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SLS = Search
CDCL = Intelligent Search

Rough idea: Use preprocessing in SLS to find a logically equivalent formula.
Suspicion: Runtime of SLS on these instances can vary dramatically.

AIM: Find (efficently computable) log. equiv. formula which is beneficial to the runtime.
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PROBSAT [BS12]
Sketch of the Algorithm
@ Operates on complete assignments,

@ starts with a complete initial assignment «,

@ tries to find a solution by repeatedly flipping variables.

Input: Formula F, maxFlips, function f

« = complete assignment for F

for j = 1 to maxFlips do
if « satisfies F then return “satisfiable”
Choose a falsified clause C = (u1 Vup V- -V uy)
Choose j € {1,..., ¢} with probability according to f
Flip the chosen variable u; and update «
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PROBSAT
Successes

@ PRoBSAT-based solvers performed excellently on random instances:
@ pProBSAT won the random track of the SAT competition 2013,
@ piMETHEUS [BM16] in 2014 and 2016,
o YALSAT [Bie17] won in 2017.

@ Only recently, in 2018, other types of solvers significantly exceeded proBSAT based
algorithms. — Reason for choosing proBSAT in this study.
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Backbone, General and Deceptive Model

First idea:
@ Use a formula F as a base.

@ Add a set of clauses S = {Cy,...,C;} to F to obtain a new formula G := FU S.

Definition ([Kil+05])
The backbone 5(F) are the literals appearing in all satisfying assignments of F.

Deceptive model: (x V¥V z) where x,y,z € B(F)
General model: (xVyVz) where x € B(F) and y,z € Var(F)
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Effect of the Models
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Definition
We call clauses that have a high number of correct literals w. r. t. a fixed solution
high-quality clauses.
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General and Deceptive Model Are Not Realistic

Evident: It is crucial which clauses are added.

Problem: Neither the deceptive nor the general model can be applied to real instances (we
would need to know the solution space / calculating Backbones is not efficient).

Idea: Compare models based on resolution and CDCL.

Definition
@ Let F be a formula and let B, C € F be clauses such that there is a resolvent R.
We call R level 1 resolvent.

@ Let D or E (or both) be level 1 resolvents and S be their resolvent.
Then we call S a level 2 resolvent.

The Quality of Learned Clauses Slide 7



Let F be a 3-CNF formula with m clauses. We obtain new and log. equiv. formulas:

F, Randomly select < m/10 level 1 resolvents of width < 4 and add them to F.
F, Randomly select < m /10 level 2 resolvents of width < 4 and add them to F.

Fc Randomly select < m/10 clauses of width < 4 from Grucose (with a time
limit of 300 seconds) and add them to F.
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Tests on Uniform Random Instances: Setting and Results

@ Observe behavior of PRoBSAT over 1000 runs per instance on instance types Fy, B, Fc.
@ Testbed of uniformly generated 3-CNF instances with

e 5000— 11600 variables and

e ratio of 4.267.

Results:
@ Type F; most challenging for PrRoBSAT (even harder than original formula).
@ Type F, better (i-test: p < 0.01).
@ Type Fc most efficient (t-test: p < 0.05) — will investigate this further.

The Quality of Learned Clauses Slide 9



Hidden Solution Instances: Definition

Randomly generated instances with hidden solution [BC18]:
@ Given a solution «.
@ Randomly generate a clause with 3 literals.

@ Depending on the number i of satisfied literals under « add the clause with
probability p;.

@ Repeat until enough clauses are added.
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Quality of Clauses

SAT competition 2018 incorporated 3 types of models with hidden solutions
(only differing in the parameters).

Measure quality w.r.t. to the hidden solution:

@ On all 3 models, level 2 clauses have a higher quality than level 1 claues.

@ On 2 of 3 domains, CDCL clauses have a higher quality than level 2 clauses.
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Can this method help to improve pRoBSAT?

@ The hardness of an instance is impacted by the added clauses.
@ CDCL seems to produce high-quality clauses.

@ Going forward, we only use clauses generated by GLucosk.

@ Which clauses should be added? (We focus on the width)

@ How many clauses should be added? (In % of the original number of clauses)
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Training Data

@ All satisfiable, random instances from the SAT-Competition 2014 to 2017.
@ In total: 377 instances.

@ 120 instances with a hidden solution.

@ 149 uniform 3, 5, and 7-SAT instances of medium size.

@ 108 uniform 3, 5, and 7-SAT instances of huge size.
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@ The experiments were performed on a heterogeneous cluster.

@ Thus, seconds are inappropriate to measure the runtime.

@ Instead, flips were used.

@ Timeouts: 3-SAT: 10° flips, 5-SAT: 5 - 108 flips, 7-SAT: 2.5 - 108 flips.

@ 1000 runs per instance.

@ Performance measure: number of timeouts.
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Optimal combinations for uniform, medium size instances

‘ Width  Number (in %)

3-SAT <4 unlimited
5-SAT <8 5%
7-SAT <9 1%
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Uniform Instances: 3-SAT
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Uniform Instances: 5 and 7-SAT

Difference timeouts
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Figure: 5-SAT instances

Figure: 7-SAT instances
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Hidden Solution and Huge Instances

@ Hidden Solution: Similar results, adding new clauses is generally beneficial.

@ Huge instances: Few clauses are generated; yielding no significant improvement.
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Evaluation

@ Random instances of the SAT competition 2018
@ Used solvers: proBSAT, Sparrow2Riss [BM18], GApSAT
@ Timeout: 5000 seconds

@ Performance measure: par2

X, x < 5000

ar2 =
SRR {10000, else
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PROBSAT 133 1234986.01 30
Sparrow2Riss 189 672335.89 1.,
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Domain Results

\ hidden medium huge
PROBSAT 872938.74 137396.83 224650.43
SprarroW2Riss 8589.12 171492.91 492253.86
GAPSAT 851.36 127982.19 218322.85
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Summary and Outlook

@ The presented technique significantly improves pProBSAT.
@ Parameter tuning of PrRoBSAT could further improve the results.
@ A clause selection heuristic would be useful.

@ The supplementary material is available online!.

1https://Zenodo.org/record/3776052
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