formula with m clauses. We obtain new and log. equiv. formulas:

- F_1 Randomly select $\leq m/10$ level 1 resolvents of width ≤ 4 and add them to *F*.
- F_2 Randomly select $\leq m/10$ level 2 resolvents of width ≤ 4 and add them to *F*.
- F_C Randomly select $\leq m/10$ clauses of width ≤ 4 from GLUCOSE (with a time limit of 300 seconds) and add them to *F*.

Tests on Uniform Random Instances: Setting and Results

- Observe behavior of PROBSAT over 1000 runs per instance on instance types F₁, F₂, F_C.
- Testbed of uniformly generated 3-CNF instances with
 - 5000-11 600 variables and
 - ratio of 4.267.

Results:

- Type F_1 most challenging for **PROBSAT** (even harder than original formula).
- Type F_2 better (t-test: p < 0.01).
- Type F_C most efficient (t-test: p < 0.05) \rightarrow will investigate this further.

Randomly generated instances with hidden solution [BC18]:

- Given a solution *α*.
- Randomly generate a clause with 3 literals.
- Depending on the number *i* of satisfied literals under *α* add the clause with probability *p_i*.
- Repeat until enough clauses are added.

SAT competition 2018 incorporated 3 types of models with hidden solutions (only differing in the parameters).

Measure quality w.r.t. to the hidden solution:

- On all 3 models, level 2 clauses have a higher quality than level 1 claues.
- On 2 of 3 domains, CDCL clauses have a higher quality than level 2 clauses.

- The hardness of an instance is impacted by the added clauses.
- CDCL seems to produce high-quality clauses.
- Going forward, we only use clauses generated by GLUCOSE.
- Which clauses should be added? (We focus on the width)
- How many clauses should be added? (In % of the original number of clauses)

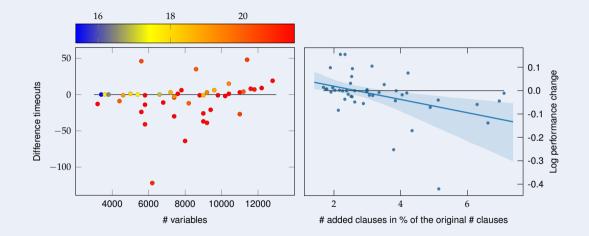
- All satisfiable, random instances from the SAT-Competition 2014 to 2017.
- In total: 377 instances.
- 120 instances with a **hidden** solution.
- 149 uniform 3, 5, and 7-SAT instances of medium size.
- 108 uniform 3, 5, and 7-SAT instances of huge size.

- The experiments were performed on a heterogeneous cluster.
- Thus, seconds are inappropriate to measure the runtime.
- Instead, flips were used.
- Timeouts: 3-SAT: 10^9 flips, 5-SAT: $5 \cdot 10^8$ flips, 7-SAT: $2.5 \cdot 10^8$ flips.
- 1000 runs per instance.
- Performance measure: number of timeouts.

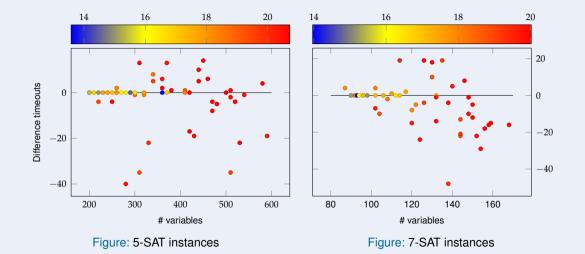
Optimal combinations for uniform, medium size instances

	Width	Number (in %)
3-SAT 5-SAT 7-SAT	$\leq 4 \leq 8 \leq 9$	unlimited 5% 1%

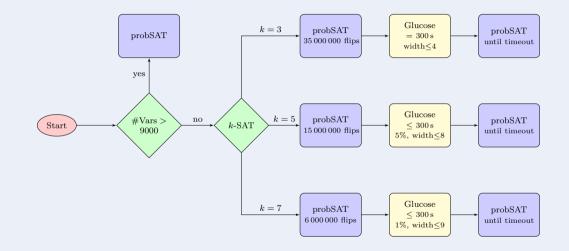
Uniform Instances: 3-SAT



Uniform Instances: 5 and 7-SAT

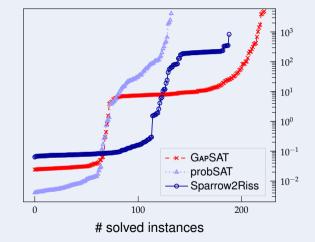


- Hidden Solution: Similar results, adding new clauses is generally beneficial.
- Huge instances: Few clauses are generated; yielding no significant improvement.



- Random instances of the SAT competition 2018
- Used solvers: probSAT, Sparrow2Riss [BM18], GApSAT
- Timeout: 5000 seconds
- Performance measure: par2

$$\mathsf{par2}(x) = egin{cases} x, & x < 5000 \ 10000, & \mathsf{else} \end{cases}$$



	# solved	score
probSAT Sparrow2Riss	133 189	1 234 986.01 672 335.89
GAPSAT	223	347 156.40

	hidden	medium	huge
probSAT	872 938.74	171 492.91	224 650.43
Sparrow2Riss	8 589.12		492 253.86
GapSAT	851.36		218 322.85

- The presented technique significantly improves PROBSAT.
- Parameter tuning of **PROBSAT** could further improve the results.
- A clause selection heuristic would be useful.
- The supplementary material is available online¹.

¹https://zenodo.org/record/3776052