

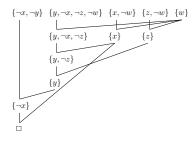
Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space

Jacobo Torán & Florian Wörz

Universität Ulm

Dagstuhl Seminar "*SAT and Interactions*" February 6, 2020 Just to Check We Are on the Same Page...

• The proof system Resolution has only one derivation rule:

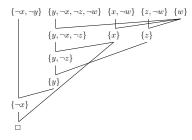


$$\frac{B \lor x \quad C \lor \overline{x}}{B \lor C}$$

- Complexity Measures:
 - Length of $\pi = \#$ of clauses in π
 - Clause Space of $\pi = \max \#$ of clauses in memory simultaneously during π
 - $\mu(F \vdash \Box) := \min_{\pi: F \vdash \Box} \mu(\pi).$
 - Prefix "Tree-" before a complexity measure indicates tree-like resolution.

Just to Check We Are on the Same Page...

• The proof system Resolution has only one derivation rule:

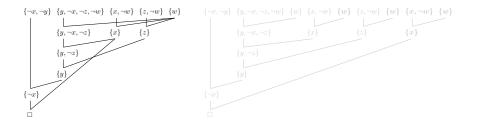


$$\frac{B \lor x \quad C \lor \overline{x}}{B \lor C}$$

- Complexity Measures:
 - Length of $\pi=\#$ of clauses in π
 - Clause Space of $\pi = \max \#$ of clauses in memory simultaneously during π
 - $\mu(F \vdash \Box) := \min_{\pi:F \vdash \Box} \mu(\pi).$
 - Prefix "Tree-" before a complexity measure indicates tree-like resolution.

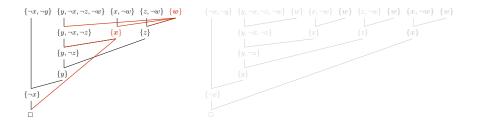
Tree-like vs. General Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.



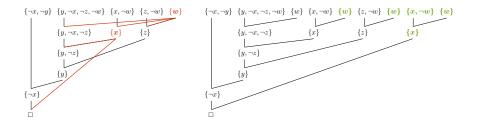
Tree-like vs. General Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.



Tree-like vs. General Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time. (\rightarrow refutation DAG G_{π} becomes a tree)



Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w. r. t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- **but** any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

- \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with
 - resolution refutations of length L (linear in n),
 - but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

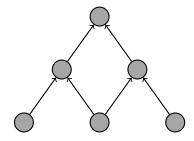
Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Part I

Separations for Pebbling Formulas

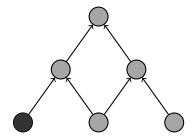
Pebble Games (games played on graphs)

Goal: Get a single black pebble on the sink of the graph.



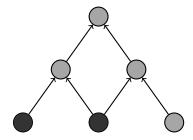
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



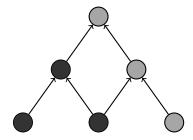
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



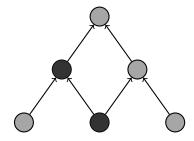
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



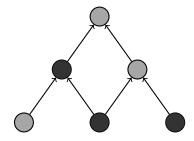
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



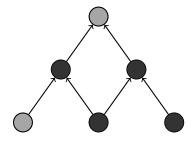
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



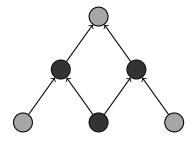
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



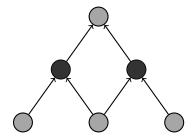
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



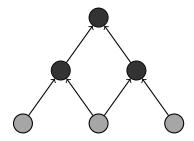
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



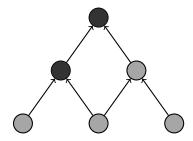
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



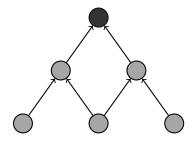
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.



- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

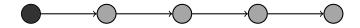


- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point:

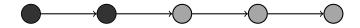
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: I



- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: II



- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

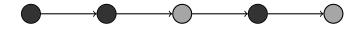
Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

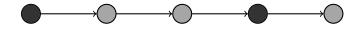
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



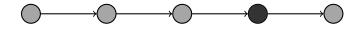
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

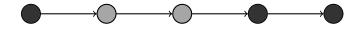


- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

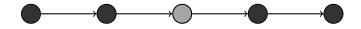
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



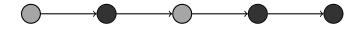
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

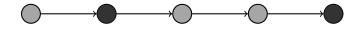
Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

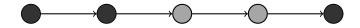
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII



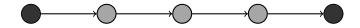
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



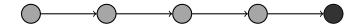
- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII



- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Complexity Measures for the Pebble Games

$$\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \left(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \right)$$

 $\mathsf{Rev}(G) := \min_{\mathsf{rev. pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$

Why even care about these pebbling prices? → Plethora connections to resolution! [Nordström '15: New Wine ...]

 $CS(F \vdash \Box) = \min_{\pi:F \vdash \Box} Black(G_{\pi})$ [Esteban, Torán '01: Space bdds. for res.]

Complexity Measures for the Pebble Games

$$\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \left(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \right)$$

 $\mathsf{Rev}(G) := \min_{\mathsf{rev. pebblings } \mathcal{P}} \left(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \right)$

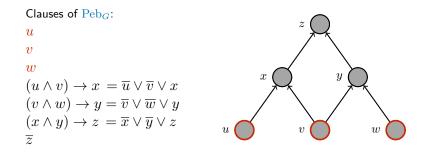
Why even care about these pebbling prices? → Plethora connections to resolution! [Nordström '15: New Wine ...]

 $CS(F \vdash \Box) = \min_{\pi:F \vdash \Box} Black(G_{\pi})$ [Esteban, Torán '01: Space bdds. for res.]

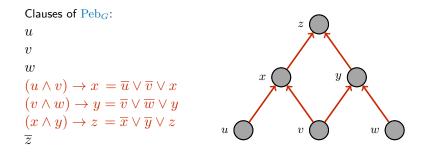
Reversible Pebbling meets Tree-CS in the Special Case of Pebbling Formulas

Clauses of Peb_{G} : u v w $(u \wedge v) \rightarrow x = \overline{u} \vee \overline{v} \vee x$ $(v \wedge w) \rightarrow y = \overline{v} \vee \overline{w} \vee y$ $(x \wedge y) \rightarrow z = \overline{x} \vee \overline{y} \vee z$ \overline{z}

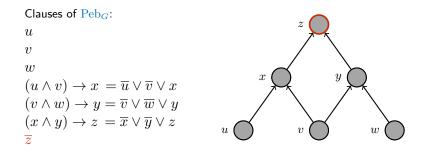
- source vertices are true
- truth propagates upwards
- but the sink vertex is false



- source vertices are true
- truth propagates upwards
- but the sink vertex is false



- source vertices are true
- truth propagates upwards
- but the sink vertex is false



- source vertices are true
- truth propagates upwards
- but the sink vertex is false

Reversible Pebbling meets Tree-CS

Theorem

For all DAGs G with a unique sink:

 $\operatorname{Rev}(G) + 2 \leq \operatorname{Tree-CS}\left(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box\right) \leq 2 \cdot \operatorname{Rev}(G) + 2.$

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

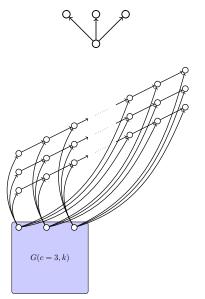
Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N} \quad \exists \text{ Results for non-const. space}?$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Obtaining Space-Separations with Pebble games (2/3)

Non-constant black pebbling number and Black-Rev-separation:



Obtaining Space-Separations with Pebble games (3/3)

Conclusion: The best known separation

For any "slowly enough" growing space function s(n) there is a family of pebbling formulas $(\operatorname{Peb}_{G_n}[\oplus_2])_{n=1}^{\infty}$ with $\Theta(n)$ variables such that

- $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \Box) = \operatorname{O}(s(n))$
- Tree-CS(Peb_{G_n}[\oplus_2] $\vdash \Box$) = $\Omega(s(n) \log n)$.

¿Can we do any better?

Obtaining Space-Separations with Pebble games (3/3)

Conclusion: The best known separation

For any "slowly enough" growing space function s(n) there is a family of pebbling formulas $(\operatorname{Peb}_{G_n}[\oplus_2])_{n=1}^{\infty}$ with $\Theta(n)$ variables such that

- $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \Box) = \operatorname{O}(s(n))$
- Tree-CS(Peb_{G_n}[\oplus_2] $\vdash \Box$) = $\Omega(s(n) \log n)$.

¿Can we do any better?

Part II

Upper Bounds for Tree-CS for General Formulas

How large can the gap between CS and $\operatorname{Tree-CS}$ grow?

Theorem

For any unsatisfiable formula F with n variables it holds (2nd ineq. is tight) $\operatorname{Tree-CS}(F \vdash \Box) \leq \min_{\pi:F \vdash \Box} \operatorname{Rev}(G_{\pi}) + 2, \text{ and}$ $\min_{\pi:F \vdash \Box} \operatorname{Rev}(G_{\pi}) \leq \operatorname{Tree-CS}(F \vdash \Box) \Big(\lceil \log n \rceil + 1 \Big)$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

Recall:
$$CS(F \vdash \Box) = \min_{\pi:F \vdash \Box} Black(G_{\pi})$$
 [ET01] \rightsquigarrow Similarity to Thm!

How large can the gap between CS and $\operatorname{Tree-CS}$ grow?

Theorem

For any unsatisfiable formula F with n variables it holds $_{\rm (2nd\ ineq.\ is\ tight)}$

$$\begin{split} \operatorname{Tree-CS}(F \vdash \Box) &\leq \min_{\pi: F \vdash \Box} \operatorname{Rev}(G_{\pi}) + 2, \text{ and} \\ &\min_{\pi: F \vdash \Box} \operatorname{Rev}(G_{\pi}) \leq \operatorname{Tree-CS}(F \vdash \Box) \Big(\lceil \log n \rceil + 1 \Big). \end{split}$$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

Recall:
$$CS(F \vdash \Box) = \min_{\pi:F \vdash \Box} Black(G_{\pi})$$
 [ET01] \sim Similarity to Thm!

How large can the gap between CS and $\operatorname{Tree-CS}$ grow?

Theorem

For any unsatisfiable formula F with n variables it holds $_{\rm (2nd\ ineq.\ is\ tight)}$

$$\begin{split} \operatorname{Tree-CS}(F \vdash \Box) &\leq \min_{\pi: F \vdash \Box} \mathsf{Rev}(G_{\pi}) + 2, \text{ and} \\ & \min_{\pi: F \vdash \Box} \mathsf{Rev}(G_{\pi}) \leq \operatorname{Tree-CS}(F \vdash \Box) \Big(\lceil \log n \rceil + 1 \Big). \end{split}$$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

Recall:
$$CS(F \vdash \Box) = \min_{\pi:F \vdash \Box} Black(G_{\pi})$$
 [ET01] \rightsquigarrow Similarity to Thm!

How large can the gap between CS and $\operatorname{Tree-CS}$ grow?

Theorem

For any unsatisfiable formula F with n variables it holds $_{\rm (2nd\ ineq.\ is\ tight)}$

$$\begin{split} \operatorname{Tree-CS}(F \vdash \Box) &\leq \min_{\pi: F \vdash \Box} \operatorname{\mathsf{Rev}}(G_{\pi}) + 2, \text{ and} \\ & \min_{\pi: F \vdash \Box} \operatorname{\mathsf{Rev}}(G_{\pi}) \leq \operatorname{Tree-CS}(F \vdash \Box) \Big(\lceil \log n \rceil + 1 \Big). \end{split}$$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

Recall:
$$CS(F \vdash \Box) = \min_{\pi:F \vdash \Box} Black(G_{\pi})$$
 [ET01] \rightsquigarrow Similarity to Thm!

A combinatorial characterization of Tree-CS (by a game played on formulas)

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula ${\cal F}$

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers

 x = 0,
 x = 1 or
 x = * ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula ${\cal F}$

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers

$$-x = 0,$$

 $-x = 1 \text{ or}$
 $-x = * ("you choose")$

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula ${\cal F}$

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers -x = 0, -x = 1 or -x = * ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula ${\cal F}$

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers
x = 0,
x = 1 or
x = * ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula ${\cal F}$

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers
x = 0,
x = 1 or
x = * ("you choose")

[Pudlák, Impagliazzo '00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers
x = 0,
x = 1 or
x = * ("you choose")

The Prover-Delayer Game A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula. PD $(F) := \max$ pts. of Delayer on F against optimal strategy of Prover.

 $\mathsf{T}\mathsf{heorem}$ ([Esteban, Torán '03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS $(F \vdash \Box) = \mathsf{PD}(F) + 2.$

The Prover-Delayer Game A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula. PD $(F) := \max$ pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, Torán '03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS $(F \vdash \Box) = \mathsf{PD}(F) + 2.$

The equivalence of Rev and R-Mc

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=} 0$
• Chooses empty vertex	

Given: A single sink DAG G

_

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=} 0$
• Chooses empty vertex	

Given: A single sink DAG G

_

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=} 0$
• Chooses empty vertex	

Given: A single sink DAG G

_

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=}0$
• Chooses empty vertex	

Given: A single sink DAG G

_

Two players take rounds... until Game Over...

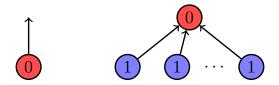
Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=}0$
• Chooses empty vertex	

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=}0$
• Chooses empty vertex	

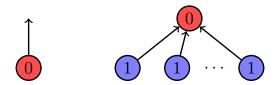
Two players take rounds... until Game Over..., i. e., when we have:



Either a red source or red vertex with all predecessors blue.

R-Mc(G) := smallest r s. th. Pebbler wins in $\leq r$ rounds against an optimal strategy of Colourer

Two players take rounds... until Game Over..., i. e., when we have:



Either a red source or red vertex with all predecessors blue.

 $\operatorname{R-Mc}(G) :=$ smallest r s.th. Pebbler wins in $\leq r$ rounds against an optimal strategy of Colourer

 $\mathsf{Rev}(G) = \mathsf{R-Mc}(G)$

Theorem ([Chan '13: Just a pebble game])

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G).$

The Actual Proof

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C|_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\restriction}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by lpha

 \rightarrow Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C|_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C|_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C\!\!\upharpoonright_{\!\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C{\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C{\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$

 \rightarrow not possible, since no α can sat'y two parent clauses in a resolution proof, while falsifying their resolvent!

An upper bound for Tree-CS Proof sketch of Tree- $CS(F \vdash \Box) \le \min_{\pi:F \vdash \Box} Rev(G_{\pi}) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$

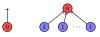
An upper bound for Tree-CS Proof sketch of Tree- $CS(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \text{Rev}(G_{\pi}) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$



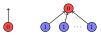
An upper bound for Tree-CS Proof sketch of Tree- $CS(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \text{Rev}(G_{\pi}) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$



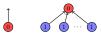
An upper bound for Tree-CS Proof sketch of Tree- $CS(F \vdash \Box) \le \min_{\pi:F \vdash \Box} \text{Rev}(G_{\pi}) + 2$

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$



An upper bound for Tree-CS in terms of CS^*

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

```
Tree-CS(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.
```

Proof.

- [Královič '04: Time and Space Complexity of Reversible Pebbling] $\operatorname{Rev}(G_{\pi}) + 2 \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P})) + 2$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

An upper bound for Tree-CS in terms of CS^*

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

```
Tree-CS(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.
```

Proof.

- [Královič '04: Time and Space Complexity of Reversible Pebbling] Rev(G_π) + 2 ≤ min_P (space(P) · log time(P)) + 2, where the minimum is taken over all black pebblings P of G_π.
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

An upper bound for Tree-CS in terms of CS^*

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

```
Tree-CS(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.
```

Proof.

- [Královič '04: Time and Space Complexity of Reversible Pebbling] $\operatorname{Rev}(G_{\pi}) + 2 \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P})) + 2$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

Part III

The Tseitin Formula Case

Better Bounds for Tseitin Formulas

Tseitin Formulas: "Sum of degrees of vertices in a graph is even"

A quick Recap: We have just seen

Tree-CS
$$(F \vdash \Box) \lesssim \min_{\pi:F \vdash \Box} \left(CS(\pi) \cdot \log L(\pi) \right).$$

Theorem: Matching Upper and Lower Bounds for Tseitin Formulas

- For any connected graph G with n vertices and odd marking χ : $\operatorname{Tree-CS}\left(\operatorname{Ts}(G,\chi) \vdash \Box\right) \lesssim \operatorname{CS}\left(\operatorname{Ts}(G,\chi) \vdash \Box\right) \cdot \log n.$
- \exists a family of Tseitin formulas $(Ts(G_n, \chi_n))_{n=1}^{\infty}$ s.th. $\forall n \in \mathbb{N}$:

Tree-CS $(\operatorname{Ts}(G_n, \chi_n) \vdash \Box) = \Omega (\operatorname{CS}(\operatorname{Ts}(G_n, \chi_n) \vdash \Box) \cdot \log n).$

Better Bounds for Tseitin Formulas

Tseitin Formulas: "Sum of degrees of vertices in a graph is even"

A quick Recap: We have just seen

Tree-CS
$$(F \vdash \Box) \lesssim \min_{\pi:F \vdash \Box} \left(CS(\pi) \cdot \log L(\pi) \right).$$

Theorem: Matching Upper and Lower Bounds for Tseitin Formulas

- For any connected graph G with n vertices and odd marking χ : $\operatorname{Tree-CS}\left(\operatorname{Ts}(G,\chi) \vdash \Box\right) \lesssim \operatorname{CS}\left(\operatorname{Ts}(G,\chi) \vdash \Box\right) \cdot \log n.$
- \exists a family of Tseitin formulas $(Ts(G_n, \chi_n))_{n=1}^{\infty}$ s. th. $\forall n \in \mathbb{N}$:

Tree-CS
$$(\operatorname{Ts}(G_n, \chi_n) \vdash \Box) = \Omega\Big(\operatorname{CS}\big(\operatorname{Ts}(G_n, \chi_n) \vdash \Box\big) \cdot \log n\Big).$$

Open Questions and Conjectures

Is it possible to improve

Tree-CS
$$(F \vdash \Box) \lesssim \min_{\pi: F \vdash \Box} \left(CS(\pi) \cdot \log L(\pi) \right).$$

to

Tree-CS
$$(F \vdash \Box) \lesssim CS(F \vdash \Box) \cdot \log n$$
,

where n = # vertices / formula size?

Conjecture / Strong gut feeling

Yes (and we know: this is the only room for improvement).

Open Questions and Conjectures

Is it possible to improve

Tree-CS
$$(F \vdash \Box) \lesssim \min_{\pi:F \vdash \Box} \left(CS(\pi) \cdot \log L(\pi) \right).$$

to

$$\operatorname{Tree-CS}(F \vdash \Box) \lesssim \operatorname{CS}(F \vdash \Box) \cdot \log n,$$

where n = # vertices / formula size?

Conjecture / Strong gut feeling

Yes (and we know: this is the only room for improvement).

Related Question in the World of Pebbling

Can [Královič]'s bound

$$\mathsf{Rev}(G) \le \min_{\mathcal{P}} \left(\mathsf{space}(\mathcal{P}) \cdot \log \mathsf{time}(\mathcal{P}) \right)$$

be improved to

$$\mathsf{Rev}(G) \le \min_{\mathcal{P}} \left(\mathsf{space}(\mathcal{P}) \cdot \log |V(G)|\right)$$
?

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G)
- Tree-CS $(F \vdash \Box) \lesssim \min_{\pi: F \vdash \Box} \mathsf{Rev}(G_{\pi})$
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G) (*)
- Tree-CS $(F \vdash \Box) \lesssim \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_{\pi})$ (*)
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F (*)

(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Take-Home Message

Tree-CS and CS are different measures but "not too far" from one another

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G) (*)
- Tree-CS $(F \vdash \Box) \lesssim \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_{\pi})$ (*)
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F (*)

(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Thank you for your attention!