
Reversible Pebble Games and the Relation
Between Tree-Like and General Resolution Space

Jacobo Torán & Florian Wörz
Universität Ulm

Dagstuhl Seminar
”
SAT and Interactions“

February 6, 2020

Just to Check We Are on the Same Page...

Proof π

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

• The proof system Resolution has only
one derivation rule:

B ∨ x C ∨ x
B ∨ C

• Complexity Measures:

– Length of π = # of clauses in π
– Clause Space of π = max # of

clauses in memory simultaneously
during π

– µ(F `�) := minπ:F `� µ(π).
– Prefix “Tree-” before a complexity

measure indicates tree-like resolution.

1/30

Just to Check We Are on the Same Page...

Proof π

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

• The proof system Resolution has only
one derivation rule:

B ∨ x C ∨ x
B ∨ C

• Complexity Measures:

– Length of π = # of clauses in π
– Clause Space of π = max # of

clauses in memory simultaneously
during π

– µ(F `�) := minπ:F `� µ(π).
– Prefix “Tree-” before a complexity

measure indicates tree-like resolution.

1/30

Tree-like vs. General Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/30

Tree-like vs. General Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/30

Tree-like vs. General Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time. (→ refutation DAG Gπ becomes a tree)

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/30

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What can we say about space?

3/30

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What can we say about space?

3/30

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What can we say about space?

3/30

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What can we say about space?

3/30

Part I

Separations for Pebbling Formulas

4/30

Pebble Games (games played on graphs)

5/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

I

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

II

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

6/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point:

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: I

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: II

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

7/30

Complexity Measures for the Pebble Games

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P

)

Rev(G) := min
rev. pebblings P

(
max # of pebbles used at any point in P

)

Why even care about these pebbling prices?
; Plethora connections to resolution! [Nordström ’15: New Wine . . .]

CS(F `�) = min
π:F `�

Black(Gπ) [Esteban, Torán ’01: Space bdds. for res.]

8/30

Complexity Measures for the Pebble Games

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P

)

Rev(G) := min
rev. pebblings P

(
max # of pebbles used at any point in P

)

Why even care about these pebbling prices?
; Plethora connections to resolution! [Nordström ’15: New Wine . . .]

CS(F `�) = min
π:F `�

Black(Gπ) [Esteban, Torán ’01: Space bdds. for res.]

8/30

Reversible Pebbling meets Tree-CS
in the Special Case of Pebbling Formulas

9/30

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

10/30

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

10/30

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

10/30

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

10/30

Reversible Pebbling meets Tree-CS

Theorem

For all DAGs G with a unique sink:

Rev(G) + 2 ≤ Tree-CS
(
PebG[⊕2] `�

)
≤ 2 · Rev(G) + 2.

11/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N ∃ Results for non-const. space?

• Rev(Pn) = Θ(log n) ∀n ∈ N
[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

12/30

Obtaining Space-Separations with Pebble games (2/3)

Non-constant black pebbling number and Black-Rev-separation:

G(c = 3, k)

13/30

Obtaining Space-Separations with Pebble games (3/3)

Conclusion: The best known separation

For any “slowly enough” growing space function s(n) there is a family of
pebbling formulas

(
PebGn [⊕2]

)∞
n=1

with Θ(n) variables such that

• CS(PebGn [⊕2] `�) = O
(
s(n)

)
• Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) log n

)
.

¿Can we do any better?

14/30

Obtaining Space-Separations with Pebble games (3/3)

Conclusion: The best known separation

For any “slowly enough” growing space function s(n) there is a family of
pebbling formulas

(
PebGn [⊕2]

)∞
n=1

with Θ(n) variables such that

• CS(PebGn [⊕2] `�) = O
(
s(n)

)
• Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) log n

)
.

¿Can we do any better?

14/30

Part II

Upper Bounds for Tree-CS for
General Formulas

15/30

An upper bound for Tree-CS

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F with n variables it holds (2nd ineq. is tight)

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2, and

min
π:F `�

Rev(Gπ) ≤ Tree-CS(F `�)
(
dlog ne+ 1

)
.

Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones.

Recall: CS(F `�) = min
π:F `�

Black(Gπ) [ET01] ; Similarity to Thm!

We will now prove the inequality of the Theorem...
16/30

An upper bound for Tree-CS

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F with n variables it holds (2nd ineq. is tight)

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2, and

min
π:F `�

Rev(Gπ) ≤ Tree-CS(F `�)
(
dlog ne+ 1

)
.

Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones.

Recall: CS(F `�) = min
π:F `�

Black(Gπ) [ET01] ; Similarity to Thm!

We will now prove the inequality of the Theorem...
16/30

An upper bound for Tree-CS

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F with n variables it holds (2nd ineq. is tight)

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2, and

min
π:F `�

Rev(Gπ) ≤ Tree-CS(F `�)
(
dlog ne+ 1

)
.

Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones.

Recall: CS(F `�) = min
π:F `�

Black(Gπ) [ET01] ; Similarity to Thm!

We will now prove the inequality of the Theorem...
16/30

An upper bound for Tree-CS

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F with n variables it holds (2nd ineq. is tight)

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2, and

min
π:F `�

Rev(Gπ) ≤ Tree-CS(F `�)
(
dlog ne+ 1

)
.

Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones.

Recall: CS(F `�) = min
π:F `�

Black(Gπ) [ET01] ; Similarity to Thm!

We will now prove the inequality of the Theorem...
16/30

A combinatorial characterization of Tree-CS
(by a game played on formulas)

17/30

The Prover-Delayer Game
[Pudlák, Impagliazzo ’00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer in
/ chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

18/30

The Prover-Delayer Game
[Pudlák, Impagliazzo ’00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer in
/ chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

18/30

The Prover-Delayer Game
[Pudlák, Impagliazzo ’00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer in
/ chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

18/30

The Prover-Delayer Game
[Pudlák, Impagliazzo ’00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer in
/ chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

18/30

The Prover-Delayer Game
[Pudlák, Impagliazzo ’00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer in
/ chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

18/30

The Prover-Delayer Game
[Pudlák, Impagliazzo ’00: A lower bound for DLL algorithms for k-SAT]

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer in
/ chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

18/30

The Prover-Delayer Game
A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula.
PD(F) := max pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, Torán ’03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS(F `�) = PD(F) + 2.

19/30

The Prover-Delayer Game
A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula.
PD(F) := max pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, Torán ’03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS(F `�) = PD(F) + 2.

19/30

The equivalence of Rev and R-Mc

20/30

Reversible pebbling is hard to analyse
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

21/30

Reversible pebbling is hard to analyse
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

21/30

Reversible pebbling is hard to analyse
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

21/30

Reversible pebbling is hard to analyse
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

21/30

Reversible pebbling is hard to analyse
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

21/30

Reversible pebbling is hard to analyse
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

21/30

Reversible pebbling is hard to analyse
Raz–McKenzie Game to the help

Two players take rounds... until Game Over..., i. e., when we have:

0 1 1 · · · 1

0

Either a red source or red vertex with all predecessors blue.

R-Mc(G) := smallest r s. th. Pebbler wins in ≤ r rounds
against an optimal strategy of Colourer

21/30

Reversible pebbling is hard to analyse
Raz–McKenzie Game to the help

Two players take rounds... until Game Over..., i. e., when we have:

0 1 1 · · · 1

0

Either a red source or red vertex with all predecessors blue.

R-Mc(G) := smallest r s. th. Pebbler wins in ≤ r rounds
against an optimal strategy of Colourer

21/30

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G).

22/30

The Actual Proof

23/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

24/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

24/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

24/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

24/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

24/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

24/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

24/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

25/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

25/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

25/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

25/30

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

25/30

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18: On space and depth in resolution] introduced amortised clause
space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04: Time and Space Complexity of Reversible Pebbling]

Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

26/30

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18: On space and depth in resolution] introduced amortised clause
space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04: Time and Space Complexity of Reversible Pebbling]

Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

26/30

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18: On space and depth in resolution] introduced amortised clause
space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04: Time and Space Complexity of Reversible Pebbling]

Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

26/30

Part III

The Tseitin Formula Case

27/30

Better Bounds for Tseitin Formulas
Tseitin Formulas: “Sum of degrees of vertices in a graph is even”

A quick Recap: We have just seen

Tree-CS(F `�) . min
π:F `�

(
CS(π) · log L(π)

)
.

Theorem: Matching Upper and Lower Bounds for Tseitin Formulas

• For any connected graph G with n vertices and odd marking χ:

Tree-CS
(
Ts(G,χ) `�

)
. CS

(
Ts(G,χ) `�

)
· log n .

• ∃ a family of Tseitin formulas
(
Ts(Gn, χn)

)∞
n=1

s. th. ∀n ∈ N:

Tree-CS
(
Ts(Gn, χn) `�

)
= Ω

(
CS
(
Ts(Gn, χn) `�

)
· log n

)
.

28/30

Better Bounds for Tseitin Formulas
Tseitin Formulas: “Sum of degrees of vertices in a graph is even”

A quick Recap: We have just seen

Tree-CS(F `�) . min
π:F `�

(
CS(π) · log L(π)

)
.

Theorem: Matching Upper and Lower Bounds for Tseitin Formulas

• For any connected graph G with n vertices and odd marking χ:

Tree-CS
(
Ts(G,χ) `�

)
. CS

(
Ts(G,χ) `�

)
· log n .

• ∃ a family of Tseitin formulas
(
Ts(Gn, χn)

)∞
n=1

s. th. ∀n ∈ N:

Tree-CS
(
Ts(Gn, χn) `�

)
= Ω

(
CS
(
Ts(Gn, χn) `�

)
· log n

)
.

28/30

Open Questions and Conjectures

Is it possible to improve

Tree-CS(F `�) . min
π:F `�

(
CS(π) · log L(π)

)
.

to
Tree-CS

(
F `�

)
. CS

(
F `�

)
· log n,

where n = # vertices / formula size?

Conjecture / Strong gut feeling

Yes (and we know: this is the only room for improvement).

29/30

Open Questions and Conjectures

Is it possible to improve

Tree-CS(F `�) . min
π:F `�

(
CS(π) · log L(π)

)
.

to
Tree-CS

(
F `�

)
. CS

(
F `�

)
· log n,

where n = # vertices / formula size?

Conjecture / Strong gut feeling

Yes (and we know: this is the only room for improvement).

29/30

Related Question in the World of Pebbling

Can [Královič]’s bound

Rev(G) ≤ min
P

(
space(P) · log time(P)

)
be improved to

Rev(G) ≤ min
P

(
space(P) · log |V (G)|

)
?

30/30

Take-Home Message
Tree-CS and CS are different measures but “not too far” from one another

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G)

(*)

• Tree-CS(F `�) . min
π:F `�

Rev(Gπ)

(*)

• Tree-CS(F `�) . CS∗(F `�) for general F

(*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

Take-Home Message
Tree-CS and CS are different measures but “not too far” from one another

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G) (*)

• Tree-CS(F `�) . min
π:F `�

Rev(Gπ) (*)

• Tree-CS(F `�) . CS∗(F `�) for general F (*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

Take-Home Message
Tree-CS and CS are different measures but “not too far” from one another

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G) (*)

• Tree-CS(F `�) . min
π:F `�

Rev(Gπ) (*)

• Tree-CS(F `�) . CS∗(F `�) for general F (*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

	Title page
	Separations for Pebbling Formulas
	Pebble Games (games played on graphs)
	Reversible Pebbling meets Tree-CS in the Special Case of Pebbling Formulas

	Upper Bounds for Tree-CS for General Formulas
	A combinatorial characterization of Tree-CS (by a game played on formulas)
	The equivalence of Rev and R-Mc
	The Actual Proof

	The Tseitin Formula Case

