
Reversible Pebble Games and the Relation
Between Tree-Like and General Resolution Space

Florian Wörz
Universität Ulm

florian.woerz@uni-ulm.de

25. Jahrestagung der GI-Fachgruppe
”
Logik in der Informatik“ in Jena

22nd October, 2019

Joint work with Jacobo Torán, Universität Ulm

Just to Check We Are on the Same Page...

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

• Resolution: most studied proof
system for refuting CNF formulas

• only one derivation rule:

B ∨ x C ∨ x
B ∨ C

• Length of π = # of clauses in π

• Clause Space of π = max # of
clauses in memory simultaneously
during π

• Tree-Res, if refutation DAG is a
tree (→ maybe need to rederive
clauses)

1/32

Just to Check We Are on the Same Page...

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

• Resolution: most studied proof
system for refuting CNF formulas

• only one derivation rule:

B ∨ x C ∨ x
B ∨ C

• Length of π = # of clauses in π

• Clause Space of π = max # of
clauses in memory simultaneously
during π

• Tree-Res, if refutation DAG is a
tree (→ maybe need to rederive
clauses)

1/32

Just to Check We Are on the Same Page...

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

• Resolution: most studied proof
system for refuting CNF formulas

• only one derivation rule:

B ∨ x C ∨ x
B ∨ C

• Length of π = # of clauses in π

• Clause Space of π = max # of
clauses in memory simultaneously
during π

• Tree-Res, if refutation DAG is a
tree (→ maybe need to rederive
clauses)

1/32

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/32

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/32

General vs. Tree-like Resolution Refutations

If a clause is needed more than once in a refutation, it has to be
rederived each time.

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w} {w}

{x}

{x,¬w} {w}

{z}

{z,¬w} {w}

{x}

{x,¬w} {w}

2/32

Complexity Measures for Resolution

For a complexity measure µ and a formula F

µ(F `�) := min
π:F `�

µ(π).

Prefix “Tree-” before a complexity measure indicates tree-like resolution.

3/32

Complexity Measures for Resolution

For a complexity measure µ and a formula F

µ(F `�) := min
π:F `�

µ(π).

Prefix “Tree-” before a complexity measure indicates tree-like resolution.

3/32

Why Care About these Measures for Resolution?

• After more than 50 years, DPLL is
still the basis of most modern SAT
Solvers (Chaff, zChaff, GRASP,
MiniSAT, . . .).

• Tree-like resolultion and DPLL are
p-equivalent proof systems.

• Experimental results (and even
theoretical arguments): tree-space
measures for resolution correlate
well with the hardness of solving
formulas with SAT solvers in
practice.
[Järvisalo, Matsliah, Nordström, Živný ’12: Relating Proof

Complexity Measures and Practical Hardness of SAT]

[Ansótegui, Bonet, Levy, Manyà ’08: Measuring the

Hardness of SAT Instances]
4/32

Why Care About these Measures for Resolution?

• After more than 50 years, DPLL is
still the basis of most modern SAT
Solvers (Chaff, zChaff, GRASP,
MiniSAT, . . .).

• Tree-like resolultion and DPLL are
p-equivalent proof systems.

• Experimental results (and even
theoretical arguments): tree-space
measures for resolution correlate
well with the hardness of solving
formulas with SAT solvers in
practice.
[Järvisalo, Matsliah, Nordström, Živný ’12: Relating Proof

Complexity Measures and Practical Hardness of SAT]

[Ansótegui, Bonet, Levy, Manyà ’08: Measuring the

Hardness of SAT Instances]
4/32

Why Care About these Measures for Resolution?

• After more than 50 years, DPLL is
still the basis of most modern SAT
Solvers (Chaff, zChaff, GRASP,
MiniSAT, . . .).

• Tree-like resolultion and DPLL are
p-equivalent proof systems.

• Experimental results (and even
theoretical arguments): tree-space
measures for resolution correlate
well with the hardness of solving
formulas with SAT solvers in
practice.
[Järvisalo, Matsliah, Nordström, Živný ’12: Relating Proof

Complexity Measures and Practical Hardness of SAT]

[Ansótegui, Bonet, Levy, Manyà ’08: Measuring the

Hardness of SAT Instances]
4/32

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What about space?

5/32

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What about space?

5/32

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What about space?

5/32

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What about space?

5/32

After We’ve Set the Stage: Motivation of This Talk

Thanks to [Ben-Sasson, Impagliazzo, Wigderson ’04: Near optimal separation...] we
know an almost optimal separation between general and tree-like
resolution w. r. t. length:
∃ a family (Fn)n∈N of unsatsfiable formulas in O(n) variables with

• resolution refutations of length L (linear in n),

• but any tree-like resolution refutation requires
length exp

(
Ω(L

logL)
)
.

Matching upper bound of exp
(
O
(L log logL

logL

))
for tree-like resolution

length of any formula that can be refuted in length L by general
resolution.

¿What about space?

5/32

Our Results / Outline of This Talk

In this talk we will:

I. a) characterize Tree-CS for special formulas defined over a DAG G in
terms of a pebble game played on G.

b) deduce the best known separation between Tree-CS and CS with
this new characterization.

II. show that this is almost optimal by proving an upper bound for
Tree-CS in terms of CS (for general formulas).

6/32

Our Results / Outline of This Talk

In this talk we will:

I. a) characterize Tree-CS for special formulas defined over a DAG G in
terms of a pebble game played on G.

b) deduce the best known separation between Tree-CS and CS with
this new characterization.

II. show that this is almost optimal by proving an upper bound for
Tree-CS in terms of CS (for general formulas).

6/32

Our Results / Outline of This Talk

In this talk we will:

I. a) characterize Tree-CS for special formulas defined over a DAG G in
terms of a pebble game played on G.

b) deduce the best known separation between Tree-CS and CS with
this new characterization.

II. show that this is almost optimal by proving an upper bound for
Tree-CS in terms of CS (for general formulas).

6/32

Part I

Separations for Pebbling Formulas

7/32

Pebble Games
(games played on graphs)

8/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

I

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

II

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

III

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Black Pebble Game

Goal: Get a single black pebble on the sink of the graph.

max # of pebbles
used at any point:

IIII

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: At any time

9/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point:

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: I

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: II

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: III

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

The Reversible Pebble Game

Same Goal: Get a single black pebble on the sink of the graph.
Same measure: max # of pebbles used at any point: IIII

Different rules:

• Pebble Placement: On empty vertex if all direct predecessors have
a pebble (in particular: can always pebble sources)

• Pebble Removal: Only if all direct predecessors have a pebble (in
particular: can always unpebble sources)

10/32

Complexity Measures for the Pebble Games

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P

)

Rev(G) := min
rev. pebblings P

(
max # of pebbles used at any point in P

)
Why even care about these pebbling prices?

Plethora of connections to resolution i. a.:
CS(π) = Black(Gπ) ∀π : F `� [Esteban, Torán ’01: Space bounds for resolution].

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

11/32

Complexity Measures for the Pebble Games

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P

)

Rev(G) := min
rev. pebblings P

(
max # of pebbles used at any point in P

)
Why even care about these pebbling prices?

Plethora of connections to resolution i. a.:
CS(π) = Black(Gπ) ∀π : F `� [Esteban, Torán ’01: Space bounds for resolution].

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

11/32

Complexity Measures for the Pebble Games

Black(G) := min
black pebblings P

(
max # of pebbles used at any point in P

)

Rev(G) := min
rev. pebblings P

(
max # of pebbles used at any point in P

)
Why even care about these pebbling prices?

Plethora of connections to resolution i. a.:
CS(π) = Black(Gπ) ∀π : F `� [Esteban, Torán ’01: Space bounds for resolution].

�

{¬x}

{¬x,¬y}

{y}

{y,¬z}

{y,¬x,¬z}

{y,¬x,¬z,¬w}

{x}

{x,¬w}

{z}

{z,¬w} {w}

11/32

Pebbling Formulas
(formulas over DAGs)

12/32

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

13/32

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

13/32

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

13/32

Pebbling Formula

Clauses of PebG:

u
v
w
(u ∧ v)→ x = u ∨ v ∨ x
(v ∧ w)→ y = v ∨ w ∨ y
(x ∧ y)→ z = x ∨ y ∨ z
z

u v w

x y

z

Encode the rules of the black pebble game in a formula (i. e., formula is
defined over an underlying DAG):

• source vertices are true

• truth propagates upwards

• but the sink vertex is false

13/32

XORification ⊕2
Make formulas slightly harder to refute

• For a technical reason we need the XORification of our pebbling
formulas.

• (XORification being a common technique used in proof complexity).

• Simple Idea: Substitute each variable x with x1 ⊕ x2 and expand
result into CNF.

14/32

XORification ⊕2
Make formulas slightly harder to refute

• For a technical reason we need the XORification of our pebbling
formulas.

• (XORification being a common technique used in proof complexity).

• Simple Idea: Substitute each variable x with x1 ⊕ x2 and expand
result into CNF.

14/32

Reversible Pebbling meets Tree-CS
in the Special Case of Pebbling Formulas

15/32

Reversible Pebbling meets Tree-CS

Theorem

For all DAGs G with a unique sink:

Rev(G) + 2 ≤ Tree-CS
(
PebG[⊕2] `�

)
≤ 2 · Rev(G) + 2.

16/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N
• Rev(Pn) = Θ(log n) ∀n ∈ N

[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (1/3)

Idea:

• CS(PebG[⊕2] `�) = O
(
Black(G)

)
• Tree-CS

(
PebG[⊕2] `�

)
= Ω

(
Rev(G)

)
=⇒ Construct a graph family with a gap between its black and

reversible pebbling price

Example: Path graphs Pn of length n

• Black(Pn) = O(1) ∀n ∈ N ∃ Results for non-const. space?

• Rev(Pn) = Θ(log n) ∀n ∈ N
[Bennett ’89: Time/space trade-offs for reversible computation; Li, Vitányi ’96:

Reversibility and adiabatic computation: Trading time and space for energy]

17/32

Obtaining Space-Separations with Pebble games (2/3)

Non-constant black pebbling number and Black-Rev-separation:

G(c = 3, k)

18/32

Obtaining Space-Separations with Pebble games (2/3)

Non-constant black pebbling number and Black-Rev-separation:

G(c = 3, k)

18/32

Obtaining Space-Separations with Pebble games (3/3)

Conclusion: The best known separation

For any “slowly enough” growing space function s(n) there is a family of
pebbling formulas

(
PebGn [⊕2]

)∞
n=1

with Θ(n) variables such that

• CS(PebGn [⊕2] `�) = O
(
s(n)

)
• Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) log n

)
.

¿Can we do any better?

19/32

Obtaining Space-Separations with Pebble games (3/3)

Conclusion: The best known separation

For any “slowly enough” growing space function s(n) there is a family of
pebbling formulas

(
PebGn [⊕2]

)∞
n=1

with Θ(n) variables such that

• CS(PebGn [⊕2] `�) = O
(
s(n)

)
• Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) log n

)
.

¿Can we do any better?

19/32

Part II

Upper Bounds for Tree-CS for
General Formulas

20/32

An upper bound for Tree-CS

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2.

Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones.

We will now prove this theorem... after introducing yet another two
games.

21/32

An upper bound for Tree-CS

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2.

Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones.

We will now prove this theorem... after introducing yet another two
games.

21/32

An upper bound for Tree-CS

How large can the gap between CS and Tree-CS grow?

Theorem

For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2.

Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones.

We will now prove this theorem... after introducing yet another two
games.

21/32

A combinatorial characterization of Tree-CS
(by a game played on formulas)

22/32

The Prover-Delayer Game

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer
in / chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

23/32

The Prover-Delayer Game

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer
in / chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

23/32

The Prover-Delayer Game

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer
in / chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

23/32

The Prover-Delayer Game

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer
in / chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

23/32

The Prover-Delayer Game

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer
in / chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

23/32

The Prover-Delayer Game

Given: An unsatisfiable CNF formula F

Two players take rounds... until Game Over...
Score of Delayer = # of ∗’s

Prover Delayer

• Wants to falisify C ∈ F
(then Game Over)

• Queries a variable x of F

• Plugs answer of Delayer
in / chooses value for ∗

• Answers

– x = 0,
– x = 1 or
– x = ∗ (”you choose“)

23/32

The Prover-Delayer Game
A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula.
PD(F) := max pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, Torán ’03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS(F `�) = PD(F) + 2.

24/32

The Prover-Delayer Game
A Combinatorial Characterisation for Tree-CS

Definition (Game value of the Prover-Delayer game)

Let F be an unsatisfiable CNF formula.
PD(F) := max pts. of Delayer on F against optimal strategy of Prover.

Theorem ([Esteban, Torán ’03: A combinatorial char. of treelike res. space])

Let F be an unsatisfiable CNF formula. Then

Tree-CS(F `�) = PD(F) + 2.

24/32

The equivalence of Rev and R-Mc

25/32

Rev(G) is hard to compute
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

26/32

Rev(G) is hard to compute
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

26/32

Rev(G) is hard to compute
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

26/32

Rev(G) is hard to compute
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

26/32

Rev(G) is hard to compute
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

26/32

Rev(G) is hard to compute
Raz–McKenzie Game to the help

Given: A single sink DAG G

Two players take rounds... until Game Over...

Pebbler Colourer

• Places pebble on sink

• Chooses empty vertex

• Colours it with red =̂ 0

• Colours it red =̂ 0 or blue =̂ 1

26/32

Rev(G) is hard to compute
Raz–McKenzie Game to the help

Two players take rounds... until Game Over..., i. e., when we have:

0 1 1 · · · 1

0

Either a red source or red vertex with all predecessors blue.

R-Mc(G) := smallest r s. th. Pebbler wins in ≤ r rounds
regardless of how Colourer plays

26/32

Rev(G) is hard to compute
Raz–McKenzie Game to the help

Two players take rounds... until Game Over..., i. e., when we have:

0 1 1 · · · 1

0

Either a red source or red vertex with all predecessors blue.

R-Mc(G) := smallest r s. th. Pebbler wins in ≤ r rounds
regardless of how Colourer plays

26/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

Rev(G) = R-Mc(G)

Theorem ([Chan ’13: Just a pebble game])

For any single-sink DAG G:

Rev(G) = R-Mc(G)

Example: Recall Rev(Pn) = R-Mc(Pn) = Θ(log n) ∀n ∈ N

27/32

The Actual Proof

28/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

Given: a res. refutation π of F with a ref.-graph Gπ and Rev(Gπ) =: k.

AIM: Give a strategy for Prover in the PD-game under which he has to
pay at most k points.
Idea: Simulate the strategy of Pebbler in the Raz–McKenzie game
→ a falsifying part. assignment α of init. clause will be produced

Stages of the game: Pebbler chooses C −→ Prover queries vars. in C
not yet assigned by α (& extends with Delayer’s answers) until either

1. the clause C ist sat./fals. by α
→ Prover moves to next stage, simulating the corresponding
strategy of Pebbler when C is given colour C�α

2. a variable is given ∗ by Delayer
→ Prover extends α with value of x that sat’s C and simulates
corresponding strategy of Pebbler (assuming C has colour blue/1)

29/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS
Proof sketch of Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ) + 2

The game is played until α falsifies a clause in F .

After at most k stages the Raz–McKenzie game finished
⇒ Delayer can score at most k points.

Only left to show: At the end of the game a clause of F is fals. by α.

When Raz–McKenzie finishes:

1. either a source vertex in Gπ is assigned colour 0 by Colourer,
→ since α defines Colourer’s answer: α fals. a clause in F .

2. or a vertex with all its direct predecessors being coloured 1 is
coloured 0.
→ not possible, since no α can sat’y two parent clauses in a
resolution proof, while falsifying their resolvent!

0 1 1 · · · 1

0

30/32

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18: On space and depth in resolution] introduced amortised clause
space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04: Time and Space Complexity of Reversible Pebbling]

Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

31/32

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18: On space and depth in resolution] introduced amortised clause
space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04: Time and Space Complexity of Reversible Pebbling]

Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

31/32

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18: On space and depth in resolution] introduced amortised clause
space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04: Time and Space Complexity of Reversible Pebbling]

Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

31/32

An upper bound for Tree-CS in terms of CS∗

[Razborov ’18: On space and depth in resolution] introduced amortised clause
space:

CS∗(F `�) := min
π:F `�

(
CS(π) · log L(π)

)
Corollary

Tree-CS(F `�) ≤ CS∗(F `�) + 2.

Proof.

• [Královič ’04: Time and Space Complexity of Reversible Pebbling]

Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where the

minimum is taken over all black pebblings P of Gπ.

• Every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P).

31/32

Take-Home Message
Tree-CS and CS are fundamentally different measures

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G)

(*)

• Tree-CS(F `�) . CS∗(F `�) for general F

(*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

32/32

Take-Home Message
Tree-CS and CS are fundamentally different measures

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G) (*)

• Tree-CS(F `�) . CS∗(F `�) for general F (*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

32/32

Take-Home Message
Tree-CS and CS are fundamentally different measures

• Tree-CS
(
PebG[⊕2] `�

)
' Rev(G)

• Separations between Tree-CS and CS by graphs G exhibiting
separation between Rev(G) and Black(G) (*)

• Tree-CS(F `�) . CS∗(F `�) for general F (*)

(*) Some open questions hidden here. We’ve solved these for Tseitin formulas.

Thank you for your attention!

32/32

	Separations for Pebbling Formulas
	Pebble Games (games played on graphs)
	Pebbling Formulas (formulas over DAGs)
	Reversible Pebbling meets Tree-CS in the Special Case of Pebbling Formulas

	Upper Bounds for Tree-CS for General Formulas
	A combinatorial characterization of Tree-CS (by a game played on formulas)
	The equivalence of Rev and R-Mc
	The Actual Proof

