

Reversible Pebble Games and the Relation Between Tree-Like and General Resolution Space

Florian Wörz

Universität Ulm florian.woerz@uni-ulm.de

25. Jahrestagung der GI-Fachgruppe "Logik in der Informatik" in Jena 22nd October, 2019

Joint work with Jacobo Torán, Universität Ulm

Just to Check We Are on the Same Page...

- Resolution: most studied proof system for refuting CNF formulas
- only one derivation rule:

$$\frac{B \lor x \quad C \lor \overline{x}}{B \lor C}$$

- Length of $\pi = \#$ of clauses in π
- Clause Space of π = max # of clauses in memory simultaneously during π
- Tree-Res, if refutation DAG is a tree (→ maybe need to rederive clauses)

Just to Check We Are on the Same Page...

- Resolution: most studied proof system for refuting CNF formulas
- only one derivation rule:

$$\frac{B \lor x \quad C \lor \overline{x}}{B \lor C}$$

- Length of $\pi = \#$ of clauses in π
- Clause Space of π = max # of clauses in memory simultaneously during π
- Tree-Res, if refutation DAG is a tree (→ maybe need to rederive clauses)

Just to Check We Are on the Same Page...

- Resolution: most studied proof system for refuting CNF formulas
- only one derivation rule:

$$\frac{B \lor x \quad C \lor \overline{x}}{B \lor C}$$

- Length of $\pi = \#$ of clauses in π
- Clause Space of π = max # of clauses in memory simultaneously during π
- Tree-Res, if refutation DAG is a tree (→ maybe need to rederive clauses)

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be rederived each time.

Complexity Measures for Resolution

For a complexity measure μ and a formula F

$$\mu(F \vdash \Box) := \min_{\pi: F \vdash \Box} \mu(\pi).$$

Prefix "Tree-" before a complexity measure indicates tree-like resolution.

Complexity Measures for Resolution

For a complexity measure μ and a formula F

$$\mu(F \vdash \Box) := \min_{\pi: F \vdash \Box} \mu(\pi).$$

Prefix "Tree-" before a complexity measure indicates tree-like resolution.

Why Care About these Measures for Resolution?

- After more than 50 years, DPLL is still the basis of most modern SAT Solvers (Chaff, zChaff, GRASP, MiniSAT, ...).
- Tree-like resolution and DPLL are *p*-equivalent proof systems.
- Experimental results (and even theoretical arguments): tree-space measures for resolution correlate well with the hardness of solving formulas with SAT solvers in practice.

[Järvisalo, Matsliah, Nordström, Żivný '12: Relating Proof Complexity Measures and Practical Hardness of SAT] [Ansótegui, Bonet, Levy, Manyà '08: Measuring the

Hardness of SAT Instances]

Why Care About these Measures for Resolution?

- After more than 50 years, DPLL is still the basis of most modern SAT Solvers (Chaff, zChaff, GRASP, MiniSAT, ...).
- Tree-like resolution and DPLL are *p*-equivalent proof systems.
 - Experimental results (and even theoretical arguments): tree-space measures for resolution correlate well with the hardness of solving formulas with SAT solvers in practice.

[Järvisalo, Matsliah, Nordström, Živný '12: Relating Proof Complexity Measures and Practical Hardness of SAT] [Ansótegui, Bonet, Levy, Manyà '08: Measuring the

Hardness of SAT Instances]

Why Care About these Measures for Resolution?

- After more than 50 years, DPLL is still the basis of most modern SAT Solvers (Chaff, zChaff, GRASP, MiniSAT, ...).
- Tree-like resolution and DPLL are *p*-equivalent proof systems.
 - Experimental results (and even theoretical arguments): tree-space measures for resolution correlate well with the hardness of solving formulas with SAT solvers in practice.

[Järvisalo, Matsliah, Nordström, Živný '12: Relating Proof Complexity Measures and Practical Hardness of SAT] [Ansótegui, Bonet, Levy, Manyà '08: Measuring the

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w. r. t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- **but** any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

- \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with
 - resolution refutations of length L (linear in n),
 - **but** any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

 \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with

- resolution refutations of length L (linear in n),
- but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

- \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with
 - resolution refutations of length L (linear in n),
 - but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Thanks to [Ben-Sasson, Impagliazzo, Wigderson '04: Near optimal separation...] we know an almost optimal separation between general and tree-like resolution w.r.t. length:

- \exists a family $(F_n)_{n\in\mathbb{N}}$ of unsatsfiable formulas in $\mathrm{O}(n)$ variables with
 - resolution refutations of length L (linear in n),
 - but any tree-like resolution refutation requires length $\exp\left(\Omega(\frac{L}{\log L})\right)$.

Matching upper bound of $\exp\left(O\left(\frac{L\log\log L}{\log L}\right)\right)$ for tree-like resolution length of any formula that can be refuted in length L by general resolution.

Our Results / Outline of This Talk

In this talk we will:

- I. a) characterize Tree-CS for special formulas defined over a DAG G in terms of a pebble game played on G.
 - b) deduce the best known separation between Tree-CS and CS with this new characterization.
- II. show that this is almost optimal by proving an upper bound for Tree-CS in terms of CS (for general formulas).

Our Results / Outline of This Talk

In this talk we will:

- a) characterize Tree-CS for special formulas defined over a DAG G in terms of a pebble game played on G.
 - b) deduce the best known separation between ${\rm Tree-CS}$ and ${\rm CS}$ with this new characterization.
- II. show that this is almost optimal by proving an upper bound for Tree-CS in terms of CS (for general formulas).

Our Results / Outline of This Talk

In this talk we will:

- I. a) characterize Tree-CS for special formulas defined over a DAG G in terms of a pebble game played on G.
 - b) deduce the best known separation between Tree-CS and CS with this new characterization.
- II. show that this is almost optimal by proving an upper bound for Tree-CS in terms of CS (for general formulas).

Part I

Separations for Pebbling Formulas

Pebble Games (games played on graphs)

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

 $\max \# \text{ of pebbles}$ used at any point:

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

Goal: Get a single black pebble on the sink of the graph.

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: At any time

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point:

Different rules:

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: I

Different rules:

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)
Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: II

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: III

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: max # of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- Pebble Removal: Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Same Goal: Get a single black pebble on the sink of the graph. Same measure: $\max \#$ of pebbles used at any point: IIII

- **Pebble Placement:** On empty vertex if all direct predecessors have a pebble (in particular: can always pebble sources)
- **Pebble Removal:** Only if all direct predecessors have a pebble (in particular: can always unpebble sources)

Complexity Measures for the Pebble Games

 $\mathsf{Black}(G) := \min_{\mathsf{black pebblings P}} \left(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \right)$

$$\mathsf{Rev}(G) := \min_{\mathsf{rev. pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$$

Why even care about these pebbling prices?

Plethora of connections to resolution i.a.:

 $CS(\pi) = Black(G_{\pi}) \ \forall \pi : F \vdash \Box$ [Esteban, Torán '01: Space bounds for resolution].

Complexity Measures for the Pebble Games

 $\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$

$$\mathsf{Rev}(G) := \min_{\mathsf{rev. pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$$

Why even care about these pebbling prices?

Plethora of connections to resolution i.a.: $CS(\pi) = Black(G_{\pi}) \forall \pi : F \vdash \Box$ [Esteban, Torán '01: Space bounds for resolution].

Complexity Measures for the Pebble Games

 $\mathsf{Black}(G) := \min_{\mathsf{black pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$

$$\mathsf{Rev}(G) := \min_{\mathsf{rev. pebblings } \mathcal{P}} \Big(\max \ \# \text{ of pebbles used at any point in } \mathcal{P} \Big)$$

Why even care about these pebbling prices? Plethora of connections to resolution i.a.: $CS(\pi) = Black(G_{\pi}) \forall \pi : F \vdash \Box$ [Esteban, Torán '01: Space bounds for resolution].

Pebbling Formulas (formulas over DAGs)

Clauses of Peb_{G} : u v w $(u \wedge v) \rightarrow x = \overline{u} \vee \overline{v} \vee x$ $(v \wedge w) \rightarrow y = \overline{v} \vee \overline{w} \vee y$ $(x \wedge y) \rightarrow z = \overline{x} \vee \overline{y} \vee z$ \overline{z}

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

- source vertices are true
- truth propagates upwards
- but the sink vertex is false

XORification \oplus_2 *Make formulas slightly harder to refute*

- For a technical reason we need the XORification of our pebbling formulas.
- (XORification being a common technique used in proof complexity).
- Simple Idea: Substitute each variable x with $x_1 \oplus x_2$ and expand result into CNF.

XORification \oplus_2 *Make formulas slightly harder to refute*

- For a technical reason we need the XORification of our pebbling formulas.
- (XORification being a common technique used in proof complexity).
- Simple Idea: Substitute each variable x with $x_1 \oplus x_2$ and expand result into CNF.

Reversible Pebbling meets Tree-CS in the Special Case of Pebbling Formulas

Reversible Pebbling meets Tree-CS

Theorem

For all DAGs G with a unique sink:

 $\operatorname{Rev}(G) + 2 \leq \operatorname{Tree-CS}\left(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box\right) \leq 2 \cdot \operatorname{Rev}(G) + 2.$

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- Rev(P_n) = Θ(log n) ∀n ∈ N [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- Rev(P_n) = ⊖(log n) ∀n ∈ N [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]
Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N}$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Idea:

- $\operatorname{CS}(\operatorname{Peb}_{G}[\oplus_{2}] \vdash \Box) = O(\mathsf{Black}(G))$
- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) = \Omega(\operatorname{Rev}(G))$
- ⇒ Construct a graph family with a gap between its black and reversible pebbling price

- $\mathsf{Black}(P_n) = \mathcal{O}(1) \ \forall n \in \mathbb{N} \quad \exists \text{ Results for non-const. space}?$
- $\operatorname{Rev}(P_n) = \Theta(\log n) \ \forall n \in \mathbb{N}$ [Bennett '89: Time/space trade-offs for reversible computation; Li, Vitányi '96: Reversibility and adiabatic computation: Trading time and space for energy]

Non-constant black pebbling number and Black-Rev-separation:

Non-constant black pebbling number and Black-Rev-separation:

Conclusion: The best known separation

For any "slowly enough" growing space function s(n) there is a family of pebbling formulas $(\operatorname{Peb}_{G_n}[\oplus_2])_{n=1}^{\infty}$ with $\Theta(n)$ variables such that

- $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \Box) = \operatorname{O}(s(n))$
- Tree-CS(Peb_{G_n}[\oplus_2] $\vdash \Box$) = $\Omega(s(n) \log n)$.

¿Can we do any better?

Conclusion: The best known separation

For any "slowly enough" growing space function s(n) there is a family of pebbling formulas $(\operatorname{Peb}_{G_n}[\oplus_2])_{n=1}^{\infty}$ with $\Theta(n)$ variables such that

- $\operatorname{CS}(\operatorname{Peb}_{G_n}[\oplus_2] \vdash \Box) = \operatorname{O}(s(n))$
- Tree-CS(Peb_{G_n}[\oplus_2] $\vdash \Box$) = $\Omega(s(n) \log n)$.

¿Can we do any better?

Part II

Upper Bounds for Tree-CS for General Formulas

An upper bound for $\operatorname{Tree-CS}$

How large can the gap between CS and $\operatorname{Tree-CS}$ grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS $(F \vdash \Box) \leq \min_{\pi: F \vdash \Box} \operatorname{Rev}(G_{\pi}) + 2.$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

We will now prove this theorem... after introducing yet another two games.

An upper bound for $\operatorname{Tree-CS}$

How large can the gap between CS and $\operatorname{Tree-CS}$ grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS $(F \vdash \Box) \leq \min_{\pi:F \vdash \Box} \mathsf{Rev}(G_{\pi}) + 2.$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

We will now prove this theorem... after introducing yet another two games.

An upper bound for $\operatorname{Tree-CS}$

How large can the gap between CS and $\operatorname{Tree-CS}$ grow?

Theorem

For any unsatisfiable formula F it holds

 $\operatorname{Tree-CS}(F \vdash \Box) \leq \min_{\pi: F \vdash \Box} \mathsf{Rev}(G_{\pi}) + 2.$

Note, that the minimum in the theorem is taken over all possible refutations of F, not only over the tree-like ones.

We will now prove this theorem... after introducing yet another two games.

A combinatorial characterization of Tree-CS (by a game played on formulas)

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers

 x = 0,
 x = 1 or
 x = * ("you choose")

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers

x = 0,
x = 1 or
x = * ("you choose")

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers

 x = 0,
 x = 1 or
 x = * ("you choose")

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over... Score of Delayer = # of *'s

Prover

- Wants to falisify C ∈ F (then Game Over)
- Queries a variable x of F

 Plugs answer of Delayer in / chooses value for *

Delayer

Answers

x = 0,
x = 1 or
x = * ("you choose")

The Prover-Delayer Game A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula. PD $(F) := \max$ pts. of Delayer on F against optimal strategy of Prover.

 $\mathsf{T}\mathsf{heorem}$ ([Esteban, Torán '03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS $(F \vdash \Box) = \mathsf{PD}(F) + 2.$

The Prover-Delayer Game A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula. PD $(F) := \max$ pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, Torán '03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS $(F \vdash \Box) = \mathsf{PD}(F) + 2.$

The equivalence of Rev and R-Mc

Given: A single sink DAG ${\it G}$

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=} 0$
• Chooses empty vertex	

• Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$

Given: A single sink DAG ${\it G}$

_

Two players take rounds... until Game Over...

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=} 0$
• Chooses empty vertex	
	• Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$

Given: A single sink DAG G

_

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=}0$
• Chooses empty vertex	

• Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$

Given: A single sink DAG G

_

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=}0$
• Chooses empty vertex	

• Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$
Rev(G) is hard to compute *Raz*-*McKenzie Game to the help*

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler	Colourer
 Places pebble on sink 	
	• Colours it with red $\widehat{=}0$
• Chooses empty vertex	
	• Colours it red $\widehat{=} 0$ or blue $\widehat{=} 1$

Rev(G) is hard to compute *Raz*-*McKenzie Game to the help*

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler	Colourer
• Places pebble on sink	• Colours it with red $\widehat{=} 0$
• Chooses empty vertex	

• Colours it red $\hat{=} 0$ or blue $\hat{=} 1$

Rev(G) is hard to compute Raz-McKenzie Game to the help

Two players take rounds... until Game Over..., i. e., when we have:

Either a red source or red vertex with all predecessors blue.

 $\operatorname{R-Mc}(G) := \operatorname{smallest} r \text{ s. th. Pebbler wins in } \leq r \text{ rounds}$ regardless of how Colourer plays Rev(G) is hard to compute Raz-McKenzie Game to the help

Two players take rounds... until Game Over..., i. e., when we have:

Either a red source or red vertex with all predecessors blue.

 $\mathsf{R}\text{-}\mathsf{Mc}(G):=\mathsf{smallest}\ r\ \mathsf{s}.\,\mathsf{th}.\ \mathsf{Pebbler}\ \mathsf{wins}\ \mathsf{in}\leq r\ \mathsf{rounds}\\ \mathsf{regardless}\ \mathsf{of}\ \mathsf{how}\ \mathsf{Colourer}\ \mathsf{plays}$

 $\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

$$\operatorname{Rev}(G) = \operatorname{R-Mc}(G)$$

For any single-sink DAG G:

 $\mathsf{Rev}(G) = \mathsf{R}\text{-}\mathsf{Mc}(G)$

The Actual Proof

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C|_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\restriction}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\restriction}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points. **Idea:** Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\restriction}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by lpha

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\restriction}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by lpha

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by lpha

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C {\restriction}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C|_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C\!\!\upharpoonright_{\!\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C{\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

Given: a res. refutation π of F with a ref.-graph G_{π} and $\text{Rev}(G_{\pi}) =: k$.

AIM: Give a strategy for Prover in the PD-game under which he has to pay at most k points.

Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game \rightarrow a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses $C \longrightarrow$ Prover queries vars. in C not yet assigned by α (& extends with Delayer's answers) until either

1. the clause C ist sat./fals. by α

 \to Prover moves to next stage, simulating the corresponding strategy of Pebbler when C is given colour $C{\upharpoonright}_{\alpha}$

2. a variable is given * by Delayer

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by $\alpha.$

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by $\alpha.$

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by $\alpha.$

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by $\alpha.$

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz-McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured $1 \mbox{ is coloured } 0.$

The game is played until α falsifies a clause in F.

After at most k stages the Raz–McKenzie game finished \Rightarrow Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α .

When Raz–McKenzie finishes:

- 1. either a source vertex in G_{π} is assigned colour 0 by Colourer, \rightarrow since α defines Colourer's answer: α fals. a clause in F.
- 2. or a vertex with all its direct predecessors being coloured 1 is coloured 0.

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

```
Tree-CS(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.
```

- [Královič '04: Time and Space Complexity of Reversible Pebbling] $\operatorname{Rev}(G_{\pi}) + 2 \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P})) + 2$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

```
Tree-CS(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.
```

- [Královič '04: Time and Space Complexity of Reversible Pebbling] Rev(G_π) + 2 ≤ min_P (space(P) · log time(P)) + 2, where the minimum is taken over all black pebblings P of G_π.
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

```
Tree-CS(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.
```

- [Královič '04: Time and Space Complexity of Reversible Pebbling] $\operatorname{Rev}(G_{\pi}) + 2 \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P})) + 2$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

[Razborov '18: On space and depth in resolution] introduced amortised clause space:

$$\mathrm{CS}^*(F \vdash \Box) := \min_{\pi: F \vdash \Box} \left(\mathrm{CS}(\pi) \cdot \log \mathrm{L}(\pi) \right)$$

Corollary

```
Tree-CS(F \vdash \Box) \leq CS^*(F \vdash \Box) + 2.
```

- [Královič '04: Time and Space Complexity of Reversible Pebbling] $\operatorname{Rev}(G_{\pi}) + 2 \leq \min_{\mathcal{P}} (\operatorname{space}(\mathcal{P}) \cdot \log \operatorname{time}(\mathcal{P})) + 2$, where the minimum is taken over all black pebblings \mathcal{P} of G_{π} .
- Every black pebbling \mathcal{P} of G_{π} defines a configurational refutation of F with clause space equal to space(\mathcal{P}) and length time(\mathcal{P}).

Take-Home Message Tree-CS and CS are fundamentally different measures

- Tree-CS $(\operatorname{Peb}_G[\oplus_2] \vdash \Box) \simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G)
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F

Take-Home Message Tree-CS and CS are fundamentally different measures

- Tree-CS (Peb_G[\oplus_2] $\vdash \Box$) $\simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G) (*)
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F (*)

(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Take-Home Message Tree-CS and CS are fundamentally different measures

- Tree-CS (Peb_G[\oplus_2] $\vdash \Box$) $\simeq \operatorname{Rev}(G)$
- Separations between Tree-CS and CS by graphs G exhibiting separation between Rev(G) and Black(G) (*)
- Tree-CS $(F \vdash \Box) \lesssim CS^*(F \vdash \Box)$ for general F (*)

(*) Some open questions hidden here. We've solved these for Tseitin formulas.

Thank you for your attention!