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The SAT Problem

Given:

Question:
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Karp's 21 NP-Complete Problems
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Two Approaches to Investigate SAT

The Bad News

The Good News

Proof Complexity Advances in Engineering
e All: exponential runtime in worst-case ® Applied researchers don't care
® Power and limits ® Solvers handle millions of variables
e Upper & lower bounds ® Myth: “NP problems are hard”
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Proof Complexity

Bad News in the Form of Lower Bounds
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Abstract Models To Investigate SAT

. How to capture the essence of solvers
Qo via a simple yet powerful mathematical abstraction?

Abstraction can:

— enable deeper understanding of internals of solvers
— enable ease of theoretical analysis

— enable better solver design
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Proof Systems

F UNSAT
( FORMULA \

SAT > do PROOF
SOLVER =N SYSTEM
: (AvB)  (AvB)
LVER | _ PROOF OF
Frkcr ® N FALSITY

L
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The Proof System Resolution

Resolution Rule

AV Bvzx
AV B
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Complexity Measures for a Resolution Proof 7

Size
# clauses

Width

# literals in largest clause
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Complexity Measures for a Resolution Proof 7
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Complexity Measures for Refuting a Formula F’

Fix a formula F'.

For each complexity measure %"
Take minimum over all

refutations 7 of F

C(FFL):= min ¢(
Frb= pin v
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The [BWO01] Result: A Connection Between Size & Width

Easy Observation

A narrow resolution refutation is necessarily short.

Proof. Width(m) < w == No. of possible clauses < >~ (N‘"?(F”)Qi < nO®), O
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The [BWO01] Result: A Connection Between Size & Width

Easy Observation

A narrow resolution refutation is necessarily short.

Proof. Width(r) <w == No. of possible clauses < >-% ; (IV*rs(F)l)2i < O), O

Sort of a Converse is True

. . 2
“Short proofs are narrow”: Size(F |- 1) > exp <Q <[W1dth(7\tir)szg|ldth(F)] >>
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The Complexity of Graph Isomorphism

First Act: Resolution
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Graph Isomorphism Formulas

Take the Graph Isomorphism Problem. ..
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Graph Isomorphism Formulas

..and encode it as the formula ISO(G, H):

m Type 1 clauses: consider all vertices
Take the Graph Isomorphism Problem. .. Vi€ [n]:(wiaVaiaV-- Vi,
Q @) Vj€ln]:(z;Vag; Ve Van)
m Type 2 clauses: function + injective
(v2) (v5) @ @ Vi, j, k € [n] with j # k: (Zi; VZTir)
Vi, j, k € [n] with i # j - (Tig V Tjz)
m Type 3 clauses: adjacency relation

Vi < j and k # £ with
{vi,vj} € Eg & {vr, v} & En = (Tig V Tjp)
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Graph Isomorphism Formulas

..and encode it as the formula ISO(G, H):
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Graph Isomorphism Formulas

...and encode it as the formula ISO(G, H):

m Type 1 clauses: consider all vertices

Take the Graph Isomorphism Problem. .. Vien]:(zi1VaaV- VT,

n X m Vi€ n]: (21, Vo V- V)

m Type 2 clauses: function + injective

(v2) (v5) @ @ Vi, j, k € [n] with j # k: (Zi; VZTir)

Vi, j, k € [n] with i # j : (Tig V T5k)

=1 <= wv; is mapped to w;, : :
- Pl / m Type 3 clauses: adjacency relation

Vi < j and k # £ with

{vi,v;} € Eq & {vg, v} € En - (Tip V Tjq)
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Problem When Using [BWO1] for ISO-Formulas

First Lower Bound Attempt

. . 2
Just use Size(F 1) > exp (Q ([Wldth(F)—J_)—Wldth(F)] >> ?

[Vars(F)|
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Problem When Using [BWO1] for ISO-Formulas

N~/

(.’L’zl\/ \/$zn

First Lower Bound Attempt

2
. Width (Fr-L)—Width(F) ?
Justuse Size(F'-L) > exp (Q <[ Vars(F) | >> :

Problem! Width(F') =
Width(F 1) = O(n)
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ldea: Use Narrow Resolution

Distinction by Cases Rule [GTO05]

AVl ... AV,
A V---VA,VB

if (BVOHV---Viy)eF

Narrow Width
exclude all axioms in the count (here: 2)

x
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ldea: Use Narrow Resolution

Distinction by Cases Rule [GTO05]

AVl ... AV,
A V---VA,VB

if (BV{OV---Viy)eF

@ [BWO1] for narrow width?
@ How to get bounds?

Narrow Width =<
exclude all axioms in the count (here: 2)

x
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Common Technique in Proof Complexity: Use Games!

Spoiler and Duplicator compete in the k-Witnessing Game on the formula ISO(G, H)

m Game state is a partial assignment, initially ag = ¢
m In each round j

Spoiler: Chooses a subset o/ C a1 of size at most k — 1
Chooses a Type 1 clause C' in ISO(G, H), say (zij1 V-V x;p)

Duplicator: Extends a; := o/ U {¢ =1} for some literal £ € C

m Game ends when Duplicator cannot extend such that

— oy satisfies C' and
— does not falsify any other clause in ISO(G, H)
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Main Result: Connection Between FO and PC

Narrow Width Refutation

of ISO(G, H)

N-Width(r) < k —1

ARG

k-Witnessing Game

Spoiler wins on ISO(G, H)
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Main Result: Connection Between FO and PC

Immerman’s Pebble Game Narrow Width Refutation
on G and H of ISO(G, H)

= [ & N-Width(r) < k-1

4
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Main Result: Connection Between FO and PC

Immerman’s Pebble Game Narrow Width Refutation
on G and H of ISO(G, H)

+ 1 — = N-Width(m) < k — 1

4

k-Witnessing Game

Spoiler wins on ISO(G, H)
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Immerman’s k-Pebble Game: Player | Wants to Show G 2% H

m Player | and Player Il have k pebble pairs

[ Pebble Supply )

Player T Player IT
Pair1 Q Q
Pair2 @ @
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Immerman’s k-Pebble Game: Player | Wants to Show G 2% H

@

m Player | and Player Il have k pebble pairs
® In each round:

m Player | chooses: U3

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

m Player Il simply reacts.

m Player Il survives if pebbled subgraphs are
isomorphic X Player | won!
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Immerman’s k-Pebble Game: Player | Wants to Show G 2% H

m Player | and Player Il have k pebble pairs
® In each round: %

m Player | chooses: U3

— put a pebble pair back into the box, OR
— place a new pebble of a pair on any graph

m Player Il simply reacts.

m Player Il survives if pebbled subgraphs are pebble pairs
. . (# variables
isomorphic X Player | won! )
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Resolution Is Strong Enough to Simulate Immerman’s Game

= Size(ISO(G, H) L) <n°®

Basic Idea for Upper Bound

BG#y H = N-Width(ISO(G,H)F1) <k—1
— N-Size(ISO(G, H) - L) < Y51 ()2 < nO®)

B Simulate a Narrow-step in at most n Res-steps
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Application: Automated GI-Theorem Proving

Algorithm 1: Automated Graph Non-isomorphism Prover
Input: ISO(G, H), Promise: G % H
k+1

Repeat
L Derive all resolvents derivable in narrow width k&

If L was derived then output “non-isomorphic”
k+—k+1

Running Time for Constant k:

nO®) = poly(n)
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The Complexity of Graph Isomorphism

Second Act: Lower Bounds for Stronger Proof Systems

20/45



Extending Resolution: Krishnamurthy’s Symmetry Rules

0101 11202
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Extending Resolution: Krishnamurthy's Symmetry Rules

a1b1 —\blcl agbg —|b262
aicy —ay azC2 —az
C1 —1C11Cy Ca
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Extending Resolution: Krishnamurthy’s Symmetry Rules

11202

(Zlbl
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Extending Resolution: Krishnamurthy's Symmetry Rules

a1by

21/45



Extending Resolution: Krishnamurthy’s Symmetry Rules

0101 11202

Cl jCl“CQ
S \ /
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Extending Resolution: Krishnamurthy's Symmetry Rules

N

o
[o:01 = o] € S.\'m([")[ \
C2 C2
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Extending Resolution: Krishnamurthy's Symmetry Rules

e
[0:01 — €5 € S\'m(/")[ \
C2 C2

L
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Is GI € co-NP?

Cook & Reckhow ’79
Gl € coNP «— 3 : -Size(GI + L) < poly(n)

Proof System Symmetry Rule Known Bounds

SRC-2 local only O(poly(n)) known [s521]
SRC-1 global ?

Res none exp(Q(n)) [Tor13]
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Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}
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Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}

Lemma: Asymmetric graphs = Asymmetric ISO-formula
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Battle SRC-1 With Asymmetric Graphs

Asymmetric Graph G: Aut(G) = {id}
Lemma: Asymmetric graphs = Asymmetric ISO-formula

Lemma: Asymmetric formula = Res-Size = SRC-1-Size
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Asymmetric Graphs With Large Weisfeiler—-Leman-Dimension

Without looking at ISO-formula:

(G,A) =4, (H,pn) = Size(ISO(G, H) 1) > exp <Q ([N-Width<ISO(G7H>H>12))

[Dawar and Khan] showed: There are pairs of non-isomorphic graphs that are
m asymmetric (unlike CFl-graphs)
m have small size O(k)
m with large WL-dim k&
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Result: An Exponential Gl Lower Bound for SRC-1

Our Result:

There is a family of non-isomorphic graph pairs (G,,, H,)
m with O(n) vertices each,
m such that any SRC-1 refutation of ISO(G,,, H,,) requires

size exp(Q(n)).
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A Practitioner’s View on SAT

Some Good News
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Two Solver Paradigms

SLS = random exploration

-+ Excels at random instances
— Can get stuck
— Incomplete

DPLL = intelligent, systematic search

~+ Well suited for application instances
-+ Complete solver
— Complicated to analyze
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Ten Challenges in Propositional Reasoning and Search

k b Demonstrate the successful combination of stochastic search and
systematic search techniques, by the creation of a new algorithm that
outperforms the best previous examples of both approaches. 1

Selman, Kautz, McAllester; Proc. IJCAI 1997
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Our Idea: Terraform the Landscape for SLS

p cnf 12 22
123
456
789

10 11 12
-1 -4
-1 -7

-1 -10
-4 -7
-4 -10
-7 -10
-2 -5
-2 -8
-2 -11
-5 -8
-5 -11
-8 -11
-3 -6
-3 -9
-3 -12
-6 -9

@ ®
x7 &g Tg T10 -6 -12
Q TTVas " T VT " 19 VT

Learn clause set L

1UIP

-9 -12
\ 10 11 1

-6 71
3 -8

OCO0O0000000O00O0O0O0O0OOO0OO0OOO0OO0O OO

29 /45



Thought Experiment: Are all Implied Clauses Created Equal?

Backbone for satisfiable formula

The backbone %(F) is the set of literals appearing in all satisfying assignments of F:

Deceptive model: (z VgV Z), where z,y,z € B(F)

General model: (zVyV z), where x € #(F') and y, z € Vars(F)
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Effect of the Models

Avg. Flips (100 runs)

107

108

10°

104

Deceptive Model

General Model

106

10°

20 40 60 80 100 120 140 160 180 200

Number of added clauses

20 40 60 80 100 120 140 160 180 200

Number of added clauses
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Effect of the Models

But: Both models are unrealistic.
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GapSAT

Gl
probSAT k=3 probSAT s probSAT
35000 000 flips width <‘4 until timeout
k=5| probSAT Gr<11;((:)gsse probSAT

15000 000 flips until timeout

5%, width < 8

Glucose
probSAT < S probSAT
6000000 flips 1%,7widt}; <9 until timeout
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Our Very Own SAT Contest

Time in seconds

!

probSAT

—e— Sparrow2Riss

4000 = _ & GapSAT

2000

XX R — m —mm - ek ey

100

Solved instances

200

Instances solved Score
probSAT 133 1234986
Sparrow2Riss 189 672336
GapSAT 223 347156
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Improvement of Several Orders of Magnitude—but Outliers

probSAT - }—| I |
GapSAT - — [ Hecome oo =

TTTTTT T T TTTTI] T T TTTTI T T TTTT T T TTTT T T TTTT T T TTTTT
10°2 10~Y 10° 10 10% 10 104
Time in seconds
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Further Investigation:

Runtime Distributions and Restarts

Aim: Model modification process of GapSAT more generally
Analyze hardness of logically equivalent formulas
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Abstraction: Adjusted Logical Formula Algorithm ALFA

Algorithm 2: Adjusted Logical Formula Algorithm (ALFA)
Input: Boolean formula F', Promise: F' € SAT

Generate randomly a set L of clauses such that F'E L
Call SLS(F U L) for some SLS solver SLS
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Experimental Setup

)
F2)

J7(5600)
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Experimental Setup

solve 100 times with each solver S

| |

FO  Alipsg(FM, s1), ooy flipsg(FM) s100)
F@2)

F(dooo)
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Experimental Setup

solve 100 times with each solver S

| |

FO  Alipsg(FM, s1), ooy flipsg(FM) s100) meang(F()) =:
r F@ o flipsg(F®), s1), oy Aflipsg(F®), s100) meang(F®) =: 2,
F(5000) f|iP55(F(5000)7 81)s e ﬂiPSS(F(SOOO), 5100) meanS(F(SOOO)) =1 75000
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Experimental Setup

solve 100 times with each solver S

| |

FM flipsg(FM s1), oy Aflipsg(FM, s100) meang(FW) =: z,
r F® flipsg(F ), s1), oy Aflipsg(F®), s100) meang(F(?)) =
FO000) flips o (F(000) sy . flipsg(F(®09) s100)  meang(F00)) = 25000

Given such a sample (x4, ..., 25000), plot the empirical distribution function

5000
Frooo(t) - 50002 {o<ty, tER
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Instance Types and Solvers Used

Instance Types:

Hidden Solution (different parameters)
Uniform Random

Factoring

Coloring

Used Solvers:

SRWA

probSAT solver family
YalSAT

Total CPU time:
80 years!
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Experimental Results and Statistical Evaluation

Type A Instances
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and Statistical Evaluation
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Experimental Results and Statistical Evaluation
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Conjectures

Strong Conjecture

The runtimes of ALFA-algorithms follow lognormal distributions.
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Conjectures

Strong Conjecture

The runtimes of ALFA-algorithms follow lognormal distributions.

Definition

A positive, real-valued random variable X is long-tailed, if and only if

P[X
ViER':P[X>2]>0 and VyeR: lim Ll g

z—oo  P[X > z]

Weak Conjecture

The runtimes of ALFA-algorithms follow long-tailed distributions.
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Usefulness of Restarts

Consequence of the Strong Conjecture

]

: : L Lorl8
Strong Conjecture (runtimes are lognormally distributed) [é Restarts are useful
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Usefulness of Restarts

Consequence of the Strong Conjecture

]

: : L Lorl8
Strong Conjecture (runtimes are lognormally distributed) [é Restarts are useful

New Mathematical Result:

Consequence of the Weak Conjecture

Weak Conjecture (runtimes are long-tailed distributed) = Restarts are useful
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Contributions
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List of Own Publications — Proof Complexity

Number of Variables for Graph ldentification and the Resolution of Gl Formulas

J. Tordn and F. Worz

— Journal version: Submitted to ACM Transactions on Computational Logic (ACM TOCL)
— Conference version: EACSL Conference on Computer Science Logic (CSL), 2022

Reversible Pebble Games and the Relation Between Tree-Like and General Resolution
Space

J. Tordn and F. Worz

— Journal version: Computational Complexity (2021)

— Conference version: Int. Symposium on Theor. Aspects of Computer Science (STACS), 2020
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List of Own Publications — Experiments

Towards an Understanding of Long-Tailed Runtimes
J.-H. Lorenz and F. Worz
— Journal version: Accepted in ACM Journal of Experimental Algorithmics (ACM JEA), 2022

Too Much Information: Why CDCL Solvers Need to Forget Learned Clauses
T. Kriiger, J.-H. Lorenz, and F. Worz
— Journal version: PLOS ONE (2022)

Evidence for Long-Tails in SLS Algorithms
F. Worz and J.-H. Lorenz
— Conference version: European Symposium on Algorithms (ESA), 2021

— Best Student Paper awarded by European Association for Theor. Comp. Science (EATCS)
On the Effect of Learned Clauses on Stochastic Local Search

J.-H. Lorenz and F. Worz
— Conference version: Theory and Applications of Satisfiability Testing (SAT), 2020
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Some of Our Contributions

Proof Complexity:
m Systematic study of CS vs. Tree-CS
m Complexity of Graph Isomorphism in different proof systems

Contributions to Applied SAT Solving:
m Construction of a novel hybrid solver GapSAT

m Study of long-tails and proof of usefulness of restarts
m Theoretical runtime distribution analysis of Schoning’s random walk

m Clause deletion and multimodality in CDCL solvers
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