
On the Complexity of Solving Propositional Formulas

Florian Wörz

Institute of Theoretical Computer Science, Universität Ulm

Doctoral Advisor: Prof. Dr. Jacobo Torán

December 13, 2022

The SAT Problem

Given:

F = (x ∨ y) ∧ (y ∨ z) ∧ (z) ∧ (x)

Question:

∃ α={x 7→ ?,
y 7→ ?,
z 7→ ?
} with F �α = 1 ?

1 / 45

Karp’s 21 NP-Complete Problems [Kar72]

2 / 45

Two Approaches to Investigate SAT

The Bad News

Proof Complexity

• All: exponential runtime in worst-case

• Power and limits

• Upper & lower bounds

The Good News

Advances in Engineering

• Applied researchers don’t care

• Solvers handle millions of variables

• Myth: “NP problems are hard”

3 / 45

Proof Complexity
Bad News in the Form of Lower Bounds

4 / 45

Abstract Models To Investigate SAT

Q: How to capture the essence of solvers
via a simple yet powerful mathematical abstraction?

—————————— Abstraction can: ——————————

— enable deeper understanding of internals of solvers

— enable ease of theoretical analysis

— enable better solver design

5 / 45

Proof Systems

6 / 45

Proof Systems

6 / 45

The Proof System Resolution

Resolution Rule

A ∨ x B ∨ x
A ∨B

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
7 / 45

Complexity Measures for a Resolution Proof π

Size
clauses

Width
literals in largest clause

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
8 / 45

Complexity Measures for a Resolution Proof π

Size
clauses (here: 11)

Width
literals in largest clause

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

8 / 45

Complexity Measures for a Resolution Proof π

Size
clauses (here: 11)

Width
literals in largest clause (here: 3)

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥
8 / 45

Complexity Measures for Refuting a Formula F

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

Fix a formula F .

For each complexity measure C :

Take minimum over all
refutations π of F

C(F `⊥) := min
π:F `⊥

C (π)

7x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y ∨ z

y

x

y

⊥

9 / 45

The [BW01] Result: A Connection Between Size & Width

Easy Observation

A narrow resolution refutation is necessarily short.

Proof. Width(π) ≤ w =⇒ No. of possible clauses ≤∑w
i=0

(|Vars(F)|
i

)
2i ≤ nO(k).

Sort of a Converse is True

“Short proofs are narrow”: Size
(
F `⊥

)
≥ exp

(
Ω

([
Width(F ⊥̀)−Width(F)

]2
|Vars(F)|

))
.

10 / 45

The [BW01] Result: A Connection Between Size & Width

Easy Observation

A narrow resolution refutation is necessarily short.

Proof. Width(π) ≤ w =⇒ No. of possible clauses ≤∑w
i=0

(|Vars(F)|
i

)
2i ≤ nO(k).

Sort of a Converse is True

“Short proofs are narrow”: Size
(
F `⊥

)
≥ exp

(
Ω

([
Width(F ⊥̀)−Width(F)

]2
|Vars(F)|

))
.

10 / 45

The Complexity of Graph Isomorphism

First Act: Resolution

11 / 45

Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H
∃ϕ ∈ Iso(G,H)?

xi,j = 1 :⇐⇒ vi is mapped to wj

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)

12 / 45

Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H
∃ϕ ∈ Iso(G,H)?

xi,j = 1 :⇐⇒ vi is mapped to wj

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
12 / 45

Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

xi,j = 1 :⇐⇒ vi is mapped to wj

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
12 / 45

Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

xi,j = 1 :⇐⇒ vi is mapped to wj

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
12 / 45

Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

7

7

xi,j = 1 :⇐⇒ vi is mapped to wj

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
12 / 45

Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

7

7

xi,j = 1 :⇐⇒ vi is mapped to wj

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
12 / 45

Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. . .

v1

v2 v3

G

w1

w2 w3

H

7

7

xi,j = 1 :⇐⇒ vi is mapped to wj

. . . and encode it as the formula ISO(G,H):

Type 1 clauses: consider all vertices

∀i ∈ [n] : (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n)

∀j ∈ [n] : (x1,j ∨ x2,j ∨ · · · ∨ xn,j)

Type 2 clauses: function + injective

∀i, j, k ∈ [n] with j 6= k : (xi,j ∨ xi,k)
∀i, j, k ∈ [n] with i 6= j : (xi,k ∨ xj,k)

Type 3 clauses: adjacency relation

∀i < j and k 6= ` with

{vi, vj} ∈ EG ⇔ {vk, v`} 6∈ EH : (xi,k ∨ xj,`)
12 / 45

Problem When Using [BW01] for ISO-Formulas

(xi,1 ∨ . . .∨ xi,n)

—————————— First Lower Bound Attempt ——————————

Just use Size
(
F `⊥

)
≥ exp

(
Ω

([
Width(F ⊥̀)−Width(F)

]2
|Vars(F)|

))
?

Problem! Width(F) = n

Width(F `⊥) = O(n)

13 / 45

Problem When Using [BW01] for ISO-Formulas

vi

(xi,1 ∨ . . .∨ xi,n)

—————————— First Lower Bound Attempt ——————————

Just use Size
(
F `⊥

)
≥ exp

(
Ω

([
Width(F ⊥̀)−Width(F)

]2
|Vars(F)|

))
?

Problem! Width(F) = n

Width(F `⊥) = O(n)

13 / 45

Idea: Use Narrow Resolution

Distinction by Cases Rule [GT05]

A1 ∨ `1 . . . Am ∨ `m
A1 ∨ · · · ∨Am ∨B

if (B ∨ `1 ∨ · · · ∨ `m) ∈ F

Narrow Width

1○ [BW01] for narrow width?
2○ How to get bounds?

exclude all axioms in the count (here: 2)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

14 / 45

Idea: Use Narrow Resolution

Distinction by Cases Rule [GT05]

A1 ∨ `1 . . . Am ∨ `m
A1 ∨ · · · ∨Am ∨B

if (B ∨ `1 ∨ · · · ∨ `m) ∈ F

Narrow Width

1○ [BW01] for narrow width?
2○ How to get bounds?

exclude all axioms in the count (here: 2)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

14 / 45

Common Technique in Proof Complexity: Use Games!

Spoiler and Duplicator compete in the k-Witnessing Game on the formula ISO(G,H)

Game state is a partial assignment, initially α0 = ε

In each round j

Spoiler: Chooses a subset α′ ⊆ αj−1 of size at most k− 1
Chooses a Type 1 clause C in ISO(G,H), say (xi,1 ∨ · · · ∨ xi,n)

Duplicator: Extends αj := α′ ∪ {` = 1} for some literal ` ∈ C
Game ends when Duplicator cannot extend such that

— αj satisfies C and
— does not falsify any other clause in ISO(G,H)

15 / 45

Main Result: Connection Between FO and PC

Immerman’s Pebble Game
on G and H

G 6≡
Lk

H

⇐
⇒

k-Witnessing Game

Spoiler wins on ISO(G,H)

⇐⇒

⇐⇒

Narrow Width Refutation
of ISO(G,H)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

N-Width(π) ≤ k − 1

16 / 45

Main Result: Connection Between FO and PC

Immerman’s Pebble Game
on G and H

G 6≡
Lk

H
⇐
⇒

k-Witnessing Game

Spoiler wins on ISO(G,H)

⇐⇒

⇐⇒

Narrow Width Refutation
of ISO(G,H)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

N-Width(π) ≤ k − 1

16 / 45

Main Result: Connection Between FO and PC

Immerman’s Pebble Game
on G and H

G 6≡
Lk

H
⇐
⇒

k-Witnessing Game

Spoiler wins on ISO(G,H)

⇐⇒

⇐⇒

Narrow Width Refutation
of ISO(G,H)

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

x ∨ y

x ∨ y

y ∨ z

x ∨ y ∨ z

x ∨ z

y

x ∨ y

x

z

z

⊥

7
7
7
7
7

N-Width(π) ≤ k − 1

16 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

17 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

17 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

17 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

17 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

17 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic

7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

17 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic 7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply
Player I Player II

Pair 1

Pair 2

17 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic 7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply

Pair 1

Pair 2

17 / 45

Immerman’s k-Pebble Game: Player I Wants to Show G 6∼= H

Player I and Player II have k pebble pairs

In each round:

Player I chooses:

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

Player II simply reacts.

Player II survives if pebbled subgraphs are
isomorphic 7 Player I won!

v1

v2 v3

G

w1

w2 w3

H

Pebble Supply

Pair 1

Pair 2

6≡
L2

(# variables)

pebble pairs

17 / 45

Resolution Is Strong Enough to Simulate Immerman’s Game

G 6≡Lk
H =⇒ Size

(
ISO(G,H) `⊥

)
≤ nO(k)

———————————Basic Idea for Upper Bound ———————————

� G 6≡Lk
H =⇒ N-Width

(
ISO(G,H) `⊥

)
≤ k − 1

=⇒ N-Size
(
ISO(G,H) `⊥

)
≤∑k−1

i=0

(
n2

i

)
2i ≤ nO(k)

� Simulate a Narrow-step in at most n Res-steps

18 / 45

Application: Automated GI-Theorem Proving

Algorithm 1: Automated Graph Non-isomorphism Prover

Input: ISO(G,H), Promise: G 6∼= H

k ← 1
Repeat

Derive all resolvents derivable in narrow width k
If ⊥ was derived then output “non-isomorphic”
k ← k + 1

Running Time for Constant k:

nO(k) = poly(n)

19 / 45

The Complexity of Graph Isomorphism

Second Act: Lower Bounds for Stronger Proof Systems

20 / 45

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

21 / 45

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

21 / 45

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

21 / 45

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

σ(F ′) ⊆ F

21 / 45

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

c2

[σ: `1 7→ `2] ∈ Sym(F)

21 / 45

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

a2c2 ¬a2

a2b2 ¬b2c2

c2

[σ: `1 7→ `2] ∈ Sym(F)

21 / 45

Extending Resolution: Krishnamurthy’s Symmetry Rules

⊥

¬c2

c1 ¬c1¬c2

a1c1 ¬a1

a1b1 ¬b1c1

c2

¬a2

c2

[σ: `1 7→ `2] ∈ Sym(F)

21 / 45

Is GI ∈ co-NP?

Cook & Reckhow ’79

GI ∈ co-NP ⇐⇒ ∃S : S -Size
(
GI `⊥

)
≤ poly(n)

Proof System Symmetry Rule Known Bounds

SRC-2 local only O
(
poly(n)

)
known [SS21]

SRC-1 global ?
Res none exp

(
Ω(n)

)
[Tor13]

22 / 45

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}

Lemma: Asymmetric graphs =⇒ Asymmetric ISO-formula

Lemma: Asymmetric formula =⇒ Res-Size = SRC-1-Size [Szeider]

23 / 45

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}

Lemma: Asymmetric graphs =⇒ Asymmetric ISO-formula

Lemma: Asymmetric formula =⇒ Res-Size = SRC-1-Size [Szeider]

23 / 45

Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}

Lemma: Asymmetric graphs =⇒ Asymmetric ISO-formula

Lemma: Asymmetric formula =⇒ Res-Size = SRC-1-Size [Szeider]

23 / 45

Asymmetric Graphs With Large Weisfeiler–Leman-Dimension

Without looking at ISO-formula:

(G,λ)≡Lk
(H,µ) =⇒ Size

(
ISO(G,H) `⊥

)
≥ exp

(
Ω
(
[N-Width(ISO(G,H) ⊥̀)]2
sum of color class sizes

))

[Dawar and Khan] showed: There are pairs of non-isomorphic graphs that are

asymmetric (unlike CFI-graphs)

have small size O(k)

with large WL-dim k

and color classes of size 4

24 / 45

Result: An Exponential GI Lower Bound for SRC-1

Our Result:

There is a family of non-isomorphic graph pairs (Gn, Hn)

with O(n) vertices each,

such that any SRC-1 refutation of ISO(Gn, Hn) requires

size exp
(
Ω(n)

)
.

25 / 45

A Practitioner’s View on SAT
Some Good News

26 / 45

Two Solver Paradigms

SLS =
∧

random exploration

+ Excels at random instances
− Can get stuck
− Incomplete

DPLL =
∧

intelligent, systematic search

+ Well suited for application instances
+ Complete solver
− Complicated to analyze

27 / 45

Ten Challenges in Propositional Reasoning and Search

“ Demonstrate the successful combination of stochastic search and
systematic search techniques, by the creation of a new algorithm that
outperforms the best previous examples of both approaches. ”

Selman, Kautz, McAllester; Proc. IJCAI 1997

28 / 45

Our Idea: Terraform the Landscape for SLS

x1 x2

x5

x4

x6

x3 x10

x7 x8

1UIP

x9 x10

x1 ∨ x2

x2
∨ x5

x4 ∨ x5 ∨ x6

x2 ∨ x3 ∨ x4

x3 ∨ x8 ∨ x10

x7 ∨ x8 x8 ∨ x9 x9 ∨ x10

Learn clause set L

p cnf 12 22

1 2 3 0

4 5 6 0

7 8 9 0

10 11 12 0

-1 -4 0

-1 -7 0

-1 -10 0

-4 -7 0

-4 -10 0

-7 -10 0

-2 -5 0

-2 -8 0

-2 -11 0

-5 -8 0

-5 -11 0

-8 -11 0

-3 -6 0

-3 -9 0

-3 -12 0

-6 -9 0

-6 -12 0

-9 -12 0

10 11 1 0

-6 7 1 0

3 -8 0

29 / 45

Thought Experiment: Are all Implied Clauses Created Equal?

Backbone for satisfiable formula

The backbone B(F) is the set of literals appearing in all satisfying assignments of F :

B(F) :=
⋂

α: F �α=1

α.

Deceptive model: (x ∨ y ∨ z), where x, y, z ∈ B(F)

General model: (x ∨ y ∨ z), where x ∈ B(F) and y, z ∈ Vars(F)

30 / 45

Effect of the Models

20 40 60 80 100 120 140 160 180 200

104

105

106

107

Number of added clauses

Av
g.

Fl
ip

s
(1

00
ru

ns
)

Deceptive Model

20 40 60 80 100 120 140 160 180 200

105

106

Number of added clauses

General Model

But: Both models are unrealistic.

31 / 45

Effect of the Models

20 40 60 80 100 120 140 160 180 200

104

105

106

107

Number of added clauses

Av
g.

Fl
ip

s
(1

00
ru

ns
)

Deceptive Model

20 40 60 80 100 120 140 160 180 200

105

106

Number of added clauses

General Model

But: Both models are unrealistic.

31 / 45

GapSAT

Start
#Vars >
9000

k-SAT

probSAT

probSAT
15 000 000 flips

probSAT
35 000 000 flips

probSAT
6 000 000 flips

Glucose
= 300 s

width≤ 4

Glucose
≤ 300 s

5%, width≤ 8

Glucose
≤ 300 s

1%, width≤ 9

probSAT
until timeout

probSAT
until timeout

probSAT
until timeout

no

yes

k = 3

k = 5

k = 7

32 / 45

Our Very Own SAT Contest

0 100 200

0

2000

4000

Solved instances

T
im

e
in

se
co

nd
s

probSAT
Sparrow2Riss
GapSAT

Instances solved Score

probSAT 133 1 234 986
Sparrow2Riss 189 672 336
GapSAT 223 347 156

33 / 45

Improvement of Several Orders of Magnitude—but Outliers

10−2 10−1 100 101 102 103 104

GapSAT

probSAT

Time in seconds

34 / 45

Further Investigation:

Runtime Distributions and Restarts

Aim: Model modification process of GapSAT more generally
Analyze hardness of logically equivalent formulas

35 / 45

Abstraction: Adjusted Logical Formula Algorithm Alfa

Algorithm 2: Adjusted Logical Formula Algorithm (Alfa)

Input: Boolean formula F , Promise: F ∈ SAT

Generate randomly a set L of clauses such that F � L
Call SLS(F ∪ L) for some SLS solver SLS

36 / 45

Experimental Setup

solve 100 times with each solver S

F

F (1) flipsS(F
(1), s1), . . . , flipsS(F

(1), s100) meanS(F
(1)) =: x1

F (2) flipsS(F
(2), s1), . . . , flipsS(F

(2), s100) meanS(F
(2)) =: x2

...
F (5000) flipsS(F

(5000), s1), . . . , flipsS(F
(5000), s100) meanS(F

(5000)) =: x5000

Given such a sample (x1, . . ., x5000), plot the empirical distribution function

F̂5000(t) :=
1

5000

5000∑
i=1

1{xi≤t}, t ∈ R.

37 / 45

Experimental Setup

solve 100 times with each solver S

F

F (1) flipsS(F
(1), s1), . . . , flipsS(F

(1), s100) meanS(F
(1)) =: x1

F (2) flipsS(F
(2), s1), . . . , flipsS(F

(2), s100) meanS(F
(2)) =: x2

...
F (5000) flipsS(F

(5000), s1), . . . , flipsS(F
(5000), s100) meanS(F

(5000)) =: x5000

Given such a sample (x1, . . ., x5000), plot the empirical distribution function

F̂5000(t) :=
1

5000

5000∑
i=1

1{xi≤t}, t ∈ R.

37 / 45

Experimental Setup

solve 100 times with each solver S

F

F (1) flipsS(F
(1), s1), . . . , flipsS(F

(1), s100) meanS(F
(1)) =: x1

F (2) flipsS(F
(2), s1), . . . , flipsS(F

(2), s100) meanS(F
(2)) =: x2

...
F (5000) flipsS(F

(5000), s1), . . . , flipsS(F
(5000), s100) meanS(F

(5000)) =: x5000

Given such a sample (x1, . . ., x5000), plot the empirical distribution function

F̂5000(t) :=
1

5000

5000∑
i=1

1{xi≤t}, t ∈ R.

37 / 45

Experimental Setup

solve 100 times with each solver S

F

F (1) flipsS(F
(1), s1), . . . , flipsS(F

(1), s100) meanS(F
(1)) =: x1

F (2) flipsS(F
(2), s1), . . . , flipsS(F

(2), s100) meanS(F
(2)) =: x2

...
F (5000) flipsS(F

(5000), s1), . . . , flipsS(F
(5000), s100) meanS(F

(5000)) =: x5000

Given such a sample (x1, . . ., x5000), plot the empirical distribution function

F̂5000(t) :=
1

5000

5000∑
i=1

1{xi≤t}, t ∈ R.

37 / 45

Experimental Setup

solve 100 times with each solver S

F

F (1) flipsS(F
(1), s1), . . . , flipsS(F

(1), s100) meanS(F
(1)) =: x1

F (2) flipsS(F
(2), s1), . . . , flipsS(F

(2), s100) meanS(F
(2)) =: x2

...
F (5000) flipsS(F

(5000), s1), . . . , flipsS(F
(5000), s100) meanS(F

(5000)) =: x5000

Given such a sample (x1, . . ., x5000), plot the empirical distribution function

F̂5000(t) :=
1

5000

5000∑
i=1

1{xi≤t}, t ∈ R.

37 / 45

Experimental Setup

solve 100 times with each solver S

F

F (1) flipsS(F
(1), s1), . . . , flipsS(F

(1), s100) meanS(F
(1)) =: x1

F (2) flipsS(F
(2), s1), . . . , flipsS(F

(2), s100) meanS(F
(2)) =: x2

...
F (5000) flipsS(F

(5000), s1), . . . , flipsS(F
(5000), s100) meanS(F

(5000)) =: x5000

Given such a sample (x1, . . ., x5000), plot the empirical distribution function

F̂5000(t) :=
1

5000

5000∑
i=1

1{xi≤t}, t ∈ R.

37 / 45

Instance Types and Solvers Used

Instance Types:
1 Hidden Solution (different parameters)

2 Uniform Random

3 Factoring

4 Coloring

Used Solvers:
1 SRWA

2 probSAT solver family

3 YalSAT

Total CPU time:
80 years!

38 / 45

Experimental Results and Statistical Evaluation
——————————— Type A Instances ———————————

107 108 109
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

0 2 · 108 4 · 108 6 · 108
0

0.2

0.4

0.6

0.8

1

Flips

Empirical
LogN fit

107 108 109
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

——————————— Type B Instances ———————————

103.8 103.9 104 104.1
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

0 0.5 · 104 1 · 104 1.5 · 104
0

0.2

0.4

0.6

0.8

1

Flips

Empirical
LogN fit

103.8 103.9 104 104.1
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

39 / 45

Experimental Results and Statistical Evaluation
——————————— Type A Instances ———————————

107 108 109
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

0 2 · 108 4 · 108 6 · 108
0

0.2

0.4

0.6

0.8

1

Flips

Empirical
LogN fit

107 108 109
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

——————————— Type B Instances ———————————

103.8 103.9 104 104.1
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

0 0.5 · 104 1 · 104 1.5 · 104
0

0.2

0.4

0.6

0.8

1

Flips

Empirical
LogN fit

103.8 103.9 104 104.1
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

39 / 45

Experimental Results and Statistical Evaluation
——————————— Type A Instances ———————————

107 108 109
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

0 2 · 108 4 · 108 6 · 108
0

0.2

0.4

0.6

0.8

1

Flips

Empirical
LogN fit

107 108 109
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

——————————— Type B Instances ———————————

103.8 103.9 104 104.1
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

0 0.5 · 104 1 · 104 1.5 · 104
0

0.2

0.4

0.6

0.8

1

Flips

Empirical
LogN fit

103.8 103.9 104 104.1
10−4

10−3

10−2

10−1

100

Flips

Empirical
LogN fit

39 / 45

Conjectures

Strong Conjecture

The runtimes of Alfa-algorithms follow lognormal distributions.

Definition ([FKZ11])

A positive, real-valued random variable X is long-tailed, if and only if

∀x ∈ R+ : P [X > x] > 0 and ∀y ∈ R+ : lim
x→∞

P [X > x+ y]

P [X > x]
= 1.

Weak Conjecture

The runtimes of Alfa-algorithms follow long-tailed distributions.

40 / 45

Conjectures

Strong Conjecture

The runtimes of Alfa-algorithms follow lognormal distributions.

Definition ([FKZ11])

A positive, real-valued random variable X is long-tailed, if and only if

∀x ∈ R+ : P [X > x] > 0 and ∀y ∈ R+ : lim
x→∞

P [X > x+ y]

P [X > x]
= 1.

Weak Conjecture

The runtimes of Alfa-algorithms follow long-tailed distributions.

40 / 45

Usefulness of Restarts

Consequence of the Strong Conjecture

Strong Conjecture (runtimes are lognormally distributed)
[Lor18]
=⇒ Restarts are useful

New Mathematical Result:

Consequence of the Weak Conjecture

Weak Conjecture (runtimes are long-tailed distributed) =⇒ Restarts are useful

41 / 45

Usefulness of Restarts

Consequence of the Strong Conjecture

Strong Conjecture (runtimes are lognormally distributed)
[Lor18]
=⇒ Restarts are useful

New Mathematical Result:

Consequence of the Weak Conjecture

Weak Conjecture (runtimes are long-tailed distributed) =⇒ Restarts are useful

41 / 45

Contributions

42 / 45

List of Own Publications — Proof Complexity

Number of Variables for Graph Identification and the Resolution of GI Formulas
J. Torán and F. Wörz
– Journal version: Submitted to ACM Transactions on Computational Logic (ACM TOCL)
– Conference version: EACSL Conference on Computer Science Logic (CSL), 2022

Reversible Pebble Games and the Relation Between Tree-Like and General Resolution
Space
J. Torán and F. Wörz
– Journal version: Computational Complexity (2021)
– Conference version: Int. Symposium on Theor. Aspects of Computer Science (STACS), 2020

43 / 45

List of Own Publications — Experiments

Towards an Understanding of Long-Tailed Runtimes
J.-H. Lorenz and F. Wörz
– Journal version: Accepted in ACM Journal of Experimental Algorithmics (ACM JEA), 2022

Too Much Information: Why CDCL Solvers Need to Forget Learned Clauses
T. Krüger, J.-H. Lorenz, and F. Wörz
– Journal version: PLOS ONE (2022)

Evidence for Long-Tails in SLS Algorithms
F. Wörz and J.-H. Lorenz
– Conference version: European Symposium on Algorithms (ESA), 2021

– Best Student Paper awarded by European Association for Theor. Comp. Science (EATCS)

On the Effect of Learned Clauses on Stochastic Local Search
J.-H. Lorenz and F. Wörz
– Conference version: Theory and Applications of Satisfiability Testing (SAT), 2020

44 / 45

Some of Our Contributions

Proof Complexity:
Systematic study of CS vs.Tree-CS

Complexity of Graph Isomorphism in different proof systems

Contributions to Applied SAT Solving:
Construction of a novel hybrid solver GapSAT

Study of long-tails and proof of usefulness of restarts

Theoretical runtime distribution analysis of Schöning’s random walk

Clause deletion and multimodality in CDCL solvers

45 / 45

	Motivation
	The Bad News: Proof Complexity
	Proof Complexity Basics
	Resolution of Graph Isomorphism Formulas

	The Good News: Advances in Engineering
	Constructing a Hybrid Solver
	Runtime Distribution Analysis and Restarts

	Contributions

