On the Complexity of Solving Propositional Formulas

Florian Wörz

Institute of Theoretical Computer Science, Universität Ulm Doctoral Advisor: Prof. Dr. Jacobo Torán

December 13, 2022

The SAT Problem

Given:

$$F = (x \lor y) \land (\overline{y} \lor z) \land (z) \land (\overline{x})$$

Question:

$$\exists \alpha = \left\{ \begin{smallmatrix} x \leftrightarrow ?, \\ y \mapsto ?, \\ z \mapsto ? \end{smallmatrix} \right\} \text{ with } F \upharpoonright_{\alpha} = 1 ?$$

Karp's 21 NP-Complete Problems

Two Approaches to Investigate SAT

The Bad News

Proof Complexity

The Good News

Advances in Engineering

- All: exponential runtime in worst-case
- Power and limits
- Upper & lower bounds

- Applied researchers don't care
- Solvers handle millions of variables
- Myth: "NP problems are hard"

Proof Complexity

Bad News in the Form of Lower Bounds

Abstract Models To Investigate SAT

Q: How to capture the **essence** of solvers via a simple yet powerful mathematical abstraction?

– Abstraction can: ———

- enable deeper understanding of internals of solvers
- enable ease of **theoretical analysis**
- enable better solver design

Proof Systems

Proof Systems

The Proof System Resolution

Resolution Rule

$$\frac{A \lor x \qquad B \lor \overline{x}}{A \lor B}$$

Complexity Measures for a Resolution Proof $\boldsymbol{\pi}$

Size # clauses

Width # literals in largest clause

Complexity Measures for a Resolution Proof $\boldsymbol{\pi}$

Size # clauses (here: 11)

Width # literals in largest clause

Complexity Measures for a Resolution Proof $\boldsymbol{\pi}$

Size # clauses (here: 11)

Width

literals in largest clause (here: 3)

Complexity Measures for Refuting a Formula ${\cal F}$

Fix a formula F.

For each complexity measure \mathscr{C} :

Take minimum over all refutations π of F

$$\mathscr{C}(F \vdash \bot) := \min_{\pi: F \vdash \bot} \mathscr{C}(\pi)$$

The [BW01] Result: A Connection Between Size & Width

Easy Observation

A narrow resolution refutation is necessarily short.

Proof. Width $(\pi) \leq w \implies$ No. of possible clauses $\leq \sum_{i=0}^{w} {|\operatorname{Vars}(F)| \choose i} 2^i \leq n^{O(k)}$.

The [BW01] Result: A Connection Between Size & Width

Easy Observation

A narrow resolution refutation is necessarily short.

Proof. Width $(\pi) \leq w \implies$ No. of possible clauses $\leq \sum_{i=0}^{w} {|\operatorname{Vars}(F)| \choose i} 2^i \leq n^{O(k)}$.

Sort of a Converse is True

"Short proofs are narrow":
$$\operatorname{Size}(F \vdash \bot) \ge \exp\left(\Omega\left(\frac{\left[\operatorname{Width}(F \vdash \bot) - \operatorname{Width}(F)\right]^2}{|\operatorname{Vars}(F)|}\right)\right).$$

The Complexity of Graph Isomorphism

First Act: Resolution

Take the Graph Isomorphism Problem...

... and encode it as the formula ISO(G, H):

Type 1 clauses: consider all vertices

$$\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$$

$$\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$$

Type 2 clauses: function + injective

$$\begin{aligned} \forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}}) \end{aligned}$$

Type 3 clauses: adjacency relation

 $\forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \notin E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}})$

Take the Graph Isomorphism Problem...

... and encode it as the formula ISO(G, H):

- **Type 1 clauses:** consider all vertices
 - $\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$ $\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$
- **Type 2 clauses:** function + injective

$$\begin{aligned} \forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}}) \end{aligned}$$

Type 3 clauses: adjacency relation

 $\forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \notin E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}})$

Take the Graph Isomorphism Problem...

... and encode it as the formula ISO(G, H):

- **Type 1 clauses:** consider all vertices
 - $\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$ $\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$
- **Type 2 clauses:** function + injective

 $\begin{aligned} \forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}}) \end{aligned}$

Type 3 clauses: adjacency relation

 $\forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \notin E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}})$

Take the Graph Isomorphism Problem...

... and encode it as the formula $\mathrm{ISO}(G,H)$:

Type 1 clauses: consider all vertices

$$\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$$

$$\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$$

Type 2 clauses: function + injective

 $\begin{aligned} \forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}}) \end{aligned}$

Type 3 clauses: adjacency relation

 $\forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \notin E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}})$

Take the Graph Isomorphism Problem...

... and encode it as the formula ISO(G, H):

Type 1 clauses: consider all vertices

$$\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$$

$$\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$$

Type 2 clauses: function + injective

 $\forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}})$

Type 3 clauses: adjacency relation

 $\forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \notin E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}})$

Take the Graph Isomorphism Problem...

... and encode it as the formula ISO(G, H):

Type 1 clauses: consider all vertices

$$\forall i \in [n] : (x_{i,1} \lor x_{i,2} \lor \dots \lor x_{i,n})$$

$$\forall j \in [n] : (x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j})$$

Type 2 clauses: function + injective

$$\begin{aligned} \forall i, j, k \in [n] \text{ with } j \neq k : (\overline{x_{i,j}} \lor \overline{x_{i,k}}) \\ \forall i, j, k \in [n] \text{ with } i \neq j : (\overline{x_{i,k}} \lor \overline{x_{j,k}}) \end{aligned}$$

Type 3 clauses: adjacency relation

 $\begin{aligned} \forall i < j \text{ and } k \neq \ell \text{ with} \\ \{v_i, v_j\} \in E_G \Leftrightarrow \{v_k, v_\ell\} \not\in E_H : (\overline{x_{i,k}} \lor \overline{x_{j,\ell}}) \end{aligned}$

 $x_{i,j} = 1 \iff v_i \text{ is mapped to } w_j$

12 / 45

Problem When Using [BW01] for ISO-Formulas

First Lower Bound Attempt -

Just use
$$\operatorname{Size}(F \vdash \bot) \ge \exp\left(\Omega\left(\frac{\left[\operatorname{Width}(F \vdash \bot) - \operatorname{Width}(F)\right]^2}{|\operatorname{Vars}(F)|}\right)\right)$$
?

Problem When Using [BW01] for ISO-Formulas

First Lower Bound Attempt

Just use Size
$$(F \vdash \bot) \ge \exp\left(\Omega\left(\frac{\left[\operatorname{Width}(F \vdash \bot) - \operatorname{Width}(F)\right]^2}{|\operatorname{Vars}(F)|}\right)\right)$$
?
Problem! Width $(F) = n$
Width $(F \vdash \bot) = O(n)$

Idea: Use Narrow Resolution

Distinction by Cases Rule [GT05]

$$\frac{A_1 \vee \overline{\ell_1} \quad \dots \quad A_m \vee \overline{\ell_m}}{A_1 \vee \dots \vee A_m \vee B} \quad \text{if} \quad (B \vee \ell_1 \vee \dots \vee \ell_m) \in F$$

Narrow Width

exclude all axioms in the count (here: 2)

Idea: Use Narrow Resolution

Distinction by Cases Rule [GT05]

Common Technique in Proof Complexity: Use Games!

Spoiler and Duplicator compete in the ${\it k}\mbox{-Witnessing Game on the formula } {\rm ISO}(G,H)$

 \blacksquare Game state is a partial assignment, initially $\alpha_0=\varepsilon$

 \blacksquare In each round j

Spoiler: Chooses a subset $\alpha' \subseteq \alpha_{j-1}$ of size at most k-1Chooses a Type 1 clause C in ISO(G, H), say $(x_{i,1} \lor \cdots \lor x_{i,n})$ **Duplicator:** Extends $\alpha_j := \alpha' \cup \{\ell = 1\}$ for some literal $\ell \in C$

Game ends when Duplicator cannot extend such that

- α_j satisfies C and
- does not falsify any other clause in ISO(G, H)

Main Result: Connection Between FO and PC

k-Witnessing Game

Spoiler wins on ISO(G, H)

Main Result: Connection Between FO and PC

Main Result: Connection Between FO and PC

Player I and Player II have k pebble pairs

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.

(v_2) (w_2) (w_3)

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic
Pebble Supply

Immerman's k-Pebble Game: Player I Wants to Show $G \ncong H$

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic

Immerman's k-Pebble Game: Player I Wants to Show $G \not\cong H$

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic X Player I won!

(v2) (v3)	
Pebble Pair 1 Pair 2	Supply layer I Player II

Immerman's k-Pebble Game: Player I Wants to Show $G \not\cong H$

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic X Player I won!

Immerman's k-Pebble Game: Player I Wants to Show $G \not\cong H$

- Player I and Player II have k pebble pairs
- In each round:
 - Player I chooses:
 - put a pebble pair back into the box, OR
 - place a new pebble of a pair on any graph
 - Player II simply reacts.
- Player II survives if pebbled subgraphs are isomorphic X Player I won!

Resolution Is Strong Enough to Simulate Immerman's Game

$G \not\equiv_{\mathscr{L}_k} H \implies \operatorname{Size}(\operatorname{ISO}(G, H) \vdash \bot) \leq n^{\operatorname{O}(k)}$

Basic Idea for Upper Bound -

$$G \not\equiv_{\mathscr{L}_k} H \implies \text{N-Width} \left(\text{ISO}(G, H) \vdash_{\perp} \right) \leq k - 1 \\ \implies \text{N-Size} \left(\text{ISO}(G, H) \vdash_{\perp} \right) \leq \sum_{i=0}^{k-1} {n^2 \choose i} 2^i \leq n^{\mathcal{O}(k)}$$

Simulate a Narrow-step in at most n Res-steps

Application: Automated $\overline{\mathrm{GI}}$ -Theorem Proving

Algorithm 1: Automated Graph Non-isomorphism Prover

```
Input: ISO(G, H), Promise: G \ncong H

k \leftarrow 1

Repeat

Derive all resolvents derivable in narrow width k

If \perp was derived then output "non-isomorphic"

k \leftarrow k + 1
```

Running Time for Constant k: $n^{O(k)} = poly(n)$ The Complexity of Graph Isomorphism

Second Act: Lower Bounds for Stronger Proof Systems

Is $GI \in co-NP$?

Cook & Reckhow '79

$$GI \in \text{co-NP} \iff \exists \mathscr{S} : \mathscr{S}\text{-}Size(GI \vdash \bot) \leq poly(n)$$

Proof System	Symmetry Rule	Known Bounds	
SRC-2	local	only $\mathrm{O}ig(\mathrm{poly}(n)ig)$ known	[SS21]
SRC-1	global	?	
Res	none	$\expig(\Omega(n)ig)$	[Tor13]

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: $Aut(G) = {id}$

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: $Aut(G) = {id}$

Lemma: Asymmetric graphs \implies Asymmetric ISO-formula

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: $Aut(G) = {id}$

Lemma:Asymmetric graphs \Longrightarrow Asymmetric ISO-formulaLemma:Asymmetric formula \Longrightarrow Res-Size = SRC-1-Size [Szeider]

Asymmetric Graphs With Large Weisfeiler–Leman-Dimension

Without looking at ISO-formula:

$$(G,\lambda) \equiv_{\mathscr{L}_k}(H,\mu) \implies \operatorname{Size}\left(\operatorname{ISO}(G,H) \vdash \bot\right) \ge \exp\left(\Omega\left(\frac{[\operatorname{N-Width}(\operatorname{ISO}(G,H) \vdash \bot)]^2}{\operatorname{sum of color class sizes}}\right)\right)$$

[Dawar and Khan] showed: There are pairs of non-isomorphic graphs that are

- asymmetric (unlike CFI-graphs)
- have small size O(k)
- \blacksquare with large WL-dim k
- \blacksquare and color classes of size 4

Result: An Exponential GI Lower Bound for SRC-1

Our Result:

There is a family of non-isomorphic graph pairs (G_n, H_n) with O(n) vertices each, such that any SRC-1 refutation of $ISO(G_n, H_n)$ requires

size $\exp(\Omega(n))$.

A Practitioner's View on SAT

Some Good News

Two Solver Paradigms

 $\textbf{SLS} \cong random \ \text{exploration}$

- + Excels at random instances
- Can get stuck
- Incomplete

 $\textbf{DPLL} \cong \textbf{intelligent, systematic search}$

- + Well suited for application instances
- + Complete solver
- Complicated to analyze

Ten Challenges in Propositional Reasoning and Search

Demonstrate the successful combination of stochastic search and systematic search techniques, by the creation of a new algorithm that outperforms the best previous examples of both approaches.

Selman, Kautz, McAllester; Proc. IJCAI 1997

Our Idea: Terraform the Landscape for SLS

Thought Experiment: Are all Implied Clauses Created Equal?

Backbone for satisfiable formula

The **backbone** $\mathscr{B}(F)$ is the set of literals appearing in all satisfying assignments of F:

$$\mathscr{B}(F) \coloneqq \bigcap_{\alpha: F \upharpoonright_{\alpha} = 1} \alpha.$$

Deceptive model: $(x \lor \overline{y} \lor \overline{z})$, where $x, y, z \in \mathscr{B}(F)$ **General model:** $(x \lor y \lor z)$, where $x \in \mathscr{B}(F)$ and $y, z \in Vars(F)$

Effect of the Models

Number of added clauses

Effect of the Models

But: Both models are unrealistic.

GapSAT

Our Very Own SAT Contest

Improvement of Several Orders of Magnitude—but Outliers

Further Investigation:

Runtime Distributions and Restarts

Aim: Model modification process of GapSAT more generally Analyze hardness of logically equivalent formulas

Abstraction: Adjusted Logical Formula Algorithm ALFA

Algorithm 2: Adjusted Logical Formula Algorithm (ALFA)

Input: Boolean formula F, **Promise:** $F \in SAT$

Generate **randomly** a set *L* of clauses such that $F \vDash L$ Call $SLS(F \cup L)$ for some SLS solver SLS

Experimental Setup

Experimental Setup

$$F \xrightarrow{F^{(1)}}_{i} flips_{S}(F^{(1)}, s_{1}), \dots, flips_{S}(F^{(1)}, s_{100}) \\ \vdots \\F^{(5000)} flips_{S}(F^{(5000)}, s_{1}), \dots, flips_{S}(F^{(5000)}, s_{100}) \\ flips_{S}(F^{(5000)}, s_{100}) \\ \vdots \\F^{(5000)} flips_{S}(F^{(5000)}, s_{100}) \\ flips_{S}(F^{(5000)}, s_{$$

Given such a sample (x_1,\ldots,x_{5000}) , plot the empirical distribution function

$$\widehat{F}_{5000}(t) := \frac{1}{5000} \sum_{i=1}^{5000} \mathbb{1}_{\{x_i \le t\}}, \quad t \in \mathbb{R}.$$

Instance Types and Solvers Used

Instance Types:

- **1** Hidden Solution (different parameters)
- 2 Uniform Random
- 3 Factoring
- 4 Coloring

Used Solvers:

- 1 SRWA
- 2 probSAT solver family

3 YalSAT

Total CPU time: 80 years!

Experimental Results and Statistical Evaluation

Flips

Experimental Results and Statistical Evaluation

Experimental Results and Statistical Evaluation

39 / 45

Conjectures

Strong Conjecture

The runtimes of ALFA-algorithms follow lognormal distributions.

Conjectures

Strong Conjecture

The runtimes of ALFA-algorithms follow lognormal distributions.

Definition ([FKZ11])

A positive, real-valued random variable X is **long-tailed**, if and only if

$$\forall x \in \mathbb{R}^+ : \mathbb{P}\left[X > x\right] > 0 \qquad \text{and} \qquad \forall y \in \mathbb{R}^+ : \lim_{x \to \infty} \frac{\mathbb{P}\left[X > x + y\right]}{\mathbb{P}\left[X > x\right]} = 1.$$

Weak Conjecture

The runtimes of $\ensuremath{\operatorname{ALFA}}\xspace$ algorithms follow $\ensuremath{\textit{long-tailed}}\xspace$ distributions.

Usefulness of Restarts

Consequence of the Strong Conjecture

Strong Conjecture (runtimes are lognormally distributed) $\stackrel{[Lor13]}{\Longrightarrow}$ Restarts are useful

Usefulness of Restarts

Consequence of the Strong Conjecture

Strong Conjecture (runtimes are lognormally distributed) $\stackrel{[Lor18]}{\Longrightarrow}$ Restarts are useful

New Mathematical Result:

Consequence of the Weak Conjecture

Weak Conjecture (runtimes are long-tailed distributed) \implies **Restarts are useful**

Contributions

List of Own Publications — Proof Complexity

Number of Variables for Graph Identification and the Resolution of GI Formulas J. Torán and F. Wörz

- Journal version: Submitted to ACM Transactions on Computational Logic (ACM TOCL)
- Conference version: EACSL Conference on Computer Science Logic (CSL), 2022

Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space

- J. Torán and F. Wörz
- Journal version: Computational Complexity (2021)
- Conference version: Int. Symposium on Theor. Aspects of Computer Science (STACS), 2020

List of Own Publications — Experiments

Towards an Understanding of Long-Tailed Runtimes

- J.-H. Lorenz and F. Wörz
- Journal version: Accepted in ACM Journal of Experimental Algorithmics (ACM JEA), 2022

Too Much Information: Why CDCL Solvers Need to Forget Learned Clauses

- T. Krüger, J.-H. Lorenz, and F. Wörz
- Journal version: PLOS ONE (2022)

Evidence for Long-Tails in SLS Algorithms

- F. Wörz and J.-H. Lorenz
- Conference version: European Symposium on Algorithms (ESA), 2021
- Best Student Paper awarded by European Association for Theor. Comp. Science (EATCS)

On the Effect of Learned Clauses on Stochastic Local Search

- J.-H. Lorenz and F. Wörz
- Conference version: Theory and Applications of Satisfiability Testing (SAT), 2020

Some of Our Contributions

Proof Complexity:

- Systematic study of CS vs. Tree-CS
- Complexity of Graph Isomorphism in different proof systems

Contributions to Applied SAT Solving:

- \blacksquare Construction of a novel hybrid solver GapSAT
- Study of long-tails and proof of usefulness of restarts
- Theoretical runtime distribution analysis of Schöning's random walk
- Clause deletion and multimodality in CDCL solvers